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Preface

The present dissertation encompasses several results situated in the
theory of ultradifferentiable functions and ultradistributions. More
precisely, we characterize various topological properties for multi-
ple classes of (generalized) functions and provide structural theorems
for different types of asymptotic behavior of ultradistributions. The
results discussed in the sequel are primarily based on the papers
(34, 35, 36, 93, 94, 95] that I have coauthored. However, this text
also contains many generalizations and, as of this writing, unpub-
lished results; in particular, this is the case for Chapter 5. We also
provide the reader with many open problems, whose solving we be-
lieve would lead to interesting new directions for the theory.

In Part I we are concerned with characterizing topological properties
of ultradifferentiable function spaces with respect to their defining
weight sequences and functions. Most notably, we fully character-
ize the nuclearity of several types of Gelfand-Shilov spaces, therefore
settling an open problem that goes back to the 1960’s in Mityagin’s
work. Another significant result we obtained is the first structural
theorem for the space of ultradistributions vanishing at infinity we
obtained, for which a completely novel approach was needed.

The asymptotic behavior of ultradistributions is considered in Part
II. In particular, we provide complete structural theorems for three
types of asymptotics related to translation and dilation, thus solving
long standing open problems in the field. In addition to this we also
extend the so-called general Tauberian theorem for the dilation group
from distributions to ultradistributions.
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Part 1

Topological properties of
ultradifferentiable function
spaces and their duals






Chapter 1

Introduction

Functional analysis is widely considered to be a vital part in the devel-
opment of modern mathematical analysis. Starting from its roots in
the study of function spaces and the linear operators between them, it
has grown into an impressive and vibrant research area with an abun-
dance of applications in fields such as partial differential equations,
numerical analysis, approximation theory, and many more. One of
its cornerstones is the theory of generalized functions, founded by
L. Schwartz [125], providing powerful tools in various mathematical
branches such as Fourier analysis, asymptotic analysis, and mathe-
matical physics. A nice example is the Malgrange-Ehrenpreis theo-
rem which states that any non-zero constant coefficient linear PDE
admits a distributional fundamental solution. However for several
natural problems the space of distributions is not a suitable setting,
for instance Colombini and Spagnolo showed that there are Cauchy
problems for weakly hyperbolic linear PDE’s with smooth coefficients
that are not well-posed in the space of distributions [31]. This mo-
tivated the search for linear spaces of generalized functions that are
strictly larger than the space of distributions. Noteworthy examples
are the spaces of ultradistributions [11, 21, 81, 121]. For instance,
under suitable conditions the above Cauchy problems become well-
posed in certain spaces of ultradistributions [29, 30, 60], whence the
topological invariants of spaces of ultradifferentiable functions be-
come of great interest.
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In this part we will be mainly concerned with the so-called Gelfand-
Shilov spaces. In [61, 62] Gelfand and Shilov introduced and system-
atically studied various kinds of spaces of smooth and ultradifferen-
tiable functions satisfying global decay estimates. Such spaces, also
known as spaces of type &, were initially considered in the context
of parabolic initial-value problems, and later turned out to be the
right framework for the analysis of decay and regularity properties of
global solutions to large classes of linear and semi-linear partial dif-
ferential equations on RY. In this text, these spaces will allow us to
circumvent the condition of non-quasianalyticity as would necessarily
be the case if we were to consider compactly supported ultradiffer-
entiable functions as our foundational space of test functions in view
of the Denjoy-Carleman theorem. Our definition of the Gelfand-
Shilov spaces is done using the notion of ultradifferentiability defined
through weight matrices [119], called weight sequence systems in the
present text. In particular, as explained in [119], this leads to a uni-
fied treatment of classes of ultradifferentiable functions defined via
weight sequences [81] and via weight functions [21]. In the four main
chapters of this first part, our primary interest will be the character-
ization of certain topological properties of either the Gelfand-Shilov
spaces themselves, or spaces that contain them as a dense subspace.

The systematic approach of determining the topological invariants
needed for the validity of many well-known theorems in mathemat-
ical analysis may be considered as one of the landmarks of the last
century. One may just think of the open mapping theorem, the
Banach-Steinhaus theorem, abstract Schwartz kernel theorems, and
many more. This has led to a select list of topological notions, see
e.g. [87,92, 103, 107, 123, 131}, whose specific characterizations are
highly desirable. On an abstract level, the use of homological meth-
ods has been a remarkably fruitful way to obtain such results, see e.g.
the monograph [151]. This paved the way for the characterization of
topological properties of many well-known spaces, such as sequence
spaces and spaces of continuous functions. In this text, we are pri-
marily interested in the notions of nuclearity, (ultra-)bornologicity
and barrelledness. In particular, we aim to characterize these for
several spaces of ultradifferentiable functions and their duals by re-



ducing them to the simpler versions mentioned above. To do this, we
will often employ techniques stemming from time-frequency analysis.

Time-frequency analysis [65], a modern branch of harmonic analy-
sis, to this day presents itself as thoroughly studied yet vibrant area
of research. Originating from the early development of quantum me-
chanics, it has matured into a formidable discipline with a plethora
of applications ranging from fields such as signal processing, data
compression, partial differential equations and many more. Lately
it has also shown itself to be an invaluable tool in the theory of
generalized functions, applicable in the context of regularity analysis
[33, 71, 84, 85] but also for the study of intrinsic topological prop-
erties of function spaces [4, 44]. For this text in particular, we will
often make use of the mapping properties of the short-time Fourier
transform and Gabor frames to completely characterize the space at
hand. It turns out that for spaces of ultradifferentiable functions
studying decay in both time and frequency is an excellent way for
grasping their essence, and has already been employed successfully
before [42, 67].

The structure of Part I is as follows. We start in Chapter 2 with
an overview of all notions and notations we will use in this part, as
well as a recollection of several well-known results. We expect the
reader to be mostly familiar with all that is written there, yet many
references are provided that give great overviews for the theory at
hand. After this, we formally introduce the Gelfand-Shilov spaces
in Chapter 3 and discuss some of their basic properties. In partic-
ular we will study the invariance of their definition via L9-norms,
akin to the results made in [24], which will turn out to be equivalent
to the spaces being nuclear. The chapter is then concluded with a
time-frequency analysis of the Gelfand-Shilov spaces, specifically we
discuss the continuity properties of the short-time Fourier transform
and Gabor frames. The nuclearity of several variants of the Gelfand-
Shilov spaces is characterized in Chapter 4. Though each space will
require a different technique, the core idea will primarily be to embed
a suitable space into the Gelfand-Shilov spaces or vice-versa. Here
the complete characterization of the nuclearity of Kothe sequence
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spaces will play a vital role. Continuing to Chapter 5, we consider
the topological invariants of (PLB)-spaces of weighted ultradifferen-
tiable functions, for example the multiplier space. In particular we
characterize the ultrabornologicity and barrelledness using conditions
similar to those of Vogt and Wagner for the splitting of short exact
sequences of Fréchet spaces. Interestingly, the validity of our method
for showing the necessity of these conditions will depend on the ex-
istence of Gabor frames whose windows have specified rapid decay
in both time and frequency. In Chapter 6, the final chapter of Part
I, we consider the space of bounded ultradistributions and the space
of ultradistributions vanishing at infinity. In particular, we provide
first structural theorems for both of them. These results will form
the cornerstones of the theory build in Part II.



Chapter 2

Preliminaries

We fix in this chapter the notation and introduce several topological
properties and spaces which we will use throughout this text.

2.1 Notation

For a topological space X, we denote for any subset A € X by A
its closure and by int A its interior. If we write K € X, we mean K
is a compact subset of int X. We will always work with a Hausdorft
topological space X, i.e. for any x,y € X such that x # y there exist
disjoint open sets U,V < X such that x € U and y € V.

We always include 0 in the set N of all natural numbers, while
we denote the set of all positive integers by Z,. By d we always
mean an element in Z, referring to the dimension. A multi-index
is an element o = (ay,...,aq) € N? and we write |a| = |ay| +
oo+ |ag| for its length. We will also write |¢| = q/2% + -+ + 2?2
for the Euclidean norm of a vector z = (x1,...,24) € R% but the
distinction should always be clear from the context. For two multi-
indices @ = (ay,...,aq) and § = (B1,...,08q4) we write a < (3 if
a; < (B for all j e {1,...,d} with at least one strict inequality, and
a < [ means that either « < § or @ = . We employ the standard
multi-index notation, namely, a! = oq!--- !, 2% = 27" - 23 and
(g) = (gi) e (g;) The j-th partial derivative, with j € {1,...,d}, is
denote by 0; and we write 0% = 07" - - - 05%. In the context of vectors,
we write e = (1,...,1).

11
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For a function f : R? — C, we use the notation Mf(t) =
et f(t) and T, f(t) = f(t —x). For a subset W < R? and R > 0
we denote Wg := {r e R? | 2 = y + z with y € W, |2] < R}. We fix
the constants in the Fourier transform as

~

F(E) = F(&) = y ftye=>mat,  fe L'(RY).

We employ the following notation throughout this text.

Notation 2.1.1. We apply the brackets ( - ) for the Beurling case and
the brackets {-} for the Roumieu case, which will have an explicit
meaning in the specific context. Via the brackets [ - | we consider both
Beurling and Roumieu cases simultaneously, where we will often first
give the statement for the Beurling case followed by the statement
for the Roumieu case in parenthesis. If we use the brackets () we
mean the opposite case of [-], i.e. if [-] = (-) then () = {-} and
if [-] = {-} then (-) = (-). In the literature one will often find
the notation = and f for [ -], based on the notation first employed by
Komatsu in [81].

2.2 Locally convex spaces

The topological spaces we will be concerned with are locally convex
Hausdorff spaces (from now on abbreviated by lcHs). We refer the
reader to [73, 87, 92, 131] for extensive overviews of the theory. For
a lcHs E we denote the family of all continuous seminorms of F
by csn(E). For two IcHs E, F we write L(E, F) for the space of
all continuous linear operators £ — F. By Ly(E,F) we refer to
L(E, F) endowed with the topology of uniform convergence on the
bounded sets of E. We write E’ for the topological dual of E, i.e.
E' = L(FE,C). Unless specified otherwise, we equip the dual E’ with
the strong topology, which we specifically write as Ej. Some of the
important topological properties on a lcHs E we will consider in this
text are the following:

e F is barrelled (resp. quasi-barrelled) if the topology on F
coincides with b(E, E") (with the topology induced by E”).
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e FE is Schwartz if for each normed space F' and any A € L(E, F)
there exists a zero neighborhood U in E such that A(U) is
precompact in F'.

e FE is Montel if F is quasi-barrelled and every bounded set in F
is relatively compact (called the Heine-Borel property).

e FE is (ultra-)bornological if for any IcHs F' and A€ L(E, F), A
is continuous if A(B) is bounded for all bounded subsets (resp.
bounded Banach disks) B in F.

A Fréchet space is a complete metrizable lcHs. A Fréchet space
E is called distinguished if E' is bornological. A lcHs E is called
a (DF)-space if it has a countable fundamental system of bounded
sets and if every strongly bounded countable union of equicontinuous
in ' is again equicontinuous. The dual of any Fréchet space is a
(complete) (DF')-space, and conversely the dual of any (DF')-space
is a Fréchet space. If a Fréchet space (resp. a (DF')-space) is Schwartz
it is denoted as an (F'S)-space (resp. a (DFS)-space), and if it is
Montel it is denoted as an (F'M)-space (resp. a (DF M )-space).

2.2.1 Inductive limits

An inductive spectrum X of lcHs is a sequence (Xy)yen of lcHs
such that Xy < X1 with continuous inclusion for all N € N. The
inductive limit of the spectrum X, denoted by X = lim X, is
given by the set X = | Jyey X~ and endowed with the finest locally
convex Hausdorff topology for which all inclusions Xy — X are
continuous. In view of [92, Lemma 24.6, p. 280] and the inductive
spectra considered in this text (whose algebraic dual always contains
the translates of the Dirac delta function), such a topology will always
exist. A lcHs X is called an (LB)-space if it can be written as the
inductive limit of a spectrum consisting of Banach spaces. Similarly,
X is called an (LF)-space (resp. (LF'S)-space) if it can be written as
the inductive limit of a spectrum consisting of Fréchet spaces (resp.
(F'S)-spaces).

For an inductive spectrum X = (Xy)ney of Fréchet spaces we
consider the following two regularity conditions (cfr. [8, 143, 150,
151)):
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e X is said to be sequentially retractive if for any null sequence
in X there exists a NV € N such that the sequence is contained
in Xy and converges to zero in Xy.

e X is said to be reqular if for any bounded subset B of X there
exists a NV € N such that B is contained and bounded in Xy.

Remark 2.2.1. Let X = (Xy)neny and YV = (Y ) yen be two induc-
tive spectra consisting of Fréchet spaces. Let (P) be any of the two
conditions considered above. If h_r)nNeN X, = li_ngNEN Yy as locally
convex spaces, then X satisfies (P) if and only if ) does so, as fol-
lows from Grothendieck’s factorization theorem [92, Theorem 24.33,
p. 290]. This justifies calling an (LF')-space sequentially retractive,
respectively regular, if one (and hence all) of its defining inductive
spectra has this property.

We have the following chain of implications (cfr. [151] and the
references therein):

sequentially retractive = (quasi-)complete = regular. (2.1)

In the special case where the spectrum consists of Fréchet-Montel
spaces, these conditions become equivalent. We refer the reader to
[150] for further information.

We end this section by considering the dual Mittag-Leffler the-
orem, which allows us to detect topological isomorphisms between
inductive limits. We call an inductive spectrum X = (Xy)yen com-
pact (resp. weakly compact) if each inclusion 1y : Xy — Xpy4q is
compact (resp. weakly compact), i.e. there is a neighborhood of zero
in Xy that is relatively compact (resp. relatively weakly compact)
in XN+1.

Theorem 2.2.2 (Dual Mittag-Leffler theorem, [81, Lemma 1.4, p. 37]).
Let X = (Xn)nen, Y = (Yn)nen and Z = (Zn)nen be inductive spec-
tra of Banach spaces. Suppose that
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p1 1

0 X, Y, 7 0
0 X, 2.y, 2.z 0
0 Xy vy 2N 2y 0

is an inductive sequence of short topologically exact sequences. Set
p = li_r)nNeNpN. If X = li_I)nNeN Xy is Montel, Y is reqular and Z is
weakly compact, then X = p(X) as locally convez spaces.

2.2.2 Projective limits

A projective spectrum X of lcHs is a sequence (Xy)yen of lcHs to-
gether with continuous linear linking mappings o, : Xy11 — Xy
for all N € N. We write o = idy, and g}; = o, 00 o=t for
N < M. We set

Proj’ X = lim Xy
NeN

= {(xn)Nen € H Xn | p%H(mNH) = zy for all N e N}
NeN

and denote by o™ : Proj’ X — Xy, : (xnx)nen — Za the projection
on the Mth component. We call Proj® X' the projective limit of X.
We endow Proj’ X with the coarsest topology such that every projec-
tion oM is continuous. The projective spectrum X is called reduced
if the image of o™ : Proj’ X — X, is dense for every M € N. For
such projective spectra, we have that X* = (X)) nen is an inductive
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spectrum of 1cHs, as the transposed of pY 41 may be considered as a
continuous inclusion. We then have as sets [87]:

(lim X )’ = lim X} (22)
NeN NeN

Note that (2.2) holds topologically if X" is (weakly) compact [80, 127],
that is if the linking mappings o¥,, are (weakly) compact. On the
other hand, if X = (Xy)nen is an inductive spectrum, then X* =
(X}, 0N.1) is a projective spectrum where we put pi, (z') = 2/|x,
for any ' € Xy ;. We have as sets [87]:

(lim Xn)" = lim X (2.3)
NeN NeN

If X is regular, (2.3) holds topologically.

Two projective spectra X = (X, 0N 1)nveny and Y = (Yy, 0N, 1)
are said to be equivalent if there exist increasing sequences (ky)nen
and (Iy)nen of natural numbers with N < ky < Iy < ky;1 and
linear mappings Ty : X;, — Yk, and Sy : Y, — Xj,_, such that
SyoTly = Qéz’l and Ty o Sy41 = a,];’jﬂ. Clearly, Proj’ X =~ Proj’y
as locally convex spaces if X and ) are equivalent projective spectra.

A IcHs is called a (PLB)-space (resp. a (PLS)-space) if it can
be written as the projective limit of a reduced projective spectrum
of (LB)-spaces (resp. (DFS)-spaces). We refer to [49] for more

information on these spaces.

2.2.3 Nuclearity and topological tensor products

We recall some of the fundamentals of the theory of nuclear spaces
and topological tensor products, introduced by Grothendieck in his
doctoral thesis [69] for his study of the validity of abstract Schwartz
kernel theorems.

A linear map A : E — I between two Banach spaces E, F' is said
to be nuclear, if there exist a sequence (a,).eny in E' and a sequence
(by)nen in F' such that Y« [|an ||z [|bn]| » < 00 and

Ax) = Z (ap, ) by, rekFE.

neN
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For a lcHs E and a continuous seminorm p € csn(F), we denote
by E, the local Banach space for the seminorm p, i.e. the completion
of E/N, w.r.t. the seminorm p where N, = {x € FE | p(z) = 0}.

Definition 2.2.3. A IcHs E is called nuclear if for each p € csn(FE)
there exists a ¢ € csn(F) with ¢ = p such that the canonical embed-
ding ¢ : £, — E, is nuclear.

We recall some results on nuclear spaces. Proofs for all statements
may be found in [92], or follow easily therefrom.

Lemma 2.2.4. Let E be a nuclear lcHs.
(i) E is Schwartz.
(i7) If E is complete and quasi-barrelled, then E is Montel.

(1ii) Any subspace F' of E is nuclear. If F is closed, then E/F is
nuclear.

(iv) For any projective spectrum X = (Xy, 0N 1) of nuclear spaces,

the projectwe limit lim . X is nuclear.

(v) For any inductive spectrum X = (Xy) of nuclear spaces, the

nductive limit lim XN 18 nuclear.
—>NeN

We now consider the nuclearity of Fréchet and (D F')-spaces, which
are then denoted as (FN)- and (DFN)-spaces. For such spaces
Grothendieck provided a criterion for nuclearity in terms of summable
sequences [69]. Let E be a IcHs. A sequence (e,)nen in E is called
weakly summable if

Y en)| <o, Ve eE

neN

By Mackey’s theorem, (e, )nen is weakly summable if and only if the

set
k
U{ cnen:|cn|<1,n:O,...,k}
0

keN \n=
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is bounded in E. The sequence (e, )qen is called absolutely summable
if

Diplen) <o, Vpecsn(E).

neN
Clearly, (€,)nen is absolutely summable if and only if >} p(e,) < o0
for all p belonging to some fundamental system of continuous semi-
norms on E. Moreover, if E is a Fréchet space or a (DF')-space, then
(€n)nen is absolutely summable if and only if for every bounded set B
in E it holds that Y, °  pg(e,) < o0, where pjp is the gauge functional
of B [107, Theorem 1.5.8].

Proposition 2.2.5 ([107, Theorem 4.2.5]). Let E be a Fréchet space
or a (DF)-space. Then, E is nuclear if and only if every weakly
summable sequence in E is absolutely summable.

We move on to topological tensor products. We only provide
a brief discussion of the notations and results used in the sequel,
for a more thorough overview we refer the reader to such works as
[69, 83, 131]. For any two IcHs E and F we define the ¢ tensor
product EeF' as the space of all bilinear functionals on E! x F which
are hypocontinuous on the equicontinuous sets of £’ and F’. We
endow FeF with the topology of uniform convergence on the products
of equicontinuous sets in £’ and F’. The tensor product £ ® F' is
canonically imbedded in FeF under

(e® ), f) = (e e) (f'. 1)

We write £ ®. F' if we equip £ ® F' with the topology induced by
EeF, and write EQ.F for its completion. For any two complete
IcHS E and F, if either E or F' is nuclear, then we have the following
canonical isomorphisms as locally convex spaces:

EeF =~ EQ.F.
The e-tensor product behaves well under projective limits.

Lemma 2.2.6 ([83, Proposition 1.5]). Let E be a lcHs and X =
{Fy, Q%H }Nen be a projective spectrum of lcHs. Then the following
canonical 1somorphism holds as locally convex spaces:

E®.(lim Fy) = lim E®.Fy.
NeN NeN



2.3. Classical locally convex spaces 19

The projective tensor product topology m on E® F' is the strongest
locally convex topology such that the canonical bilinear mapping £ x
F — E ® F is continuous, and we denote by F ®, F the tensor
product F ® F endowed with the topology 7. Additionally, E®,F
is the completion of £ ®, F. If £ and F are (DF)-spaces, then so
are E®, F and EQ,F. Similarly, if E is an (FN)-space and F a
Fréchet space, then EQ,F is a Fréchet space.

The topology of E ®, F' is finer than that of £ ®. F. However,
if either one of the spaces is nuclear, then the topologies coincide
(and in matter of fact this is an equivalent definition for nuclearity,
see [131, Theorem 50.1, p. 511]). If such is the case, we simply write
E®F = EQ.F = E®, F and EQF for its completion. We also note
that if both E and F are nuclear, then so is EQF [131, Proposition
50.1, p. 514].

Suppose Ei, Fsy, F1 and Fy are IcHs. If By =~ Ey and F; =~ F5 as
locally convex spaces, then also Ei®.F =~ E2y®.F, [131, Proposition
43.7, p. 440]. Moreover, we will also need the following general fact.

Lemma 2.2.7. Let E, Ey, F, Fy be lcHs such that Ey < E and Fy < F
with dense continuous inclusions. Then, Ey®.Fy is dense in EQ.F.

2.3 Classical locally convex spaces

We recall in this section several well-known locally convex spaces
which we will frequently use throughout this text.

2.3.1 Kothe sequence spaces

Given a sequence a = (a;) ez of positive numbers, we define 17(Z%, a) =
[%(a), q € [1,0], as the weighted Banach sequence space consisting
of all ¢ = (¢;)eza € C** such that

1/q
el = | X (eila)? | <o, ge[lo0),
jezd

and

el () = sup |ejla; < oo
jezd
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Furthermore, we define [°(Z%, a) as the space consisting of all (¢;) jezq €
CZ’ such that

limc;a; =0
iiga j

and endow it with the norm ||'||zoo(a)

A Kithe set is a family A = {a*|\ € R,} of sequences a* of
positive numbers such that ag\ < a;‘ for all j € Z% and 1 < X\. We
define the associated Kothe sequence spaces as

A(A) = lim 19(a®), XA} = lim 1%(a?), g€ {0} u[l,o0].

A—0+ A—00

Note that A\?(A) is a Fréchet space, while A\7{A} is a regular (LB)-
space, as follows from [8, Corollary 7, p. 80]. We denote by A° the
Kothe set A° = {1/a* | A e R, }.

The nuclearity of the spaces AM[A] can be characterized in terms
of the following conditions on the Kéthe set A:

(N) VAe R, Jue R, : at/a e IN(Z%);
(N} VpeR, INeR, : a/a" € IN(ZY).

Proposition 2.3.1 ([8, Proposition 15, p. 75]). Let A be a Kdithe
set. The following statements are equivalent:

(i) A satisfies [N].

(i1) N[A] is nuclear for all ¢ € {0} U [1, o0].

(i13) AI[A] is nuclear for some q € {0} U [1, 0].

(iv) M[A] = N'[A] as locally convex spaces for all g,r € {0} U[1, o0].
(v) N[A] = N'[A] as sets for some q,r € {0} U [1, 0] with ¢ # .

2.3.2 Spaces of integrable and smooth functions

For any q € [1,90], we denote by L4(R?) the Banach space of all
measurable functions ¢ : R¢ — C such that

1/q
lolls = ([ loopae) < qe e
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and
ol o = sup |o(z)| < .

zeRd

In the smooth case, we consider the Fréchet spaces Drq(R%), q €
[1,00], of all ¢ € C*(R?) such that

HSOHDLq,k = g}'i)]i H%O(a)”m < 0, Vk e N.

In keeping with Schwartz, we will write B(R?) for the space Dy« (R?).

For a compact subset K € R, we by denote D the closed sub-
space of B(R?) of all ¢ € C*(R?) such that supp p < K. The space
of all compactly supported smooth functions is then denoted by

D(RY) = lim D.
KER4

The Schwartz space S(RY) is the Fréchet space of all smooth func-
tions ¢ such that

lollsx = maxsup (1 + [a])*p'“ (@) < o0, VkeN.

la|<k Lerd

We note that S(R?) may be equivalently defined via any L%-norm.
Clearly the Fourier transform F is a topological isomorphism on

S(RY).

2.3.3 Spaces of ultradifferentiable functions
Weight sequences

A multi-indexed sequence M = (M,),ene of positive numbers is called
a weight sequence if limene (Ma/ M)Vl = 00, We write e; for the
standard coordinate unit vectors in R?, j = 1,...,d. We consider the
following conditions on a weight sequence M:

(M.1) MZ,. < MaMgys, for all a e N* and j e {1,...,d};

(M.2)" Maye; < CoH®IM, for all a € N and j € {1,...,d} and some
O(), H > 0;
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(M.2) My.p < CoH“*PIM, My for all a, 8 € N? and some Cy, H > 0.

A well-known example is the Gevrey sequence (!®),ena for some s >
0, which always satisfies (M.1) and (M.2).

A weight sequence M is called isotropic if M, = Mgz for any
o, € N? such that |o| = |8]. We then also write M = (M,),en
where for any p € N we set M, := M, for all @ € N¢ such that |a| =
p. To any isotropic weight sequence M we associate the sequence
my, = M,/M,_, and note that m, is a non-decreasing sequence if
and only if M satisfies (M.1).

For any two weight sequences M and N we write M < N if
M, < CL®N, for any a € N* and some C,L > 0. If M < N
and N < M, we write M ~ N. Note that when this holds, then,
M satisfies (M.2)" (resp. (M.2)) if and only if NV satisfies the same
condition. If for any € > 0 there exists some C' = C. > 0 such that
M, < Cel?IN, for all o € N, we write M < N.

The associated function of M is defined as

|| Mo

wy(x) = sup log ———, r| >0,
@) = suplog 2

and wys(0) = 0. Then, wy, vanishes in some neighborhood of the ori-
gin and increases faster than log |x| as |x| — oo (cf. [81, p. 48]). Also
observe that wys(z) = war(|z1], ..., |zg|) for all z = (2q,...,24) € RZ

We define the tensor product of a finite number of weight se-
quences M; = (Mj,) 4 OD N%, with j = 1,...,k, as the se-
quence My ® -+ @ My = (Mia, My ) (o, ap)enia++a4n - Note
that M; ® - -+ ® M, satisfies (M.1) ((M.2)" or (M.2), respectively) if
and only if this property holds for each M;. Moreover,

k
j=1

Let M be a weight sequence on N¢. Given a permutation o of
the indices {1,...,d}, we write o(M) = (Mo, ). .apw))ar,...ageNd-
We call a weight sequence M isotropically decomposable if it can be
written as a tensor product of k isotropic weight sequences, that is,
if there is a permutation o such that o(M) = M} ® - -+ ® M, with
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each M isotropic. Such weight sequences may be reconstructed from
their associated function in case of logarithmic convexity.

Lemma 2.3.2. Let M be an isotropically decomposable weight se-
quence. Then M satisfies (M.1) if and only if

]

M, = M sup : (2.4)
serd €Xp wyr ()
If such is the case, then,
k k
M(Z ;) Z dl/Qx] T,...,x, € RY (2.5)
=1 =1

for arbitrary k € Z, .

Proof. Tt suffices to consider the isotropic case. It is a straightforward
calculation to see that M satisfies (M.1) if (2.4) holds. Conversely,
if M satisfies (M.1) then for any p € N and o € N such that |a| = p,
by [81, Proposition 3.2, p. 49|,

P a
My = Mo s exp wM((:, 0,...,0)) < Mo j;lﬂgz exp|ca;M|(x) < Mo,
whence (2.4) holds.
Now suppose M satisfies (M.1). Consider the function
tpMo
n(t) = sup =0 (2.6)
Note that
n(d™"a]) < wu(z) <n(fal),  zeR™ (2.7)

As 7 is increasing, (2.7) implies that

h (Z ) > b )

7j=1

for any x1,..., 7, € R O



24 Chapter 2. Preliminaries

We shall also consider the following two sets

(R) = {(lp)pez, : £, = ¢ for some ¢ > 0},
{R} = {(lp)pez, : £y /0 and £, > 0,Yp e N},

and use [PR] as a common notation. For any (¢,) € [2R], we associate
to it the isotropic weight sequence L = (L)uen with L, = []}_, ¢,
for p > 1 and Ly = 1. Then, for any isotropic weight sequence M we
consider the isotropic weight sequence My, = (M,L,)pen. Whenever
M satisfies (M.1) then the ensuing useful assertions [40, Lemma 4.5,
p. 417] hold on the growth of a function g : [0,0) — [0, c0):

Vq >0 g(t) =0 (e""M(qt))
=3 e () g0 = 0 () (28)

and

W(t,) € (98} 1 g(1) = O (™)
< 3¢>0:¢9(t)=0 (e—wM(qt)) . (2.9)

It is important to point out that if M satisfies (M.2) or (M.2)’, then
for any given (¢,) € [2R] one can always find a (k,) € [R] such that
k, < l,, Vp € Z, and My, satisfies the same conditions as M. For
the (M)-case this is trivial, whereas the assertion for the {fR}-case
directly follows from [117, Lemma 2.3].

Ultradifferentiable functions

Given a weight sequence M, a compact subset K € R? and ¢ > 0,
we denote by EM¥(K) the space of all smooth functions ¢ € C*(R?)

such that | " |
N
||90H5M,Z(K) = sup sup v ()

T < 0.
aeNd zeK fo‘Ma

Then we consider the space of all ultradifferentiable functions w.r.t.
M of Beurling type, resp. Roumieu type, on R%:

EMMRY = lim lim EMY(K),  EM(RY) = lim lim EM(K).

KER4 ¢—0t KERd {—0
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Note that the condition (M.1) implies that EM(R?) is closed under
multiplication, while (M.2)" guarantees that M (R9) is closed under
differentiation.

In this part, we will primarily be concerned with the so-called
Gelfand-Shilov spaces [24, 61]. Given two weight sequences M and
N and ¢,q > 0, we denote by S%’;(Rd) the Banach space of all
¢ € C*(R?) such that

89| ()
el = o ot <

Then we consider the spaces

M . . M,¢ M : . M,¢
Sivy (R = Jim Jim SY(RY), SRR = Jim lim S (R).
q—0 f—0t q—0+ £—w0

In Chapter 3 we will extend the definition of the Gelfand-Shilov
spaces using so-called weight function and weight sequence systems.
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Chapter 3

Gelfand-Shilov spaces

3.1 Introduction

The aim of this chapter is to introduce and demonstrate several gen-
eral properties of the so-called Gelfand-Shilov spaces of ultradiffer-
entiable functions, both of Beurling and Roumieu type. Such spaces,
also known as spaces of type S, were first considered by Gelfand
and Shilov in the context of parabolic initial-value problems [62] and
systematically studied in [61]. Thereafter the Gelfand-Shilov spaces
turned out to be the right framework for the analysis of decay and
regularity properties of global solutions to large classes of linear and
semi-linear partial differential equations on R?. We refer to the mono-
graph [96] and the survey article [64] for accounts on applications of
Gelfand-Shilov spaces; see also [23, 118] for global pseudo-differential
calculus in this setting. For our purposes, the Gelfand-Shilov spaces
and their duals will serve as the fundamental spaces on which we will
build our theory in the chapters to come. In particular this allows
us to circumvent the condition of non-quasianalyticity as would be
necessarily the case if we were to consider compactly supported ul-
tradifferentiable functions as our foundational space of test functions
in view of the Denjoy-Carleman theorem.

In this chapter, and those remaining in Part I, we will work with
the notion of ultradifferentiability defined through weight matrices
[119], called weight sequence systems in the present text. In particu-
lar, as explained in [119], this leads to a unified treatment of classes

27
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of ultradifferentiable functions defined via weight sequences [81] and
via weight functions [21]. Whence Section 3.2 is devoted to a general
discussion of weight function and sequence systems, where we estab-
lish several properties which will be employed throughout this text.
Moreover, we further extend the considerations from [119] to multi-
indexed weight sequence systems in order to cover the anisotropic
case as well.

We introduce the type of Gelfand Shilov spaces employed through-
out this text, denoted by S ]q in Section 3.3. The index ¢ € [1, ]
refers to the ultradlfferentlablhty of the smooth test functions with
respect to the weight sequence system 2N of their L%-norm. Aside
of establishing some basic topological properties, one of the main re-
sults we will obtain is the independence of ¢ under certain conditions
for 9 and #, which later we will show is exactly the case when the
spaces are nuclear, see Chapter 4.

Finally, in Section 3.4, we consider time-frequency analysis in the
framework of the Gelfand-Shilov spaces. The results obtained there
will prove to be invaluable tools in several of our proofs to come, see
in particular Chapters 4, 5, 6 and 11. In recent times the field of
time-frequency analysis has been employed successfully for the study
of functions and generalized functions, applicable in the context of
regularity analysis but also for the study of intrinsic topological prop-
erties of function spaces, see e.g. [4, 42, 44, 59, 67, 84]. A compre-
hensive overview of the field may be found in the monograph [65].
For our purposes, we will specifically discuss continuity properties of
the short-time Fourier transform and Gabor frames.

3.2 Weight function and sequence sys-
tems

In this section, we define and study weight sequence systems (intro-
duced in [119] under the name weight matrices) and weight function
systems.
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3.2.1 Weight function systems

Let X be a topological space. A continuous function w : X — R,
is called a weight function on X . A weight function system on X is
a family # = {w* |\ € R,} of weight functions w* on X such that
wr(x) < wh(x) for all x € X and p < X\. If X is a locally compact
topological vector space, we consider the following conditions on a
weight function system #:

(WM) VK € X VA€ R, Jue R, 3C > 0Va e X : sup,cp w(z+y) <
Cw'(z);

{wM} VK € X Vpe Ry INeR, IC > 0Vr € X @ sup,cx w(z+y) <
Cwh(z);

(M) VA € Ry 3u,m e Ry 3C > 0 Vo,y € X @ wMz +y) <
Cu'(z)w(y);

(M} YVu,p e Ry I e Ry 3C > 0 Vo,y € X @ wz +y) <
Cwt(z)w"(y).

Clearly, [M] implies [wM]. We say # is non-degenerate if inf e x w*(z) >
0 for any A € R,. Moreover, ¥ is called symmetric if w*(x) =
w(—x) for any Ae R, and v € X.

In the case where X = R¢, we also consider the conditions

(N) VAeR, JueR, : w/w" e L'(RY);
(N} Vue R, INe R, : w*/w* e L}Y(R?).

In the sequel, if we do not specify X we always mean X = R9.
The following result is easy to verify.

Lemma 3.2.1. Let # be a weight function system on X satisfying
[wM]. Then

VKE XV eR, INeR, V' eR, JueR,
(VK € X YN eR, I eR, YueR, 3/ eR,)

A by
3C>0VxeX:supw(x+y)< w/(x).
yek Wz +y) — w(z)
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Two weight function systems # and ¥ on X may be compared
in the following ways:

W()V < YieR,IJpeR,IC>0Vre X :w(z)
W<}V < VYpeR,INeR, IO >0Vre X :w\(z)
W~V < WI[L<|Vand ¥V [<|W.

’
I

Clearly, if #'[~]? then # satisfies [wM] ([M] or [N], respectively)
if and only if ¥ does so.

We define the tensor product of a finite number of weight function
systems #; = {wjf\])\eR+} on X;, j=1,...,k, as

VR - QW ={w, @ - @uwp | Ae R},

where w} ® -+ @ wp(x) = wxy) - wp(xy) for & = (wq,...,23) €
Xp % -+ x Xj. Note that 71 ® - - - ® #, satisfies [wM] (resp. [M]) if
and only if each %} does so.

We end with some considerations on the condition [N]. The fol-
lowing will be a useful result in the sequel. As is standard, Cy(R?) de-
notes the space of continuous functions vanishing at infinity equipped
with the L®-norm.

Lemma 3.2.2. Let # be a weight function system on R satisfying
[wM] and [N]. Then,

VieR, IueR, (VueR, INeR,) : w/w" e L'(R?) n Cy(RY).
Proof. This is a consequence of Lemma 3.2.1. [

Given a weight function system # on Z?, we associate to it the
Kothe set

Ay = {(w/\(ﬂ'))jezd [ AeR,}.

The next result shows that the notion [N] is unambiguous.

Lemma 3.2.3. Let # be a weight function system satisfying [wM].
Then, # satisfies [N] if and only if Ay satisfies [N].

Proof. This again follows from Lemma 3.2.1. [
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3.2.2 Weight sequence systems

A weight sequence system on R? is a family 9 = {M* | A € R, } of
weight sequences M* on N satisfying (M.1) such that M* < M? for
all o € N% and 1 < A\. We will often work with some of the following
conditions on a weight sequence system 9)1:

(L) VR>0VYAeR, Jue R, 3Cy > 0 Ya e N?: RlelMr < CoM;
(L} VR>0VpeR, INeR, 3Cy > 0 Va e N?: RMIAMF < CoM;

(M.2) YAeRy 3ueR, 3C,, H>0VaeN'Vje{l,....d}: M, <
CoHYI M

(M2} YueR 3NeR, 3C, H>0VaeN'Vje(l,....d}: My, <
CoHIM,

(M.2) VAe R IpeR 3C,, H > 0Va,e N : Mo < CoH'"PIMAM;

(M2} VpeR, INeR, ICy, H > 0Va, B e N¢ : M

a+p

< CoH*PIMA M.

Furthermore, 9 is called accelerating if Méerej/Mgf < MéJrej/M(;\ for
allaeN? je{l,...,d}, and p <\

Two weight sequence systems 991 and 91 may be compared in the
following ways:

M(LS)N < VAeR, JueR, : MH
MI{<}N < VuecR, INeR, : M
M~ N < M[<]Nand N[<] N

N)x.
N,

<
<

Clearly, if D[~ ]9 then 9 satisfies [L] ([91.2]" or [90.2], respectively)
if and only if 91 does so.

We define the tensor product of a finite number of weight sequence
systems M; = {M} [N e Ry} on N%, j=1,... k, as

M- @M= {M{® - @M [ Ae R, }.

Clearly, 9 ® - - - ® My, satisfies [L] ([91.2]) or [IN.2], respectively) if
and only if each 901; does so.
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A weight sequence system 9 = {M* | X € R, } is called isotropic
if M* is isotropic for each A € R,. Given a permutation o of the
indices {1,...,d}, we write o(9M) = {o(M?) | X € R }. We call M
1sotropically decomposable if it can be written as a tensor product of
isotropic weight sequence systems, that is, if there is a permutation
o such that o(9) = My ® - - - @ M, with each M, isotropic.

Given a weight sequence system 90, we associate to it the non-
degenerate symmetric weight function system on R?

Wf)ﬁ - {GUJMA | )\ER+}
If 9 is isotropically decomposable, the conditions on 991 may be
characterized by #gy, as follows.

Lemma 3.2.4. Let 9N be an isotropically decomposable weight se-
quence system.

(i) M satisfies [L] if and only if
VR>0YAeR, dueR, 3C >0
(VR>0VueR, IAeR, 3C > 0)
wir (Rx) < wyn(x) + log C.
(13) M satisfies [IN.2])" if and only if
VNeNVIeR, JueR, 3C;H > 0
(YNeNVueR, INeR, 3C, H > 0)
wyr(x) + Nlog |z] < wyn(Hz) + log C.
(i13) M satisfies [M.2] if and only if
VAeR, 3uecR, 3C,H >0
(VueR, INeR, 3C,H = 0)
2w () < wye(Hz) + log C.

Proof. (i) Suppose that RI*IM* < CoM? for all @ € N¢. Then

|(Rz)*| Mg |z | Mg
wyn (Rz) = QSBNIZ IOng} < SBN% log Cy ME
Co My

= Wnpn (l’) + lOg Mp )
0
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whence the first implication. Conversely, suppose the inequality
holds, then for any a € N, by (2.4),

|(Rz)*|  CMY
San

la e i ‘(Rx)a’ b
REMa = Mo sup o < OMoSp - SRy = g

(77) Suppose that Mg+ej < CoHYIM? for all a e NP and 1 < j <
d. Then for any j € {1,...,d}:

( )+1 | | | |$a+ej|M | C ’(H$>a+ef|M>‘
w xXr og |Tr;| = Su og — < sup lo —_—
e s ! ael\g s Mo)c\ 04511\21) 7] H Mg—‘re
CoM
< wyn(H 1 0
wye(Hz) + log A

As log || < max;<j<qlog |z;| + logv/d, we find
wir(z) + log x| < wyn (Hz) + log Cy

for some C > 0. For any N € Z,, iterating N-times then gives the
result. Next, assume the inequality holds and set N = 1. Then for
any a € N and j e {1,...,d}, by (2.4),

+e;
T MY i
Mg_,’_e = M(’)L sup |w | O)\H‘alMA sup |xj’ewMA(H x)—wprp (x)
zeRd € i M zeRd
MY

< C= gl
Mg
(#7) Suppose that M"

B < CoHIPPIMIM) for all o, f € N°.
Then

22 (Mg)* |(Ha)*|(Mg)*
B e T e 5
Co(Mg)?

< wpyn(Hz) + log A
0

If the inequality holds, then for any a, 3 € N% by (2.4),
a+p « B
p PR ” |z |z
My = 08 g s < 0ot e (s ) (i

_ oM
(M )2

—— = HIMAMY.
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The conditions on 9 and #oy are related as follows.

Lemma 3.2.5. Let 9 be an isotropically decomposable weight se-
quence system satisfying [L].

(a) Wan satisfies [M].
(b) Consider the following statements:
(i) M satisfies [IM.2]'.

(i1) Ay, satisfies [N].
(i1i) #an satisfies [N].

Then, (i) = (ii) < (ii1). If in addition M is accelerating, then
(i4i) = (3).
Proof. We may assume that 991 is isotropic.
(a) This follows from (2.5) and Lemma 3.2.4(i).
(b) (i) = (i7) Is a direct consequence of Lemma 3.2.4(ii).
(17) < (i17) In view of (a), Lemma 3.2.3 yields the result.
(i17) = (i) (if M is accelerating) Let m*(t) = >},.c, 1 for t = 0.
Let 7 be as in (2.6) and set w*(z) = 7 (7D for z € R?. Note that

the weight function system {w” |\ € R} also satisfies [N] because of
(2.7) and Lemma 3.2.4(7). It is well-known that [81, Equation (3.11),

p. 50]
w(z) = exp (Lﬂ m’\u(u) du) : r e RY

Let A > 0 (u > 0) be arbitrary and choose ¢ > 0 (A > 0) such that
w*/wt € LY(R?). In particular, u < A. Since 9 is accelerating, we
have that mk < m) for all p > 1 and thus m*(t) < m#(t) for all
t > 0. Hence,

" A () — ()

t1 U

du <0

for all £, > ¢; > 0, which implies that w*(x)/w"(z) is non-increasing

in |z| . Therefore,
1 w* ()

1B(0,1)] Jga wH(z)

My w (x

|y‘dw ) < ! f dr < o
wt(y) B0, 1)| Jp,pyp w(x

;dxé
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for all y € R?. This implies
VAeR, JueR, VueRy INeR,)IC" H >0Vt =0 :
M (t) + dlogt < n#(t) + log C.

Then, by iteration and applying (2.7), we infer from Lemma 3.2.4(7)
and (i7) that 97 satisfies [M.2]". O

3.2.3 Two examples

We present two examples of important instances of classes of weight
sequence systems and weight function systems, which we will use
throughout this text.

First, given a single weight sequence M satisfying (M.1), we set
My = {(ANMM)pena | X € Ry} and #oy = Wiy, = {e“MC/N | N e
R,}.

Lemma 3.2.6. Let M be an isotropically decomposable weight se-
quence satisfying (M.1).

(a) My is accelerating and satisfies [L].
(b) # satisfies [M].

(¢) M satisfies (M.2) if and only if My satisfies [IM.2]" if and
only if Wy satisfies [N].

Proof. Part (a) is obvious, while (b) and (c¢) have been established in
Lemma 3.2.5. [

As a second example, following [119, Section 5], we can also intro-
duce weight sequence systems and weight function systems generated
by a weight function in the sense of [21]. We consider the following
conditions on a non-negative non-decreasing continuous function w
on [0, o0):

(@) w(2t) = O(w(t));
(7) logt = O(w(t));

(70) logt = o(w(?));
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(0) ¢ :[0,00) — [0,0), ¢p(x) = w(e”), is convex.

We call w a Braun-Meise-Taylor weight function (BMT weight func-
tion) if wip,1] = 0 and w satisfies (a), (70) and (6). In such a case,
we define the Young conjugate ¢* of ¢ as

¢ :[0,0) = [0,0), ¢7(y) = sup(ay — ¢(x)).
Note that ¢* is convex and y = o(¢*(y)). We define M, = {M |\ €
R, }, where M) = (exp (§¢*(A|a|)))aeNd; the above stated properties
of ¢* imply that M is an isotropic weight sequence satisfying (M.1).
Furthermore, we set #, = {ex*("D |\ e R*} (for general w).

Lemma 3.2.7. Let w be a non-negative non-decreasing continuous
function on [0, o0).

(a) Ifwis a BMT weight function, then 9, satisfies [L] and [9.2].
(b) If w satisfies (a), then #,, satisfies [M].

(¢) w satisfies () ((70)) if and only if #,, satisfies (N) ({N}).

Proof. (a) This is shown in [119, Corollary 5.15].
(b) This follows from the fact that w is non-decreasing.
(¢) As w is non-decreasing, this can be shown by using a similar
argument as in the proof of implication (zii) = (7) in Lemma 3.2.5(b).
[

3.3 The Gelfand-Shilov spaces

We now introduce the Gelfand-Shilov spaces S[[%’q. Let M = (M) qene
be a sequence of positive numbers and let w be a non-negative func-
tion on R%. We define S}/, = S/ (R?), ¢ € [1, 0], as the seminormed
space consisting of all ¢ € C’OO(RZ) such that

1 . 1/q
lellsy, = s 3 ([ le@@luyas) <o qe 1)
(015 e
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and "
Nz)|w(x
lellsy, = sup sup e (@)lw(z) < .
aeNd zeR4 M,
If w is positive and continuous, then ngq is a Banach space. Given a
weight sequence system 9 and weight function system %, we define

the Gelfand-Shilov spaces (of Beurling and Roumieu type)

3(%# = lim S, s{%} = lim SN ge[l,0].
A—0+ )\—>OO

Whenever M [~|My and #1[~]|#s, then clearly S[[;J/?ﬂq = S[[;:’/%] as

2],q
locally convex spaces.

Notation 3.3.1. Should M[~|My, or # [~|#4 for some weight
sequence M we shall simply write [M] instead, i.e. 8[[%](1 = S[[ZJ;]Mq]
and S[[]\Dﬂq - S[[%I]’q. Similarly, if 9M[~]M,, or #[~]|#,, for some
BMT weight function w we will write [w] instead, i.e. S[[;]],q = S[[%Wi

and S[zn] = S[z]

Note that S W) is a Fréchet space while S{W} is an (LB)-space.

Also, if # satisfies [wM], then S ] is translation-invariant. In the
Romieu case, we may further Characterlze the topology.

Lemma 3.3.2. Let M be a weight sequence system, let # be a non-
degenemte weight function system and let q € [1,0]. Then, the (LB)-

space S{W} s reqular.

Proof. By [8, Corollary 7, p. 80], it suffices to show that, for each
A > 0, the closed unit ball B, in S%Aq is closed in Sg;}}q. Note

that S{{g}iq c Dra(R%Y) < B(R?) with continuous inclusion; the first
inclusion is a consequence of the fact that 1 < w” for all A > 0
and the second one is a classical result of Schwartz [125]. Therefore
it is enough to show that B, is closed in B(R?). Let (,)nen be
a sequence in By and ¢ € B(R?) such that ¢, — ¢ in B(RY). In
particular, \*(z) — ¢ (z) for all @ € N? and 2 € R?. Hence, we
obtain that
¢!z < liminf o] 20 < M
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for all & € N¢, where we have used Fatou’s lemma for ¢ < co. This
shows that ¢ € B) and the proof is complete. O]

We now discuss the role of q. We first consider how the space
may possibly become enlarged as ¢ increases.

Lemma 3.3.3. Let 9 be a weight sequence system satisfying [L] and
[0.2]" and W be a weight function system satisfying [wM]. Then,
for any 1 < g < r < o, we have the following continuous inclusions

o) o o) o]
St S Srig € St € Spreo

Proof. Since || f]| .- < IV | F1% for all f € L®(R%) ~ LY(RY), it
is enough to consider the case r = o0. Denote by H the characteristic
function of the orthonant [0,0)? and let e = (1,...,1). Then 0°H =
9. Choose 9 € D[_y/51/9)4 such that ) = 1 on a neighborhood of 0.
Then, 0¢(H) — 6 = x € L”(R?) has support in [—1/2,1/2]¢. Hence,

= (0°p) = (H1) — =y for all ¢ € C*(R?). By [wM], [".2]" and [L],
we find that for each A > 0 there are > 0 and C,C” > 0 (for each
p > 0 there are A > 0 and C,C’ > 0) such that w*(z + t) < Cw”(x)
for all z € R? and t € [-1/2,1/2]% and ML, < C"M? for all a € N,
We may assume that 4 < A. Hence, by Jensen’s inequality,

|0 () |w? ()
[l grrr = sup sup
Si\’/l’\ o aeNd zeRd Mci\

1
< C [[¢]l or sup sup — 0% (t) [w (¢) dt
aeNd geRd Mo Jz+[-1/2,1/2]4

+ Ol sup sup 1 P Ol (e)
aeN? geRd Vo Jr+[-1/2,1/2]¢

1 1/q
<CcC’ ||¢||L°0 sup sup —; (J (|@(a+e)(t)|w”(t))th)
aeNd zeRd Ma+e R4

1 1/q
+ €Il sup sup 1 ([ (oo et
« R4

aeNd zeRd
< " llsupy.

for any ¢ € SM" | where C" = C(C" |¥0]| 1o + || X]I 0 )- O

wH q7
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Next, we examine when the definition of the Gelfand-Shilov spaces
are g-invariant. Of course, such considerations are only relevant if the
spaces are non-trivial. A direct consequence of Lemma 3.3.3 is that
every S ]q is non-trivial, ¢ € [1, 0], should S 1 # {0}. However,
we wﬂl now show that it suffices to prove non tr1v1ahty for some
q € [1,0] in order to conclude non-triviality for all ¢ € [1,90]. To
this purpose, given a weight sequence system 9 and a weight function
system # ', we introduce the auxiliary spaces

g(ﬂﬁ ﬂ ﬂ31+| kw00 ~{{%} U ﬂS(HI )Fw*,00

A>0 keN A>0 keN

Lemma 3.3.4. Let 9 be a weight sequence system satisfying [L] and
let W be a weight function system satisfying [wM]. The following
statements are equivalent:

(1) S[ w1q 7 10} for all g € [1,0].

] # {0} for some q € [1,00].

Proof. (i) = (i1) Trivial.

(i7) = (uii) Let ¢ € S[[%],q be such that ¢(0) = 1. Choose ¢ €
D(R?) so that ., p(2)¢(—2)dz = 1. Next, pick x € D(R?) such
that {, x(z)dz = 1. Then, ¢y = (¢ = V)X € g[[%] and ¢y # 0 (as
©o(0) = 1).

(i49) = (i) This follows from the fact that SV[[ZJ;]] c S[[%vq for all
qe[l,00]. [
Remark 3.3.5. The non-triviality of Gelfand-Shilov spaces is an

interesting problem in and of itself. For Wel%ht sequences, a classical
result by Gelfand and Shilov states that S , is non-trivial ifo+7 >

1 (ifand only if o+7 > 1) [61, p. 235]. Other non triviality conditions
can be found in [41].

We will now prove that the spaces 8[[%,(1 coincide if and only if
W satisfies [N]. Moreover, in Chapter 4 we shall see that in the non-
degenerate case this is exactly the case whenever S[[?Z]]ﬂ is nuclear.
The sufficiency of [N] is an easy result.
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Lemma 3.3.6. Let I be a weight sequence system and # be a weight
function system satisfying [wM] and [N]. Then, S[[%] = S[[%T with
continuous inclusion for all q,r € [1, 0] with ¢ = r.

Proof. This follows from Holder’s inequality and Lemma 3.2.2. [

Next, we establish an important connection between the spaces
S[[%],q and A[Ay].

Proposition 3.3.7. Let M be a weight sequence system, let # be
a weight function system satisfying [wM], and let q € [1,0]. The

mapping
Sq =195 S[[%ﬂ — N[Ay], S(p) = (»(4)) ez,
18 continuous.

Proof. For q = oo this is obvious. Assume now that ¢ < co. We again
denote by H the characteristic function of the orthonant [0, c0)? and
e = (1,...,1). As in the proof of Lemma 3.3.3 there exist ¢ €
Di_1j21/2¢ and x € L*(RY) with support in [—-1/2,1/2]% such that
0 = (0°) * (Hy) — = x for all ¢ € C*(R?). For each A > 0 there
are 4t > 0 and C' > 0 (for each p > 0 there are A > 0 and C' > 0)
such that w*(z +t) < Cw*(z) for all z € R? and ¢t € [-1, ]9 We
obtain that

[p(x)w?(2)]

<c<uwum | [
z+|—3,

+Il |
z4+[—

for all x € R? and ¢ € C*(R?). By Jensen’s inequality, the latter
inequality implies that

el

NI
[V

NI
—

)

NI

d Iw(t)lw“(t)dt>

[(o()w*(Dgezally < CU N 100" 10+ lIxl oo llow ] )

for all ¢ € SM"  from which the result follows. O

wl@q’
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Proposition 3.3.8. Let 9N be a weight sequence system, let # be a
weight function system satisfying [M], and let q € [1,00]. For each

(RS g[[%, the mapping

Ty =Ty =T : X[Ay] > S T(e))jezs) = Y. ej(- —j),

jezd
1S continuous.

Proof. We only show the result for ¢ € (1,00); the proofs for ¢ = 1
and ¢ = oo are similar and in fact less involved. Let v > 0 be such
that ¢ € (e S(]‘f:\ )hwr i this means that v is fixed in the Roumieu
case but can be taken as large as needed in the Beurling case. For
each A > 0 there are p,v > 0 and C' > 0 (for each pu,v > 0 there
are A\ > 0 and C' > 0) such that w*(z + y) < Cw"(z)w”(y) for all
z,y € RY. We may assume that v < \. Let ¢ = ¢/(¢ — 1) be the
conjugate exponent of ¢q. By Holder’s inequality, we have that, for all

(Cj)jeZd € lq((wu(j))jezd)7
3 lesll0® @ = ) (x)

<O N e e = @ = )1+ e = )

Jezd (1+|z—

1/q

<C Z (Jejlwh(5))? y

(1 + [z =)=

jeza
1/q
2 (W = e’ (@ = )1+ fo = ) D)”
jezd
1/q
e V (je o (7))
<C H,¢( )(1 +‘ . |)d+1w ||Loo Z (1 —I—]’{E—j’)cHl

jEZ4

1/q
for all o« € N? and z € R?, where C' = 2% ¢ (Zjezd(l + m)—d—l) .
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Hence,
DITIE Nliss 0 (- = j)w| o
jEZ4 *a a jezd
C”WHs(wlf"‘ . H(Cjw“(j))jezd”zqa
with " = ¢ (S:UERd(l + ’x|)—d—1dx) l/q. O

Lemma 3.3.9. Let M be a weight sequence system satisfying [L]
and let # be a weight function system satisfying [wM]. Suppose that

S[[;;]]q # {0} for some q € [1,00]. Then there exists a ¢ € S Such
that ¥ (j) = &0 for all j € Z°.

Proof. By Lemma 3.3.4, there exist ¢ € §[[% such that ¢(0) = 1. Set
X(&) = F(L_1 134)(8) = J[_ et Ay, e RY

Then, x(j) = 6,0 for all j € Z?. Hence, 1) = px satisfies all require-
ments. ]

We obtain the following useful corollary.

Corollary 3.3.10. Let 9t be a weight sequence system satisfying
[L], let # be a weight function system satisfying [M], and let q €

[1,00]. Suppose that S[[%]g # {0}. Then, N[Ay] is isomorphic to a

complemented subspace of S[["%]’q.

Proof. Choose 1 as in Lemma 3.3.9. Consider the contlnuous linear
mappings S : S ] — MN[Ay] and Ty : N[Ay]| — S g from
Proposition 3.3. 7 and Proposition 3.3.8, respectively, and note that
So Tw = 1d>\q[ Ayl ]

We are now ready to characterize exactly when the Gelfand-Shilov
spaces coincide.

Theorem 3.3.11. Let M be a weight sequence system satisfying [L]
and [M.2]" and let # be a weight function system satisfying [wM].

Suppose that S[[,gj]]q # {0} for some q € [1,0]. Consider the following
statements:
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(1) W satisfies [N].

(i1) S[[%]q = [[Zt]]r as locally convex spaces for all q,r € [1,0].

Proof. (i) = (ii) Follows by Lemma 3.3.3 and 3.3.6.

(17) = (4¢i7) Trivial.

(i13) = (i) (if # satisfies [M]) Suppose that ¢ < r. Choose 1 as
in Lemma 3.3.9. Consider the mappings S, : 8[[%7(1 — MN[Ay| and

Tyr: N[Ay] — S[[%’T from Proposition 3.3.7 and Proposition 3.3.8,
respectively. Note that ¢ = Sy(Ty.-(c)) € N [Ay] for all c € A"[Ay],
that is, A"[Ay] € N[Ay]. Since A[Ay]| € A"[Ay] always holds
true, we have that N"[Ay | = AY[Ay] as sets. The result now follows
from Proposition 2.3.1 and Lemma 3.2.3. O]

Notation 3.3.12. In the sequel, we shall often drop the index ¢ in
the notation S[[%q if 9 is a weight sequence system satisfying [L]

and [9.2]" and # is a weight function system satisfying [wM] and
[N]. This is justified by Theorem 3.3.11.

3.4 Time-frequency analysis

We now consider time-frequency analysis in the framework of Gelfand-
Shilov spaces. In particular, we will be interested in continuity results
for the short-time Fourier transform and Gabor frames. For a general
overview of the research area we refer to [65].

3.4.1 The short-time Fourier transform

The short-time Fourier transform (STFT) of a function f € L?(R%)
with respect to a window 1 € L*(R?) is defined as

Vil (e.6) = (£ M) = | f@90E—a)e 7"t (2, 6) € B
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Now ||V fll;2 = I|¢llz2 | f]l 2, so that in particular Vj, : L*(R?) —
L*(R?%) is continuous. The adjoint of Vj, is given by the weak integral

J J (z, &) M Tyapdude, F e L*(R*).

If » # 0 then v € L%RY) is called a synthesis window for v if
(7,%)r2 # 0. One shows [65, Corollary 3.2.3, p. 44]

1
(7, %) 12

V @) Vw idL2(Rd) . (31)

We now wish to consider the continuity properties of the (adjoint)
STFT on the spaces S ]q To do this, we will need adequate decay
properties on the wmdow v. To this purpose, we introduce the notion
of admissibility for weight function systems. Let # and ¥ be two
weight function systems, then # is said to be (¥)-admissible if

YAeR, Iu,veR, 30 >0 Vo, ye R w(x + y) < Cwt(2)v”(y),
while # is said to be {¥ }-admissible if
Vu,ve R, IXxeR, 3C > 0 Yo,y e R : w(z + ) < Cw(z)v”(y).

Note that in particular # is [# ]-admissible if and only if # satisfies
[M]. Also, if # is [#']-admissible, then # satisfies [wM]. Finally, if
W is non-degenerate then so is 7.

We study the continuity of the (adjoint) STFT on S[[ZJ;]]m‘ As
we are interested in preserving the reconstruction formula (3.1), we
need an adequate space on which the STFT maps into. For a weight
function w we denote by C,,(R?) the Banach space of all continuous
functions ¢ € C(R?) such that ||¢ - w||;» < . Then for a weight
function system % we consider the spaces

Cory(RY) = lim C,a(RY),  Cpyy(RY) = lim C,a (RY).

A—0+ A—0

We find the following result.
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Proposition 3.4.1. Let 9N be an isotropically decomposable weight
sequence system satisfying [L] and [9R.2]" and let W be a weight
function system which is |V ]-admissible for some weight function
system V. For any ¢ € S % the mappings

m
Vdf : S[[W]],oo g O[W@Wgﬁ](Ri X Rg)

and o
m
VJ : CW®Wm] (Rd X Rd) - S[W],oo
are well deﬁned and contznuous Moreover, when ¥V is symmetric, if

(NS S 20 and v e S 18 a synthesis window for 1, then the
reconstructwn formula

1
on VoV =idgom (3.2)

holds.

Proof. Throughout the proof we have that v € S%; ,31 for any (resp.
for some) A3, 3 € R,
We first show the continuity of V. It suffices to show

V)\l M1 € ]R+ El)\Q,ILLQ € R+ (V)\Q,IUQ S R+ 3)\1,/1,1 S ]R+) :
Sﬁ? = Cumgexpw, », (R x ]Rg) is well-defined and continuous.
For any \; € Ry we choose \; = Ay = A3 (for every Ay € R, we choose
A1 = max(Ag, A\3)). Next, for any py € Ry there exist po, u3 € Ry
(for any pus € Ry and fixed uz there exists a p; € R, ) such that
wh (z+y) < C’lw“2(a:)v“3 (y) for some C; > 0 and any z,y € R%. We
see that for ¢ € SM2 and ~ e N¢

wh2 00

wﬂl( )

Vw(ﬂﬂ 5)‘
< ClMé\l (27T)_|7|
5, (0) [ 00w, e i,

vy v MW)\’Q M;\iv’
< CIMy" el gas 9]l garrs -
wH2 0 vH3 1
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It follows that

sup  e“a Ow (1) [V (z, y)| < C @] gare
(z,€)eR2d wh2 00

for C' = Cy(Mg*)? 191l 1 - The continuity of V;;, now follows.

Next we treat the Contlnmty of the adjoint mapping V,;'. Here, it
suffices to show

VAL, 1 € Ry JAg, o € Ry (V>\27/L2 eR, I, eRy):

Vi Curagexpw (R? x Rd) SM" is well-defined and continuous.

By Lemma 3.2.4(7) and (i7), for any A\; € Ry there exists a Ay < Ay
(for any Ay € R, there exists a Ay = \y) such that exp|wy, (47-) —
wye (1)] € LYRY). Additionally, by [L] there is some A3 € R, (we
may possibly enlarge A;) such that 2/%1A* < CoMM for all a e N?
and some Cy > 0. Again, for any p; € R, there exist s, ug € Ry
(for any ps € R, and fixed pg there exists a pu; € Ry) such that
wh (z +y) < Crw”?(z)v# (y) for some C; > 0 and any x,y € R For
o e C’wm@exp[wM&](Rﬁ x R{) and a € N* we have,

Y

o |0VED(t)) \ (a)
w () ————— < C1 M;*!

M e 5; 6

)||27€|1BlawHe t— s (f
[ [ e Ore o) e ie - et 2)
R2d Mﬂz Mal_ﬁ

M

< Coc'lM)\Q ’WHSM%s |® chufz@exp .
9~ lal ( )J e M)\1(47"§)_WM>\2(§)d§

<C|®

||Cwu2 ®E[WM>\2]

whence the continuity of V.
Finally, suppose 7 is symmetric, ¢ € g[[%] # 0 and v € g[[%] is
a synthesis window for ¢. For any ¢ € S[[;J}]] » Wwe have Vyp(z,§) =

FiloT0)(€). As # is [#]-admissible and ¥ is symmetric, it is clear
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that T, € LY(R?) for any x € RY, whence ¢T,¢p = F~H(Vyp(z, ).
By our previous calculations, it then follows from Fubini’s Theorem
that

0= 5o J;M@(t)TxW)Tﬂ(ﬂdx
IC! zlﬁ)p :R < y VW(fU’é)eQ”’f‘td&) Tory(t)de
1

-
= J Vyp(z, &) M T,y (t)dadg.
R2d

We may now impose the following conditions on 99t and #:

Assumption 3.4.2. 9 is isotropically decomposable satisfying [L]
and |[M.2]" and W is |V ]-admissible for some symmetric weight func-

tion system ¥ such that g[[;)/j;] # {0}.

Corollary 3.4.3. Let 9 be a weight sequence system and W be
a weight function system for which Assumption 3.4.2 holds. Then
S[[%]OO is isomorphic to a complemented subspace of Clygpa)(RE X

RY).

3.4.2 Gabor frames

We start with a brief discussion on the theory of Gabor frames in
L*(RY). See [65, Chaps. 5-8] for a complete account on the subject.
Given a non-zero window function ¢ € L?(R?) and lattice parameters
a,b > 0, the set of times frequency shifts

G, a,b) = {My,Tyt) : k,n e 7%

is called a Gabor frame for L*(RY) if there exist A, B > 0 (frame
bounds) such that

Al ey < . [Vaf(ak, ) < Bl fl7ogay.  (3:3)

k,nezd
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for all f € L?>(R?). The Gabor frame operator

Sf=5:0F =" Vyflak,bn)My,Tut)

k,neZd

is then bounded, positive and invertible on L?(R?). Additionally, we
consider the Gabor coefficient operator and Gabor synthesis operator
for a window 1 € L?>(R?) and lattice parameters a,b > 0

Cyl LARY) — (22 [ (Vi f (ak, bn)) omyezza, (3.4)
Dy’ (2 > LP(RY) . ({eka}) = Y, craMnTuth, (3.5)
(k,n)ez2d

or in any space where the mappings make sense. In particular, we
have
- a,b a,b
S = D" o Cw )

The canonical dual frame of G(v, a,b) is the Gabor frame G(7°, a, b)
where the canonical dual window is given by 7° = Sl € L*(R?).
Every f e L?(R?) then possesses the Gabor frame series expansion

f=> Vuflak,bn)My Ty = > Vie f(ak, bn) My, Tort)  (3.6)

k,neZd k,nZd

with unconditional convergence in L?(R?). The choice of 7° for the
validity of (3.6) is however not unique. Any v € L*(R?) is called a
dual window for G(¢, a,b) if

Sy = D20 C3 = id2(ga)

The duals of a window 1) are characterized via the Wexler-Raz biorthog-
onality relations.

Lemma 3.4.4 ([65, Theorem 7.3.1, p. 133]). Let a,b > 0. For
¥,y € S(R?) the following statements are equivalent:

(i) G(¥,a,b) is a Gabor frame and v is a dual window for 1;

(i) (¢, MLT%’Y)H = (ab)¥0k o010 for all k,1 € Z°.
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For any lattice parameters a,b > 0 we consider the Kothe set
a,b w 10
Ay onen = {w(ak)e ™ | X e R, }.

We may now describe the continuity of the Gabor coefficient operator
and Gabor synthesis operator on the Gelfand-Shilov spaces as follows.

Proposition 3.4.5. Let 9 be a weight sequence system and # be
a weight function system for which Assumption 3.4.2 holds for some
weight function system ¥ and W satisfies [N]. For any ¢ € S[[ym/t]]l N

m .
S[[y/]]’oo, the mappings
ab . o[M] a,b
Cy" : Spy — N[ AY o won]
and -
ab | a,b M
are well-defined and continuous. Moreover, the series (3.5) is abso-
ol
lutely summable in S[W]‘

Proof. The case of C’Zj’b follows directly from Proposition 3.4.1. For
DZ’b it suffices to show

V)\l,,ul € R+ El/\g,[j,g € R+ (V)\Q, Mo € R+ 3)\1, ,ul) .

[* (w’”(a ) ® e“mr2 (b')> — Sﬁ?l’oo is well-defined and continuous.

We have that ¢ € S%;?OO for all (resp. for some) A3, u3 € Ry. For
every u; € R, there exists ug, g € Ry (for every py € Ry and fixed
ps there exists a py € Ry) such that w" (x + y) < Cowt (z)vH3 (y)
for all z,y € R? and some Cy > 0. By Lemma 3.2.3 there exists a
p2 € Ry (for every us € Ry there exists a ug4 € Ry ) such that

wh (ak)
2 w2 (ak) <X
kezd
Using condition [L] we find for every A\; € Ry a Ay € Ry (for every
M € R, a A\ € Ry) such that (47)1* MM < Cy M2 for all a € N? and
some C7 > 0. Then, by application of Lemma 3.2.5 and Lemma 3.2.3,
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there exists a Ay € Ry (for every Ay € R, there exists a Ay € R, ) such
that

e (bn)

— < 0.
e (bn)
nezd

Additionally, by condition [L], for every A\; € R, there is some A3 €
R, (for every A3 € R, there is some A\; € R;) such that 2|Q‘M(;\3 <
CzMoi\l for all @ € N? and some Cy; > 0. We now have for any

(Ck’,n)k,nezd el” (wm ((I : ) ® e“mr2 (b‘)>

| D (i neze)

D) et Mon Tartllgapps

whloo (g n)ez2d

<M Co ). ekn|w™ (ak)

k,neZd
o (27bn) Pl =B (t — ak)|vHs (t — ak)
A B) M) MM
aeNd teR4 g, 8 a—B

<C H (ckv”)]ﬁ"ezd Hloo (wuz(a.)(@ewMAz(b'))

wh (ak) e“rrra (0m)
| keZZ:d whz(ak) ZZ: earr2(0m) |

neZd

for some C' > 0. From here we may conclude the continuity of DZ’b :
)\OO[A“W’%%?] — S[[%] as well as the absolute summability in S[[%] O
Corollary 3.4.6. Let 9 be a weight sequence system and W be a
weight function system for which Assumption 3.4.2 holds for some
weight function system ¥ and W satisfies [N]. Take ¢ € S[[%],l N
8[[%]700 such that G(, a,b) is a Gabor frame for certain a,b > 0 and
. (] (] (2
let v be a dual window for ¥. If v € S[,,/L1 N S[y/]m, then S[W] 8
isomorphic to a complemented subspace of \* [A‘};’@Wm]
The previous corollary carries with it an interesting problem:
when may the rapid decay in time and frequency of the window of

a Gabor frame be carried over to a dual window? We introduce the
following notion.
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Definition 3.4.7. A IcHs X of functions on which the translation
and modulation operators work continuously is called Gabor accessi-
ble if there exist 1),y € X and a,b > 0 such that G(¢, a,b) is a Gabor

frame and v is a dual window for it.

For the remainder of this section we will discuss the problem of
Gabor accessibility for the Gelfand-Shilov spaces 0f|R0umieu type
associated to the Gevrey sequences, i.e. S5(R?Y) = S{{;’ ,}% (RY). To this

purpose, we introduce the following notion.

Definition 3.4.8. A pair (r,s) of positive real numbers is called a
Gabor couple (for dimension d) if there exists some 1 € S$(R?) for
which G(v, a,b) is a Gabor frame for some lattice parameters a,b > 0
and such that there exists a dual window ~ for ¢ in S(R?).

A classical result by Walnut [148] (see also [65, Theorem 6.5.1,
p. 121]) implies that for any v € S(R?) there exists a,b > 0 such
that G(1,a,b) is a Gabor frame. Then Janssen showed [76] that in
this case the canonical dual window 7° of ¢ belongs to S(R?) as
well (see also [65, Theorem 13.5.4, p. 296]). This statement does
not, in general, have an ultradifferentiable analog. Take for instance,
for d = 1, the special case where ¥(z) = e™" is the Gaussian, so
that ¥ € S5 (R), then G(¢,a,b) is a Gabor frame if ab < 1 but its
canonical dual window does not have Gaussian decay in time and
frequency [77]. However, by considering other dual windows for 1),
we may provide valuable sufficient conditions for pairs to be a Gabor
couple. We first start with the following observations, which state
that Gabor couples on the real line may be extended to arbitrary
dimension and are always symmetrical.

Lemma 3.4.9. For any (r,s) € R, x Ry the following statements
hold:

(a) If (r,s) is a Gabor couple for dimension 1, then (r,s) is a Gabor
couple for any dimension d € Z. .

(b) If (r,s) is a Gabor couple for dimension d, then so is (s,r).

Proof. (a) Let (r, s) be a Gabor couple for dimension 1. Then take ¢
and vy, in S7(R) and a, b > 0 such that G(¢1, a, ) is a Gabor frame for
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L?(R) and 7, is a dual window for ¢;. For arbitrary dimension d > 2
we define ¢q(z) 1= ti(z1) - ¥1(za) and ya(z) = n(21) - 7(2a),
then one easily sees that both 1, and 74 lie in S*(R%). By Lemma
3.4.4 it follows that

d
(thas MiTeva)re = | ] 1, My Ty )12 = Habék 0010
ji

= (ab)*61.0610

for any k = (ki,...,kq) and [ = (I3,...,l3). Another application of
Lemma 3.4.4 shows that G (14, a,b) is a Gabor frame for L*(R?) and
vq is a dual window for 1.

(b) Suppose (r,s) is a Gabor couple for dimension d, and let
¥,y € S$(R?) and a,b > 0 be such that G(3,a,b) is a Gabor frame
and v is a dual window for ¢. By [27, Corollary 2.5] both @Z and 7
lie in S7(RY). From the Plancherel theorem and Lemma 3.4.4 it then
follows

(3, Mu i) 2 = (@, M _1Tyy) , = (ab)"0,00%0-

Whence, by Lemma 3.4.4, G(7, b, a) is a Gabor frame and @Z is a dual
window for 7. ]

Corollary 3.4.10. Let (r,s) € R%. Then, (r,s) is Gabor couple, for
any dimension d, if one of the following conditions is satisfied:

(7) min(r,s) > 1/2;
(73) max(r,s) > 1.

Proof. In virtue of Lemma 3.4.9(a) it suffices to show this for d = 1.

(7) It is shown in [17], by use of the Bargmann transform [75],
that for the Gaussian v (x) = e™™ there exists a dual window of
Gaussian decay in both time and frequency.

(7) By Lemma 3.4.9(b), we may suppose w.l.o.g. that s > 1. In
[17], those Gabor frames whose window and canonical dual window
have compact support are characterised. Each one of these form
an example. Simple examples may also be constructed using [26,
Theorem 2.2]. O
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Open problem 3.4.11. Determine exactly which pairs (7, s) € R, x
R, form a Gabor couple in dimension d. As S*(R?) is trivial if and
only if r + s < 1 [61, p. 235], it follows from Lemma 3.4.9(b) and
Corollary 3.4.10 that only the cases 0 <r <1/2and 1 —r < s <1
are open. If one can show, for d = 1, that any point on the line
r + s = 1 is a Gabor couple, then the problem would effectively be
solved for arbitrary dimension in view of Lemma 3.4.9(a). Should this
not be the case, it would be interesting to study whether or not the
dimension has an influence on the characterization of Gabor couples.
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Chapter 4

Characterizations of
nuclearity

4.1 Introduction

Nuclear spaces play a major role in functional analysis. One of their
key features is the validity of abstract Schwartz kernel theorems,
which often allows for the representation and study of important
classes of continuous linear mappings via kernels. Therefore, estab-
lishing whether a given function space is nuclear becomes a central
question from the point of view of both applications and understand-
ing its locally convex structure.

In the case of weighted Fréchet spaces of smooth functions on
R?, the nuclearity question has been completely settled. Let # be
a weight function system and consider the associated Gelfand-Shilov
spaces of smooth functions

Sy =1p€ COO(]Rd) | |m|ax Hgo(a)wnHLq <w VneN}, g¢gell, o],
a|l<n

endowed with their natural Fréchet space topologies. If % satisfies
(wM), then Sy is nuclear if and only if # satisfies (N). In fact,
this result follows from Vogt’s sequence space representation of Sy 4
[144, Theorem 3.1] and the well-known corresponding characteriza-
tion of nuclearity for Kothe sequence spaces, i.e. Proposition 2.3.1.
Condition (N) appears already in the work of Gelfand and Shilov,

95
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who proved the nuclearity of Siy)  under it and some extra regular-
ity assumptions in a direct fashion [62, p. 181].

The aim of this chapter is to discuss several results centred around
the characterization of the nuclearity of Gelfand-Shilov type spaces.
In Section 4.2 we consider the Gelfand-Shilov spaces S[[%] , introduced

in Chapter 3. We give sufficient conditions for S[[;ﬁ]]g to be nuclear
in terms of 9T and #; see Theorem 4.2.1 . Actually, we show that
for an important class of weight sequence systems our hypotheses
also become necessary, providing a full characterization of nuclearity
in such a case; see Theorem 4.2.6. Moreover, nuclearity is related
to the identity 3[[3);]]7,1 = S[["?;]],r’ q # r, see also Theorem 3.3.11. A
useful feature of our approach is that our considerations are stable
under tensor products. We shall exploit this fact to derive new kernel
theorems for Gelfand-Shilov spaces in Section 4.2.3. Note that these
kernel theorems are ‘global’ counterparts of Petzsche’s results from
[104].

Secondly, in Section 4.3, we consider the nuclearity of the so-
called Beurling-Bjorck spaces 8[%] (R%). In recent works Boiti et
al. [14, 15, 16] have investigated the nuclearity of the Beurling-
Bjorck space S((:j)) (RY) (in our notation). Their most general result
[16, Theorem 3.3] establishes the nuclearity of this Fréchet space
when w is a Braun-Meise-Taylor type weight function [21] (where
non-quasianalyticity is replaced by w(t) = o(t) and the condition
log(t) = o(w(t)) from [21] is relaxed to logt = O(w(t))). Our aim is to
improve and generalize [16, Theorem 3.3] by considerably weakening
the set of hypotheses on the weight functions, providing a complete
characterization of the nuclearity of these spaces (for radially increas-
ing weight functions), and considering anisotropic spaces and the
Roumieu case as well. Particularly, we shall show that the conditions
(B) and () from [16, Definition 2.1] play no role in deducing nuclear-
ity. Furthermore, we discuss the equivalence of the various definitions
of Beurling-Bjorck type spaces given in the literature [16, 28, 67| but
considered here under milder assumptions. In particular, we show
that, if w satisfies () and (7), our definition of S((:j)) (R?) coincides
with the one employed in [16].
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4.2 The Gelfand-Shilov spaces S[[%]q

4.2.1 Nuclearity

In this sectlon we characterize the nuclearity of the Gelfand-Shilov
spaces S 7q in terms of M and #. We start by providing suffi-
cient COHdItIOHS, whose prove is based on Grothendieck’s criterion
for nuclearity in terms of summable sequences [69].

Theorem 4.2.1. Let M be a weight sequence system satisfying [L]
and [M.2]" and let # be a non-degenerate weight function system
satisfying [wM] and [N]. Then, S[[%] is nuclear.

Proof. We shall show that S[[?;]] = S[[%m is nuclear. To this end,
we employ Proposition 2.2.5 with F = S[[%] - Let (Pn)neny < 3[[%]00
be a weakly summable sequence. This means that for all A > 0 (for
some A > 0) there is C' > 0 such that

H Z CnQOnHSJ\M <C

U! ,00

for all k e N and |c,| < 1,n =0,...,k, where we have used Lemma
3.3.2 in the Roumieu case. We claim that

sup sup —~ M)‘ Z (@) ( (x) < C. (4.1)

aeNd zeRd a p=0

Fix arbitrary o € N% and x € Rd Let k € N. Choose |¢,(a,z)| < 1
such that ¢, (a, 2)' () = |90 )(2)|. Then,

k
%ZW” Z (v, )l ()

@ n=0

wh(z) < O,

whence the claim follows by letting k¥ — 00. We now employ (4.1) to
show that (¢n)nen is absolutely summable. By Theorem 3.3.11, it is
enough to prove that

0¢]
2 lenllgy < o0

n=0



58 Chapter 4. Characterizations of nuclearity

for all > 0 (for some p > 0). Let u > 0 be arbitrary (let A > 0
be such that (4.1) holds). Conditions [L] and [N] imply that there is
A > 0 (there is ;> 0) such that 2*IM> < C"M¥ for all o € N¢ and
some C’ > 0 and w*/w* € L}(R?). Hence,

Zn%nsw —Zsupm | e @l @)

< EN] S J Z_] (x)|w’\(x)lwui—g§dx

<2/CC || fut| . -

Our next goal is to discuss the necessity of the conditions [901.2]’
and [N] for S[[?;]]’q(Rd) to be nuclear.

Proposition 4.2.2. Let 9 be a weight sequence system satisfying
[L], let # be a weight function system satisfying [M], and let q €
[1,00]. Suppose that S[[%]’q(Rd) is non-trivial and nuclear. Then, W
satisfies [N].

Proof. Since nuclearity is inherited to subspaces, Corollary 3.3.10
implies that A[Ay | is nuclear. The result therefore follows from
Proposition 2.3.1 and Lemma 3.2.3. O

Proposition 4.2.3. Let 9 be a weight sequence system satisfying
[L], let # be a non-degenerate weight function system satisfying [M],
and let g € [1,00]. Suppose that S{g]]’q(Rd) is non-trivial and nuclear.
Then, Ay, satisfies [N].

We shall make use of the ensuing result due to Petzsche [104] in
order to show Proposition 4.2.3.

Lemma 4.2.4 ([104, Satz 3.5 and Satz 3.6]). Let A be a Kdthe set
and let £ be a IcHs.

(a) Suppose that E is nuclear and that there are continuous linear
mappings T : N'(A) — E and S : E — X\*(A) such that SoT =
t, where 1 : M (A) — X°(A) denotes the natural embedding.
Then, A'(A) is nuclear.
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(b) Suppose that E; is nuclear and that there are continuous linear
mappings T : \Y{A} — E and S : E — \*{A} such that SoT =
t, where v @ N'Y{A} — X°{A} denotes the natural embedding.
Then, A\*{A} is nuclear.

Proof. This is essentially shown in [104, Satz 3.5 and Satz 3.6] but we
repeat the argument here for the sake of completeness and because
our assumptions are slightly more general.

(a) Since nuclearity is inherited to subspaces, it suffices to show
that T is a topological isomorphism onto its image. We write e¢; =
(6;.1) jeza for i € Z%. Then, (e;);ez4 is a Schauder basis for A'(A) with
coefficient functionals

gi . )\1(14) - C, <§z7 (Cj)jeZd> = C;, 1€ Zd.

Since T is continuous and SoT = ¢, (T'(e;))eza is a Schauder basis for
T(M(A)) with coefficient functionals n; = & o Tt = &0 S for i € Z4.
We claim that the Schauder basis (T'(e;));eze is equicontinuous, that
is,

Vp € csn(E) 3q € csn(E) Vo € T(A(A)) < sup | (n;, ) |p(T(e;)) < q(x).

i€Z4

Let p € csn(FE) be arbitrary. As T is continuous, there is A > 0 such
that

| (i ) [p(T(e:)) < [ (& S(@)) | el an)

= [ (&, S(2)) |a}
15 ()l (0

for all x € £ and i € Z¢. The claim now follows from the continuity
of S. Since T(A'(A)) is nuclear (as a subspace of the nuclear space
E), the Dymin-Mityagin basis theorem [107, Theorem 10.2.1] yields
that (T'(e;));eza is an absolute Schauder basis for T(A'(A)), that is,

N

Vp € csn(E) Ig € csn(E) Vo e T(A'(A)) :
i) [p(T(e)) < gl). (4.2)

i€Zd
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We now show that 77! : T(A!(A)) — A(A) is continuous. Let A > 0
be arbitrary. Since S is continuous, there is p € csn(F) such that

(ci)iez @y = D leillledln @

i€Z4
= > 10 T((e)ieza)) 1S (T (€)oo
i€Zd
Z ’ 7”]1, Cz zeZd»p(T(ei))
ieZd

for all (¢;);eze € A(A), whence the continuity of T~ follows from
(4.2).

(b) By transposing, we obtain continuous linear mappings 7" :
E; — (AY{A}), and S : (A*{A}); — FEj; such that T" o S* = /.
Consider the natural continuous embeddings ¢1 : A'(A°) — (A°{A});
and 15 : (AH{A});, = A*(A°). Note that (190T") 0 (S 011) = 7, where
7 : AM(A°) — A\P(A°) denotes the natural embedding. Hence, part
(a) yields that A'(A°) is nuclear, which is equivalent to the nuclearity
of AN'{A} by Proposition 2.3.1. O

We also need the existence of a specific element in ‘SN’[[%]

Lemma 4.2.5. Let 9 be a weight sequence system satisfying [L] and
W a weight function system satisfying [wM]. Suppose that S[[%q #
{0} for some q € [1,:]. Then there exists 1 € g[[%] such that

ZjeZd dj( - ]) =

Proof. By Lemma 3.3.4, there is ¢ € 5[[%] such that {3, p(z)dz = 1.
Then,

ve) = | ele-td,  aeR!
[,
satisfies all requirements. O

Proof of Proposition 4.2.3. By Proposition 2.3.1, it suffices to show
that A'[Ay,] is nuclear. To this end, we use Lemma 4.2.4 with
A=Ay, and E = S[[%,q (in the Roumieu case, Ej is nuclear as the
strong dual of a nuclear (DF')-space). For 7 = 1 or r = o0 we define
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51;[,?5},1 as the space consisting of all Z%-periodic functions ¢ € C*(R?)
such that

3 1 gy <

for all A > 0 (for some A > 0). We endow eI with its natural
Fréchet space topology ((LB)-space topology). The mappings

To: NM[Ayg] = ERLes To((¢))jens) = | €= D, e ™¢

per,00?
jezd

and

SO gperl - )\OO[AWE)J?L SO(%D) - (L 1 1]d (p<§)€2mj§d£>

jezd

are continuous. Next, choose ¢ as in Lemma 4.2.5 and consider the
continuous linear mapping

TP S T (p) = v

per, 0 7.9’

Note that # satisfies [N] by Proposition 4.2.2. Hence, Lemma 3.3.6
yields that the mapping

Slig[[;)j;’ _)gperh 81(90>:ZSO(_])
JEZ

is continuous. Finally, we define the continuous linear mappings T' =
Tyo Ty : M[Ay,,] — Sl and S = So0 81 : SN — A*[Ayg,]. The
choice of 1 implies that SoT = .. O

We obtain the following two important results.

Theorem 4.2.6. Let 9 be an isotropically decomposable accelerating
weight sequence system satisfying [L] and let # be a non-degenerate

weight function system satisfying [M]. Suppose that S[[%q # {0} for
some q € [1,0]. Then, the following statements are equivalent:

(i) M satisfies [M.2]" and W satisfies [N].
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(17) S[[?;]]q is nuclear for all q € [1,0].

(i17) S[[%q is nuclear for some q € [1,0].

Proof. (i) = (i7) This has been shown in Theorem 4.2.1.
(11) = (4i7) Trivial.

(17i) = (i) In view of Lemma 3.3.4, # satisfies [N] by Proposition
4.2.2, while 91 satisfies [991.2] by Proposition 4.2.3 and Lemma 3.2.5.
[

Theorem 4.2.7. Let M be a weight sequence system satisfying [L]
and [M.2]'. Let # be a non-degenerate weight function system sat-

isfying [M]. Suppose that S[[;D;]]g # {0} for some q € [1,0]. Then, the
following statements are equivalent:

(i) # satisfies [N].
(17) S[[%],q is nuclear for all q € [1,0].

(i17) S[[%]q is nuclear for some q € [1, 0].

(iv) S[[;ﬁ]]g = S[[?;]]T as locally convex spaces for all q,r € [1,0].
(v) S[[%,q = S[[%T as sets for some q,r € [1,00] with q # r.

Proof. In view of Lemma 3.3.4, this follows from Theorem 3.3.11,
Theorem 4.2.1 and Proposition 4.2.2. O

In the specific case of Gelfand-Shilov spaces defined by weight
sequences we obtain the following useful characterizations.

Theorem 4.2.8. Let M and A be two isotropically decomposable
weight sequences satisfying (M.1). Suppose that S[%] # {0} for some

’q
q € [1,0]. Then, the following statements are equivalent:

(i) M and A both satisfy (M.2)".
) S[%}q is nuclear for all q € [1,0].

(i17) S[%]q is nuclear for some q € [1,0].
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Proof. By Lemma 3.2.6 and Theorem 4.2.6. O]

Theorem 4.2.9. Let M be an isotropically decomposable weight se-
quence satisfying (M.1) and (M.2)'. Let A be an isotropically decom-

posable weight sequence satisfying (M.1). Suppose that S[%] # {0}

7q
for some q € [1,0]. Then, the following statements are equivalent:

(1) A satisfies (M.2)'.
(74) S[[i/][’]q is nuclear for all q € [1,00].
(131) S[[%’]q is nuclear for some q € [1,0].
(iv) S[%’]q = S[%’]T as locally convex spaces for all q,r € [1,0].

v) Sii!

. = S[[X][]r as sets for some q,r € [1,00] with q # r.

Proof. By Lemma 3.2.6 and Theorem 4.2.7. [

In case of Gelfand-Shilov spaces defined by BMT weight functions
we get the following result.

Theorem 4.2.10. Let w be a BMT weight function and let n be a
non-negative non-decreasing continuous function on [0, 00) satisfying

(). Suppose that S[[;]”]]’q # {0} for some q € [1,0]. Then, the follow-
ing statements are equivalent:

(i) n satisfies () ((70))-

(i1) S[[;i]q is nuclear for all q € [1,0].

(131) S[[w] is nuclear for some q € [1,0].

nla
(iv) S[[;J]]g = S[[;J]]J as locally convex spaces for all q,r € [1,0].

W _ clwl
(U) S S[n],

g = as sets for some q,r € [1,00] with q # .

T

Proof. By combining Theorem 4.2.9 with Lemma 3.2.7. O

In Section 4.3 we will further refine Theorem 4.2.10 by dropping
the necessity of w being a BMT weight function (cfr. Theorem 4.3.4).
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4.2.2 Projective description

In this auxiliary section, we provide a projective description of the
Gelfand-Shilov spaces Sf%} . This result will be used in the next
section to prove kernel theorems.

We start by recalling some basic results about the projective de-
scription of weighted (LB)-spaces of continuous functions [8]. Let X
be a completely regular Hausdorff space. Given a non-negative func-
tion v on X, we write Cv(X) for the seminormed space consisting
of all f € C(X) such that ||f]|, = sup,ex |f(z)v(z) < 0. If v is
positive and continuous, then Cv(X) is a Banach space. A family
V = {v*| X € Ry} consisting of positive continuous functions v* on
X such that v*(z) < v#(x) for all z € X and p < ) is said to be a
Nachbin family on X . We define the associated (LB)-space

VO(X) = lim CvA(X).
A—00

The maximal Nachbin family associated with V | denoted by V =
V(V), is given by the space consisting of all non-negative upper semi-
continuous functions v on X such that sup,.y v(x)/v*(z) < oo for all
A € R,. The projective hull of VC(X) is defined as the space C'V (X)
consisting of all f € C(X) such that ||f]|, < oo for all v € V. We
endow C'V (X) with the locally convex topology generated by the sys-
tem of seminorms {||-||, |v € V}. The spaces VC(X) and CV (X) are
always equal as sets. If V satisfies the condition [8, p. 94]

(S) VA e R, Jue R, : v*/v* vanishes at infinity,

then these spaces also coincide topologically [8, Corollary 5, p. 116].

Let X, be a completely regular Hausdorff space and let V; =
{v}| A e Ry} be a Nachbin family on X; for j = 1,2. We denote by
V1 ® V, the Nachbin family {v} ® v3 | A € Ry} on X; x X, where
v @ vy (11, 29) = v (21)v9(22), 71 € X1, 79 € Xo. Note that Vi ® Vs
satisfies (S) if and only if both V; and V, do so. Moreover, V (V;) ®
V(V,) is upwards dense in V/(V,®@V%), that is, for every v € V(V1®@V5)
there are v; € V(V;), j = 1,2, such that v(z1,72) < v1 ® va(21, 9)
for all 1 € X4, x5 € Xos.

Note that every weight function system # on R? is a Nachbin
family on X = R? Lemma 3.2.2 implies that % satisfies (S) if {N}
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and {wM} hold for # . Likewise, a weight sequence system 9% on N¢
defines a Nachbin family on X = N? via

M = {1/M* | NeR,}.

If 9 satisfies {L}, then IM° satisfies (S). We define V(9M) as the
family consisting of all sequences M of positive numbers such that
1/M € V(9M°). More concretely, V(90) consists of all sequences M
of positive numbers such that sup,cye M2/M, < o for all A € R,.
Note that each element in V(9) is automatically a weight sequence.

Remark 4.2.11. Let M be a weight sequence. Then, the set

||

{(Mo ] Trjdacna | (ry)en € {931} (4.3)

7=0

is downwards dense in V (9y,) (cf. [83, Lemma 3.4]). The family {9}
was introduced by Komatsu to obtain a projective description of the
space EMH(Q) of ultradifferentiable functions of Roumieu type [83,
Proposition 3.5]. Later on, this family was also used by Pilipovi¢ to

give a projective description of the Gelfand-Shilov spaces Sf%} [108,

Lemma 4]. For general weight sequence systems 901, the family V (90)
is the natural generalization of the family in (4.3).

The following observations will be of great use in the sequel.
Lemma 4.2.12. Let (ay)qene be a sequence of positive numbers.

(i) We have sup ena Go/M) < o0 for some X\ € Ry if and only if
SUD pend Ao/ Mo < 0 for all M € V(9N).

(i1) We have Supcna oMy < 0 for some M € V(M) if and only
if SUp peni Ao M2 < 0 for all A e R,

Proof. The direct implications are clear, we now show the reverse
implications.

() Suppose that sup,cya@a/M, < oo for all M e V(OM), but
SUP eyt Go/ M2 = o0 for any A > 0. We construct a sequence M =
(My)aene inductively. There is a oy € N% such that a,, /M) > 1,
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and we set M, = M} for all |a| < |ay|. Suppose we have arrived
at step n + 1. There exists a a,;; € N? such that |a,. 1| > ||
and aq,,,/MJF! > n+ 1. Then we set M, = M} for all o € N
such that |a,| < |o| < |anei|. It is clear that M e V(91) but
SUPend Ga/ Mo = 00, giving a contradiction. Whence the existence of
some A > 0 such that sup, e aa/M2 < 0.

(ii) Suppose that C\ = sup,cye aa M2 < oo for all X € R.. We
define M = (Mg)aent as My := supyeg, M}/Cx. Then clearly M e

V(M) and supepa oM, < 1. O
Corollary 4.2.13. Let 9 be a weight sequence system.

(i) If M satisfies {L} then for any R > 0 and M € V(M) there
exists a N € V(M) and Cy > 0 such that R*IN, < CoM,, for
any o € N,

(13) Suppose M is isotropically decomposable satisfying {L}. If M
satisfies {IM.2} then for any M € V(M) there exists a N €
V(M) and Cy > 0 such that Noye; < CoM, for any a € N? and

je{l, ..., d}.

Proof. (i) Suppose O satisfies {L}. Take arbitrary R > 0 and
M e V(9) and consider the sequence a, = RI//M,. For any
i > 0 there exists a A > 0and C} > 0 such that RI*IM* < CjM.
Then sup e o M# < Chsup,ene M2 /M, < 0. Whence by Lemma
4.2.12(ii) there ex1sts a N e V(9M) such that sup,.yi @aNy < 00
which is equivalent to RI*/N, < CyM, for some Cy > 0 and any
ae N

(71) We may assume 90 is isotropic and d = 1. Suppose I satisfies
{M.2})). Take any M e V(9M). Let u > 0 be arbitrary and A\ >
0 be such that M), , < C{M, for some C > 0 and any p e N.

p+1
Consider the sequence a9 = 1 and a, = 1/M,,_; for n = 1. Then

SUp,=q anM# < C{M;_ /M, 1 < . Then by Lemma 4.2.12(ii)
there is some N € V(Dﬁ) such that N, < CyM,, for some Cy > 0
and all n > 0. ]

We are ready to state and prove the main result of this section.
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Theorem 4.2.14. Let M be a weight sequence system satisfying {L}
and {9MM.2}, and let W be a non-degenerate weight function system

satisfying {wM} and {N}. Then, ¢ € C*(R%) belongs to S;gf if and
only if |l¢llgn < o for all M € V(M) and w € V(#). More-
over, the topology of S{{g}} is generated by the system of seminorms
{Fllsy, |M e VER),we V(#)).
We define
L C%(RY) —» C(N < RY), o) = [(a,2) = !V (2)].
The proof of Theorem 4.2.14 is based on the ensuing lemma.

Lemma 4.2.15. Let 9 be a weight sequence system satisfying {L}
and {9M.2}, and let W be a non-degenerate weight function system

satisfying {wM} and {N}. Then, ¢ € C*(R?) belongs to S{{z}} if and
only if 1(p) € (M° @ #)C(N? x RY). Moreover,

LS — (M@ #)C(N? x RY)
15 a topological embedding.

Proof. The first part and the fact that ¢ is continuous are obvious.
We now show that ¢ is a topological embedding. Fix an arbitrary
q € (1,00). For n € Z, we write X,, for the Banach space consisting
of all ¢ € C*(R?) such that

el (2 <||<P(Q>W”Lq>q>1/q
%) = B — < 0O
o aeNd A4g

and Y,, for the Banach space consisting of all sequences (¢q)aene Of
measurable functions such that

PR A
H(Wa)aeNdHyn = (Z (—aMn Lq) > < 0.

aeNd

Note that both X, and Y,, are reflexive. The mapping p, : X,, —

Y, 0 — (o), cne is a topological embedding. Set X = li_I)IlneZ+ Xn
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Yo Condition {L} implies that X = S{{?/;}}g = 8{{%'

as locally convex spaces. We claim that p = h—n>1n€Z+ P X = 3{%} —

and ¥ = lim,

Y is a topological embedding. Before we prove the claim, let us show
how it entails the result. Condition {L} and Lemma 3.2.2 imply that
the mapping

T MRW)CN'xRY) >V, [ (fla,))aena

is well-defined and continuous. Note that p = 7 o.. Hence, ¢ is a
topological embedding because p is so. We now show the claim with
the aid of the dual Mittag-Leffler theorem 2.2.2. For n € Z, we set
Zn = Y./pn(X,). Hence, Z, is a reflexive Banach space. We denote
by 7, : Y, — Z, the quotient mapping. The natural linking mappings
Zn — Zpy1 are injective since p(X,41) n'Y, = p(X,). Consider
the following injective inductive sequence of short topologically exact
sequences

0 X, Y, 7 0
0 X, 2.y, 2 7, 0

The linking mappings of the inductive spectra (X, )nez,, (Yn)nez,
and (Z,)nez, are weakly compact as continuous linear mappings be-
tween reflexive Banach spaces. In particular, these inductive spectra
are regular [80, Lemma 3|. Furthermore, h—n>ln€Z+ X, =X = S{{?;}} is
Montel since it is a nuclear (DF')-space. Therefore, the dual Mittag-
Lefller theorem 2.2.2 yields that p = h—H>1nEZ+ pn s a topological em-

bedding. O

Proof of Theorem 4.2.14. We write E for the space consisting _of all
p € C*(R?) such that ||p||sy < oo forall M € V() and w e V(¥#)

endowed with the locally convex topology generated by the system of
seminorms {|| s [ M € V(IM),w e V(#)}. We need to show that
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S{{%% and E coincide as locally convex spaces. Since V(9°) @ V(#)

is upward dense in V(9M° ® #), we have that ¢ € C°(R?) belongs
to E if and only if 1(¢) € CV(OM° ® #)(RY) and that « : E —
CV (9 @ #)(R?) is a topological embedding. As both the Nachbin
families 9M° and # satisfy (S), M° ® # does so as well. Hence,
(M° @ #)C(N? x RY) = CV(IM° @ # ) (RY) as locally convex spaces.
The result now follows from Lemma 4.2.15. O

4.2.3 Kernel theorems

We prove kernel theorems for the spaces 8[[3;]] in this section. To this

end, we introduce vector-valued versions of S[[%] and give a tensor
product representation for them.

Let 9 be a weight sequence system, let # be a weight function
system and let E be alcHs. We define 8[[?;]]700(]1%% E) = S[[ZJ;]] (R% E) as
the space consisting of all ¢ € C*(R%; E) such that for all p € csn(FE)
and A e R, (for all pe csn(E), M € V(M) and w e V(#))

() A
pa(p) = sup sup 22 (x)k) LG
aeNd zeRd Ma

(pM,w(SO) = sup sup ol
aeNd geR4 Ma

We endow S[[%] (R%; E)) with the locally convex topology generated

by the system of seminorms {p|p € csn(E),A € Ry} ({pmwl|p €
csn(E), M e V(IM),we V(#)}).

Proposition 4.2.16. Let 9 be a weight sequence system satisfying
[L] and [9M.2]), let # be a non-degnerate weight function system

satisfying [wM] and [N], and let E be a complete lcHs. Then, the
following canonical isomorphisms of locally convex spaces hold

SHIRY E) = SR E = S R)SE.

We will make use of the ensuing result of Komatsu [83] to show
Proposition 4.2.16.
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Lemma 4.2.17 ([83, Lemma 1.12]). Let G be a semi-Montel lcHs
such that G is continuously included in C(R?) and let E be a complete
lcHs. Then, every function ¢ € C(R%; E) satisfying

(¢, @) : RT - C, z+— (¢, p(z)) belongs to G for all € € E' (4.4)

defines an element of GeE via E!, — G, €' — (€', ). Conversely, for
every T € GeE there is a unique ¢ € C(R% E) satisfying (4.4) such
that T(e') = (¢/, ) for all ' € E.

Proof of Proposition 4.2.16. We only show the Roumieu case as the
Beurling case is similar. The second isomorphism follows from the
fact that S{{%} (R?) is complete and nuclear (recall that every nuclear
(DF)-space is complete). We now show the first isomorphism. This
amounts to showing that the mapping

SONREE) - SLNRYEE, o[ ()] (45)

is a topological isomorphism. We first show that it is a well-defined
bijective mapping. By Lemma 4.2.17 with G = S} (R?) (G is semi-
Montel because it is nuclear), it suffices to show that a function ¢ €
C(R%; E) belongs to S} (R%; E) if and only if (¢, @) € Sfy)(R?)
for all ¢ € E’. The direct implication is obvious. Conversely, let
¢ € C(R% E) be such that (¢/,¢) € 8{{%}(Rd) for all ¢ € E'. In
particular, (¢/,¢) € CP(RY) for all ¢ € E’. By [126, Appendice
Lemme II], we have that ¢ € C*(R%; F) and

(e, ) = GRS ¢ e F',ae N

Theorem 4.2.14 implies that for all M € V(9M) and w € V(#) the

set
(@)
{‘P (ZIJ’)’[U(SC) ‘iL' c Rd,a c Nd}

is weakly bounded in £. Hence, this set is bounded in £ by Mackey’s
theorem. This means that ¢ € 8{{%’ (R% E). Next, we show that the

isomorphism in (4.5) holds topologically. Let M € V(9M), w e V(#)
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and p € csn(F) be arbitrary. We denote by B the polar set of the
p-unit ball in £. The bipolar theorem yields that

sup | (', ) sy,

e'eB
)
:sup{|<€7¢ (x)>‘w(x)|xeRd,aeNd,e’eB}

M,
= paw(p)
forallpe S {{2;}} (R%; E). The result now follows from Theorem 4.2.14.

m
We are ready to prove the kernel theorems.

Theorem 4.2.18. Let 9M; be a weight sequence system on N% satis-
fying [L] and [IN.2])', and let #; be a non-degenerate weight function
system on R% satisfying [WM] and [N] for j = 1,2. The following
canonical isomorphisms of locally convexr spaces hold
M @M - o] My ]
SNSRI = SR RS e

= Lb<s{”31<Rdl>; S{%(Rd?)) (4.6)

and
S[Wl1®9ﬁ2] (Rdl +d2) ~ S (Rdl)b®8 [Dm2] (Rdz)

[(#1@%5]
fml 1 Mo 2
~ L,,( IR, S[[%]](Rd N, (47)

Proof. The isomorphisms in (4.7) follow from those in (4.6) and the
general theory of nuclear Fréchet and (DF')-spaces, see e.g. [83, The-
orem 2.2]. We now show the isomorphisms in (4.6). By Proposition

4.2.16 and the fact that S[[Z ﬁ] (R%) is Montel (as it is nuclear and bar-

reled), it is enough to show that the following canonical isomorphism
of locally convex spaces holds

[PH@M2] mydi+day ~ <Pl mdi. c[P2] md
8[,/11@)//2]2 (R 1+ ?) ~ S[Wll] (R 1,8[%“] (R%)).

This amounts to verify that the mappings

M1 @M n m
S[[//llg///gf] (RA+d2) 3[[%5] (Rdl;s[[y/;]] (R%)) : > [z1 — (21, -)]
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and
e M M1 @M
S[[%]] (Rdl’S[[%ﬁ] (Rdz)) N S[[%g%f] (Rd1+d2) .
@ — [(z1,22) — p(x1)(22)],

who are each others inverses, are well-defined and continuous. But
the proofs of these facts are standard and therefore omitted (we only
remark that in the Roumieu case one needs to use Theorem 4.2.14).

O

4.3 The Beurling-Bjorck spaces

4.3.1 The space S[[;J]]

In this section, by a weight function on R? we simply mean a non-
negative, measurable, and locally bounded function. We consider the
following standard conditions [11, 21] (see also Section 3.2.3):

(o) There are L, C' > 0 such that w(z+vy) < L(w(z)+w(y))+log C,
for all z,y € R

(7) There are A, B > 0 such that Alog(1 + |z]) < w(z) + log B, for
all x € RY.

w(r)

li =
(%) |x|1E10010g|ZL’| »

A weight function w is called radially increasing if w(x) < w(y) when-
ever |z| < |y|.

Given a weight function w and a parameter A > 0, we introduce
the family of norms

Iell,,.x = sup [o(z)]eX .

xeR4

If n is another weight function, we consider the Banach space Sg’w(Rd)
consisting of all ¢ € S'(RY) such that [|p|lsn = el x + 112l <
m,w ) )
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o. Finally, we define the Beurling-Bjorck spaces (of Beurling and
Roumieu type) as

SR = lim &) ,(RY)  and SR = lim S, (RY).
A—00 A—0+

In literature, various definitions of the Beurling-Bjorck spaces
have been given [16, 28, 67]. In this section, we study the connection
between the conditions () and (7o) and the equivalence of said alter-
nate definitions of Beurling-Bjorck type spaces. Let w and n be two
weight functions. Given parameters k,l € N and A > 0, we introduce
the family of norms

_ B, (a) Aw(x)
(2 = Imax max su T xZ)e .
16l ran = maxme zen@| (2™

We define ‘SN';]\M(Rd) as the Fréchet space consisting of all ¢ € S(R?)
such that

lellgens == el ppn + 1Ploppr <2, VEeN,
We set

SY®Y) = 1im S}, (RY)  and  SY®Y) = lim S, (RY).

n)
A—00 A—0+

The following result is a generalization of [28, Theorem 3.3] and [67,
Corollary 2.9] (see also [16, Theorem 2.3]).

Theorem 4.3.1. Let w and 1 be two weight functions satisfying ().

Suppose that S[[;i] (R) # {0}. The following statements are equiva-
lent:

(i) w and n satisfy () ((n0) in the Roumieu case).

(i) S[[;’]] (RY) = §[[;)]] (RY) as locally convex spaces.

(i) Sp(R?Y) = {peS(RY)|YA>0 (IX>0) Vae N :

sup |2%p(2)[eM® < oo and  sup [€°P(€)[eME) < o).
zeR4 ceRd
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(iv) S ®RY) = {pe SR [¥A>0 (3N >0) Yae N :

f |gp(o‘) (ZE)|€)\7’(I)CZ$ < o0 and f |g’0\(o‘) (§)|€>\w(£)d€ < w0}.
zeRd

&eRd

(v) SHIRY) = S(RY).

[m]

Following [67], our proof of Theorem 4.3.1 is based on the mapping
properties of the short-time Fourier transform (see Section 3.4.1). To
this purpose, we introduce two additional function spaces. Given a
parameter A\ > 0, we define SA(RY) as the Fréchet space consisting
of all ¢ € C*(R?) such that [lo|l,, ;.\ = ll¢ll,kon < % forall ke N
and set

Sw)(RY) = lim S)(RY) and  Sy(RY) = lim SH(RY).

A—00 A—07F

Given a parameter A > 0, we define C)(RY) as the Banach space
consisting of all p € C(R?) such that [|¢]|, , < o0 and set

Ciwy(RY) = lim CH(RY) and  Cpy(RY) = lim CH(RY).

A—00 A—0+
We need the following extension of [67, Theorem 2.7].

Proposition 4.3.2. Let w and n be weight functions satisfying («)
and (7) ((70) in the Roumieu case). Define the weight n@w(z,§) :=
n(z) +w(€) for (z,€) € R*. Fix a window ) € S[[;J]] (RY).

(a) The linear mappings
Vy, : SR = Cluu) (R*) and Vyf : Cyg (R — Si/(RY)
are continuous.

(b) The linear mappings
Vy : SEIRY) = Spyen(R*) and Vi + Sy (R*) — S/l (RY)

are continuous.
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Proof. Tt suffices to show that V : Sk ]] (RY) —
S[W] (RY) — Chyew)(R??), and V¥ C[n@w] (R%) —
tinuous. Indeed, the continuity of Vi : Spgu(R

n®w] (de) VQL .
n]] (RY) are con-
) S[[;J]] (RY)
and Vj : & gl ](Rd) — Clyew) (R*?) would be immediate consequences,

[Q'_‘r—17—1

whereas, in view of (3.1), we could then always factor V; on S[[;J]] (RY)
as a composition of continuous mappings,

w Vs V;"
Vy s SEIRY 5 Cppun(®) 25 SE(RY) 2 S0 (R, (4.8)

7] n]

where, when 1 # 0, the window Y is chosen such that y € §[[7°7J]] (R%)
and (¢,X)rz = 1. (The relation (4.8) actually yields 8[[7?]](1&‘1) —

Sil®d).)

Suppose that 1) € ‘SN',?,‘ZJ(RCZ), so that A\g > 0 is fixed in the Roumieu
case but can be taken as large as needed in the Beurling case. Let
A and B = B, be the constants occurring in (y) (in the Roumieu
case, A can be taken as large as needed due to (7)). Furthermore,
we assume that all constants occurring in («) and () (resp. (o)) are
the same for both w and 1. We may also assume that A\g — k/A > 0.
We first consider Vw Let A < (Ao — k/A)/L be arbitrary. For all

ke N and e S2ETE(RY), it holds that

max su (958 Voo(x, &M
la+3|<k (z,6)e %2(1 ’ v w@( S)’

< (2m)* max sup 1) J o()](1 4+ [E)H) (x — bt

lo|<k eRrd
< M) kol ol arr

sup J M) =L0(0) (1 4 [¢])re= ) g=don(a—1) gy
]R‘i

zeR4

k. —(Mg—
< R BAC Wl [ 0y
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and

boov, A (€)
max sup |0;0sVip(x,€)le
latBl<k (a:é)eR?d‘ ¢ 1/,90( &)l
= B N N Aw(€)
= max su 07 0% Vr s —x)|e
lactBl<k (%5)61;&%’ £ }—(‘p)w(f )]

< (27) max sup 9 f DI+ 164129 (€ — )|de
‘5|$k5 {GRd Rd

k o 0 —(Ao—AL— w
< (QW)kBAC)“‘Pw,k,L,\¢‘W,A0Jde (Mo—AL—Fk/A) (t)dt.
R

These inequalities imply the continuity of Vj; : §[[;’]] (RY) - Spaw (R*).

Taking & = 0 in the above norm bounds, we also obtain that V; :

S[[;]]](Rd) - C[n@w](RZd) is continuous. Next, we treat Vi. Let
AL+

A < A\o/L be arbitrary. For all k € N and ® € Cpq, * (R*?) it holds
that

IV @,

< (27)* max sup e*®
|Oé|<k‘ teRd

)y (g) H@(x,&ﬂ(l +[E)* YD (t — x)|dwdg

Béa R2d
< (4m) 1 oo 1@ oo

f f (1 + [e])Fe (5O AnO~Ln(e) g=don(t=2) g e

R2d

k Lo (&) — (Ao —
< () BAC Dl [0 gng g, [ 400000

R2d

and

| F (V@) loer

= max sup e’ |52 JJ O (z, f)eQWig'Ie_Qﬂit"”@Z)\(t — &)dxdg
Rd

lol<k yera
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% " — z)—(Ao—AL)w
< U BEC s ¥lynpey [[ 4707002900 de

R2d

Since || - faper < BA| - [yprr s and | - luoppn < BA| - [y for
all A > 0 and k € N, the above inequalities show the continuity of
P

In order to be able to apply Proposition 4.3.2, we show the ensuing
simple lemma.

Lemma 4.3.3. Let w and n be weight functions satisfying (o). If
S[[:]] (RY) # {0}, then also S[[;i] (R4) # {0}.

Proof. Let ¢ e S{4/(R%)\{0}. Pick v,x € D(R?) for which we
have §, o(z)¢(—2)dr = 1 and §y, x(z)dz = 1. Then, ¢y = (p =
X)F L) e Sl (R and g # 0 (as o(0) = 1). 0

Proof of Theorem 4.3.1. (i) = (ii) In view of Lemma 4.3.3, this fol-
lows from Proposition 4.3.2 and the reconstruction formula (3.1).
(13) = (ziz) Trivial.
(i7i) = (v) and (iv) = (v) These implications follow from the
fact that S(R?) consists precisely of all those ¢ € S’(R?) such that

sup [#%p(z)] <o and  sup [€7G(E)] < o
xeR ¢eRd

for all o € N¢ (see e.g. [28, Corollary 2.2]).

(v) = (i) Since the Fourier transform is an isomorphism from
S[[:]J]] (RY) onto S[[Z% (RY) and from S(R?) onto itself, it is enough to
show that 7 satisfies (y) ((70) in the Roumieu case). We start by
constructing ¢, € S[[;U]](Rd) such that ¢(j) = d;0 for all j € Z%
similar as in Lemma 3.3.9. Choose ¢ € S[[;i] (RY) such that (0) = 1.
Set

x(x) = f e 2mtdt, reR%
3.4

Then, x(j) = d;0 for all j € Z4. Hence, ¢y = 1) satisfies all re-
quirements. Let (A;);eze be an arbitrary multi-indexed sequence of
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positive numbers such that A\; — o0 as |j| — o ((Aj)jeze = (N)jeze
for A > 0 in the Roumieu case). Consider

e~ Ain() ) (] fopd
Y= Z W@o('—ﬁ € Sy, (RY).

jezd

Since S[[:]] (RY) = S(R?), there is C' > 0 such that

M) | c
Tr e~ PUIS e

for all j € Z?. Hence,
log(1 +[j]) < Ajn(j) +log C

for all j € Z%. As n satisfies (o) and ();)jeza is arbitrary, the latter
inequality is equivalent to () ((7o) in the Roumieu case).

(1) = (iv) Let us denote the space in the right-hand side of (iv) by
[[:]],’11 (R4). Since we already showed that (i) = (i7) and we have that
[[;J]] (RY) < S[[;J]]:ll (RY), it suffices to show that S[[;J]]f (RY) < S[[;i] (RY).

By Proposition 4.3.2(a), Lemma 4.3.3 and the reconstruction for-
mula (3.1), it suffices to show that V() € Cpyguw)(R*?) for all ¢ €

S[[:]]”ll (RY), where 1) € g[[%] (RY) is a fixed window. But the latter can

be shown by using the same method employed in the first part of the
proof of Proposition 4.3.2. O]

S

4.3.2 Nuclearity

We characterize in this section the nuclearity of the Beurling-Bjorck
spaces. In particular, our goal is to show the following result.

Theorem 4.3.4. Let w and n be weight functions satisfying (o). If w
and n satisfy () () in the Roumieu case), then S[[;i] (RY) is nuclear.
Conversely, if in addition w and 7 are radially increasing, then the
nuclearity of S[[;J]] (R?) implies that w and n satisfy () (7o) in the

Roumieu case), provided that S[[;J]] (RY) # {0}.
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Our proof of Theorem 4.3.4 is based on Proposition 4.3.2(b),
Lemma 4.2.4 and the next auxiliary result.

Proposition 4.3.5. Let n be a weight function satisfying () and (vy)
((70) in the Roumieu case). Then, Sy;(R?) is nuclear.

Proof. We present two different proofs:

(i) The first one is based on a classical result of Gelfand and
Shilov [62, p. 181]. The nuclearity of S, (R?) is a particular case
of this result, as the increasing sequence of weight functions (€™7),en
satisfies the so-called (P) and (N) conditions because of (). For the
Roumieu case, note that

Siop(RY) = lim lim &7 * (RY)

nely k=n

as locally convex spaces. The above mentioned result implies that,

11
for each n € Z,, the Fréchet space lim, Sy *(R?) is nuclear, as
«—k=n

the increasing sequence of weight functions (e(%_%)") k>n satisfies the
conditions (P) and (N) because of (7). The result now follows from
the fact that the inductive limit of a countable spectrum of nuclear
spaces is again nuclear.

(i7) Next, we give a proof that only makes use of the fact that
S(R?) is nuclear. Our argument adapts an idea of Hasumi [70]. Fix
a non-negative function x € D(R?) such that {,, x(y)dy = 1 and for
each A > 0 let

Uy (z) = exp (AL JRd x(y)n(z + y)dy) :

It is clear from the assumption («) that 1 should have at most poly-
nomial growth. So, we fix ¢ > 0 such that (1+ |z|)~ () is bounded.
We obtain that there are positive constants cy, C, C g, and Cy, », 3
such that

exexp (Mp(2)) < Uy (z) < Cyexp(L2An()), (4.9)
00 (2)] < Crp(1 + [a]) 17105 (), (4.10)
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<\le\1 ) B) @)
Uy,

for each 8 € N? and \; < Ay. Let X, = U;'S(R?) and topologize
each of these spaces in such a way that the multiplier mappings My, :
X, — S(RY) : ¢ — W, - p are isomorphisms. The bounds (4.11)
guarantee that the inclusion mappings X,, — X, are continuous

whenever \; < \y. If A is a constant such that (+) holds for 7, then
the inequalities (4.9) and (4.10) clearly yield

and

< Oy pop(1+ [z]) 77, (4.11)

max sup (1 + [2)*[(Wx0) P ()] < Beaa @l krrzasgna
SKE geRd

and

1
ol n < o max [l 10

1 —v
v<p

C) |81k

)

< b (D) e+ e [I(L+ 1 D0

< bk,)\ %l\a)/i H(l + ’ ’ |)qk(k+1)/2(qj/\¢)(B)HLoo ’
<

for some positive constants By x 4, b;a » and by ». This gives, as locally
convex spaces,
S (RY) = lim X,
neZy

and the continuity of the inclusion X — S;(R). If in addition (o)
holds, we can choose A arbitrarily large above. Consequently, the
inclusion SE*A*#(R?) — X is continuous as well for any arbitrary
e > 0, whence we infer the topological equality

Siy(RY) = lim X,

HEZ+

The claimed nuclearity of Sp,(R?) therefore follows from that of
S(R?) and the well-known stability of this property under projective
and (countable) inductive limits [131, Proposition 50.1, p. 514]. O
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Proof of Theorem 4.3.4. We first suppose that w and 7 satisfy (v)
((70) in the Roumieu case). W.l.o.g. we may assume that S[[;J]] (RY) 5
{0}. In view of Lemma 4.3.3, Proposition 4.3.2(b) and the recon-
struction formula (3.1) imply that S[[;J]] (R?) is isomorphic to a (com-
plemented) subspace of Spgw(R?*?). The latter space is nuclear by
Proposition 4.3.5. The result now follows from the fact that nuclear-
ity is inherited to subspaces.

Next, we suppose that w and 7 are radially increasing and that
S[[;”]] (RY) is nuclear and non-trivial. Since the Fourier transform is a
topological isomorphism from 8[[:;]] (RY) onto S[[Z% (R%), it is enough to
show that 7 satisfies (7) ((7) in the Roumieu case). Consider the
Kothe set A, = {(e’\"(j))jezd | A € R,}. Note that, by Proposition
2.3.1, A'[4,] is nuclear if and only if

IA> 0 (VA > 0) Zewi

jezd

As 7 is radially increasing and satisfies («), the above condition is
equivalent to () ((70) in the Roumieu case). Hence, it suffices to
show that A'[A,] is nuclear. To this end, we use Lemma 4.2.4 with

A=A,and E = S[[;J]] (RY). We start by constructing ¢y € S¢'(R?)
such that

J wo(j + x)dx = 65, jeZ (4.12)
[0,

By Lemma 4.3.3, there is a ¢ € S*/(R%) such that ¢(0) = 1. Set

(]

1 )

X(z) == f e 2metdt reRY
2d [7171]d

Then, X(j/2) = d;o for all j € Z%. Hence, v = py € S/ (R?) and

¥(j/2) = ;0 for all j € Z%. Then, py = (—1)%0, - -- 011 satisfies all

requirements. The linear mappings

T:X\ [Aﬂ] - S[[;J]] (Rd)v CJ ]EZd Z CJSDO -

jezd



82 Chapter 4. Characterizations of nuclearity

and

S SERY) — A7[4,], s<so>:<f[o 90(1’+j)d3«°>

jezd

are continuous. Moreover, by (4.12), we have that SoT = ¢. O



Chapter 5

(PLB)-spaces of weighted
ultradifferentiable functions

5.1 Introduction

(PLB)-spaces, i.e. countable projective limits of countable induc-
tive limits of Banach spaces, often arise naturally in the context of
generalized functions. For instance, the space of distributions, the
space of real analytic functionals or the multiplier space Oy(R?) are
all classical examples which exhibit this topological structure. More-
over, due to the elevated complexity ultradifferentiability imposes on
the topology of the spaces associated to it, (PLB)-spaces appear fre-
quently in the theory of ultradistributions. Thus the determination
of the topological properties of such spaces becomes an important
problem in functional analysis. We refer to the survey article [49] for
applications, examples, and further references on the subject.

In general, the projective limit of bornological spaces is not again
bornological, and the same is true for barrelledness. As such topo-
logical properties are highly desirable, characterizing when they hold
poses an interesting problem. One of the first and arguably most
famous results in this direction was Grothendieck’s proof for the bar-
relledness of the multiplier space O (R?) [69], which he did by show-
ing it is isomorphic to a complemented subspace of s® s’ (later Val-
divia showed that actually the tensor representation Oy, (R?) = s® s’
holds [132]). More recently, in [1] (see also [149]) the locally convex

83
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properties of weighted (PLB)-spaces of continuous functions were
described in terms of their defining double sequence of weights. Sim-
ilarly as in Chapter 4, these results allow us to characterize the topo-
logical invariants for vastly more complex spaces of test functions.
In this chapter we consider certain variants of the Gelfand-Shilov
spaces, more precisely
Sty = lim lim S)',  and S5 = lim lim SM

wh ,00
A—0+ H—>C0 M—»O+ )\—>CX3

for a certain weight sequence system 91 and a Wel%ht function system
W , where we will employ the notation Z A particularly
interesting example is the space of multlphers for the Gelfand-Shilov
spaces O — 2B - Ghere w0 = (1w | A € R}, see [47].
The Foal is to characterize the ultrabornologicity and barrelledness
of Z,,° through conditions on %  closely related to the topologi-
cal 1nvar1ants (Q2) and (DN) for Fréchet spaces of Vogt and Wagner
[92]. In the case of O][\?]’[W], we will see a clear distinction between
the Beurling and Roumieu case, where the former will in most cases
posses these properties while the latter often does not. Interestingly,
our method for showing the necessity of these conditions will require
the Gabor accessibility of the Gelfand-Shilov spaces.

The chapter is organized as follows. In Section 5.2 we formally in-
troduce the conditions (£2) and {DN} (and two variants) on a weight
function system #°. Moreover, we link some of these conditions on
Wan, for a weight sequence system 901, to a condition [99%.2]* on 90 it-
self, and they are equivalent under the right circumstances. The con-
dition [901.2]* is actually a generalization of the condition (M.2)*
weight sequences [89], which determines when the associated function
is a BMT weight function [20]. Then, in Section 5.3, we characterize
the topological properties of (PLB)-spaces of weighted continuous
functions in our framework. After this, the strategy will be to either
embed 2531 I as a complemented subspace in such a space or to do the
reverse, so that the locally convex property in question is inherited
by the subspace and may then be determined. Our main result, The-
orem 5.4.3, characterizing the ultrabornologicity and barrelledness of
Zgﬁ is then shown in Section 5.4, where we also discuss some specific
examples.
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5.2 The conditions ({2) and {DN}

In this section we introduce and study several conditions for a weight
function system # on a topological space X which will be intrinsi-
cally linked to the topological properties of the spaces considered in
this chapter. To this regard, we introduce the following notions.

Definition 5.2.1. A weight function system # on X is said to satisfy
condition () if

VAeR, Ju<AVnp<p3fe(0,1)3IC>0Vre X

o 1-6
Lo ()
#(z) wr(z) ) \wi(z)
If “30 € (0,1)” is replaced by “Vf € (0,1)”, then % is said to satisfy
().

Definition 5.2.2. A weight function system # on X is said to satisfy
condition {DN} if

g

INeR, Vu>AV0e (0,1)In>p3dC>0Vre X:

o< (o) (o)

If “v0 € (0,1)” is replaced by “30 € (0,1)”, then # is said to satisfy
{DN}.

g

Remark 5.2.3. The previous conditions are inspired by and closely

related to the topological linear invariants (DN), (DN), () and ()
for Fréchet spaces of Vogt and Wagner [92, 142, 146]; see [149] for

more information.

The following observation, a direct consequence of Lemma 3.2.1,
will prove itself useful in the sequel.

Lemma 5.2.4. Let # be a weight function system on R? that sat-
isfies [wWM]. Then # satisfies (Q) or (Q) (resp. {DN} or {DN}) if
and only if W|za does.
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Our first goal is to relate for any weight sequence system 91 the
conditions (2), resp. {DN}, on #yn to conditions on the weight se-
quence system itself. To this purpose, we say that 9t satisfies (90t.2)*
if

INeR, Vu<A3IQeZy 3C, >0 Vae N1 (M)? < CoMp,
and 9 satisfies {9.2}* if

JpeR, VA= p3Q e Z, 3Cy > 0 Ve N*: (M)? < CoMp,..

Note that if (M})? < C’OMSQ, i < A, for some @ € Z,, then also
(MMN? < (CoM )N My, for any N € Z,. As a consequence,
any isotropically decomposable weight sequence system 90 satisfies
[D0t.2]* if and only if every isotropic weight sequence system in its
decomposition satisfies [91.2]*.

We may characterize [91.2]* via #4y in the following way.

Lemma 5.2.5. Let 9N be an isotropically decomposable weight se-
quence system. Then M satisfies [IM.2]* if and only if
INeR, Vu< A (GueR, VA=2p)dR>13C >0 :
wn(t) < Rwpa(t) + log C.
Proof. Suppose I satisfies [M.2]*. Let A € Ry be such that for any

p < X (p e Ry besuch that for any A = u) we have (M2)? < CoMgp,
for some @ € Z, and Cy > 0. For any 8 < (Q,...,Q) we then have

oAy
sup log —————
aeNd Mga-i-ﬂ
B L
< sup log -
acNd Mga Mg
|97 (Mg)? 5 CoMg' (Mg)'
< sup log ————— + log [t”| + log —
aeNd (M2)e infs<qe Mj

<(Q + Dwyn(t) +logC
for some C' > 0, from which we may infer

tQa+B )+
wize () = max sup log ————2 < (Q + Dwyr () + log C.

B<Qeoena  Mbaip
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Conversely, suppose the inequality holds for some A € R, and any
p < A (for some g€ R, and any A > ). We may suppose R € Z,.
For any a € N? we get

M2 = Mg sup [t*|e=<ar®

teRd
C My
A o) —wyn (t)/R _ 0 p \1/R
< C Mg f;gﬁ e ( 5)1/R(MRa) :

O

We get the following relation between the conditions [91.2]* on
M and (2) and {DN} on .

Proposition 5.2.6. Let 9N be an isotropically decomposable weight
sequence system. Consider the statements

(1) Wan satisfies () (resp. {DN}).
(i1) O satisfies [.2]*.
Then, (i) = (ii). If M satisfies [L] and [IN.2], then, also (ii) = (i).

Proof. We only show the Beurling case, the Roumieu case may be
done similarly. Suppose #gy satisfies (€2). There exists some A < 1
such that for any p < A there is some 6 € (0,1) and C' > 0 for which

(1 — H)wMu(t) < OBwyn (i) + (1 — 9)&)]\@4@) < wa(t) + log C.

Putting R = (1 — )7, it follows from Lemma 5.2.5 that 901 satisfies
[D0t.2]*.

Suppose now N satisfies [L], [1.2] and [90.2]*. Take any A € R,
and let A\g < A be such that the inequality in Lemma 5.2.5 holds for
any p < Xo. By Lemma 3.2.4(:) and (éi7) there exists a u < Ao
such that 2wy (t) < wye(t) + log Cy for some C; > 0. By putting
0 =(R—1)/R we get for any n < pu:

O (t) + (1= 0)wpm () < (14+0)wyp (t) +1log C < wppn(t) +1og C1C.

We may conclude #ay satisfies (£2). O
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Our notation of the condition [91.2]* is based on the condition
(M.2)* on weight sequences [20, 89]. An isotropic weight sequence
M is said to satisfy (M.2)* if and only if

3Q € Z : liminf mg,/m, > 1, p=1.
p—0

We mention that (M.1) and (M.3) imply (M.2)* [105, Proposition
1.1]. The condition is intrinsically linked to the BMT weight func-
tions, which we explore in the following result.

Proposition 5.2.7. Let M be an isotropic weight sequence satisfying
(M.1) and (M.2). Then, the following statements are equivalent:

(1) M satisfies (M.2)*.

(11) war is a BMT weight function.
(i13) Myr satisfies [IN.2]*.
(iv) My satisfies (§2).

(v) My satisfies {DN}.

If these statements are satisfied, we have My [~] My, and Wy [~]
2

Wh

Proof. (i) < (ii) is shown in [20, Proposition 13|, while (iii) < (iv)
and (ii7) < (v) follow from Proposition 5.2.6. We are left with
(1) < (di7). By [20, Proposition 13] we have that M satisfies (M.2)*
if and only if

wi(2t) < Hwp(t) + log C, t =0, (5.1)

for some C, H > 1. By Lemma 5.2.5 this is equivalent to 91 satisfying
[D0t.2]*.
One may now easily verify the last part of the proposition. n

As a matter of fact, any weight sequence associated to a BMT
weight function satisfies (€2) and {DN}.

Proposition 5.2.8. Let w be a BMT weight function. Then, 9N,
satisfies [IM.2]*. In particular, M,, satisfies (2) and {DN}.
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Proof. By using the fact that for the Young conjugate ¢* the function
y — ¢*(y)/y is increasing on [0, o0), it follows that for any A € R,
Qe Z, and a € N

Q
(M},)R = e$6"0lad < eho*0Qlad — pp o

We may conclude 9, satisfies [.2]*. As M, satisfies [L] and [M07.2]
by Lemma 3.2.7, it follows from Proposition 5.2.6 that 91, satisfies
(2) and {DN}. O

We now end with a discussion on the conditions (€2) and {DN}.
As we will see in Theorem 5.4.3, these will determine whether or not
our spaces in question are ultrabornological and barrelled. Therefore
it is of great interest to us to determine if the weight function system
W, or #W° = {1/w"Y*| X e R,} when considering multiplier spaces,
satisfies the necessary conditions. Our primary interest are the weight
function systems that arise from a weight sequence M or a weight
function w as in Section 3.2.3. For #), and #,, we will show that

the conditions (ﬁ) and {DN} are rarely met. For #}; and #.5, we
will see a clear distinction between the Beurling and Roumieu case.

We first look at #,.

Proposition 5.2.9. Let w be a non-negative non-decreasing contin-
uous function on [0,00) going to infinity. The following statements
hold.

(1) #,, does not satisfy {DN} and (ﬁ)

(17) #2 satisfies {DN}, but not (5)

Proof. That #,, and #.; do not satisfy (Q2) follows easily from the
fact that for any n < p < A, the inequalities

g 1—-60 1

—4+——<— and pu<ON+(1-0)y

A n I
do not hold for all # € (0,1). That #,, also does not satisfy {DN}
follows from the fact that for any 4 > 1 and 6 € (;lu 1), the inequality

1-0

0+ ——<
n

==
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cannot hold for any n > p. Finally, as for any g > 1 and 6 € (0,1)
one may always find an n > p such that

p<1l+(1=0)n,

we infer that # satisfies {DN}. O

Next, we consider #,;. We first show the following general result.

Lemma 5.2.10. Let 9 be an isotropically decomposable weight se-
quence system satisfying (L) and (9MM.2). Then, #qy, satisfies {DN}.

Proof. Tt suffices to show that for any g > 0 and 6 € (0,1) there
exists a 7 < p such that

wrpn () < (1= B)wann (z) + log C,

for some C' > 0. This follows easily from Lemma 3.2.4 (i) and (7).
0

Corollary 5.2.11. Let M be an isotropically decomposable weight
sequence satisfying (M.1) and (M.2). The following statements hold.

(1) W does not satisfy {DN} and (ﬁ)

(i4) Wy satisfies {DN}. If M satisfies (M.2)*, then, #y; does not
satisfy (€0).

Proof. (i) If #4 satisfies (Q), respectively {DN}, then in particular
each isotropic sequence in its decomposition does so. Hence these
satisfy (£2), respectively {DN}, so that by Proposition 5.2.7 the weight
function system arises from a BMT weight function. We now get a
contradiction from Proposition 5.2.9(i).

(77) By Lemma 5.2.10 we see that #/}; satisfies {DN}. If M satis-
fies (M.2)*, then by a similar argument as in (i) one shows that #;

cannot satisfy (€2) by virtue of Proposition 5.2.9(i7). O
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5.3 (PLB)-spaces of weighted continuous
functions

Let X be a topological space. A family A = {a™* | A\, p € R,} of
continuous functions X — R, is called a weight function grid on X
if a*#(z) < a*?#2(z) for every x € X when Ay < A\; and po < juy.
The following two conditions will be crucial for our analysis.

Definition 5.3.1. The weight function grid A on X is said to satisfy
Q if
v>\1 € RJr EI)\Q < )\1 ﬂ,ul S RJr v>\3 < /\2
Vo = py Ve >0 Jus = o 3C >0 :
1 € C
< +
a>\2vﬂ2 (x) a>\17M1 (x) a>‘3»ﬂ3 (x)

If “WYe > 0” is replaced by “Jde > 07, then A is said to satisfy wQ.

, Ve X.

Let X be a locally compact o-compact topological vector space.
Given a weight function grid A on X, we define the space
AC(X) = lim lin Cyi(X).
A—0t H—>00
Then, AC(X) is a (PLB)-space. We now recall two important results

from [1] concerning the linear topological properties of the spaces
AC(X) that will be used later on.

Theorem 5.3.2. Let A be a weight function grid on X. If A satisfies
Q, then AC(X) is ultrabornological.

Proof. In view of [151, Theorem 3.3.5, p. 41], this was shown in [1,
Theorem 3.5]. O

Theorem 5.3.3 ([1, Theorem 3.8(2)]). Let A be a weight function
grid on X. If AC(X) is barrelled, then A satisfies wQ.

Consider two topological spaces X and Y. Let # be a weight
function system on X and 7 be a weight function system on Y.
We will primarily be interested in weight function grids of the form
A=Aygy =% @V on X x Y, where we put a’* = w* @ v*. Our
first concern is to determine when Ay gy satisfies Q. We find the
following result.
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Proposition 5.3.4. Let # and ¥V be weight function systems on
X and Y, respectively. Suppose that one of the following statements
holds:

(1) W satisfies () and ¥ satisfies {DN};
(13) W satisfies (ﬁ) and ¥V satisfies {DN}.
Then, Ay gy satisfies Q.

Proof. Suppose (i) holds. Take any \; € R, and take some Ay < )\
as in (). Pick p; € R, as in {DN} and any A3 < X2 and fix a
corresponding 6 € (0, 1) as implied by (2). By {DN}, for any us > 1y
there exists some pz > ps and C' > 0 such that for any € > 0 and
(r,y)e X x Y-

m = (wM <>1 <y>)9 (wks <x>1ws<y>)w

- (wwx;vm(y))g (w(xC@)) _

S oo (y) | w(z)om ()

Consequently, Ay gy satisfies Q.
If (i7) holds, then one may analogously conclude Q, where 6 is
fixed by ¥ instead of # . H

Next, suppose either # or ¥ is of the form #gy for some weight
sequence system 9. If we combine the observations made in Propo-
sition 5.2.6 with those of Proposition 5.3.4 we obtain the following
equivalencies, which will form a vital argument in showing necessary
conditions for ultrabornologicity and barrelledness in the sequel.

Lemma 5.3.5. Take a topological space X. Let DN be an isotropically
decomposable weight sequence system. For a weight function system
W on X the following hold true.
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(a) If M satisfies (L), (IM.2), and (IM.2)*, the following statements
are equivalent:
(1) Aypomenw on 22 x X satisfies Q.
(1) Aypew on Z% x X satisfies wQ.
(1it) W satisfies {DN}.
(b) If M satisfies {L}, {IM.2}, and {IM.2}*, the following statements
are equivalent:
(1) Apgwey on X x Z2 satisfies Q.
(1) Apewy on X x Z satisfies wQ.
(1it) W satisfies (ﬁ)
Proof. (a) (i) = (iz) Trivial.
(17) = (4i7) Condition wQ implies that
VA1€R+ E|)\2§A1 3M1€R+ V/\3<A2 V/,LQZ,Ul 3#32/,62 1C > 0 :
1 (&m D=wyar () g0 (1) =Wy ag (j))
<C :

wh2 (ZL‘) wht (ZL‘) + w3 <$)

for every z € X and j € Z%. Using Lemma 5.2.5, let \; € R, be such
that for any A < Ay we have wy(j) < Rwy (5) + log C) for some
R > 1 and C; > 0. We then fix Ay and py as in w@Q. In particular
we have

R—-1
R

N

wpe (J) — wapa () wype (J) + log C1.
Fix some v > 0. By Lemma 3.2.4(¢) and (éi7) there is a 7 < Ay such

that
R—-1

vwipe (27) < wam(f) + log Cy

for some Cy > 1. Next, again by Lemma 3.2.4(:) and (ii7), there
exists a A3 < 1 so that 2wym () < wyps(j) + log Cs for some C3 > 0.
Specifically, we have

WprAe (]) — Whrrs (J) < —Wam (J) + log C3.
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Set C" = max(C4, C3), we get from wQ
1 € Ry Yo = piq g = e 3IC >0V e X Vje Z%

R—1 iy
1 < CC' (@ R M>\2(J) N e Mn(])) '

wh2 (x) Wkt (Q;) wWHs3 (g;)

Consider the sequence ji = (k,0,...,0) for k € Z,, then note that
e“rr2 k) g g non-decreasing sequence such that limy, _, . e“a*2 (k) =

0. Also note that e¥a2 Ur+1) < Cge%%“’”’"(j’“). For any r > a2 (1)
let K = k, > 1 be such that

ewM)\Q (]k) < r < ewl\l/\Q (jk+l) < 026%%“)]\471(]‘16)‘
We now see that

dpur e Ry Yus = g Vv >0 3ug = e 3C >0Ve e X Vr >0
1

wre(r) S co'e <wf:<:c) " w;(;)) ’

The result then follows by calculating the minimum (with respect to
r > 0) of the right-hand side of the above inequality.

(#7i) = (7) This follows from Proposition 5.3.4 as #ay satisfies ()
by Proposition 5.2.6.

(b) One may show the equivalencies similar as in part (a). O

5.4 The space Z[Wm]

We now define the weighted (P LB)-spaces of ultradifferentiable func-
tions that we will be concerned with in the remainder of this chapter.
Let M be a weight sequence and let w be a continuous positive func-
tion on R?. We write Z)/(R?) = Z) for the space Sp/,, i.e. for the

Banach space consisting of all ¢ € C*(R?) such that

(@)
z x
||90||ZM .= Sup sup M < o,
aeNd geR4 Ma
Then given a weight sequence system 97 and a weight function system

W , we define the spaces

ng = lim lim Zlﬁ/ﬂ : Z{ b= lim lim ZM .

)\—>0+ /L—>OO M—»OJr )\HOO
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Then, Zgﬁ lis a (PLB)-space. We will also write (9][\94”]’[%] for the
space Z%], due to its motivation as being the multiplier space asso-
ciated to S[[g;]] Note however that it is far from trivial whether or

not O][\Zn]’[%] is actually the multiplier space of S[[?;]]

Open problem 5.4.1. Determine when O][\?]’W] is the multiplier
space of S[[;D;]] In [47] this is shown to be the case for S[[Aﬂj]], where M
is an isotropic weight sequence satisfying (M.1), (M.2) and (M.3).

The goal of this chapter is characterize the topological properties

of Zgﬁ I via the conditions () and {DN} on #. To this purpose,

we introduce the following assumption on 9t and #  under Whic}]1 we

will characterize the ultrabornologicity and barrelledness of ZEZn .

Assumption 5.4.2. M s an isotropically decomposable weight se-
quence system satisfying [L] and [9M.2]" such that #an satisfies (Q)
(resp. {DN}). Additionally, # is a weight function system satisfying
[WM] such that there exists a symmetric weight function system ¥
satisfying [wM] and [N] for which #° is [V]-admissible, i.e.

VueR, INneR, (YA, neR, IpeR,) 3IC >0 Vo, ye R?:
Wz +y) < Cu (@)’ (y) (5.2)
(1]
and Spyy # {0}.
We are now ready to formulate the main result of this chapter.

Theorem 5.4.3. Let M be a weight sequence system and # be a
weight function system such that Assumption 5.4.2 holds for some
weight function sequence V. Consider the statements:

(1) W satisfies {DN} (resp. (ﬁ))
(i7) Zagﬁ) (resp. Zi;m}) is ultrabornological.
(vi1) Z;;m (resp. Zi}m}) is barrelled.

Then the following are true:
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(A) The implications (i) = (ii) = (iii) hold.

(B) If 9 satisfies [IN.2] and S[[,%] is Gabor accessible, then, (iii) =
(4).

Sufficient conditions for a Gelfand-Shilov space to be Gabor ac-
cessible were explored in Section 3.4.2. In particular, if S{{%} =

Sg: :ji (R%) this is exactly the case when (r,s) is a Gabor couple, so

that by Corollary 3.4.10 it suffices that either min(r,s) > 1/2 or
max(r,s) > 1.

To demonstrate the applicability of Theorem 5.4.3, let us consider
the multiplier spaces associated to Gelfand-Shilov spaces defined by
weight functions or weight sequences as in Section 3.2.3. In both
examples we will see a clear distinction between the Beurling and
Roumieu case.

Theorem 5.4.4. Let w,n : [0,00) — R, be continuous and non-
decreasing going to infinity such that w s a BMT weight function
and n satisfies () and () (resp. (y0)). Suppose that S[[:] # {0}.
Then, the following statements hold.

(4) O(Mw)’(n) is ultrabornological and barrelled.

(13) If S{{;’}} 15 Gabor accessible, then O]{\;}’{n} 15 not ultrabornological
or barrelled.

Proof. We start by verifying that Assumption 5.4.2 is met for 91 =
M, W =W, and ¥ = #,. For M, this follows directly from Lemma
3.2.7 and Proposition 5.2.8. Also, by Lemma 3.2.7 it follows that #
satisfies [wM] while ¥ satisfies [wM] and [N]. Finally, as 7 satisfies
(), we have

n(z) < Ln(z +y) + Ln(y) + log C,

for some C' > 0, from which we may conclude (5.2) holds.
The result now follows directly from Theorem 5.4.3 and Proposi-
tion 5.2.9(ii). O

Theorem 5.4.5. Let M and A be two isotropically decomposable
weight sequences satisfying (M.1) and (M.2) and let M satisfy (M.2)*.

Suppose that S[%] # {0}. Then, the following statements hold.
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(i) O](\f[w)’(A) is ultrabornological and barrelled.

(i1) IfS{{f}} is Gabor accessible and A satisfies (M.2)*, then (’)]{\y}’{A}
15 not ultrabornological or barrelled.

Proof. As a direct consequence of Lemma 2.3.2, Lemma 3.2.6 and
Proposition 5.2.7, we see that Assumption 5.4.2 holds for 91 = 9y,
W = Wy and ¥ = #,. Whence the result follows directly from
Theorem 5.4.3 and Corollary 5.2.11. O]

In particular, we get the following result for Gevrey sequences.

Corollary 5.4.6. For any (r,s) € R, x R, such that r +s > 1
(r+s = 1) we have that:

(1) (’)E\le)’(p!r) s ultrabornological and barrelled;

(1) If (r,s) is a Gabor couple, then, Ol{\gls}’{p!r}

1cal or barrelled.

15 not ultrabornolog-

Proof. For any s > 0 and M, = p!* we have that mg,/m, = 2° > 1,
so that in particular M satisfies (M.2)*. The proof is now completed
by Theorem 5.4.5. O]

Before we move on to the proof of Theorem 5.4.3, we first pose
the following interesting open problem.

Open problem 5.4.7. Consider a continuous function p : N x R? —
(0,00) and a weight sequence M. We may consider the Banach space
of all smooth functions ¢ € C*(R?) such that

(a)
p sup 2V @l )

aeNd zeR4 MOJ

Then, using a weight sequence system 901 and an alternate weight
function system P = {p* | u € R;} with continuous functions
p* N x RY — (0,00), one may define several variants of Gelfand-
Shilov type spaces as we did before. The problem now becomes the
determination of the topological invariants of these spaces. Note
that many of these test function spaces exhibit interference in their
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time-frequency decay, so that the techniques employed throughout
this text are often not directly applicable. A particularly inter-
esting example is where p*(«a,z) = po(z)w”(z) for a weight func-
tion system # and a family {p, | @ € N¢} of continuous functions
Po @ R? — (0,00). Such spaces arise naturally in the context of
asymptotic behavior for ultradistributions, see Chapters 9 and 10.

5.4.1 The proof of Part (A)

The proof of Part (A) employs the short-time Fourier transform in or-
der to embed ZI™ into the space Ay, gy C(R2) (resp. Aypgype, C(R2)),
after which the statement follows from Proposition 5.3.4 and Theo-
rem 5.3.2. The following result considers the mapping properties of
the (adjoint) STFT on Z,.

Proposition 5.4.8. Let M be a weight sequence system and # a
weight function system such that Assumption 5.4.2 holds for some
weight function system V. For any 1 € S[[%], the mappings

m m
Vo: 25" = ApmanC(REL),  Vy: 20" — Aygyy C(RZ),
and
Vi Aren CRE) = 2,7, Vi Ayenn CRYE) — 2,7,
are continuous. In particular, anzﬁ 1 4s 1somorphic to a complemented
subspace of Aygew C(R*) (of Ay gy, C(R?)).

Proof. We have that ¢ € S%;i for any (resp. for some) A3, us € R,
by Theorem 3.3.11.
We first consider V. It suffices to show

YA\ e Ry 3N e Ry Vo e Ry g e Ry
(V,ul € R+ E|ILLQ € R+ V)\Q € R+ El)\l € R+)
Vi Zuf‘){;z = Cexpw, », @ui (Rgi) is well-defined and continuous.

In the Beurling case we put A\; = Ay = A3, while in the Roumieu case
we put A\; = max(Ag, A3). For any ps € R, we choose py, us € Ry
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(for any p; € Ry and fixed pusz € Ry we choose s € R, ) such that
wh (z + y) < Crwt2(z)vHs(y) for some C; > 0 and any z,y € R%

Then for p € ZM>? and o € N* we get

€2 Vasp(, §)|wh (x)

M
_ GMg 3 <Q>J PP Olwr=() [P =z —t)
@m)el G \B) Jaa M M2,

< <01MoAl 19| gars > [l Sarra
vH3 1 wh?2
whence

sup  [Vyp(z, €)[wH (z)es & < O o] fap
(:E,E)ERQd wh2

for some C' > 0. The continuity of V;; follows.

We now show the continuity of V7. It suffices to show

(V,ul € R+ 3[1,2 € R.,. V)\Q € R+ E|>\1 € R+)

Vo i Copur,@ui (RZ%) — ZM™M s well-defined and continuous.

Again, for any ps € R, we choose iy, u3 € Ry (for any pu; € Ry
and fixed p3 € Ry we choose ps € R, ) such that w''(z + y) <
Crwt2(z)v"3 (y) for some C; > 0 and any x,y € R% Using condi-
tion [L] and [91.2]" and Lemma 3.2.5, we find that for any Aj, A3 €
R, there exists Ay, Ay € R, (for any Ay € R, and fixed A3 € R,
there exists A, Ay € R, ) such that (47)l* max(M)s, M) < CoMM
for some Cy > 0 and s 0)/e“s2C) ¢ LY(RY). Take any ® €
C’wu2®exp[wMA2](Rifl§), then for any o € N¢,

w/’bl (t)
M

o 2mié-t o
o JJRM O(x, &)e ™ Y (t — x)dxd
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< 01022]\/[5‘1 Z «
el 3

B<a
B (I) p2 (a=B)(+ _ B (4 _
[ AL L T AT
R2d M Ma 8
0102M>\1

\

0 ||€ M>‘4 /6 MAQ()”Ll ”¢||S%;‘i ||q)||CwM2®eXp[wM>\2].

MM

We may conclude the continuity of V.
The final statement will follow if we show (3.1) holds over Z;;ﬁ 1,

We choose some ¢ € g’[[%] with synthesis window v € g’[[%], where

we used Lemma 3.3.4. Next, take any ¢ € Zgﬁ], then Vyo(x, &) =

Fi(¢Tp1p)(€). One may easily deduce from (5.2) that ¢T,¢ € L'(R?)
for any z € R?, whence pT,¢p = F1(Vyp(x,-)). By our previous
calculations, it then follows from Fubini’s Theorem that

1 r

o(t) = Con JRd(sO(t)TM(t))Tﬂ(t)dw
1

r

T ()2 Jpa (J]Rd wa(%f)em'tdf) Toy(t)da
|

- i | | Vet et tdede

We have thus shown that ZEZn Iis isomorphic to a complemented
subspace of Ayq.er C(R*) (of Ay gyq, C(R*)). O

Proof of Theorem 5.4.3 Part A. (i) = (ii) By Assumption 5.4.2 and
Proposition 5.3.4 it follows that Ay, ,en (resp. Aygn,,) satisfies Q.
Then Zgzﬁ Iis ultrabornological by Theorem 5.3.2 and Proposition
5.4.8.

(1) = (4i7) This holds for any lcHs [103, Observation 6.1.2,
p. 167]. O

5.4.2 The proof of Part (B)

We now move on to prove Part (B). We need some preparation. Let
M be a weight sequence and a > 0. By £)7(R?) = £), we denote the
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space of all aZ?-periodic functions ¢ € C*(R?) such that

() (2)]
= —_— < 0.
Il 53@ 355 M,

For a weight sequence system 991 we then consider the spaces

M) (mod : M (mpd MY rmpd . M rmod
EVRY — lm E(RY,  EMERY - lin £21) (RY)

A—0+ A—0

Let b > 0 and w be a positive function on bZ?¢. For a weight se-
quence M we write Cw(bZ?%; E)L(R?)) for the space consisting of all

(05) pesze € (EM(R))P" such that
1Co8)pevzall, e, = suP w(B) lpalley, < oo
TPe Bebzd poa

Let 9t be a weight sequence system and # be a weight function
system on bZ¢. We introduce the spaces
(#)COBZ EPHRY) = lim lim Cw*(bZ%; €M (RY))

7 Tpa ' “p,a
#—>O+ A—00

and

{(wyC bz EFD(RY) = yx_n+ lim Cuw"(bZ% EYL (RY)).
A—0T p—00

Then (#)C (bZ4; ELV(RY)) is a (PLB)-space.

Lemma 5.4.9. Let 9t be an isotropically decomposable weight se-
quence system satisfying [L] and [IM.2]" and W be a weight function
system on bZ?. Then,
(W }C(VZ% ETV(RY) = Ayguon C(Z* x bZ7),
(#)C (b2 EP(RY)) = Aygps, C(VZ x bZY),

’ p?a

as locally convex spaces.
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Proof. Take A\, € R, and any (¢g)sepze € Cw* (bZd,gé‘/{; (R%)). For
any m € Z%, B € bZ¢ and v € N? we have

w“(ﬂ) '(—ZQ?TW)V _dJ 27rmz
a wp(z)e” dx
M)‘ a [0,a]¢ A

2l
"(8)]5 ()]
< —d B < .
’ J[o,a]d M) IGesdacrzelu ey

From here we may conclude that the injective mapping

S AW YC(OZY ETD(RY)) — Ay o C(Z x VZY)

)’ ¥p,a
(resp. S: (#)C(VZ% ERHRY)) — Aygye, C(VZT x Z%))

27'rm T

(p8) pevze — (a_df[ y pp(z)e” dT) meza pevz
0,a
is continuous.
Next, for any A\, u € R, take an arbitrary (cm g)mezd gepze €
Cupgeenn (22 ® bZ®). Suppose n € R, is such that

ewmn (2mm/a)

< 0.
eWMH (m)

meZa

We now have for any a € N? and 3 € bZ%:

A
L 10 3 g € 3 [emalul (@
meZd meZd
< C H(CmWB)HCWA@eWM“

for some C' > 0 depending on p and n. By Lemma 3.2.4 and Lemma
3.2.5, we have that the injective mapping

R AyyorC(Z x bZY) — {#}C (b2 ETD(RY))

» ~p.a

(R : Aponyy C(VL! x ) — (#)C(WL% £ (R)))

1 ~p,a

27'rm T
(Cm,8)meza, pebna — Z Cm,p€" @

meZd

is continuous. Since clearly R o S = id, our proof is complete. O
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The next proposition, based on an idea of Vogt [144, Theorem
5.1], allows us to embed (# YC(bZ<; et (R%)) into Zﬁﬁ].

Proposition 5.4.10. Let M be a weight sequence system and % be
a weight function system such that Assumption 5.4.2 holds {07’ some
weight function system V. Let a,b > 0 and let 1,7 € S[[% . Then,
the mappings

U =0, (WHCOZSEEIRY) — 207 (05)gene — Y. (Th)os,

BebZd

and

VA

® =0, : 2" - pHOOLh EPNRY) : p — ( 3 Ta((ﬂw)w)) ,
Bebzd

are well-defined and continuous.

Proof. We first consider W. We have 9 € S%;f’w for any (resp. for
some) Az, ug € Ry It suffices to show

v>\1 € R+ 3)\2 € R+ V[Lg € R.,. E|,u1 € R+
(Vi1 € Ry us € Ry VAo € Ry 3N € R,)

U : Cw2(bZ4; 8;‘52 (RY)) — Zﬁil is well-defined and continuous.

Using [L], for any \; € R, there exists a Ay, A3 € R, (for any Ay, A3 €
R, there exists a A\; € R,) such that 2% max(M22, M3) < Oy MM
for some C7 > 0. For any us € Ry we have a uq, puy € Ry (for any
pi1, iy € R, we have pip € R, such that w (z +vy) < Cow*2 (x)v"s (y)
for some Cy > 0 and any z,y € R?. Also, by Lemma 3.2.3, there is
a uz € Ry (for a fixed puz € R, there exists a py € R,) such that
. Beszd vhs(t — B) /v (t — B) < Cs for some Cs > 0 and all ¢ € RY.

Now, for an arbitrary (¢s)sez € Cw2(bZ% EM (RY)) we have that
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for any o € N? and t € R,

o S bt — B)gs(t)] Lol

BebZd MO‘/\I

< OO MGt Y 27
Bebz
Z( )W (=Bt =B) s Ol (8)
2\ M M2,

< (CaCatt Wl gy ) Ns)sezs v s

Whence the continuity of U follows.
Next, we consider . Again we have vy € 8%3 o for any Az, puz € Ry
(for some A3, 13 € Ry). It suffices to show

(Vg € Ry Jup e Ry Vs e Ry IN € Ry)

b 21%22 — Cwh (b2 5% '(R%)) is well-defined and continuous.

Using similar considerations on the parameters as above, we have for
arbitrary o € ZM>? that for any o e N, 8 € bZ? and t € R?,

H1
0 S At — B — d)plt — 8)| )
deaZd Ma
<G Mgt ) 27
6eaZd
Z [Vt — B = 8)|v"s(t — B — 6) [ ) (t — 6)|w"2(t — 5)
o'<a o Mo)z\’g Mo)z\ia’

< (CCCat Il gyss ) Dol
w13 o0 wh2

where we used the fact that # is symmetric. As Y 5.4 T5((Ts7)p) is
clearly aZperiodic, we see that ® is well-defined and continuous. [
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Corollary 5.4.11. Let 9t be a weight sequence system and # be a
weight function system such that Assumption (5.4.2) holds for some

weight function system ¥ . If there exists ¥,y € S[[%] and a,b > 0
such that

Z Tak+bijak+blry = 051, (j? l) € sz? (53)

keZd

then (W YC(bZ4; E,E?Z‘] (R%)) is isomorphic to a complemented subspace
(2]
of Z,,

Proof. Condition (5.3) implies ® o U = d(W)C(bZdS (ray)» SO this is

a direct consequence of Proposition 5.4.10. O

In the following lemma, we establish the connection between (5.3)
and Gabor frames.

Lemma 5.4.12. Let a,b > 0. For v,y € S(RY) the following state-
ments are equivalent:

(i) ¢ and vy satisfy (5.3).
it) Ve (b, 5) = 8. 000 for all (k,j) e Z*2.
ad V7 a 5,00k,
(1i1) G (w, a, %) is a Gabor frame and b%ﬁ is a dual window of 1.

Proof. By the Poisson summation formula, we have that for any
(1,5) € 2%

ik (e
2 Tarewy (@) Topenrth () = — Ly vﬂp( (G- 1), ) 2ri (ob)
kezd ke7d

This shows (i) < (i7). The equivalence (i1) < (iii) is a consequence
of the the Wexler-Raz biorthogonality relations, see Lemma 3.4.4. [

We now arrive at the proof of part B.

Proof of Theorem 5.4.3 Part B. 1f S[[%] is Gabor accessible, then (5.3)
holds for certain v,v € S[[%] by Lemma 5.4.12. Consequently, the
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space <7/>C’(bZd;EE§] (R?)) is isomorphic to a complemented sub-
space of Zgﬁ ] by Corollary 5.4.11. As a complemented subspace of a
barrelled space is again barrelled, it follows from Lemma 5.4.9 that
Apenon C (WL x Z) (resp. ApgueyC(Z% x bZ)) is barrelled. Com-
bining Theorem 5.3.3 with Lemma 5.3.5, we see that #|z« satisfies

{DN} (resp. (£2)). The proof is now completed by Lemma 5.2.4. [



Chapter 6

The spaces Bgim] and B{ﬁim]

6.1 Introduction

The space B’ of bounded distributions and its subspace B’ of distri-
butions vanishing at infinity, introduced by Schwartz [125], play an
important role in the convolution theory for distributions [97, 99, 100]
and the asymptotic analysis of generalized functions [114]. Their
analogues in the setting of ultradistributions were first considered in
[25, 108] and further studied in [7, 24, 46, 48]. In [46], the second
structure theorem for these spaces (and their weighted variants) was
shown for weight sequences by means of the parametrix method. This
technique imposes heavy restrictions on the defining weight sequence,
namely, the assumptions (M.1), (M.2), and (M.3). The main goal of
this chapter is to show the first structure theorem for the bounded
ultradistributions BI™ and the space of ultradistributions vanishing
at infinity B (both with respect to a weight function w). Our main
results are Theorem 6.4.1 and Theorem 6.4.12, both crucial for Part
IL.

In the case of Bﬂfm], it is important to point out that none of
the methods available in the literature applies to deliver a proof for
Theorem 6.4.1. We develop here a new approach to the problem
whose core consists in combining a criterion for the surjectivity of a
continuous linear mapping in terms of its transpose (Lemma 6.4.3)
with the computation of the dual of B;[m] The latter computation

107
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is achieved by exploiting the mapping properties of the short-time
Fourier transform. In fact, we shall show that the strong dual of
BI™ g given by DL1 )

The chapter is organlzed as follows. We start in Section 6.2 by
studying the map}j)lng properties of the STEF'T on the tempered ultra-
distributions S Our main result will be Proposition 6.2.7, where
in particular We have that the so-called desingularisation formula
(6.2) holds in S ] . After this, in Section 6.3, we formally intro-
duce the spaces we will be working with and consider their inherent
topological properties. In particular, we characterize these spaces
by evaluating the decay of the STFT. The main results here will be
Theorem 6.3.10 and Theorem 6.3.11 where we determine the spaces
BI™ and BI™ by the limit behavior of their translates. Finally, in
Section 6.4 we deliver the aforementioned structural theorems as well
as discuss the projective description of Dg?}.

6.2 The short-time Fourier transform of
tempered ultradistributions

In this preliminary section we discuss the mapping properties of the
STFT on the duals of the Gelfand-Shilov spaces SE%) . In particular,
our aim is to obtain the so-called desingularisation formula (6.2).
In order to do this, we must first consider the differentiability of the
STFT on S((%) To this purpose, we introduce the following condition
on

(sN) VAe Ry Vhe Ndpe Ry : (o, (1 + [¢])fw(t) /wh(t)dt < 0.
We will work under the following strengthening of Assumption 3.4.2
on a weight sequence system 91 and a weight function system %#'.
Assumption 6.2.1. M is isotropically decomposable satisfying (L)
and (M.2)', W is symmetric and satisfies (M) and (sN) and S((,D;)) #
{0}.

For a weight function system %', we define S as the Fréchet
space of all p € C*(R?) such that

sup sup | (z)|w(z) < o, VEe N, eR,.

|| <k zeRd
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We may then described he continuity of the STFT on S((%) as follows.

Proposition 6.2.2. Let 9 be a weight sequence system and # be
a weight function system such that Assumption 6.2.1 holds. For any
(RS S((;)%) the mappings

m
Vi : S5 = Soremm)

and o
m
Vi Sremam) — S(W)

are well-defined and continuous.

Proof. In view of Proposition 3.4.1 it suffices to show Vj, : S((%) —

Sweny) is well-defined an continuous. We have that v € 31%23:00 for
every s, g € R, . It suffices to show

V/\l,ul €R+ Vk e N El)\g,/ig €R+ :

SMAQ _ Sk

0h12 o Wi @expaw, ) (R? x Rg) is well-defined and continuous.

Fix A1, 1 € R, and k € N. Let b, uz € R, be such that w (x+y) <
Crwtz (z)w"3(y) for some C; > 0 and any z,y € R% Using (sN), let
2 € Ry be such that (1 + [t])Pw2(t) /w2 (t) € L' (R?) for all § € N¢
such that || < k. Using (L) and (991.2)’ there is some Ay € R, such
that M.2, < CoM for some Cy > 0 and any a, v € N with |v| < k.

We set A3 = \y. Take any ¢ € Sﬁ;ﬁw then for all v € N¢ we have

! £ Baa
|arlr,llg\}ék w (z) MW>\1 a& Oz V%O("Ea €)
< Oy M (2m)k—D
’ s (aty=r) (g — ps (g —
max <7)J (7)™ wH2 (t) |4 (@~ Dz —1)
R4

/\1 >\1
lal1BI<k 2= \K M M3,

<C ||90||5M>‘2 )
w'u’2,00

for some C' > 0. We may conclude the continuity of Vj, : 8((%) —

Stwewa) (RE x RE). O
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For any ¢ € S((%) and f € SE%] we define the STFT of f as

Vo f(2,8) = (f, M{Tp) = e (f « M) (x),  (2,€) e R*.
Then, V, f is obviously a smooth function on R??.

Lemma 6.2.3. Let 9 be a weight sequence system satisfying [L] and
W be a weight function system satisfying [M]. Let ¢ € S((?/;)),oo and
f e SE[WEDEOO' Then for some A € Ry (for any A € R, ) there is a
C =C) > 0 such that

Vi f(2,€)] < Cu(a)e .

In particular, if M satisfies [M.2] and W satisfies [N], then, Vi f
defines an element of S(’W®Wm)(R§flg) via

Vot 0) = [ | Vel 0@t @< St (B2

Proof. For some p > 0 (for any p > 0) there exists a C' = C, > 0
such that
Vi (@) < CIMT g

There exists a A > 0 (for every A > 0 there exists a u > 0) such
that w*(z + y) < Crw*(x)w(y) and (4m) M) < CoM* for some
01,02 > 0. Then

||M5Tx1/f||gggfoo

271E)B (a=B) (4 _ Al
< o) mp 3, (4 28 e 20— )
aeNdﬁga ﬁ MOC

< OO [l g W) ©.
w/\,oo

The second assertion now follows from Lemma 3.2.5. ]

Corollary 6.2.4. Let 9 be a weight sequence system and # be a
weight function system such that Assumption 6.2.1 holds. Let ¢ €
S((Z;)) and f € SE%), then

<V¢f7 (I)> = <f7 VJ6> ) ¢ e S(W@Wgﬁ)
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Proof. For any ® € Sy gy, and h > 0 consider

on(t) = > ®(hk, hl)e > " p(t — hk)h>.

k,leze

By Proposition 3.4.5 we see that the sum in each ¢, converges abso-
lutely in S((%) . Moreover, by applying the mean value theorem, one
sees that

on — JJRM O(z,&)e ™) (t — x)drdE  in S((%)

Consequently, we see that

- ffﬂw ®(z, &) (f, MTo)) dud§

which completes the proof. ]
Under Assumption 6.2.1, for ¢ € S((Z);)) , we define the adjoint
STFT of F € SéW@W ) as
m

(ViF.0) =(FVi%), ¢eSy).

Then, Vi F' € SE%) by Proposition 6.2.2. We are now able to estab-
lish the mappings properties of the STFT on SE%) and obtain the

desingularisation formula.

Proposition 6.2.5. Let 9 be a weight sequence system and W a
weight function system such that Assumption 6.2.1 holds. For any
(RS S((%) the mappings

. /M)

and
Ve /(90)
J ) SEW®WM) S(”//)
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are continuous. Moreover, if 1 € S((f;))\{O} and vy € S((%) 1S a syn-
thesis window for 1, then

1 .
(v: 912 Vo o Ve = 1d8<,%) (6.1)

and the desingularisation formula

1
) = s | | Vel Vsple—9)ude (62

/(9m) ()
holds for any f € S(,//) and p € S(W).

Proof. Proposition 6.2.2 directly yields the continuity of V', and the
continuity of Vj, also follows from here in view of Corollary 6.2.4.

Next, let ) € S((%)\{O} and v € S((?;)) be a synthesis window for 1,
then by Corollary 6.2.4 and the reconstruction formula (3.1), we infer
that for any ¢ € S((%)

(VHVil)) = (Vaf Vi7) = (LVEG2) ) = (1, 6)e2 (£ 9)
which shows (6.1) and (6.2). O

The final goal of this section is to show (6.2) also holds for any
fe SE,{%} and p € S{{i? . This would follow easily from Lemma 6.2.3
if we can show that S((%) is dense in S{{gi .

Lemma 6.2.6. Let M be a weight sequence system satisfying (L),
{L}, (M.2)" and {IM.2} and # a symmetric weight function system

satisfying (M), {M}, (N) and {N}. If S((?;)) # {0}, then the following

dense inclusions hold

S(fm) S{fm} N S/{fm} N S’(fm)

) Ty T Oy ) -
Proof. We start by showing the first density. Of course we have the
continuous inclusion S((;)/T)) c S{{Zzg . Take any ¢ € S((ZJ;)) \ {0} such

that ||¢]|;. = 1. For any ¢ € 8{{%} we have Vo € Crpeng(RL)
by Proposition 3.4.1. By our assumptions, C(W®Wm)(R§fIE) is dense
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in Cyepm) (R2%), so take any sequence (¢n)n © Clrgm) (R3%) such
that v, — Vyo in Corgmey(R2%). Then Vion = VEoVyp = ¢
in S{{;D;f by Proposition 3.4.1. Now, once again by Proposition 3.4.1,
Vi‘g@n € S((;);)) , so that the first density follows.

We now show S[[%] is dense in SE[%], which would complete the
proof. The embedding ¢ : S[[% — SE%J; @ — (¢ — §z4 0p) is contin-
uous, and as S[[% is reflexive we have that ' = .. Suppose that for
some ¢ € S[[%] we have {,, ¢p = 0 for any ¢ € S[[;Zt]]. Take 1) € S((z%)
as before, then V,p = 0, so that it follows from Proposition 3.4.1
that ¢ = 0. Hence the mapping /! is injective, whence it follows that
S[[% is dense in SE[%]. O
Proposition 6.2.7. Let 9 be a weight sequence system satisfying
(L), {L}, (M.2)" and {IM.2} and W a symmetric weight function
system satisfying (M), {M}, (sN) and {N}. If 1 € S((%)\{O} and
v € S((z)) 15 a synthesis window for 1, then the desingularisation
formula (6.2) holds for any f € SE%] and p € S[[ZJ;]]

Proof. We need only verify the Roumieu case. Take any f € SE%}.

We define f by

(Foey =z | | vt @ ovote, ~anae

then by combining Proposition 3.4.1 with Lemma 6.2.3 we see that
fe S{%]. By (6.2) it follows that f and f coincide on S((?;)), so that
the proof is completed by Lemma 6.2.6. O]

[207]

6.3 The space D,

and its dual

In this chapter, by a weight function we mean a measurable function
w : R? — (0, 0) such that w and w™! are locally bounded. Given an

isotropically decomposable weight sequence A, a weight function w
is said to be (A)-admissible ({A}-admissible) if

3¢ >0 (Vg>0)3C>0Vz,teR? : wz+1t) < Cuw(z)ea,
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Next, we introduce various function and ultradistribution spaces as-
sociated to a weight function w (cf. [48]). We define LL(R?) as the
Banach space consisting of all measurable functions ¢ on R¢ such
that

||<F7||L}u = fRd lo(x)|w(z)dr < co.

Its dual is given by the space L®(R?) of all those measurable functions
¢ on R such that

o ()]
0 = < 00.
||¢||Lw eszseﬂs{tllp W(J))

We write Dr1 (R?) for the space consisting of all ¢ € C*(R?) such
that @ e LI (R9) for all « € N%. Let M be a weight sequence. We
denote by D}! the Banach space consisting of all ¢ € Dp1 (R?) such
that )

ey

= — < 0
Iellpy += sup =57

For a weight sequence system 91, we define

M) ._ 1 M RUS SN B M
Dy, = lim Dy, Dy, = lim Dy
A—0t A—00

We introduce the following set of assumptions on a weight sequence
system 9t and a weight function w.

Assumption 6.3.1. M s an isotropically decomposable weight se-
quence system satisfying (L), {L}, (MN.2)" and {9M.2} and there exists
an isotropically decomposable weight sequence A satisfying (M.1) and

(M.2)" such that w is [A]-admissible and S((ij;) (RY) is non-trivial.

Remarks 6.3.2. If a weight function w is (p!)-admissible, then As-
sumption 6.3.1 is fulfilled for M and w, whenever M is an isotropic
weight sequence that satisfies (M.1), (M.2)', and (logp)? < M, as
follows from [41, Proposition 2.7 and Theorem 5.9]. We point out that
[44, Remark 5.3] w is (p!)-admissible if and only if L} is translation-
invariant if and only if

w( - +x)
ess sup ————= € L.

S S ) (6.3)
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In the rest of this section, we fix a weight sequence system 901
and a weight function w such that Assumption 6.3.1 holds for some
weight sequence A. Note that in particular the assumptions posed
by Proposition 6.2.7 hold for 9t and #4.

We first discuss the topological properties of the space D][.??]. In
th{emfioumieu case we will employ the following projective version of
D,y

DY = lim DM
MEeV (9n)

In view of Lemma 4.2.12(7), the spaces D{ }and ﬁ{m} coincide as

sets. It is clear that the topology of D{ Vis ﬁner than that of D{fm}.
Later, in Section 6.4, we will discuss When D{m} D{Lgln} as locally

convex spaces.
Lemma 6.3.3. Dgf) 15 a quasinormable and thus distinguished Fréchet
space, and D{Lg?} is a complete and thus regular (LB)-space.
Proof. To verify that D(L? is quasinormable, it suffices to show that
[92, Lemma 26.14, p. 315]

YA>03u>0VYnp>0Vee (0,1] IR >0

m .
Vo e D(L}d) with ||§0||D£€u <1
Y e D(Lgft) with [[¢[|pam < R such that |[¢ — 1/)||DMlA <e.
w Lw

Let A > 0 be arbitrary and p > 0 be such that Mg, . < CoM2
for any a € N and j € {1,...,d}. Take any ¢ € D(L&) such that
||g0HDW 1. Choose some x € S(m (R?) with {3, x(z)dz = 1 and

put Xe = e 4x(-/e) for € € (0,1]. Take any n > 0. For any ¢ € (0,1]
let £ > 0 be such that M* < Cjel*! M7 for any a € N¢. Then

1
o Xellogr = 510 7 [l X))
a JRd

L aeNd

1 w X
< Clieluy 5w iy | WO @)l o

< CCMy ||X||5M~

expwp(q),1
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On the other hand, applying the mean-value theorem, we obtain that
I — = x5||DMA

= sup MAH@ — o s x| s

aeNd

d o1
esup—f J Ix(®)|]¢ J o @te) (z — yet)|dydt | da
S ( ()]l |J§ ) | ( )|
< <CC’0dJ X(t)|t|ewA(qt)dt> g
Rd

from which the result for D(m) easily follows.

It suffices to show that D{ Vs sequentially retractive in order to
conclude that it is complete by (2.1). Let (¢n)nen be a null sequence
in D{m} As D{m} may be contlnuously included into fot}, (pn)n is

also a null sequence in D Consequently, for any M e V(9) and

e > 0 there exists a ny. € N such that sup,ya |\ |r1 /My < e, for
all n = ny.. By Lemma 4.2.12(i) we may already conclude there
exists a A > 0 and C' > 0 such that sup,ene [[nl[ 1 /M2 < C for all
n € N. Choose p € Ry so that 21%M} < CyMF* for any o € N¢ and
take pg € N for which 277 < ¢/(CCy) for any p = py. One may easily
construct a M € V(9M) such that M, = MF* for any |a| < py. For
any n = nyr. we have for |a| < po,
(a) a

Iy _ 1ol _
ME M, ’

lon

while for |a| = po,

e, _ Collet s
My T 2led A

~

We see that (¢,), is a null sequence in DM". Whence D{Lgft} is se-
quentially retractive. O

We will need the ensuing basic density property.
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Proposition 6.3.4. We have the following dense continuous inclu-
S10MS,

- o (2]
Sty (RY) = Dy’ — Spy

Proof. We adapt the idea from [46 Proof of Proposition 5.2]. It is
clear that 8[[ Al (R?) < D c S (Rd) with continuous inclusions.
By Lemma 6.2.6 S[ Al IR ) is dense in SEE?] (RY), whence it suffices
to show that S[m]( R?) is dense in D[m]. Choose x € S((Z;) (R?) and
1 € D(RY) such that Spa X(2)de =1 and ¥(0) = 1. Next, set x, =
ndx(n ) and ¥, = ¥(-/n) for n > 1. For arbitrary A > 0 and
Qe DL1 , in view of the inequality e¥4(@+) < gwa(2Vda)twa(2Vdy) it ig
clear that ¢, ; = xn * (V) € S[[Zﬁ] (R?). Take any ¢ € D[Lgf], we shall
show that for every A > 0 (for some A > 0) and any € > 0 there are
n,j € N such that ||¢ — ¢, ]HDW e, which will complete the proof.

(RY).

Obviously,
| — SDn,jHDJLVIlA < lo = X * 90“@241* + {[xn * (0 — @ZJJ’SD)“D%A . (6.4)

Analogously to the first part of the proof of Lemma 6.3.3 one shows
that for every A > 0 (for some A > 0),

DO | ™

HSO - Xn * (PHDMA <
Ly

for sufficiently large n. For such a fixed n, we now proceed to estimate
the second term in the right-hand side of (6.4). There is some pu €
R, such that (we may potentially enlarge A such that for p = 1)
nll M# < CyM for any a € N?. We have that

IXn * (0 — WO)HDJL@

n' () ()[4 (@)
< Clle = bylly s fx | X @le®a
aeNd

N

€
< C|’50_¢J50“L}u HX”Sé‘)ngJA(q.)J 5’

for large enough j. O]
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The strong dual of DI[.JD?] is denoted by B™. By the previous
proposition, we may view BI™ as a subspace of S/[gﬁ] (R%). We define

B;[Em] as the closure in BZJ[ of the space of compactly supported
continuous functions on R?. Notice that B ComC1des with the

closure in BI™ of S((Z;) (RY).

6.3.1 Characterization via the STFT

The goal of this subsection is to characterize D[Ll], BI™ and BI™
in terms of the STFT. We first consider DL1]- The following two

lemmas are needed in our analysis.

Lemma 6.3.5. Let 1) € S(M (R%). Then, for any A > 0 (for some
A > 0) there is a C' = CY > 0 such that

Vo€l < C ollpup 39, g eRE
for all p € D%x.

Proof. Let p € D%A be arbitrary. For any o € N we have that

j 16 Vil O)le(a)d

e % (5) [t ([ e - o) e

p<a

< C(2m) M

3 (5) [ tenete ([ oo e - opessee-ae)

<" ||(10||D2§‘ Mo>c\7

whence
M)\
@ || My

|, Wepla Ouoide < M el int

=C' H%OHD%* e MA@)-
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6.3. The space D},

Lemma 6.3.6. Let v € S((ZJ;)(]Rd). For every A > 0 there is a > 0
(for every pu > 0 there is a X\ > 0) such that if F' is a measurable
function on R?*¢ for which

sup e“m (¢) f |F(z,&)|w(x)dx < oo,
&eRd Rd

then, the function
t— JJ F(x, &) ML) (t)dxdE
R2d

belongs to D%A .

Proof. For any A > 0 there is a 7 > 0 (for every n > 0 there is a
A > 0) such that (47)l*IM7 < CoM2. Then for any a € N¢ we have
that

a _
L0l < 3 () en il - o)
B s
< oM gy M@t -0,
expwa(a’),0
where ¢ > 0 is such that e¥4@) /ewa@ ) ¢ L1(R?). Now there exists a
> 0 (for every 1 > 0 there exists a7 > 0) such that e“»7() /ewnn()
L*(RY). Whence,

Hffuw F(z, &) M Tyipddg

MA
DL1
w

< CoMy' [[¢]] garm

expw 4 (q'-)

J]Rd w(?) <J J]de |F(2, )] explwarm (§) —walq'(t - w))]dmdf) dt
< CCoMy [[¢]| gam

expw(q’)

J ewmn () (f |F(z, &)|w(x) (f eUJA(Q(t—l‘))—wA(q’(t—iv))dt> dm) dé
R4 Rd R4
d

< C//J ean(é)*wMu(ﬁ)df < 0.
R
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We are now able to characterize Dgfﬂ via the STFT.

Proposition 6 3.7. Let ¥ € S5 (RY)\ {0} and let f e S3(R).
Then, f € D zf and only if

YA >0 (3N >0) @ sup e @ |V f (-, 8| < . (6.5)
£eRd “

If Bc D[ngﬂ is a bounded set, then (6.5) holds uniformly over B.

Proof. The direct implication and the fact that (6.5) holds uniformly
over bounded sets follows immediately from Lemma 6.3.5 (and, in the
Roumieu case, Lemma 6.3.3). Conversely, suppose that (6.5) holds

and choose v € S((ZJ;) (R%) such that (v,%¢)r2 = 1. By (6.2), we have
that, for all e S} (RY),

(f.g) = f f Vo (2, €) Vi, —€)drde

JJRM Vo f(z,€) <J () M Ty (t )dt) dxd¢
- fRd (J fde Vof (ZE»S)MgTﬂ(t)dxdg) o(t)dt

where the switching of the integrals in the last step is permitted
because of (6.5). Hence,

f = f wa(l’,g)Mng’}/dl’dg
R2d

and we may conclude that f € D by applying Lemma 6.3.6 to
F=V,f. O]

Next, we treat BI™ and BM. We again need some prepara-
tion. We consider the space C,(R?) of all ¢ € C(R?) such that
lp/wll » < oo and its closed subspace Cp,(R?) of all elements f
such that lim|,| . f(z)/w(z) = 0. We endow Cp,(R?) with the norm
|l c- The dual of Cy(R?) is denoted by M,,. For every ue Mg,
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there is a unique regular complex Borel measure v € M! = (Cy(R?))’
such that

o) = |, 20 1), pe Cou®Y.

d w(:p)
Moreover, |pl o = Vv = [v[(RY). By [122, Theorem 6.13], the
natural inclusion L} = ML holds topologically, that is,

el = sup , el (6.6)

fEBCO,w

[REICE

where B, denotes the unit ball in Cy,,(R?). We define

C(gﬁ)(Rd) = Lgl CewMA('>(Rd)7 C{gﬁ}(Rd> = h_n)l CEWMA(.>(]Rd).

A—00 A—0+

The following canonical isomorphisms of lcHs hold

Co(RD®-Clamy(RE) = lim C IS (R2%)
A—0Tt
and

A—0F

Similarly, in view of Lemma 3.2.5, [9, Theorem 3.1(d)] and [9, Theo-
rem 3.7] yield the following canonical isomorphisms of lcHs

Co(RD®-Coamy (RY) = lim C

A—00

Qe M) (R?Edf)

and
C(),w (RZ)®£C{EDT} (Rg) = h_I)n CO,w@ewM)\( 9 (Ricfg)

A—00
We are ready to establish the mapping properties of the STFT on
B and B, Recall that (- mean the opposite of [-].

m

Proposition 6.3.8. Let ¢ € 5((,4)) (RY). The following mappings

Vy o B — CL(R)E-Coomy (RY),
Vy : B = Co (RO Clamy (RY),
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and

Vi Co(RD®-Coany (RY) — B
Vit Cowl(RO®. Comy (RY) — Bi?”],

are well-defined and continuous. In particular, if 1 € 8 (Rd) \ {0}
and vy € S(A) (R%) is a synthesis window for 1), then the deszngulam—
sation formula (6.2) holds for any f € BI™ and Y E D[LD?].

Proof. We first consider V. It suffices to show that the mapping
v, : B - Coo(RO®.Cany(RE) is continuous. In fact, as the space
CO,W(R;I)@aC’Cm(Rg) is a closed topological subspace of the tensor
product C,,(R)®.Cran, (R¢), the result would then follow from Propo-
sition 6.2.2 and S (RS (RY) < Cow(REX-Coany (RE).  Since
B is bornological (see Lemma 6.3.3 in the Beurling case), it suf-
fices to show that Vy(B) is bounded in C,(R%)®.Cany(RE) for all
bounded sets B < BA™. For some A > 0 (for all A > 0) it holds that
SUD je SUPyen | (f, ) | < o0 for all A < DE)?] bounded with respect
to the norm ||| jux. As
Ly,

{e_whl’\(47r£)w_1(l'>M£Tx¢ : (x; 5) € de} - DE)?]

is bounded with respect to [|-|[ ;a2 , it follows that
Ll

sup sup e Ty () |V, f(x, )| < o0,
feB (z,£)eR2d

The continuity of Vj, thus follows from Lemma 3.2.4(7).

Next, we treat Vi. Lemma 6.3.5 implies that the mapping V' :
Cw(Rg)®gC<m>(Rg) — B is continuous. As Sy (RH®Sam) (R{) is
dense in Co,(RD®.Comy (RE), V¥ : Coo(RO.Coany(RE) — BE™ is
continuous by Proposition 6.2.2.

For the desingularisation formula, for any f € BI™ we define the
mapping f as

fle) = Vo f (e, §)Vap(z, —€)dxd¢,  peDpy,

R2d
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which is well-defined and continuous by Proposition 6.3.7. By Propo-
sition 6.2.5 f and f coincide on S[[Zﬁ] (R%) so that by Proposition 6.3.4

f and f define the same element in B™. O

Corollary 6.3.9. B™ s q complete (LB)-space, and B™ s a
quasinormable Fréchet space.

Proof. Proposition 6.3.8 and the reconstruction formula (6.1) imply

that BI™ is isomorphic to a complemented subspace of the space
Cow(RHY®.Crany (RY).  Hence, as Cp,(RY)®.Cpony(RY) is an (LB)-
space that is complete and Cp,(RY)®.Can) (R?) is a quasinormable
Fréchet space by [5, Proposition 2|, the proof is complete. ]

Pljo[position 6.3.8 allows for the following characterizations of B™
and Bﬁfm] via the STFT.

Theorem 6.3.10. Let ¢ € S5 (RY)\ {0} and let f € S/} (R?). The
following statements are equivalent:

(i) feBM™.
(i1) {T_nf/w(h) | h e R} is bounded in SEEHI] (RY).
(i7i) For some A > 0 (for all A > 0) it holds that

sup efwm@w < 0. (6.7)
(z,€)eRd w(x)
Proof. (i) = (ii) Since S[[Zﬁ] is barrelled, it suffices to show that
{T_nf/w(h) | h € R} is weakly bounded. This follows however
immediately by observing that {¢(z —h)/w(h) | h € R} is a bounded
set in D[Lgf] for any ¢ € S[[ZJ}] (RY).
(#7) = (ii7) As the mapping

s SENRY) = Cup(RY), o frp

is continuous and our assumption yields that = f(S[[ZJ}] (RY)) < C,(RY),

we may infer from the closed graph theorem that «; : S[[Zﬁ] (RY) —
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C,(R?) is continuous. Hence for some M = M Aand v = e¥at/A) (for

some M € V(9M) and v € V(#4) in view of Theorem 4.2.14) we have

that *; can be uniquely extended to a continuous linear mapping
M

—S, ~
e SO RY) T — Cu(RY). As {e O M)« ¢ e RY is bounded
M

in SEO(R) btain th
in S’ (RY) , we obtain that

{e7 WO, f(x,€)] : € e R} = {sp(e” M M) : € e R}
is bounded in C,,(R?). This implies that

sup e—wM(47r§) ‘wa($7 €)|

< 0.
(z,£)eR? w(z)

The result now follows from Lemma 3.2.4(7).
(iii) = (i) As (6.7) implies that Vyf € Cu,(RO®:Coony(RE) it
follows from Proposition 6.3.8 and (6.1) that f e B, O

Theorem 6.3.11. Let ¢ € 873 (R)\ {0} and let f € ST (RY). The
following statements are equivalent:

(i) feB™,
(i1) iy e Top f fw(h) = 0 in S/3T(RY).

(1ii) For some A > 0 (for all A > 0) it holds that

lim e—wMA(ﬁ)M =0. (6.8)
|(@.8)| -0 w(z)

Proof. (1) = (2): Since S[[Zﬁ] (R%) is Montel, it suffices to show that
limp oo Top f/w(h) = 0 weakly in SE%?] (RY). Take any ¢ € S[[Zg] (R9)
and let ¢ > 0 be arbitrary. The set {T,¢/w(h) : h € R?} is bounded
in D[Lgf]. Hence, there is y € S[[ij}] (R9) such that [{T_,(f —x), )| <
ew(h) for all h e RY. We obtain that

: (T_nf, )] :
limsup ————— < e+ lim ——
e w(h) e w(h)

L@ p(t — h)X(t)dt‘ .
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(2) = (3): Since the mapping

e SEPRY = Cp(RY), o frp

is continuous and our assumption yields that = f(S[[Zj]t] (RY)) < Cp (R,
we may infer from the closed graph theorem that #; : S[[?ﬁ] (RY) —

Co.(R?) is continuous. Hence for some M = M* and v = e<A0/Y (for
some M € V(9M) and v € V(#4) in view of Theorem 4.2.14) we have
that #¢ can be uniquely extended to a continuous linear mapping # :

WSI{W(W) , ~

Spay (R) — Cow(RY). Fix ¢ > 4m. As {e M@ M) : € e R
S (R

is relatively compact in S[[ A]](Rd) , we obtain that

{e—wM(qlf)’wa(x’S)’ €€ Rd} = {*f(e_wM(qlé)Mgi) €€ Rd}
is relatively compact in Cp,,(R?). This implies that

i sup e-em@o Vel @8l

2] =00 geRa w(z)

whence the result follows from Lemma 3.2.4.

(3) = (1): (3) means that Vf € C’O7W(Ri)®€C’<m>(Rg). The
result therefore follows from Proposition 6.3.8 and the reconstruction
formula (6.1). O

6.4 Structural theorems

We Frovide here first structural theorems for the spaces B™ and
BI™ . These results will form the cornerstones of the theory we con-
struct in Part II, where we consider the structure for a variety of
types of asymptotic behavior of ultradistributions. The main results
here are Theorem 6.4.1 and Theorem 6.4.12.

6.4.1 The structure of Bi,[im]

The goal of this section is to obtain structural theorems for B™ 1n
particular, we shall prove the following result.
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Theorem 6.4.1. Let 9 be a weight sequence system and w be a
weight function such that Assumption 6.3.1 holds. Then f € B if
and only if there exist continuous functions { fa}eena on R4 such that

f= 1 (6.9)
aeNd
the limits
fo®) o yaent (6.10)
2| -0 w(x)
hold, and for some X\ > 0 (for any A\ > 0) we have that
M £,
sup sup Malfalo)l < . (6.11)

aeNd geRd w (:U)

We will work with the following spaces of vector-valued multi-
sequences. Let F be a Banach space. For a weight sequence M we
define Ap/(F) as the Banach space consisting of all (multi-indexed)
sequences (€q)qend € EN such that

||(606)04€Nd||AM(E) i= sup M, [lea||p < .
aeNd

We set
A(m)(E) = h_r)n A (B), A{gﬁ}(E) = Lin A (E).

A—0+ A—0

A@ny(E) is a complete (LB)-space by [9, Theorem 2.6], and Ay (E)
is a Fréchet space. Given a Banach space F, we set Afgy (F) =
Agmey (F) and Ay (F) == Ane)(F). We then have the following
canonical isomorphisms of IcHs

(Aamy (E))" = Ay (E), (Apmy (E))" = Aoy (E).
Theorem 6.4.1 may now be reformulated as follows.

Theorem 6.4.2. The mapping
S A[m](OO,W(Rd» - B:.Egm]a (fa)aeNd = Z f(ioz)
aeNd

18 surjective.
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We will prove Theorem 6.4.2 by employing an abstract surjectivity
criterion. A continuous linear mapping between Fréchet spaces is
surjective if and only if its transpose is injective and has weakly
closed range [131, Theorem 37.2, p. 382]. We will make use of the
following generalization of this result.

Lemma 6.4.3. Let E and F be lcHs and let S : E — F' be a continu-
ous linear mapping. Suppose that E is Mackey, E/ker S is complete,
and Im S is Mackey for the topology induced by F'. Then, S is sur-
jective if the following two conditions are satisfied:

(1) S*: F' — E' is injective;
(2) Tm S* is weakly closed in E'.

Proof. 1f S* is injective, then Im S is dense in F. Hence, it suffices to
show that Im S is closed in F'. As Im S is weakly closed, S is a weak
homomorphism [131, Lemma 37.4]. Since o(E/ker S, (E/ker S)’) co-
incides with the quotient of o(E, E’) modulo ker S [131, p. 385] and
o(Im S, (Im S)’) coincides with the topology induced by o(F, F”), we
obtain that S : E/ker S — ImS is a weak isomorphism. Conse-
quently, S is also an isomorphism if we equip F/ker S and Im S with
their Mackey topology [123, p. 158]. From this we may infer that
S is a homomorphism because E/ker S is Mackey as E is so [123,
p. 136] and Im S is Mackey by assumption. Finally, since F/ker S is
complete, we have that Im S =~ E/ker S is complete and, thus, closed
in F. O

We need several preliminary results.
Lemma 6.4.4. S is a well-defined continuous linear mapping.

Proof. One easily verifies that S : A (Co(R?)) — B s a contin-
uous linear mapping and that im0 T-pS((fa)aena)/w(h) = 0 in
Sg]ﬂ] (R) for all (fa)aend € Apnj(Cow(R?)). Hence, the result follows
from Theorem 6.3.11. O

Our next goal is to determine the transpose of S. To this end, we
first show that, similarly as in the distributional case [125], the dual

of B™ is given by D[Lm].

1
w
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Proposition 6.4.5. The canonical inclusion mapping
- .
PP (B o (F e (fLp)
18 a topological isomorphism.

Proof. Clearly, ¢ is continuous and injective. Since D[LD?] is webbed

and (Bﬁm)g is ultrabornological (Corollary 6.3.9), it suffices, by De
Wilde’s open mapping theorem [45], to show that ¢ is surjective.

Let & € (B™) be arbitrary. Denote by p : S[[zﬁ] (RY) — B the
canonical inclusion and set f = ®op € SEET] (RY). As ®(p(x)) =
(f,x) for every x € S[[Zﬁ] (R%) and S[%](Rd) is dense in BI™, it is
enough to show that f € DE)?] (RY). Let ¢ € S((Z);)(Rd) be a fixed
non-zero window function. Since ® is continuous, there is a bounded
set B D[Lg?] such that

Vo f (@, ) = [2(p(MeTet)))| < sup| (MT,0) | = sup [Vyp(z, )l
pE pE

Proposition 6.3.7 implies that for every A > 0 (for some A\ > 0)

sup e [V, £, €)1, < supsup e & [V -, &), < o0,
£eRd ¥ pEB ¢eRd «

so that another application of Proposition 6.3.7 shows that f € D[Lgft].

Corollary 6.4.6. The transposed mapping S* may be identified with
the continuous linear mapping

DI = Ay (ML) + 0 (=) () o

Proof of Theorem 6.4.2. We shall show that S is surjective via Lemma
6.4.3. The space Apy(Con(RY)) is clearly Mackey, while the quo-
tient Apnj(Cow(R?))/ ker S is complete as Ay (Co o (R?)) is complete.
Next, we show that Im S is Mackey. In the Romieu case this is trivial
because B is a Fréchet space. We now consider the Beurling case.
We shall prove that X = Im S is infrabarreled and thus Mackey. We
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need to show that every stron%ly bounded set B in X’ is equicontin-
wous. Since X is dense in B (as S’ is injective), Proposition 6.4.5

implies that X’ = D(Ll) For arbitrary A > 0 we consider the set

()
Vi = {{w :aeNd,feBCO’w} c X.

The set V), is bounded in X because S is continuous, so that we have
SUP e SUDgey, | (5 9) | < 0. The relation (6.6) yields that

f(a)
(o35

| e @@

sup sup | (¢, g) | = sup sup sup
peB geVy weB qeNd feBCo,w

1
= sup sup —~ sup
veB aend M feBey,,

= Sup su —”SOQ)HL&)
wegael\g Mé\

Hence,
sup ||l parr < 0, VA >0,
pEB L

which means that B is bounded in D m. Then, B is equicontinuous

because of Proposition 6.4.5 and the fact that B is barreled (Corol-
lary 6.3.9). We already noticed that S is injective. Finally, we show

that Im S* is weakly closed in Afy(My,). Let (i;); be a net in D[Lﬁiﬂ
and (ta)aent € Afgy(ML) such that ((=1)lof)aene = (ta)aen
weakly in Afgy(M;). In particular, go( *) 5 (=1)lely, weakly in ML

for all o € N¢. Consequently, we have that u( ) = (=), € M}
for all & € N (the derivatives should be interpreted in the sense of
distributions). The equality (6.6) implies that po € D1 and that

U628 e = (18N as)acw = (ltall s Jaers € Afayy(C),

which means that pg € D[Lgfq. Hence, (fiq)qend = <<—1)|a|/,l/((]a))aeNd €
Im S°. O
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6.4.2 The structure of Béj[im]

We now consider the first structural theorem for the space B™ . In
the Beurling case, our proof will be straightforward along the lines of
Komatsu’s proof for [81, Theorem 8.1, p. 76| using the Hahn-Banach
theorem. In the Roumieu case, we employ a similar tactic, however

here we must rely on the projective description of D{Lglﬁ} . For this

reason we will say D{Lgft} allows a projective description if

Dy’ = lim D
T Mevm)

as locally convex spaces. Note that by Lemma 4.2.12(7), these spaces
always coincide as sets. In the case of isotropic weight sequences, the
description is immediate.

Theorem 6.4.7. Let M and A be isotropic weight sequences satisfy-
ing (M.1) and (M.2)" and let w be an {A}-admissible weight function.

Then, Dﬁ“ allows a projective description.

Proof. Set, as lcHs,

ZS{L]f} = lim Df{”.
(rp)e[R]

Trivially, D{LJYI} is continuously contained in YS{LJY} Take any p €

Csn(Dgy}). Let B < B be the polar of the closed unit ball of p,
so that, by the bipolar theorem,

M
plp) =suwpl(f.9)l,  @weDy.
feB

The set B is strongly bounded in BZU{M}, so that by employing Propo-
sition 6.3.8, we get that for each ¢ € S(%) and ¢ > 0 there is some
Cp = Cgy, > 0 such that

sup [V f (2, €)| < Cpw(w)e @),
feB
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If we now apply (2.8), there is some (k,) € [R] for which

sup |V f (2, €)| < Cpw(z)e™» ©
feB
Let p € S(%)\{O} and v € S(%) be a synthesis window for . If

we select hy, = k,H d+1 then, for any ¢ € 252]:4}, it follows that from
Lemma 6.3.5 and Proposition 6.3.8

sup|(f, ¢ | [, @ Wt )1 O dadg
feB (7, 7/1 L2 R2d
CBC f wary, (§)—wnmy, ( d+1g)
< © e kp d&
(v, ¥) 2 el R
< Cn, llll s,
Ll

for some Cj,, > 0, where we have made use of [81, Proposition 3.4,
p. 50]. Consequently, p is also a continuous seminorm on Dg/[},

that the spaces also coincide topologically as claimed.

Whether Theorem 6.4.7 also holds in the general case of a weight
function system 91 remains an open question. In fact, there is an
interesting connection between this problem and the lifting properties
of the map S : Agyy(Cow(R?)) — — B™ . One could ask in general
whether S lifts bounded sets, i.e. for every bounded subset B <

B does there exist a bounded set A < Apn (Co(R?)) such that
S (A) B. Due to our non-constructive approach a direct solution

to this is not apparent. In the Roumieu case, this is true if D{ M lifts
bounded sets, and moreover it is equivalent to it.

Proposition 6.4.8. The following statements are equivalent:
(1) S lifts bounded sets;

(17) D{Lvln} allows a projective description.

Proof. Put D = lim MeT (o) Dyi . By using the projective descrip-

tion of Afyy, (./\/lw) [9, Theorem 2.3] we easily see that D{m} ~ Im S°.
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Whence Dglm allows a projective description if and only if S* is a

topological homomorphism. By [92, Lemma 26.7, p. 310], the latter
is equivalent to S lifting bounded sets. ]

For the general case, we may now state the following important
open problem.

Open problem 6.4.9. Determine whether the map
S Apn (Cow(RY)) — B,

lifts bounded sets. In the Roumieu case, by Proposition 6.4.8, this is

eauival . ()} .. .
quivalent to determining when D}, allows a projective description,

which is always true for isotropic weight sequences by Theorem 6.4.7.

Another alluring (:[mestion, which would automatically imply the
. S5/[001] .

former, is whether B, possesses a continuous structural represen-

tation.

Open problem 6.4.10. Does S have a continuous right inverse, i.e.
a continuous map R : B — Apny (Cow(R?)) such that So R =
ingsn]? In other words we would like to know whether the short
exact sequence
0 — ker S — Apn)(Cow(RY)) — B — 0

splits. For the Roumieu case, when dealing with Fréchet spaces,
abstract conditions for this to hold true have been found [92, 151],
which might be a good starting point for tackling this problem. We
also remark that such a solution for other spaces of ultradistributions
would be interesting as well.

We now move on to the first structural theorem of BL™". We will
need the following simple auxiliary lemma that allows us to preserve
certain growth properties when regularizing functions.

Lemma 6.4.11. Given R > 0 there are absolute constants co r
and ¢y g such that each function g € LS. (Wg) satisfying the bound
SUDewy, n<r |9(% + h)|/w(z) < 0, where W < R? and w is a positive
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function defined on W, can be written as g = Ag1 + go in Wg for
some functions g; € C(R?) that satisfy

: +h
sup Igj(l’)lgcjﬂ sup lg(z + h)|

vew w(T) €W, |h|<R w(z)

; Jj=0,1.

Proof. To show this, we make use of the fact that the fundamen-
tal solutions of the Laplacian belong to L} (R?) n C*(R¥\{0}). By
cutting-off a fundamental solution in the ball B(0, R), this implies
we can select functions y; € L'(R?) and x, € D(R?) both supported
on B(0, R), such that § = Ay; + xo. Extend g off Wg as 0 and keep
calling this extension by g. We obtain the claim if we set g; = g#X; so

that the desired inequalities hold with ¢; g = Sng Ixj(—x)|dz. O

We are now ready to describe the structure of B™.

Theorem 6.4.12. Let 9 be a weight sequence system and w be a
weight function such that Assumption 6.3.1 holds. In the Roumieu
case we additionally assume that D{Lglﬁ} allows a projective descrip-

tion. Then, [ € BSJ[Em] if and only if there exist continuous functions
{fa}oene on RY such that

=1, (6.12)

aeNd

and for some A > 0 (for any A > 0) we have that

A{A
sup sup Malfal@)l < . (6.13)
aeNd geRd LU(I)

Proof. Clearly if (6.12) and (6.13) hold then f € B, We now
show that it is also necessary. In view of Lemma 6.4.11 and [901.2] it
suffices to show (6.12) and (6.13) hold for measurable functions f,.
Given a M = M* (a M € V(IM)), define X, as the Banach space of
all smooth functions ¢ such that

(@)
el x,, = Z JRd ‘(’OT((X)'w(x)dx < 0.

aeNd
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As M1 satisfies [L] (where in the Roumieu we use Corollary 4.2.13(3)
and the assumption that D{ } allows a projective description) we

have that D(L;) = lim, . XM)\ (resp. D{ b= lim T Xn). Let

then f € X,. Consider the weight wM(oz,x) = w(r)/M, on N? x R?
and the weighted space L}UM. The mapping j : Xy — Li)M given by
j(#)(@,2) = (—)*p@ (2) is an isometry so that (f, j(2)) — (f. ¢)
defines a continuous linear functional on j(X,,). The representation
(6.12) with functions as in (6.13) then follows by applying the Hanh-
Banach theorem (and Lemma 4.2.12(é7) in the Roumieu case). [

We conclude this chapter with the following interesting problem.

Open problem 6.4.13. We have that f € B™ , resp. f € B

and only if f * p € C,(R?), resp. [ * ¢ € Cp,(RY), for any ¢ € S

If now exchange C,(R%) or Cy,(RY) with some other translatlon—
invariant Banach space E of measurable functions, could we then
provide first structural theorems for all those tempered ultradistri-
butions f such that f * ¢ € E7 Second structure theorems for such
spaces were obtained in [46], however first structural theorems will
require novel methods, perhaps similar to those explored here. A
particularly interesting example would be the almost periodic ultra-
distributions, see [25, 86].



Part 11

Asymptotic behavior of
generalized functions
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Chapter 7

Introduction

Asymptotic analysis encompasses a wide branch of pure and applied
mathematics, with a long history and a strong promise of contin-
ued importance. Due to the general development of various areas of
mathematical analysis, especially the theory of differential equations,
it has obtained several new impulses resulting in novel approaches
and methods. One such particular field is the asymptotic behavior
of generalized functions, which has had an important role in quan-
tum physics [6, 13, 140, 141], where rigorous proofs for foundational
results were provided by the use of generalized asymptotic behavior.
This prompted mathematicians to further develop the theory, see e.g.
the monographs [113, 114]. In this part we will be concerned with
the asymptotic behavior of ultradistributions, where in particular we
will provide structural theorems for several types of asymptotics.

The asymptotic behavior of a generalized function is usually ana-
lyzed via its parametric behavior, mostly with respect to transla-
tion or dilation. Moreover, there exist three prominent approaches:
that of Vladimirov, Drozhinov and Zav’yalov [140], of Pilipovi¢ and
Stankovié¢ [114], and of Kanwal and Estrada [57]. This first and sec-
ond approach follow the direction of S-asymptotic and quasiasymp-
totic behavior. The third approach is related to the moment asymp-
totic expansion and the Cesaro behavior. All three paths will be
traversed in this text in the framework of ultradistributions.

137
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The idea of looking at the translates of a distribution goes back to
Schwartz [125, Chapter VII], who used it to measure the order of
growth of tempered distributions at infinity. Pilipovié¢ and Stankovi¢
later introduced a generalization, the so called S-asymptotic behavior,
and thoroughly investigated its properties for distributions, ultradis-
tributions, and Fourier hyperfunctions. There are deep connections
between S-asymptotics and Wiener Tauberian theorems for general-
ized functions [112]. In [114] the second structure theorem for S-
asymptotics was shown using Komatsu’s parametrix. However, this
poses often unnecessarily strong restrictions on the weight sequences.
In Chapter 9 this is remedied by providing the first structure theorem
for S-asymptotics using the results obtained in Chapter 6. Further-
more, in Chapter 10, we consider the concept of S-asymptotic bound-
edness and obtain both the first and second structural theorem for it.

There are two very well-established approaches to asymptotics of
generalized functions related to dilation. The first one is the quasi-
asymptotic behavior, which employs regularly varying functions [10]
as gauges in the asymptotic comparisons. The concept of quasi-
asymptotic behavior for Schwartz distributions was introduced by
Zav’'yalov in [155] and further developed by him, Drozhzhinov, and
Vladimirov in connection with their powerful multidimensional Taube-
rian theory for Laplace transforms [140]. A significant milestone
for the theory were the complete structural theorems Vindas and
Pilipovi¢ provided [135, 136, 137] for the quasiasymptotic behavior
of distributions on the real line. An important consequence of these
characterizations were the extension results to the tempered distribu-
tions: a distribution which has quasiasymptotic behavior at infinity
is automatically a tempered distribution an its asymptotic behavior
holds there; a similar yet local result also holds for quasiasymptotics
at the origin. In Chapter 9 we will give an ultradistributional analog
of these structural results, both at infinity and the origin. Further-
more, we also provide extension results, however not to the canonical
tempered ultradistributions. Their specific quasiasymptotic behav-
ior is studied in Chapter 11, where we extend the so-called general
Tauberian theorem for the dilation group [140, Chapter 2] from tem-
pered distributions to tempered ultradistributions.
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The second important approach to asymptotic behavior related to
dilation is the so-called moment asymptotic expansion (MAE). As ex-
plored in the monograph [58], the MAE supplies a unified approach
to several aspects of asymptotic analysis and its applications. In
the distributional case, this behavior has been extensively studied by
Estrada and Kanwal [57, 58]. In particular, in the one dimensional
case, in [56] Estrada showed that a distribution satisfies the MAE
if and only if it lies in the dual of the space of so-called GLS sym-
bols [68]. Some recent developments may be found in [124, 153]. The
subject of Chapter 10 will be the study of the MAE in the ultradistri-
butional case. One of our main results there provides a counterpart
of Estrada’s full characterization in the one-dimensional case. In ad-
dition to that, we also consider a uniform analog of the MAE and
give a partial characterization on the real line.

As opposed to Part I, we will only work under the condition of non-
quasianalytitcity. This is motivated by the fact that asymptotic be-
havior is in large part a local behavior. Also, for the sake of simplicity,
we define our spaces via isotropic weight sequences instead of weight
sequence systems.
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Chapter 8

Preliminaries

In this Chapter, we build upon the preparations we have made in
Chapter 2 and specify further towards the framework of asymptotic
behavior of generalized functions.

8.1 Cones

A set I' € R? is called a cone if u € T' implies Mu € T for any A > 0.
The cone I' is called solid if intI' # ¢, while T is said to be acute if
there exists some y € R? such that

y-u >0, Vu e T'\ {0}.
The conjugate cone I'* is the set
M :={yeR: y-u>0Vuel}.

Then I'* is a closed convex cone with vertex at the origin. We set
C = intI'*, then T' is acute if and only if C' # ¢, i.e. if and only if
I'* is solid (cfr. [140, Lemma 1, p. 27]). If ' is closed and convex,
then (I')* =T

Suppose I' is a closed convex acute cone, then we denote the
distance of a point to the boundary of C' by A¢x( ), i.e.

Ac(z) :=d(z,00), Vr e RY.

141
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We will often make use of the following estimate ([139, p. 61])
y-u = Ac(y)lul, Vuel,yeC. (8.1)
The tube domain TC with base C' is the set

T7¢ .= R% +4iC < C4.

8.2 Ultradistributions

We consider once more weight sequences and the spaces of ultradif-
ferentiable functions associated to them in the specific context of this
part. In particular, we only work in the isotropic case.

8.2.1 Weight sequences

A (isotropic) weight sequence M = (M,)yen is a sequence of positive
numbers. To it we associated the sequence M* with M} = M, /p! for
any p € N. Furthermore, for p € Z., we set m, = M,/M,_,. We will
make use of the following conditions on weight sequences:

1) M2< My \Myyy ,p=1;
A1) (M) < M:_ M

p+17 / 17

2) M,y < AHP?M,, p € N, for constants A, H > 1
M,y < AHPYIM,M,, p,q € N, for constants A, H >
Y 1/my, < o

3 Z o L/myp < coq/my, g = 1, for a constant co.

1)
)
2)
2)
3)
3)

Whenever we consider weight sequences, we assume they satisfy at
least (M.1). For multi-indices o € N, we will simply denote M, o] DY
M,. Asusual the relation M < N between two such sequences means
that for any o > 0 there is an L = L; > 0 for which M, < Lh’N,,
p € N. We may then introduce the condition

(NA) p! < M.
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Note that if M satisfies (M.1) and (M.3)’, it automatically satisfies
(NA) [81, Lemma 4.1, p. 55].
The associated function of the sequence M is given by

tP? M
wyr(t) :=suplo ,
m(t) uplog —

t >0,

and wys(0) = 0. It increases faster than logt ast — oo (cf. [81, p. 48]).
We define wy; on R? as the radial function wy, () := wy(|z]), 2 € R?
(note that this differs from the definition used in Part I). Throughout
this text we shall often exploit the following bounds:

o If M satisfies (M.2)’, then for any k£ > 0

log(t/A)log k
wM(t) — wM(kt) < —%, t > 0. (82)
o )M, satisfies (M.2) if and only if
2wy () < wy(HE) + log(AM). (8.3)

o If M, satisfies (M.1)*, we have, for some A’ > 0,

t
* < ! > . (8.4
Wy (4(m1+1)wM(t)) Swp(t) + A, t=m;+1. (84)

Indeed, the first and second statement are [81, Proposition 3.4, p. 50]
and [81, Proposition 3.6, p. 51] (see also Lemma 3.2.4), while the
third one is shown in [24, Lemma 5.2.5, p. 96].

Throughout this part, we will regularly employ the set [9R]. See
Section 2.3.3 for its definition and basic properties.

An wltrapolynomial of type [M] is an entire function

o0
P(z) = Z 2™, an € C,
m=0

where the coefficients satisty |a,,| < L/¢’M,, for some ¢ > 0 (for
any ¢ > 0) and some L > 0. Note that by Lemma 4.2.12(¢i) this is
equivalent to |a,,| < L/L,,M,, for some ({,) € [R] and L > 0. If M
satisfies (M.2), the multiplication of two ultrapolynomials is again
an ultrapolynomial (cf. [81, Proposition 4.5, p. 58]).
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8.2.2 Spaces of ultradifferentiable functions and
ultradistributions

Let M be a weight sequence and K € R? a regular compact subset.
For ¢ > 0 we define £M¢(K) as the Banach space of all ¢ € C*(K)

such that | " ’
Vx
||90H5M,Z(K) = Sup sup v ()

T < Q0.
aeNd zeK flel M,

EM(K) = lim EMY(K),  EMI(K) = lim EM(K).

{—0+ {—0

Let Q < R? be open and let (Ky)yey be an exhaustion by regular
compact sets of 2. We define

EM(Q) = lim EM(Ky).
NeN

These definitions are independent of the chosen exhaustion by regular
compact sets of . The elements of £M)(Q) are called ultradiffer-
entiable functions of class (M) (of Beurling type) in Q while the
elements of EM}(Q) are called ultradifferentiable functions of class
{M} (of Roumieu type) in §.

For any K € (2 and ¢ > 0 we write D%’K for the closed subspace
of elements in EM#(K) with support contained in K. Then we set

D~ fm DY, DY = g D,
{—0+ {—0

and
DMI(Q) = lim DI
KEQ
If M satisfies (M.1), then DIMI(Q) is non-trivial if and only if M
satisfies (M.3)" [81, Theorem 4.2, p. 56].

When M satisfies (M.1) and (M.3)’, the dual D'MI(R9) of DIMI(R?)
is called the space of ultradistributions of Beurling (resp. Roumieu)
type . Then £ (RY) is exactly the subspace of D'™I(R?) of all com-
pactly supported ultradistributions [81, Theorem 5.9, p. 64]. More-
over, its structure may be described as follows.
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Theorem 8.2.1. Let M be a weight sequence satisfying (M.1), (M.2)’
and (M.3)'. Then, f e E™IRY) with supp f = K if and only if for
every open neighborhood U of K there are continuous f, € C.(U),
a e N9, such that

f=> in EM™MI(RY).
aeNd
Proof. This is a direct consequence of Komatsu’s first structural the-
orem! for ultradistributions [81, Theorem 8.1 and Theorem 8.7]. [

For any two weight sequences M and N and ¢,q > 0 we define
S%;f(Rd) as the Banach space of all p € C*(R?) such that

|20 () ()|
= Su Sup ———m——— << 0.
HSOHSMe 5 ﬁellild me@ g|a\Maq|ﬁ|NB

Then, we define the test function spaces

SHYRY = lim SyF(RY), S (RY) = lim Sy (RY)
-0+ —0
and they are called the Gelfand-Shilov spaces. Note that by using
the weight function system #J, this definition commdes with the one
used in Chapter 3. The elements of its dual S ( 4) are called
tempered ultradistributions .
We conclude this section with two projective descriptions.

e For a weight sequence M satisfying (M.1), (M.2)" and (M.3)’
and an open subset € < R? we have as locally convex spaces
[83, Proposition 3.5]:

eM(Q) = lim  lim Yo' (K).
KEQ (£,)e[R]

e For two weight sequences M and N satisfying (M.1) and (M.2)’
we have as locally convex spaces [39, Theorem 3] (see also The-
orem 4.2.14):

[M] mdy _ : Map,1
Sy = 1m sy
(ap),(bp)e[R]
!The first structural theorem even holds true under the conditions (M.1) and
(M.2)" if one were to use [37, Theorem 1].

1 (RY).
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8.3 Asymptotic behavior of generalized
functions

We discuss here two types of asymptotic behavior for generalized
functions, for a more thorough overview we refer the reader to the
monograph [114].

Definition 8.3.1. Let X be a lcHs of smooth functions on R? pro-
vided with continuous action of the translation operator. Let I' = R?
be a cone with vertex at the origin and w : I' — R,. Then f € A’
has S-asymptotic behavior with respect to w on I' with limit g € X" if

o ) )
hel,|h|—w w(h)

= (g(z),p(z)y, Vpelk.

In such a case we write f(z + h) ~ w(h)g(x).

When considering ultradistributions, the S-asymptotic behavior
imposes a certain structure on the limit and gauge function.

Proposition 8.3.2 ([114, Proposition 1.2, p. 12]). Let M be a weight
sequence satisfying (M.1) and (M.3) and T' < R? be a solid convex
cone with vertex at the origin. If f € D'™MI(RY) has S-asymptotics
f(z+h) ~w(h)g(x) on T for some functionw : T — R, and non-zero
limit g € D'™MI(R?), then for some y € R%:

(i) For every hg € RY we have

i “B R ey
he(ho+T)nl  w(h)
|h|—00

(13) There exists C € R such that g(x) = Cexp(y - x).

The second type we consider is the so-called quasiasymptotic be-
havior. In order to introduce this concept, we first recall the notion
of regularly varying functions.

A function p : (a,0) — R, a > 0, is called regularly varying at
infinity [10, 128] if it is positive, measurable, and if there exists a real
number a € R such that for each x > 0

pAz) _ a
Jlim oy - (8.5)
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The number « is called the degree of regular variation. If a = 0,
then p is called slowly varying at infinity and will be denoted by L.
A function p is called regularly (resp. slowly) varying at the origin
if p(z) := p(1/x) is regularly (resp. slowly) varying at infinity. Any
regularly varying function may then be written as p(z) = z*L(z),
x > a. The convergence of (8.5) is uniform on every fixed compact
interval [b,c], a < b < ¢ < w0, and p is bounded (hence integrable) on
it [128, Theorem 1.1 and Lemma 1.2]. As we will only be interested
in the terminal behavior of p, one may assume [10] without any loss
of generality that the regularly varying function at infinity (resp. at
the origin) p is continuous on [0, ) (resp. on (0, 0]).

For a slowly varying function L we will often make use of Potter’s
estimate [10, Theorem 1.5.4]: for any € > 0 there exists a C. > 0
such that

< C. max{z ™%, 2%}, Va, A > 0. (8.6)

We may now define the quasiasymptotic behavior of a generalized
function.

Definition 8.3.3. Let X be a IcHs of smooth functions on R? pro-
vided with continuous action of the dilation operator. Let L be a
slowly varying function at infinity (resp. at the origin). Then f e &”
has quasiasymptotic behavior at infinity (resp. at the origin) in X’
with respect to L of degree o, a € R, and limit g € X' if for all p € X

}g% = (g(x), p(x)) (resp. lim) : (8.7)

A—0*t

If (8.7) holds, we also say that f has quasiasymptotics of degree « at
infinity (at the origin) with respect to L and write in short: f(Azx) ~
AL(A)g(x) in X" as A — oo (resp. A — 07).

Remark 8.3.4. It is not necessary to define the quasiasymptotic
behavior via a gauge function that is regularly varying. However, in
case the limit is non-zero, this is automatically so [114, Proposition
2.1, p. 83]. As our arguments to come will be based on the degree of
the quasiasymptotic, this motivates our choice in the definition.
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The quasiasymptotic behavior imposes a structure on the limit.

Proposition 8.3.5 ([114, Proposition 2.1, p. 83]). If f(Az) ~ A*L(\)g(x)
in X', then g is a homogeneous element of X' of degree «, i.e.
g(Az) = Ag(x).



Chapter 9

Quasiasymptotic behavior

9.1 Introduction

The quasiasympotic behavior of generalized functions, which em-
ploys regularly varying functions [10] as gauges in the asymptotic
comparisons, provides a framework for the study of local proper-
ties of generalized functions. The behavior was first introduced by
Zav'yalov for tempered distributions in [155] and further developed
by him, Drozhzhinov, and Vladimirov in connection with their power-
ful multidimensional Tauberian theory for Laplace transforms [140].
Notably, this behavior is commonly employed to express Tauberian
theorems for generalized functions. Starting from the 1970s until
the present, Tauberian theorems for integral transforms of gener-
alized functions has been an extensively studied subject, see e.g.
[55, 111, 114, 140], with applications to research areas such as prob-
ability theory, number theory, and mathematical physics.

A key aspect in the understanding of this concept is its description
via so-called structural theorems and complete results in that direc-
tion were achieved in [135, 136, 137] (cf. [90, 114]). The purpose
of this chapter is to present a detailed structural study of the so-
called quasiasymptotics of ultradistributions. In [110] Pilipovi¢ and
Stankovi¢ naturally extended the definition of quasiasymptotic be-
havior to the context of one-dimensional ultradistributions and stud-
ied its basic properties. We shall obtain here complete structural
theorems for quasiasymptotics of non-quasianalytic ultradistributions

149
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that generalize their distributional counterparts. Our main goal is
thus to characterize those ultradistributions having quasiasymptotic
behavior as infinite sums of derivatives of functions satisfying classical
pointwise asymptotic relations.

This chapter is organized as follows. We first establish in Section
9.2 structural theorems for the S-asymptotic behavior of ultradis-
tributions. These will be a direct consequence of the results found
in Chapter 6, in particular Theorem 6.4.1. Section 9.3 studies the
quasiasymptotic behavior at infinity. A key idea we apply here will
be to connect the quasiasymptotic behavior with the S-asymptotic
behavior via an exponential change of variables. The nature of the
problem under consideration requires to split our treatment in two
cases, depending on whether the degree of the quasiasymptotic be-
havior is a negative integer or not. We obtain in Section 9.4 structural
theorems for the quasiasymptotic behavior at the origin. Our tech-
nique there is based on a reduction to the results from Section 9.3 by
means of a change of variables and then regularization. Our method
also yields asymptotic properties of regularizations at the origin of
ultradistributions having prescribed asymptotic properties, general-
izing results for distributions from [134]. It is also worth mentioning
that our approach here differs from the one employed in the liter-
ature to deal with Schwartz distributions, and in fact can be used
to produce new proofs for the classical structural theorems for the
quasiasymptotic behavior of distributions. We conclude this chapter
by studying extensions of quasiasymptotics to new ultradistributions
spaces of Gelfand-Shilov type that we shall introduce in Section 9.5.

9.2 The structure of S-asymptotics

We start by obtaining first structural theorems for the S-asymptotic
behavior of ultradistributions. Second structural theorems were shown
in [114, Theorem 1.10, p. 46], however our results will hold under
considerably less restrictions on the weight sequence. We fix for the
remaining sections in this chapter a weight sequence M that satisfies
(M.1), (M.2)" and (M.3)'.

Let w be a weight function. We consider a convex cone I' (with
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vertex at the origin). We will work with the following assumption on
w: the limits

h
lim w(z +h) exist for all x € R?, (9.1)
hel’

Suppose that for some f € D'MI(RY) the S-asymptotic f(x + h) ~
w(h)g(x) holds on I' for some limit g € D'MI(RY). If g # 0, then
clearly (9.1) must hold uniformly for = in compact sets. However, we
will always require that (6.3) holds, so that the uniformity of (9.1) is
always true.

The idea is to apply Theorem 6.4.1 to find the structure of the
S-asymptotic behavior of ultradistributions. We start by noting that
in the non-quasianalytic case, the space BZU[M] may be characertized
via the limit behavior of the convolution with elements in DMI(R?).

Theorem 9.2.1. Let f € D'MI(RY). Then, f e B if and only if
the limit limyy o, Ty, f/w(R) = 0 holds in D'™MI(R?).

Proof. Necessity follows immediately from Theorem 6.3.11. To show
sufficiency, we notice that w is (p!)-admissible (see Remark 6.3.2). As
(M.1) and (M.3)" imply that p! < M, we have that M and w satisfy

Assumption 6.3.1. Whence f € B < SEZ[)]!\f] (R?). Next, one may
obtain (6.8) for some M) = XM, > 0 (for all M} = MM, > 0)
by taking a window function ¢ € D) (R9)\ {0} and making minor
adjustments in the proof of (2) = (3) in Theorem 6.3.11. Hence, the
result follows from Theorem 6.3.11. O

We now find the following structural theorems.

Theorem 9.2.2. Let I' € R? be a solid convex cone and let w be a
weight function satisfying (6.3) and (9.1). Then, f € D'™I(R?) has
S-asymptotic behavior with respect to w on I' if and only if for each
R > 0 there exist f, € C(R?), a € N, such that

=21 onTg,

aeNd
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the limits
Ja <I>
m )
2| -0 w(T)
weFR

exist, and for some ¢ >0 (for all £ > 0) it holds that

aeN?,

delp
aeN?, zel'g CU(C(]>

Proof. The conditions are clearly sufficient. To show necessity, we
first make a few reductions. Suppose f(z + h) ~ w(h)g(z) on I'. By
Proposition 8.3.2, there is y € R? such that the limits (9.1) equal e¥*
for each z € R? and g(x) = Ce¥® for some constant C. Hence, if we
put fo = f— Cuw, we see that fo(x +h) ~ w(h) -0 on I'. Establishing
the structure for fy will provide us with the structure of f, so we may
assume without loss of generality that f(z+h) ~ w(h)-0on I'. Next,
note that we may reduce the general case to that of I' = R?. Indeed,
for any R > 0, take some 1 € D) (R?) such that suppy < B(0, R/2)
and SRdw = 1. Let XTsp/2 be the characteristic function of I'sg/.
Then xr = 9 * X1y, 1 a smooth function such that xp =1 on I'g,
X r vanishes off I';p and

(a)
qup X2 Ol _

oend gerd {19 M,

If we set f = Xgr - [, then f and f coincide on I'g. We now verify
that f(z +h) ~ w(h)-0 on R% Take any ¢ € DIMI(RY) and let r > 0
be such that suppp < B(0,7). Take any h € R If h ¢ T, o5 then

<f(x + h)/w(h), gp(a:)> = 0. Suppose now h € I',;op, then h = hy+hs

with hy € I and hy € B(0,7 + 2R). Then, employing (6.3), (9.1) and
the Banach-Steinhaus theorem

(F@+h). ()

|h|—00,hely 4 2R w(h)

~0

i o) (Tt b oo —ta))
= im su
|h1|—00,h1€D hgeB(O,E)—i-QR) W(hl + hz) W(hl)
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because {T},¢ : ho € B(0,7 + 2R)} is a bounded family in DIMI(R?).
Consequently, f(z + h) ~ w(h) -0 on R

If f(z +h) ~ w(h) -0 on R then f e B by Theorem 9.2.1.
Hence, the desired structure of f follows from Theorem 6.4.1. O

9.3 The structure of quasiasymptotics at
infinity

This section is devoted to the study of the quasiasymptotic behavior
at infinity. Our main results are Theorem 9.3.6 and Theorem 9.3.7,
where we provide a full description of the structure of quasiasymp-
totics at infinity. Some auxiliary lemmas used in their proofs are
shown in Section 9.3.1. Throughout this section and the ones fol-
lowing it, we will work in dimension 1 and M will denote a weight
sequence satisfying (M.1), (M.2)" and (M.3)". We will also work with
the notation DM for DIMI(R) and similar for other spaces. In this
specific section L stands for a slowly varying function at infinity.

9.3.1 Some lemmas

We start with the ensuing useful estimates for the weight sequence
M, which we shall often exploit throughout the chapter. Hereafter
S(n, k) stand for the Stirling numbers of the second kind (see e.g.
[78]).

Lemma 9.3.1. For any { > 0 there is C; > 0 (independent of p)
such that

= Kk p!
— < Oy (9:2)
kz_; M, M,
and
- o* (20)P
S(k+1 H—<C . 9.3

Proof. Clearly, it is enough to show (9.2) just for sufficiently large p.
Using [81, Lemma 4.1, p. 55], there is py such that for any p = pg we
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have p/m, = pM,,_1/M, < (2¢)~'. Hence, it follows that for p in this
range

o klE p! S (pA1)-. k- LF p!
= e <24

k—p Mk Mp k—pt1 Mmp41 - TN P

For (9.3), in view of [120, Theorem 3], we have S(k + 1,p + 1) <
281 (p + 1)F=P < 2MF1E1 /p! for k = p. The rest follows by application
of (9.2). O

If f(Ax) ~ A*L(A\)g(x) in D™ as X — oo (A — 07) then g is a
homogeneous ultradistribution by Proposition 8.3.5. We first show
that all the homogeneous ultradistributions are exactly the homoge-
neous distributions. We will employ the notation H(z) = 29 for the
Heaviside function.

Proposition 9.3.2. Let g € D' be a homogeneous ultradistribution
of degree . If a # —1,—2,—3,..., there exist constants c, and c_
such that
g(z) = cpa} + c_a?.
If o« = —n, with n € Z, then there are constants ¢; and co such that
g(z) = 1™ + 0" V().

Proof. Suppose that g(Ax) = X\*g(z) for all A > 0, then one verifies
that
zg'(x) = ag(z).
This differential equation can be solved locally on R\ {0}, so that g
takes the form
g9(z) = cya§ + c_a® + f(x)
ifa¢Z_, or
g(x) = 1z + f(x)
if « € Z_, where f e D' is homogeneous of degree a with support
in {0}. Then, the Fourier-Laplace transform f is an entire function
of exponential type 0, homogeneous of degree —a — 1. Since homo-
geneous entire functions are polynomials, it follows that f = 0 if
a¢ Z_or f(§) = (—i) ey~ for some constant ¢, if a € Z_.
As {e€ . £ € R} is a dense subspace of £M] (cf. [81, Theorem 7.3,
p. 75)), it follows that f = 0if a ¢ Z_ or f = 6 VifaeZ_. O
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In [135], the structure of distributional quasiasymptotics at infin-
ity was found by noting that certain primitives preserve the asymp-
totic behavior, being of a higher degree, and using the fact that even-
tually the primitives are continuous functions. As the latter part does
not hold in general for ultradistributions, a more careful analysis is
needed, although we may carry over some of the distributional re-
sults. In fact, one may retread the proofs from [135, Section 2] (see
also [114, Section 2.10])

Lemma 9.3.3. Let f € D'™I. Suppose f has quasiasymptotics with
respect to A*L(\).

(1) If a ¢ Z_: for any n € N and any n-primitive F,, of f there
exists a polynomial P of degree at most n — 1 such that F,, + P
has quasiasymptotics with respect to N>+ L(\) in DM,

(17) If o« = —k, k € Z, : there is some (k — 1)-primitive F' of f such
that F has quasiasymptotics with respect to A\™'L(\) in DM,

The previous lemma roughly speaking shows that in order to find
the structure of quasiasymptotics for arbitrary degree, it suffices to
discover the structure for degrees > —1, where extra care is needed for
the case —1. It should also be noticed that the converse statements
for () and (é¢) from Lemma 9.3.3 trivially hold true.

The next lemma, a direct consequence of the well-known moment
asymptotic expansion [58, 124] (see also Chapter 10), states that
the quasiasymptotic behavior of degree > —1 is a local property at
infinity, which in some arguments enables us to remove the origin
from the support of the ultradistribution in our analysis.

Lemma 9.3.4. Suppose that fi, f» € D™ and that for some a > 0,
f1 and fy coincide on R\ [—a,a]. Suppose that fi(Ax) ~ A*L(\)g(x)
in D™ a5 X\ — oo, where o > —1. Then, also fo(Ax) ~ A*L(\)g(x)
in D'™] g5 \ — o0,

Proof. By our assumptions we have that h := fo — f1 € &M so that
by [124, Theorem 4.4] (see also Theorem 10.4.3) h(Az) = o(A™*L()))
as A — 2. Whence

fa(Ax) = fr(Ax) + h(Ax) = A*L(A)g(Az) + o(A"L(A))

in DM a8 A — o0. m
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9.3.2 Structural theorem for a ¢ Z_

We study in this subsection quasiasymptotics of degree o ¢ Z_. Part
of our analysis reduces the general case to that when o« > —1, i.e., the
case when the quasiasymptotic behavior is local. Consequently, we
may restrict our discussion to those ultradistributions whose support
lie in the complement of some zero neighborhood. As both the nega-
tive and positive half-line can be treated symmetrically, it is natural
to start the analysis with ultradistributions that are supported on
the positive half-line. In the next crucial lemma we further normal-
ize the situation by assuming that our ultradistribution is supported
in (e, ).

Lemma 9.3.5. Let o € R and let f € D'™I be such that supp f <
(e,0) and f has quasiasymptotic behavior at infinity with respect to
AL(A) in D'™M(0,00). Then, there are continuous functions f, such
that supp f,, < (e,0),

0

F=>0rm,

m=0

the limits
lim fm(x)

200 Jj'aerL(:C)

exist, and furthermore, for some { > 0 (any £ > 0) there is a C' =
Cy > 0 such that,

m

| fm ()] < 3

2T L(z), meN, x> 0.

Proof. Suppose f(Ax) ~ A*L(A\)g(x) in D'M1(0,0) as A — o0. Since
composition with a real analytic function induces continuous map-
pings between spaces of ultradifferentiable functions (see e.g. [72,
Prop. 8.4.1, p. 281]), we obtain that the composition f(e”) is an
element of DM Also, ¢ € DMl if and only if ¥(z) = p(e®) with
¢ € DIMI(0, 0).

These key observations allow us to make a change of variables in
order to apply the structural theorem for S-asymptotics. In fact, we

set u(z) := f(e%), w(z) := g(e®) and c(h) := e*"L(e") (notice that
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w has actually the form w(x) = Be** for some B > 0). A quick
computation shows that

w(x +h) ~ c(h)yw(z)  in D™ as h — 0.

Theorem 9.2.2 yields the existence of continuous functions wu, on R,
n € N, with supports on (1,) such that u = >, u™ on (0, 00)
and limy,_, u, (z+h)/c(h) exist uniformly for z on compacts of (0, co)
for any n € N and for some ¢ > 0 (for any ¢ > 0) there exists a
Co = Coe > 0 such that sup,. |u,(z)|/c(z) < Col™/M,,.

Take any ¢ € DM(0,00) and put ¥(z) = e®¢(e?), then the sub-
stitution y = e” yields

Let us now consider each term of the sum individually. We will
need to explicitly calculate the derivatives of 1. Using the Faa di
Bruno formula [78, Eq. (2.2)],

(1) e e
e 3 () stk

S(n+1,m + 1)em M (?),

M=

v(a) = e

k

6.1‘

M=

m

||
m&
1=

0

3
I

where we have applied [32, Theorem 5.3.B]. Then, for any n € N,

Q0

Loo upn (2)0™ (2)dz = Zn: S(n+1,m+ 1)J un (log )™ (y)y™dy.

m=0 €

We define the functions f,,,(y) := y™ > (—=1)"S(n+1,m+1)u,(logy).
In virtue of (9.3), we obtain the bounds

3 e 20)™
@)l < Coy™ ), S(n+1,m+1) " L(y) < CoC (M_L Yy L(y)

n=m
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for y > 0 and m € N. By the Lebesgue dominated convergence the-
orem we clearly have that lim, .o, y~* ™ f,,(y)/L(y) exists for every
m € N. As, by our construction,

e}
(FW), o) = D (f5 W), W) ,
m=0
our proof is complete. O
We are ready to discuss the general case.

Theorem 9.3.6. Suppose a ¢ Z_ and let k € N be the smallest non-
negative integer such that —(k + 1) < a. Then, an ultradistribution
f e D™ has quasiasymptotic behavior

fOz) ~ A L) (c_a® +cyx?)  in D™ as A — o0 (9.4)

if and only if there exist continuous functions f,, on R, m >k, such
that

o0
F=>m, (9.5)
m=k
the limits
lim I . m>k, (9.6)

w0 o | L(|])

exist, and for some £ > 0 (any ¢ > 0) there is a C = C; > 0 such
that

m

a0l € O3+ )™ L(al),  weR (07

for all m = k. Furthermore, in this case we have
S LTa+m+1)
cy = Z Cp————— - (9.8)

Proof. In view of Lemma 9.3.3(7), we may assume that o > —1 so
that £ = 0.

Suppose then first that f has quasiasymptotic behavior (9.4). We
write f = f_ + f.+ f., where f, € £™] coincides with f on an open
interval containing [—e, e] and supp f- < (—o0, —e) and supp fy <
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(e,00). Then, by Lemma 9.3.4 each f; has quasiasymptotic behavior
with respect to A*L()) in D'M(—c0, 0) and D'IM1(0, «0), respectively.
Using Lemma 9.3.5, we find continuous functions fffm, m € N, with
supports in (—o0, —e) and (e, 00), respectively, such that the identities

N

m=0

hold, the limits

flim(—x)
+ m 1; ,
Cm = ( 1) whrglo potm] (l’)

exist, and the bounds |f{,,(z)| < C"0™|x|*"™L(|x])/M,, are satisfied
for some ¢ > 0 (any ¢ > 0) and some C’ = C} > 0. Applying Theorem
8.2.1 one can also find continuous functions g,,, whose supports lie
in some (arbitrarily chosen) neighborhood of supp f., such that f. =
e ogm in D™ and sup,g |gm(7)| < C"¢™/M,, for some ¢ > 0
(for every £ > 0) and C” = C/ > 0. The functions

satisfy all sought requirements. We verify the relation (9.8) below.

Conversely, assume that f satisfies all of the conditions above.
Take any ¢ € DM and suppose that for some R > 1 we have supp ¢ <
[—R, R]. Pick v > 0 such that a — vy > —1. Using Potter’s estimate
(8.6), we may assume that

< Cymax{z™", 27} (9.9)

holds for all z, A > 0. Since ¢ € DM, for any h > 0 (for some h > 0)
there exists a Cy, such that for all m € N we have sup,g [¢™ (z)] <
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Cynh™M,,. Due to (9.7), we now have for any m € N and A > 1

’1 ? Im(@) ¢ (/) dm‘
A AL\ Am

co, 20" ( J“ le@)

Mm et /\m-i-aL(/\)
L(Alz|)
o B e (0) 40
jz|>1/A L(/\)
m 1 m—+o+vy+1 C'Y
< 20@0@}1(2}%) m + C,YR + a—~+tmt 1

< C(2h(R)™,

and, as 2hf may be chosen freely, this is absolutely summable over
m € N. It follows by applying the Lebesgue dominated convergence
theorem twice that

x - @ z) " (z
}%<M ¢(x)> = lim % 2(—1)m Jm{@) 6T //\)da:

N L(\)’ Ao A A UL\ am
0 00
N j (ot + cha)a™ ™ (x)de
m=0 —0

0 *o)
= CJ |z|*¢(z)dr + C+J r%¢(x)dx,

0

with c_ and ¢, given by (9.8). O

9.3.3 Structural Theorem for negative integral
degrees

We now address the case of quasiasymptotics of degree a € Z_. The
next structural theorem is the second main result of this section.

Theorem 9.3.7. Let k€ Z, and f € D™ Then, f has the quasi-
asymptotic behavior

L

Ak (vo* D(z) + pz*)  in D™ s X -0 (9.10)

fx) ~
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if and only if there exist continuous functions f,, on R, m > k — 1,
such that

o0
f= 2 5 (9.11)
m=k—1
the limits fo()
. m\TL o+ _
and T
Cgl_l;Iolo m B fk_l(t)dt = 02—1 (913)
exist, and for some £ >0 (any ¢ > 0) there is C = Cy > 0 such that
o _
fn@] < O34 )™ L(lel),  zeR, (914)

for all m = k. Furthermore, we must have

y=ci o+ Y (ch—cn) (9.15)
B= (=1 1k —Dleg_y = (=) (k= 1)l (9.16)

Proof. In view of Lemma 9.3.3(i7) we may assume that k = 1.

Necessity. We start by showing the necessity of the conditions
if f has the quasiasymptotic behavior (9.10). Our strategy consists
of modifying the quasiasymptotics to one of order 0 by multiplying
f by z, applying Lemma 9.3.5, and then studying the structure it
imposes on f. Take a compactly supported ultradistribution f,. that
coincides with f on [—e, e] and consider f = f — f., so that supp(f —
fe) n[—e,e] = F. We set g(x) = x(f(z) — fo(z)), which, in view of
Lemma 9.3.4, has quasiasymptotic behavior

g(\x) ~ BL(A)  in DM ag \ — oo,

Splitting g as the sum of two distributions supported on (—o0, —e) and
(e, 00) respectively, we can apply Lemma 9.3.5 to obtain its structure

asS
o0
g=> g

m=0
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where each of the functions has support in (—oo0, —e) U (e, 0), satisfies
the corresponding bounds implied by the lemma, and is such that for
any m € N the limit lim, 1o ™™g (x)/L(|x|) exists. Define, for any
j € N, the following continuous functions

0, r =0,

. = j-1 X
fi(x) ’ S mlgm(x)x™™, x #0.

m=j

Let us verify they satisfy the requirements that the f; should satisfy.
First of all, for some ¢ > 0 (any £ > 0) and C = Cy > 0,

< |33P 1 o mlem )
|fi(z)| < C mZJ g < 'l ML(W)»

by (9.2). This not only shows that each f; is well-defined and con-
tinuous on R, but also provides the bounds (9.14) for them. From
dominated convergence we infer the existence of

! |
lim Sl 2 m!gm (2 Z g ()
a0 23 1L(|z]) aH+oo ]' SamL( \:1:] j' e e e L(|z])

Take an arbitrary ¢ € DM and let ¢ € DM be another correspond-
ing test function that coincides with ¢ on R\(—e, ¢), while its support
does not contain the origin. We then have

- L5 X (e )
SNGET)
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Applying Theorem 8.2.1 to f. as in the proof of Theorem 9.3.6, we
obtain compactly supported continuous functions g,, such that f,, =
fm + gm satisfy (9.11), (9.12), and (9.14). The necessity of (9.13)
follows from (9.17) below. That (9.15) and (9.16) must necessarily
hold will also be shown below in the proof of the converse.

Sufficiency. Conversely, assume that (9.11) holds with f,, ful-
filling (9.12), (9.13) and (9.14) (recall we work with the reduction
k = 1). We assume without loss of generality that L(z) is every-
where continuous and vanishes for x < 1. We consider

-3,

It follows from Theorem 9.3.6 that g has quasiasymptotic behavior
of degree 0 with respect to L()\), and differentiation then yields

F0) — foldz) = ¢ O) ~ (7 — ) E V(@) in DI as A - oo,

A
with «y precisely given as in (9.15). It thus remains to determine the
quasiasymptotic properties of fy. Write F(x) = So fo(t)dt. Since
fo(£2) ~ £cf L(z)/z, © — o0, one readily shows that

Az L(t)

F(\r)H(+x) = F(£\)H(+x) + cf f —=dt + o (L(N))

— F(+ N H(+x) + cE L) H(+2) log |z| + o (L(N)),

as A — o0 uniformly for x on compact intervals, and in particular the
relation holds in D!, Differentiating

F(\z) = F(=\)H(—x) + F(\)H(x)
+ LX) (cg H(—z) + ¢ H(z)) log |z| + o (L(N)),

we conclude that

fo(Azx) = d(z)

(e (M) e ()
+0 (@) , (9.17)

whence the result follows. O]
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9.3.4 Extension from R\ {0} to R

The methods employed in the previous two subsections also allow
us to study the following question. Suppose that the restriction of
f e D'™MI to R\ {0} is known to have quasiasymptotic behavior in
M](R\ {0}), what can we say about the quasiasymptotic properties
of f7 In view of symmetry considerations, it is clear that it suffices
to restrict our attention to ultradistributions supported on [0, o).

Theorem 9.3.8. Suppose that f € D' is supported in [0,0) and
has quastasymptotic behavior

f(Az) ~ eAX*L(\)z” in D'™1(0, 0) as A — 0.
(i) If a > —1, then f(Ax) ~ cA®L(N)x% in D™ gs A — 0.

(17) If « < —1 and N € N is such that —(N + 1) < o < —N, then
there exist constants ag, . ..,an_1 such that

f(Ax) — Z Uyt ~ ALz in D™ gs X\ — 0.

n+1
n=0 >\

(i1i) If a« = —k € Z_, then there is a function b satisfying' for each
a>0

b(ax) = b(x) + cigl_) 0 L(z)loga+ o(L(x)), (9.18)

xr — o0, and constants ag, . ..,a_1 such that

FOv) = =) py (H@))

Ak xk

b(\) 51 S 00
+)\— +ZCL] )\]Jrl

+0 (%) , (9.19)

in D'™] g5 X — o0,

1Such functions are called associate homogeneous of degree 0 with respect to
L in [114, 135]. They coincide with functions of the so-called De Haan class [10].
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Proof. The moment asymptotic expansion [124, Theorem 4.4] (see
also Theorem 10.4.3) says that we may assume that, say, supp f <
(e,0) by removing a neighborhood of the origin. So, we can apply
exactly the same argument as in the proof of Theorem 9.3.6 (via
Lemma 9.3.5 and Lemma 9.3.3(4)) to show parts (¢) and (¢7). For (i),
we assume without loss of generality that & = 1 (Lemma 9.3.3(ii))
and apply the same argument as in the proof of Theorem 9.3.7 to
conclude that

Fz) = fo(Ax) + YLA)S(Az) + 0 (L(N)/A)  in DM

where the continuous function fy has also support in (e, 00) and satis-
fies fo(x) ~ cL(x)/x, © — o0, in the ordinary sense. At this point the
result can be derived from [135, Theorem 4.3] (see also [114, Theo-
rem 2.38, p. 155]), but we might argue directly as follows. In fact, we
proceed in the same way we arrived at (9.17). Set b(z) = {7 fo(t)dt,
then, uniformly for x in compact subsets of (0, 0),

Az

b(Ax) = b(\)H(z) + cf @dt + o(L(\))

= b(A\)H (z) + cL(AN)H(z)log x + o(L(\)),

so that differentiation finally shows

fo(Az) = @5@) + CL(;\) Pt (Hg(cx)) +0 (@) in D'

]

9.4 The structure of quasiasymptotics at
the origin

We now focus our attention on quasiasymptotic behavior at the ori-
gin. The reader should notice that Lemma 9.3.3 holds for quasi-
asymptotics at the origin as well. Furthermore, it is a simple con-
sequence of the definition that quasiasymptotics at the origin is a
local property, in the sense that two ultradistributions that coincide
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in a neighborhood of the origin must have precisely the same quasi-
asymptotic properties. Throughout this section L stands for a slowly
varying function at the origin and we set L(z) = L(1/z). From now
on, by convention the parameters ¢ — 07 and A — oo.

We will reduce the analysis of the structure of quasiasymptotics
at the origin to that of the quasiasymptotics at infinity via a substi-
tution. Our starting key observation is the following lemma:

Lemma 9.4.1. If f € D'M (R\{O}) has quasiasymptotic behavior
with respect to e L(e), a € R, then f(z) := f(1/x) has quasiasymp-
totics in DR\ {0}) with respect to A*L(\).

Proof. Take any ¢ € DIM (]R\{O}) and set ¢(z) := ¢(1/z). Suppose
that f(ez) ~ e*L(e)g(z) in DR\ {0}). If we set A := e!, then

we get

) i @)
fim <A—a—zm’¢<x>> e <A—a+lmy¢“ ) >

=iy (ahre 2 () ()
— (9(x), d(x)a?)
= (g(1/), $(x))
O

We would now like to proceed applying the structure theorem
to f and transform back via the change of variables x « 1/x. We
therefore need to see how this substitution acts on derivatives, which
can be done via Faa di Bruno’s formula.

Lemma 9.4.2. Let ¢ € C*(R\{0}) and set ¢(x) := z72¢(1/x).

Then for any m € N, there exist constants Cpmp, . .., Cmm Such that
dm . oV (1/x)
dxm 2 ™m.j $m+]+2 ’ (9‘20)

where we have the bounds

|lem ;| < 4—"4’”, 0<j<m. (9.21)
7]



9.4. The structure of quasiasymptotics at the origin 167

Proof. Applying the Faa di Bruno formula [78, Eq. (2.2)],

Yea= DD (1/2) By, (1,20 (k— 5 + 1)),

&

o

Eﬁw =
}_\
~
%3

3 M?r

where By, ; are the Bell polynomials; from their generating function
identity [32, (3a’), p. 133] we infer that

Rk —1)!

Bu(1l,..., (k—j+1)!) = j:k (l (%y)

Therefore, we obtain that (9.20) holds with

G =Dk =)

t=0

Cmo = (—1)"(m+1)! and c¢p = (_1)mﬂ! Z(m—k—I—l) (k — 1)

when 0 < j < m. In the latter case,

! 1 — 2 —1 !
eyl < MM I DM =G 2) fm= 1y ml g,
gl 2 j—1 !
which shows (9.21). O

Theorem 9.4.3. Let a ¢ Z_ and let k € N be the smallest integer
such that —(k+1) < o. Then, f € D'™! has quasiasymptotic behavior
flex) ~ e“Lie)(c_a® + cya?)  in D™ gs e — 0F (9.22)

if and only if there exist functions f,, € L*(=1,1), m > k, that are
continuous on [—1,1]\ {0} such that

F= S on (-1 ) (923
m=k

the limits

lim @)
a=0% 2| L(|z])’
exist, and furthermore, for some £ > 0 (for any ¢ > 0) there is a
C = Cy > 0 such that

fnlo)] < c€—|o:|a+mL<|x|>, 0< o <1, (0.25)

+ _
Cp, =

m =k, (9.24)

for all m = k. Moreover, the relation (9.8) must hold.
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Proof. The proof of sufficiency can be done analogously as in The-
orem 9.3.6. Hence we are only left with necessity. If we can show
the theorem for degree larger than —1, then the full structure theo-
rem will follow from Lemma 9.3.3(7), hence we assume that o > —1
(and thus & = 0). If f has quasiasymptotic behavior with respect
to 5"‘L( ), then f(z) := f(1/z) has quasiasymptotic behavior in
DIMI(R\ {0}) with respect to A*L(\), where L(z) := L(1/z). Then
by Theorem 9.3.6 or Theorem 9.3.7 if o € Z, and keeping in mind our
observations from Section 9.3.4, there exist continuous f,, in R\ {0},
m > 0, that satisfy (9.5), (9.6) and (9.7). Consider now for any
m =0,

_ Z (_1)k+mck’mﬁ(1/x)xm+k7
k=m

where the ¢, are as in Lemma 9.4.2. By (9.7) and (9.21) it follows
that for some ¢ > 0 (for any ¢ > 0) and any 0 < |z| < 1,

k+mck fk(l/iﬁ) m—+k

| fm (2

; k!
Z —dt !xla RACHE

40)m
CCZ,LE(M)

m

| L)),

o0
Cle|*+™ L (|])— L
m k=m

by (9.2). This not only shows existence and continuity in [—1, 1]\ {0},
but also shows that the f,, satisfy (9.25). By (9.6) and dominated
convergence, it also follows that for these functions the limits (9.24)
exist. Now take any ¢ € DIMI(R\ {0}) with supp¢ < (—1,1) and set

Y(x) := ¢(1/z)x~2. Then,
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Since for any k € N, by Lemma 9.4.2,
k 0
~ oM™ (1/x
2 Ck,mf fk(m)ﬁdx
ee}

k o
= Y ewn [ RUo @

in D'MI((~1,1)\ {0}). Now as @ > —1, the latter sum is an element
of D'™1 50 that there is some g € £™] with supp g < {0} for which

=21+,

m=0

in D/[[j\ﬁ]. Since we have already shown sufficiency, the sum has quasi-
asymptotics with respect to e*L(g), implying that the same holds for
g. As supp g < {0}, its Fourier-Laplace transform g is an entire func-
tion of exponential type 0. By the quasiasymptotic behavior of g,
it follows that g(r) = o(r?) as |r| — oo. By [12, Theorem 10.2.11,
p. 183]. we see that g(z) = —4n%ay2? + (2miar)z + ag for certain
a; €C,i=0,1,2. Whence g = a26® + a6 + ayd. However the lat-
ter function can only have quasiasymptotic behavior at the origin of
degree « if and only if ag = a1 = a, = 0, so we may conclude g must
be identically 0 and this completes the proof of the theorem. O

The structure for negative integral degree can be described as
follows.

Theorem 9.4.4. Let f € D™ qnd k € Z,. Then, f has quasi-
asymptotic behavior

flex) ~ %:)(75(1“1)(@ +Bz7F)  in D™ gse -0t (9.26)
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if and only if there are continuous functions F' and f,, on [—1,1]\ {0},
m =k, such that

f=F®4 3 pom on (—1,1), (9.27)

the limits ; ( )
£ iy ) > k 9.28
R 7 () (9:28)

exist, for some ¢ > 0 (for any ¢ > 0) there exists C' = Cy > 0 such
that

gm

() < Ol *L(al),  0<lal<1, (929)

for all m =k, and for any a > 0 the limit

lim F(ax) — F(—x)
z—0+t L(I)

= +csloga (9.30)

exists. In this case,
0
y=c+ > (¢, —cn) and B=(-1)F(k—1)lc.  (9.31)
m=k
Proof. For the sufficiency, by applying Theorem 9.4.3 to the series
PN £ one deduces
flex) — F®(ex) ~ (v — ¢)o® Y (ex), in D™ as ¢ — 0%,

In view of [137, Theorem 5.3] (see also [114, Theorem 2.33, p. 149]),
we have

F® (ex) ~ L(e)(cié®V(ex) + Bex)™"), inD ase — 0",

which yields the result.

For the necessity, we may assume that k£ = 1 by Lemma 9.3.3(7).
We now apply Theorem 9.4.3 to xz f(x). Using the same reasoning as
in the proof of Theorem 9.3.7, one can write f(x) = fo + >, o)
on (—1,1)\ {0}, with continuous functions fy, fi,... on [—1,1]\ {0}
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such that the limits (9.28) exist including the case m = 0. Applying
again Theorem 9.4.3 to the series Z (m 2 , we deduce that fy
has an extension gg to R with quasmsymptotm behavior of order —1
with respect to L(e). Let F' be a first order primitive of go. Due to
the fact that F’ = f; off the origin and the quasiasymptotic behavior
of F’, it is clear that F' is integrable at the origin and that it must
have the form

F(z) =—-H (J folt dt+C+>+H <J fo(t dt+C)

Similarly as in the proof of Theorem 9.3.7, we conclude that
o _q Fx) — F(-x)
= m =S

must exist by comparing with the quasiasymptotics of go. Hence, for
each a > 0

. F(ax) — F(—x)

1 -
xl»r(r)l‘*' L(ZL’) z—0+ L f fO

= + ¢ loga.

]

Our method also yields:

Theorem 9.4.5. Suppose that fo € D'™1(0,0) has quasiasymptotic
behavior

folex) ~ ce®L(e)x™  in D'™M(0, oo) ase— 0",

Then fy admits extensions to R. Let f € D'™I be any of such exten-
sions with support in [0,0). Then:

(1) If o ¢ Z_, then there is g € D'™] with supp g < {0} such that
flex) — glex) ~ ce“L(e)zs  in D™ g5 ¢ — 0*,
(17) If « = —k € Z_, then there are a function b satisfying (9.18) as

x — 0% for each a > 0 and an ultradistribution g € D'™] with
supp g < {0} such that

fen) = CL(;?) Py (H(:z:)) YO s () 1 (o) + 0 (L(@)

€ xk ek gk

in D™ g5 e — 0F.
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We conclude this section with an open problem.

Open problem 9.4.6. Provide structural theorems for the quasi-
asymptotic behavior of (ultra-)distributions, both at infinity and the
origin, for dimension 2 or higher. Note that our previous techniques,
which mainly consist out of a suitable change of variables, do not
work in general if d > 2. One possibility for solving this problem
could be via an application of spherical representations, where the
work of Drozhzhinov and Zav’yalov [53] is of relevance (we also refer
to [147] for the ultradistributional case). Another possibility would
be to characterize the dual of the space of all ultradistributions with
quasiasymptotic behavior of degree o and employ similar techniques
as in Chapter 6.

9.5 Extension of quasiasymptotic behav-
ior

As an application of our structural theorems, we now discuss some
other extension results for quasiasymptotics of ultradistributions. For
distributions, the connection between tempered distributions and the
quasiasymptotic behavior has been extensively studied [114, 115, 135,
137, 154]. The following properties are well known:

1. If f € D' has quasiasymptotic behavior at infinity, then f € &’
and it has the same quasiasymptotic behavior in &’.

2. If f € &' has quasiasymptotic behavior at the origin in D', then
it has the same quasiasymptotic behavior in §’.

Our goal here is to obtain ultradistributional analogs of these results.
For this, we introduce new ultradistribution spaces Z'™] who gen-
eralize 8’ however differ from the canonical tempered ultradistribu-
tions. They resemble (in the Roumieu case) the spaces we considered
in Chapter 5, however exhibit interference in their time-frequency de-
cay (see Open Problem 5.4.7). The spaces are defined as follows. For
any n € N and ¢ > 0, Z* denotes the Banach space of all p € C*®
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for which the norm

(L + Ja) ™™ ()]
M, (= SUup
||SD||Z” zeR,meN émMm

is finite. Then we consider the following locally convex spaces

ZM = lim 2, 2 = lim Z),
{—0+ £—00

and finally we define
zM] lim Z7[LM]-
neN
The aim of this section is to show that quasiasymptotic behavior in
D'IM] naturally extends to quasiasymptotic behavior in Z/™]. Let us
first consider the case at inﬁnity

Theorem 9.5.1. If f € D'™] has quasiasymptotic behavior with re-
spect to AN*L(\), with L slowly varying at infinity and o € R, then
fe 2™ and it has the same quasiasymptotic behavior in Z'™M],

Proof. Let k € N be the smallest natural number such that —(k+1) <
a. Then by either Theorem 9.3.6 or Theorem 9.3.7 we find for some
¢ > 0 (for any ¢ > 0) a C = C; > 0 such that (9.5) and (9.7)
hold. Wet set n = [a + 1]. Employing Potter s estimate (8.6) (with
e = XA = 1), we find that for any ¢ € ZIM and any m > k we have

[

<O (14 [2))™*"t™ ()| d
< H@!\zm (RO)™,

and as hf may be chosen freely, it follows that this is absolutely

summable over m > k. Consequently, f = >"_, Fim) gz,

For the quasiasymptotic behavior of f, the case where « is not a
negative integer can be shown in a similar fashion as the sufficiency
proof of Theorem 9.3.6. For a = —k € Z_, it is clear that we only
need to treat the case k = 1, as the general case then automatically
follows by differentiating. By Theorem 9.3.7, there exist continuous
functions f,,, m € N, satisfying (9.12), (9.13), and (9.14) such that

f=to+ 5 15
m=1
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The infinite sum in the previous identity clearly has a primitive with
quasiasymptotic behavior with respect to L()), so that its quasi-
asymptotic behavior may be extended to the whole of Z/IM! and
in turn its derivative Zzzl f&m) has quasiasymptotic behavior with
respect to A™'L(A) in 21 By (9.12) and (9.13), fo has quasiasymp-
totic behavior with respect A™'L()) in D', hence, by [135, Remark
3.1] (see also [114, Theorem 2.41, p. 158]), it has the same quasi-
asymptotic behavior in &', hence certainly also in Z/I™]. Therefore,
the same also holds for f. O]

Let us now turn our attention to the case at the origin. The next
lemma proves that the quasiasymptotic at the origin in Z'™! is a
local property.

Lemma 9.5.2. Let L be a slowly varying function at the origin and
a € R. Suppose fi, fo € Z™1 are such that for some a > 0, f1 and
fa coincide on (—a,a). Suppose that fi(cx) ~ e*L(e)g(x) in Z'M]
as € — 0%, then, also fy(cx) ~ e*L(e)g(x) in Z'M],

Proof. We only show the Beurling case; the Roumieu case can be
shown analogously by employing a projective description for Z{M}
obtained similarly as in [24]. It suffices to show that if f e Z'(M)
vanishes near the origin, then f(cz) ~ ™ -0 for all N € N. Let f be
as described, then there exist 0 < R <1, n e N, ,C > 0 such that

2|t m) (o
sy <0 sp TG

ez,
|z|=R,meN gmMm , (b

Taking é(z) = e Yp(x/c) with p € ZM) and arbitrary 0 < ¢ < 1 we
have for N > n

o o)
e |[{f(ex), )| lm;;}’%eN eN+mALgm L

N+m+1], ,(m)
B sl )
|z|=R/e,meN gmMm

— 0,

ase — 0T, O]
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Theorem 9.5.3. Suppose f € Z'™] has quasiasymptotic behavior in
DM with respect to e*L(e), with L slowly varying at the origin and
a € R, then f has the same quasiasymptotic behavior in Z'™].

Proof. By Lemma 9.5.2 we may assume that supp f < [—1,1]. Sup-
pose first that o ¢ Z_ and let k € N be the smallest integer such that
—(k+1) < a. From Theorem 9.4.3 we find continuous functions f,, on
[1,1]\ {0}, satisfying (9.23), (9.24) and (9.25). Take any ¢ € ZMI
and decompose it as 1 = ¥_ 4.+, where supp ¢ < (-0, —1], 9.
has compact support and supp ¢, < [1,00). Then by the hypothesis

. f( ) =c, (% T c_{z® €
lim <€O‘L( ) wc( )>_ +< +77vbc( )>+ *< 7a¢c( >>

e—0+

It suffices to show that the same limit holds for 1 placed instead of
.. As the two cases are symmetrical, we only look at ¢, . It follows
from (9.9), (9.25) and the Lebesgue dominated convergence theorem
that for any m > k,

] e)
Jféi< r() Ve )>

o (L) ( fm(ew) ki, (m)
=T ((5x)a+mL(5x)>x Vi)

=ch LOO 2%y (v)dx

Then another application of dominated convergence shows that

. flex a
5141>r(l]1+<€a([/( ))71/)"!‘( ) = +<w+7¢+(l‘)>'
This shows the case for a ¢ Z_. The case of negative integral degree
can then be done as in the proof of [137, Theorem 6.1]. O

We have thus shown that, similar to the distributional case, there
are extension principles for the quasiasymptotic behavior of ultra-
distributions. However, the space of extension differs to that of the
tempered ultradistributions. As quasiasymptotic behavior over the
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Gelfand-Shilov spaces is of great significance for applications, its the-
oretical study becomes of interest to us. In Chapter 11, we will
determine when a tempered ultradistributions has quasiasymptotic
behavior via its Laplace transform. Structural theorems are at the
moment of writing still lacking. Whence the following interesting
open problem.

Open problem 9.5.4. Provide structural theorems for the quasi-
asymptotic behavior, both at infinity and the origin, of tempered
ultradistributions.



Chapter 10

The moment asymptotic
expansion

10.1 Introduction

Another important approach to asymptotic behavior related to di-
lation is the so-called moment asymptotic expansion (MAE), whose
properties have been extensively investigated by Estrada and Kan-
wal [57, 58]. Some recent contributions can be found in [124, 153].
A generalized function f is said to satisfy the MAE if there is a cer-
tain multi-sequence {fiq }qend, called the moments of f, such that the
following asymptotic expansion holds

1)l 5@ (g
fO)~ Y ( %A“j'id @ L (10.1)

aeNd

As is shown in the monograph [58], the MAE supplies a unified ap-
proach to several aspects of asymptotic analysis and its applications.
Interestingly, Estrada characterized [56] the largest space of distri-
butions where the MAE holds as the dual of the space of so-called
GLS symbols [68]. We will consider in this chapter the MAE for
ultradistributions.

The chapter is organized as follows. We start in Section 10.2
with a discussion on the structure of asymptotic boundedness for
ultradistributions. Using the same techniques as in Chapter 9, we

177
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obtain characterizations for both S-asymptotic and quasiasymptotic
boundedness. In Section 10.3 we provide a counterpart of Estrada’s
full characterization in the one-dimensional case. We shall also study
a uniform version of (10.1) in Section 10.4, which we call the UMAE.
Our considerations naturally lead us to introduce the ultradistribu-
tion spaces '™ (R) and IC/[%[] (R%), which are intimately connected
with the MAE and UMAE, respectively. We note that in even di-
mension our space IC/[[N]\{] (R2?) arises as the dual of one of the spaces
of symbols of ‘infinite order’ pseudo-differential operators from [118].

10.2 Asymptotic boundedness

We provide in this section structural theorems for the bounded vari-
ants of the asymptotic behavior considered in Chapter 9.

10.2.1 S-asymptotic boundedness

We aim to study the structure of those ultradistributions that satisfy
f(x+h)=0w(h)), heW, inDMRY, (10.2)

where W < R? is simply an unbounded set and w is a positive func-
tion. Explicitly this means that for each test function ¢ € DIMI(R?),

p FEER @) (D) g

hew w(h) new  w(h)

We will impose the following mild regularity condition on the gauge
function w,

;I)e[/oo

sup foc(RY). (10.4)

zeRd u)(az)
To find structural theorems for the behavior (10.2) one may follow
the proof of Theorem 9.2.2 and apply the structural theorems found
for the space BL[M], i.e. Theorem 6.4.12. However, we present here an
alternative proof, based on a technique by Goémez-Collado that she
applied to obtain various characterizations of the space of bounded
ultradistributions in [63].
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Theorem 10.2.1. Let W < R? be an unbounded set and let w
be a positive measurable function on R? that satisfies (10.4). Sup-
pose (M.1), (M.2), and (M.3)" hold. Then, an ultradistribution
f e D'WMI(RY) satisfies (10.2) if and only if for each R > 0 there
are continuous functions {fu}aene defined on Wg such that for some
>0 (for each £ > 0) there exists Cy > 0 for which the bounds

fled

|fa(z)] < C’gﬁw(m), reWg, aeN?, (10.5)
hold and
f=> in W, (10.6)
aeNd

Proof. The sufficiency of the conditions is easily verified. To show the
necessity, similar as in the proof of Theorem 9.2.2, we may assume
W = R4. Also, by Lemma 6.4.11, it suffices to show (10.5) and (10.6)
hold for measurable functions f,. Hence, suppose {f(z+h)/w(h) : h e
R4} is a bounded subset of D'IMI(R). Let 1 € D{ﬁﬁ]’l]d be such that

> ez v(x—n) =1 for each z € RY. We have that {¢f(- +n)/w(n) :
n € Z} is now a bounded set in the space &MI(RY). Using (M.2),
we obtain the existence of some (¢,) € [R] such that for some C' > 0
and all n € Z¢ and ¢ € EMI(RY)

[(f, Tabg) | <C ) L“’ (]7\2 J[_l » 16 ()| d, (10.7)

aeNd

where in the Roumieu case we have used the projective description of
EMY(RY). We consider the Banach space X of all p € C°(R?) such
that

_ (@ ()| 212)
el = X | e @)l de < =

oeNd
Let ¢ € DIMI(R?) be arbitrary. Applying (10.7) to each ¢(r) =
©(x + n) and using the hypothesis (10.4), we obtain, with ¢’ =
CsupxeRd, ye[—1,1]¢ w(x + y)/w(x),

[(Foor < D5 1{f(a) bz —n)p()) | < 3C |l -

nezd
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By using the Hahn-Banach theorem, we may then extend f to an
element of X’. Embedding X into L'(N? x R?, du) via the isometry
jlo)(a,z) = (=)@ (x), where the measure is given by dy =
w(z)/(LoaM,)dadz with da the natural counting measure on N%, we
can apply the Hahn-Banach theorem to get the representation (10.6)
with measurable functions f, on R that satisfy bounds |f,(x)| <
C"w(x)/(LoM,). This yields already the result in the Beurling case.
In the Roumieu case we finally employ Lemma 4.2.12(i7) to obtain
the bounds (10.5) for each ¢ > 0 and some Cy > 0. O

In applications it is very useful to combine Theorem 10.2.1 with
the ensuing proposition, which provides conditions under which one
might essentially apply Theorem 10.2.1 with a function w that is just
defined on the set W.

Proposition 10.2.2. Let W < R? be a closed convex set. Any posi-
tive function w on W satisfying
+h
(VR > 0) sup wlz +h) < (10.8)

z, x+heW W(w)
|h|<R

can be extended to a positive function on R satisfying (10.4). In
addition, if w is measurable (or continuous), the extension can be
chosen measurable (or continuous) as well.

Proof. For any x € R? we denote by ¥ € W the (unique in view
of convexity) closest point to x in W. Then, we set @(z) := w(T).
Since x +— I is continuous, @ inherits measurability or continuity if
w has the property. We now verify (10.4) for @. Let R > 0 and let
Cr be an upper bound for w(t + y)/w(y), where y,t +y € W and
t e B(0,R). Let z € R? and h € B(0, R) be arbitrary. Consider the
points z, x + h, T and z+ h. By the obtuse angle criterion, the angles
defined by the line segments [x, %,z + h] and [x + h,x + h, Z] are at
least 7/2, whence |T — r+h| < |z — (x + h)] < R. Tt then follows
that @(z + h) < Cri(x), as required. O

If the weight sequence satisfies stronger assumption, one can drop
any regularity assumption on w, as stated in the next result.
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Theorem 10.2.3. Let W < R? be an unbounded set and let w be a
positive function on W. Suppose that (M.1), (M.2), and (M.3) hold.
An ultradistribution f € D'™I(R?) satisfies (10.2) if and only if for
each R > 0 there are continuous functions {fa}aene defined on Wg
such that for some ¢ > 0 (for each { > 0) there exists Cy > 0 such
that

lal

|falx + Rh)| < C’gﬁw(m’), vreW, |h|<R, aeN?  (10.9)

and the representation (10.6) holds.

Proof. The proof is similar to that of [114, Theorem 1.10, p. 46], but
we provide some simplifications. The converse is easy to show, so
we concentrate on showing the necessity of the conditions for the S-
asymptotic boundedness relation (10.2). Let R > 0. We consider the
linear mapping A : DIMI(R?) — X, with values in the Banach space

={g: W = C: sup,eyy |9(z)|/w(z) < o0}, given by Ap = f+p. It
follows from the closed graph theorem that A is continuous. Conse-
quently, we obtain from the Banach-Steinhaus theorem the existence

of (¢,) € [R] such that A e L(DMZ’”1 ,X) and f = ¢ € X for each

B 2R)
Q€ DMZI’ the set {T,p : |z| < R} is

B02R)" Since for each ¢ € Df

B(0,R)

compact in D we conclude that for any such a ¢ the function

o 2R)
f * ¢ is continuous on Wx and

sup (fro)zt+h)

heW, |z|<R w(h)

We now employ the parametrix method. As shown in [79, p. 199],

there is an ultradifferential operator P(D) of class [M] that admits
[M]

a 'D ( ) -parametrix, namely, for which there are x € Dj B(0.R) and
© € D (0, ;) such that § = P(D)yp + x. Setting fo = f = x and

g = [ ¢, we obtain the decomposition f = P(D)g + fy, which
in particular establishes the representation (10.6) with functions f,
satisfying the bounds (10.9). O
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10.2.2 Quasiasymptotic boundedness

Similar as in Chapter 9, our results on the S-asymptotic boundedness
of ultradistributions may be used to obtain structural theorems for
ultradistributions being quasiasymptotically bounded in dimension
1. Let p be a positive function defined on an interval of the form
[Ao,00). We are interested in the relation

fO2) = 0(p(N), A

in ultradistribution spaces. The analog of the condition (10.8) for a
function p in this multiplicative setting is being O-regularly varying
(at infinity) [10, p. 65]. The latter means (cf. [10, Theorem 2.0.4,
p. 64]) that p is measurable and for each R > 1

limsup sup
z—0  Ae[R~1,R] p(N)

The next proposition can be established with the aid of Theorem
10.2.1 and Theorem 10.2.3 via an exponential change of variables as
in the proof of Lemma 9.3.5; we leave its verification to the reader.

Proposition 10.2.4. Let f € D''™MI(R) and p be a positive function.
Suppose that

fQx) = 0(p(A),  as A —
in D'™MI(R\ {0}).
(i) If (M.1), (M.2)', and (M.3)" hold and p is O-regularly varying

at infinity, then there are continuous functions f,, and xy > 0
such that

f= i flm) on R\ [—zo, zo] (10.10)
m=0

and for some £ > 0 (for any ¢ > 0) there is Cy > 0 such that

m

!/
| fm(2)] < CgM—|x|mp(|x|), |z| > zg, meN.  (10.11)
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(17) If (M.1), (M.2), and (M.3) hold, for each R > 1 one can find
xo and continuous functions such that f has the representation
(10.10), where the f,, satisfy the bounds

gm
[fmlaw)] < Cogrle™p(l2l),  |a] > @o,a € [R7, R] (10.12)

for all m € N and some £ > 0 (for any { > 0).

Remark 10.2.5. Clearly, (10.11) implies (10.12) for an O-regularly
varying function p. Assume (M.1), (M.2); and (M.3)" hold. Notice
the representations (10.10) with bounds (10.12) are also sufficient
to yield f(Azx) = O(p()\)) as A — oo in D'MI(R\ {0}), so that the
converses of both parts (i) and (ii) of Proposition 10.2.4 are valid.

For the remainder of this section we are interested in describing
quasiasymptotic boundedness in the full space D'IM] (R). For it, we
need to impose stronger variation assumptions on the gauge function
p. We call a positive measurable function O-slowly varying at infintiy
if for each € > 0 there are C;, c., R. > 0 such that

C L(A\x)
A L(x)

<C.X, A=1,z>R.. (10.13)

In the terminology from [10] this means that the upper and lower
Matuszewska indices of L are both equal to 0. Thus, a function of
the form p(\) = A2L(\) is an O-reqularly varying function with both
upper and lower Matuszewska indices equal to g € R.

Employing the same technique! as in Chapter 9, where we simply
need to exchange Lemma 9.3.5 with Proposition 10.2.4, leads to two
ensuing structural theorems for quasiasymptotic boundedness.

Theorem 10.2.6. Assume (M.1), (M.2)', and (M.3)" hold. Let
f e DIMIR), a € R, and let L € L* [0,0) be O-slowly varying

loc

1One still needs an O-version of Lemma 9.3.3; however, careful inspection in
the arguments given in [114, Subsection 2.10.2 and Proposition 2.17] shows that
having the inequalities (10.13) is all one needs to establish the validity of such an
O-version.
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at infinity. Let k be the smallest positive integer such that —k < «.
Then,

fOx) = O (A\“L(N)) as A — oo in D'MI(R) (10.14)
holds if and only if there are continuous functions f,, on R such that
o0
f= 2 £
m=k—1

for some € > 0 (for any £ > 0) there exists Cy > 0 such that

gm
Fn@)| < Cx (U )™ Lijal),  m>k=1,  (1015)

and additionally (only) when o = —k
fim1(z)dz = O (L(z)),  z— 0. (10.16)

A function L is O-regularly varying at the origin if L(1/z) is O-
regularly varying at infinity.
Theorem 10.2.7. Assume (M.1), (M.2), and (M.3). Let f €
DIMIR), a € R, and let L be O-slowly varying at the origin. Let

k be the smallest positive integer such that —k < «. Then, we have
that

flex) = O (e L(e)) as e — 0% in D'MI(R) (10.17)

holds if and only if there exist xqg > 0 and continuous functions F
and fp, on [—xo, o]\ {0}, m =k, such that

o]
flw)=F® + > flm, on (—o, o),
m=k

for some € > 0 (for any € > 0) there exists Cy > 0 such that

‘gm
[fm(@)] < Cog=la| ™ L(l2]), 0 < [a] < @,
M,

for allm =k, and F = 0 when o > —k while if « = —k the function
F satisfies, for each a > 0, the bounds

F(ax) — F(—z) = O,(L(x)), r— 0",
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We end this section with a brief discussion on the extension prop-
erties of quasiasymptotic boundedness. Let ZM] (R) be the space
of ultradifferentiable functions introduced in Section 9.3.4. Without
much alteration of the proofs shown in Section 9.3.4 one finds.

Proposition 10.2.8. Assume (M.1), (M.2)", (M.3)".

(2) If (10.14) holds with an O-regularly varying function at infinity
L, then f e Z'MI(R) and the quasiasymptotic boundedness
relation (10.14) actually holds true in Z'™I(R).

(id) If f e Z'™MI(R) and (10.17) holds with an O-regularly vary-
ing function at the origin L, then (10.17) is actually valid in
Z'MI(R).

We now obtain the following characterization of Z'™I(R).

Theorem 10.2.9. An ultradistribution f € D'™I(R) belongs to the
space Z'™I(R) if and only if there is some a € R such that f(\x) =
O(\*) as A — oo in D'MI(R).

Proof. As any constant function is O-slowly varying, sufficiency fol-
lows immediately from Proposition 10.2.8. Suppose now that f €

Z'MI(R). Then there is some ¢ € N such that f e (Ztgjfl])/- In par-

ticular, there is an ¢ > 0 such that (for any ¢ > 0 we have that) for
some C'= Cy > 0, any R > 1 and all ¢ € DMI(B(0, R)):
C
[{f(A2), p(@)) | < < llo(@/A)l| 51
1

g+1+m|, ,(m)
B S e i Pl G2
A zeR,meN (/\E)mMm

< C2R)™ " |9l pasesn A?

where in the Roumieu case ¢ is fixed by ¢. Whence we may conclude
that f(Ar) = O(\?) as A — oo in D'IMI(R). O

10.3 The moment asymptotic expansion

This section is devoted to the study of the moment asymptotic expan-
sion (10.1), which in general we interpret in the sense of the following
definition.
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Definition 10.3.1. Let X be a IcHs of smooth functions provided
with continuous actions of the dilation operators and the Dirac delta
and all its partial derivatives. An element f € X’ is said to satisfy
the moment asymptotic expansion (MAE) in X' if there are pu, € C,
a € N4, called its moments, such that for any ¢ € X and k € N we
have

@(0 )
Ha®p
<f< Z al)\|a|+d +0 ()\k+d) ) A — 0. (1018)

|a| <k

Similarly as in the case of compactly supported distributions [57,
58] or analytic functionals [124], one can show that any compactly
supported ultradistribution satisfies the MAE in &MI(RY) (we will
actually state a stronger result in Proposition 10.4.3 below). Nat-
urally, as in the distributional case, we expect the MAE to be also
valid in larger ultradistribution spaces. In dimension 1, Estrada gave
n [56, Theorem 7.1] (cf. [58]) a full characterization of the largest
distribution space where the moment asymptotic expansion holds; in
fact, he showed that f € D'(R) satisfies the MAE (in D’(R)) if and
only if f € K'(R) (and the MAE holds in this space), where K'(R) is
the dual of the so-called space of GLS symbols of pseudodifferential
operators [68]. One of our goals here is to give an ultradistributional
counterpart of Estrada’s result.

We start by introducing an ultradistributional version of KC(R?).
For each ¢ € N and ¢ > 0 we denote by KC}"*(R?) the Banach space
of all smooth functions ¢ for which the norm

(1 + |zl ()]
el = s s = o,

is finite. From this we construct the spaces

KM(RY = lim C4RY),  KMRY) = lim 4R,

{—0+ {—0

and finally the test function space

KMI(RY) = lim CIM(RY).

qeN



10.3. The moment asymptotic expansion 187

It should be noticed that this is space is never trivial; in fact, M1 (R9)
contains the space of polynomials.

Our first important result in this subsection asserts that the ele-
ments of K'™I(R?) automatically satisfy the MAE. Interestingly, no
restriction on the weight sequence M is needed to achieve this.

Theorem 10.3.2. Any element f € K'MI(R?) satisfies the MAE in
K'™MIRY) and its moments are exactly o, = (f(z),2*), a € N?.

Proof. Let f e K'MI(R?). We keep A > 1 and fix k € N. Take

any arbitrary ¢ € IC([]M] (R%), where we may assume ¢ > k. Consider
the (k — 1)th order Taylor polynomial of ¢ at the origin, that is,
or(r) == X0 2 9 (0)2* /al. Since ¢y € KIMI(RY),

(@)
(F0a)pla)) = 3 L)

|o| <k

+ {(f(Az), p(2) — pr(2)) -

Thus, we need to show (f(\z),o(z) — @r(z)) = O(1/A\**4). This
bound does not require any uniformity in k; therefore, we may just
assume that ¢(®(0) = 0 for any |a| < k so that our problem reduces

to estimate | (f(Az),¢(z))|. There exists some ¢ = ¢ > 0 (some
{ = {4 > 0) such that ¢ € L}*(R?) and

171 g gy 4 Ja])e-aj
iy (L )]

|<f(/\.l’), QD("L‘)>| < ¢ N e )\\a|€|o¢|Ma

If o] = ¢, we have

(L + Jz) 1o (@/N)]

sup

R Al glelpg,
IS S S € e R e I C2) ]
AN T 7] (oM,
lpll e

We further consider |a| < ¢. When |z| = A, obviously

1+ |z
<
A+ |z

DN | —
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and we obtain

(L+ [aDlealp@ @/ N _ 12l

sup < G

s Aelglal pr

We are left with the case |z| < A and |a| < ¢. If & < |a] < ¢ we get

1 led=a]p(@) (/) 1 @) (/X o] car.e
R T WO LI o L <17
2| <A Malglel v, A o< (lel M, \
Finally, for |a| < k, the Taylor formula yields
1 la|—q| (@)
oy (L JD 1)
o NETZIYA
(1+ |z))*1= G [P (Eapn)] )P
S S TNeldeiN, Z B—a)l A
|ﬁ| k?
Cr
<2055 e
The proof is now complete. n

Next, we describe the structure of the elements of K'™MI(R?). We
first need the ensuing lemma.

Lemma 10.3.3. Letw : RY — R be such that sup,.pa w(z+-)/w(x) €
L (RY). There exists a k € Z. , independent of w, such that for any

loc

p € [1,0] there is a C = C, > 0 so that for each f € L1/ there exist
fi € C(RY), j € {0,1}, such that

f=20f1+fo

and
;@) < Clffullpw(z), zeRY je{0,1}.

Proof. Using Schwartz’s parametrix method [125] we find a k € Z,
such that § = AFy; + xo where xo € D(R?) and x; is a compactly
supported continuous function. Take any symmetric compact subset
K € RY containing supp xo and suppy: and let Cx > 0 be such
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that sup,c;cw(z +y) < Cxw(r). Suppose f is a function for which
f/w e LP(R?) with p € [1,00] and let ¢ = p/(p — 1). By Hoélder’s
inequality we have

L0l oyt |\f ;’ v < Cic Isllgo 1/l

for j € {0,1}. The claim now follows by setting f; = f * x; and
Cp = Cx max(|[xoll 1q » X1l 10)- O

Going from here we obtain the following structural theorem. We
point out that the converse of Proposition 10.3.4 holds uncondition-
ally, that is, without having to impose any assumption on M.

Proposition 10.3.4. Let M satisfy (M.1) and (M.2). Let f €
K'™MIRY). Then, given any q¢ € N one can find a multi-sequence
of continuous functions fo = f,a € C(R?) such that

f=> 1 (10.19)

aeNd

and for some £ > 0 (for any £ > 0) there is C' = Cyy > 0 such that

gla\
[fal@)] < O (1+ D=1 reR? ae N (10.20)

[0}

Proof. We only show the Roumieu case, the proof of the Beurling
case is standard. For any r € [1,00) and some ¢,q > 0 we denote by
K%’f](Rd) the Banach space of all ¢ € C*(R?) such that

r 1/r
(1 + |- ])el=ap@]
||90||icf;fq = (Z ( Y] < .

aeNd

We also write lC%;fiq(Rd) = KY(R?). For any r € [1,00] and j € Z,
we put X, ; = IC%JJ Then, using Jensen’s inequality and Sobolev’s
theorem, one may easily verify that for any r € [1, 0|

KO RY) = lim X,

Jj—©
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as locally convex spaces. Next, for any r € (1,00) and j € Z, we
consider the Banach space Y, ; of all sequences of functions (¢q)aend
such that

N TN A
I(ally., = (Z (‘“ el ) ) .

aeNd

Note that both X, ; and Y, ; are reflexive. The mapping p,; : X, ; —
Y, i, = ((—1)p@), is a topological embedding. We set Z,; =
Y, i/pri(X. ), then Z,; is a reflexive Banach space. We denote by
7j . Y, ; — Z,; the quotient mapping. The natural linking mappings
Z,; — Z,j41 are injective since p,. j11(X,j11)NY,; = pri(X;;). Con-
sider the following injective inductive sequence of short topologically
exact sequences

Pr,1 Tr,1
0— X1 — Y1 —Z,; —0

b

Pr,2 Tr,2
00— Xr,2 — Yr,2 — Zr,2 —0

b

The linking mappings of the inductive spectra (X, ;)jez,, (Yr))jez,
and (Z, ;) ez, are weakly compact as continuous linear mappings be-
tween reflexive Banach spaces. In particular, these inductive spectra
are regular [80, Lemma 3]. One may easily verify the embedding
Xo,j = Xooj1 is compact for any j € Z,, whence X = li_n)ljEZ+ Xoo j
is a (DFS)-space. Consequently, X is Montel. Applying the dual
Mittag Leffler theorem 2.2.2, we have that p, = li_r)njeZ+ Prj i X —

Y, = li_I)nje Y, ; is a topological embedding. From here the struc-

Ly
ture of K'M}(R?) follows easily from the Hahn-Banach theorem and
Lemma 10.3.3. [l

Notice that when (M.1) and (M.3)" hold, then one has the con-
tinuous and dense inclusions DIMI(R?) < KCIMI(RY) « gIMI(RY), 50
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that in particular K'M(R?) < D'MI(R?). Upon combining Propo-
sition 10.2.4(¢) with Theorem 10.3.2, one obtains the following com-
plete characterization of those one-dimensional ultradistributions f €
D'IMI(RY) satisfying the MAE:

Theorem 10.3.5. Suppose M satisfies (M.1), (M.2)", and (M.3)".
An ultradistribution f € D'™MI(R) satisfies the MAE in D'™MI(R) if
and only if f e K'™I(R).

Proof If f satisfies the MAE, then in particular f(Ax) = O(A79) in
D'MI(R\ {0}) for each ¢ € N. Hence, for a fixed but arbitrary ¢ € N,
using Proposmon 10.2.4(7) and Theorem 8.2.1, we can write f =
PO fim i 1t MI(R) with f,, = f,.m € C(R) such that for some (for
each) ¢ > 0 they fulfil bounds f,,(z) = Oy ,(¢™ (|| + 1)™ 72/ M,,).
Clearly, this representation yields f € IC;[M] (R). Since ¢ was arbi-
trary, we conclude that f e K'™I(R). For the converse, Theorem
10.3.2 shows that a stronger conclusion actually holds. O]

Remark 10.3.6. In dimension d = 1, this argument gives an alter-
native way for proving Proposition 10.3.4 in the non-quasianalytic
case without having to resort in the dual Mittag-LefHler theorem.

Evidently, for higher dimensions we now get the following inter-
esting problem.

Open problem 10.3.7. Show whether or not Theorem 10.3.5 holds
for dimension d > 2. A possible avenue to solve this would be to find
structural theorems for multidimensional quasiasymptotic bounded-
ness, see also Open Problem 9.4.6.

10.4 The uniform moment asymptotic ex-
pansion

The bound in (10.18) is not uniform in general, but in the ultradis-
tributional case it is natural to expect that some sort of uniformity
could be present. For instance, we see below in Proposition 10.4.3
that this is the case for compactly supported ultradistributions. Let
us introduce the following uniform variant of the MAE.
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Definition 10.4.1. Let A be a weight sequence and let X be a lcHs
of smooth functions provided with continuous actions of the dilation
operators and the Dirac delta and all its partial derivatives. An
element f € X’ satisfies the uniform moment asymptotic expansion
(UMAE) in X' with respect to [A] if there are u, € C, o € N¢, such
that for any ¢ € X and each £ > 0 (for some ¢ = ¢, > 0) the
asymptotic formula

2 @(0 kA
(f0a). (o) = 3 Lertl o (S

|a| <k

>, A — oo, (10.21)

holds uniformly for k£ € N.

Fix three weight sequences M, N and A for the remainder of this
section. We now introduce ultradistribution spaces that are closely
related to the UMAE. Given ¢,/ > 0 we denote by IC%’(;(R"Z) the
Banach space of all p € C*(R?) for which

e—wnalz) (1 4 |zl [p@) (1
||g0||lc11{74,z ‘= sup sup ( | |) ‘SD ( )‘ (10.22)
»q

aeN? zeRd Ela' MOé
is finite. We then define

iy (RY) = limy Jim 7 (RY), K] (RY) = lim Lim JCY (R,

q—0 (—0+ {—0 g—0t

and consider the dual IC/[%] (R?), whose elements satisfy the UMAE
as stated in the next theorem.

Theorem 10.4.2. Suppose M and N satisfy (M.1) and (M.2). Set
A, = Nymax;<,(M;/j!). Then, any element f € IC/[%] (RY) satisfies
the UMAE in K{{ (R?) w.r.t. [A].

Proof. By replacing it by an equivalent sequence, we may assume that
N, > 1 for each p € N. Fix an arbitrary 0 < ¢ < 1 in the Beurling
case, while we put € = 1 in the Roumieu case. We will always assume
A > H > 1, where H is the parameter in (M.2) (for both sequences
M and N). Take any [ € ICE%] (RY) and ¢ € ICE\Vl]] (RY). Arguing
as in the proof of Theorem 10.3.2, we need to find a uniform bound
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for | (f(Ax), o(x) — pr(x)) |, where ¢y is the (k — 1)th order Taylor
polynomial of ¢ at the origin. There exist ¢ = ¢, > 0and £ = {; > 0
(¢ =10, >0and ¢ = g; > 0) such that p € IC%’;(R‘I) and for some
C>0

[(f(Az), o) — wi(2))]

< C up sup NP 2D 2l (5) o ()]

Al aeNd zeRd €|O‘|Ma

We split according to the size of o € N9,
First suppose that |a| < k. Set ¢y := max(1, ). From the Taylor
expansion and (8.3) applied to the sequence N,

(1+ )o@ (@/2) — o\ (/)]
eww(q\wl))\lalgla\]\/[a

@ (1 4 |z)lel o [0 ()] [\ P
3, o (3)

~

AORIMa = (B=a)! \ A
18]=k
18—l pg
—k k kown (gle]/A)—wn (glz]) el I
<N il (1 + bt -entaieh 3 R
a<f
|Bl=k
< AN FANG ||l earee (dH Loe)* (1 + [ar])bemental=/H) Y Mp-a_
h KN I8 —al!
a<f
|8|=k
S AR A? ||| oanee (4dg™ H?E 5)ka max M;
= KN 0 osj<k !~
Now let |o| = k. For |z| = A, one has
A)PN,
A explion (gl /)] = X sup VAN
peN Np
o sy SN, 0]
< max { sup ——, —
p>IIc) Np 0<p<k Np

< Q()_ka explwn (q]z])],
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where gy = min(1,¢). Then, since (1 + |z|)l*/(1 + |z|/A)le] < Aol for
any a € N¢, we have

e NUPD (1 4 |z)) ol @) (/)]
sup sup
o>k [2]>A (A0)ll M,

< X7l (</0) Vi

In the case |z| < A, we have for |a| > k,

emen @l (1 4 |z|)lal [l (/)|

(A0)lel M,
_ e (1 o) (1 + fa]) o) (/)]
< A N RGN,

< )\_kNo_lewN(‘I) ||<,0||K%,ae (2e/q)" Ny,
»q
which concludes the proof. n

The next result describes the UMAE for compactly supported
ultradistributions. The proof goes alone the same lines as that of
Theorem 10.4.2 and we therefore leave details to the reader.

Proposition 10.4.3. Any element f € E™V(R?) satisfies the UMAE
in EM™IRY) w.r.t. [A], where A, = max;<,(M;/j!).

Via an analogous argument as in the proof of Proposition 10.3.4,
one shows the ensuing structural description for IC/[% (RY).

Proposition 10.4.4. Let M and N satisfy (M.1) and (M.2)". Let
f e IC/[%[](]RC’). Then, for each q¢ > 0, there is some { = {, (for
each ( there some q, > 0) such that one can find a multi-sequence of
continuous functions fo = fy00 € C(RY) for which

f=> 1 (10.23)
aeNd

and there is a C' = Cyy > 0 such that

glel
fal@)| < C3-(1+ jz)ldementael — p e R ae N4 (10.24)

«
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Let us now consider the one-dimensional case. The ensuing theo-

rem is a counterpart of Theorem 10.3.5 for the UMAE; notice however
that a full characterization is lacking in this case. We mention that
if (M.1) and (M.3)" hold, one verifies that DIMI(R?) — ICH\?]] (R?) —
EMI(RY).
Theorem 10.4.5. Suppose that N satisfies (M.1) and that (M.1),
(M.2), and (M.3) hold for the weight sequence M. Set A, = M,N,/p!.
If f e D'™MI(R) satisfies the UMAE in D'™(R) with respect to [N],
then f € IC/[%] (R) and if in addition N satisfies (M.2), the UMAE
holds for f in IC/[%[](R) w.r.t. [A].

Proof. Tt suffices to show that f € IC/[E\%] (R). In the Beurling case
we take an arbitrary constant sequence r, = 1/¢ > 0 and in the

Roumieu case an arbitrary (r,) € {f8}. We have that, whenever
p € DMI(R {0}),

() (o] < 0 (R,

which implies, taking infimum over £k,
[(f(Az), (@) = O (A exp (~w,, (V) -

Applying Proposition 10.2.4(i7), we can write f = >, fﬁlm) with
continuous functions f,, satisfying the bounds

o _
|fon(2)] < C’gM—(l + [z))™ % WNrg (12), reR, meN,
for some ¢ > 0 (for each ¢ > 0). This yields f € ICE%] (R) in both
cases, as required (in the Roumieu case we apply (2.8)). It has been
proved by Petzsche [105, Proposition 1.1] that (M.3) implies the so-
called Rudin condition, namely, there is C' > 0 such that

M\ M\ P
max [ —2 <C(—2 , peN;
j<p \ J! p!

therefore, the rest follows from Theorem 10.4.2. O
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Chapter 11

A multidimensional
Tauberian theorem for the
Laplace transform

11.1 Introduction

In 1976, Vladimirov obtained an important multidimensional gen-
eralization of the Hardy-Littlewood-Karamata Tauberian theorem
[138]. Multidimensional Tauberian theorems were then systemat-
ically investigated by him, Drozhzhinov, and Zav’yalov, and their
approach resulted in a powerful Tauberian machinery for multidi-
mensional Laplace transforms of Schwartz distributions. Such re-
sults have been very useful in probability theory [152] and mathe-
matical physics [6, 52, 141]. Tauberian theorems for other integral
transforms of generalized functions have been extensively studied by
several authors as well, see e.g. [51, 54, 111, 115, 116]. We refer to
the monographs [114, 139, 140] for accounts on the subject and its
applications; see also the recent survey article [50].

The aim of this chapter is to extend the so-called general Taube-
rian theorem for the dilation group [140, Chapter 2| from distri-
butions to ultradistributions. Our considerations apply to Laplace
transforms of elements in SE%] [I'], the space of Gelfand-Shilov ultra-

distributions with supports in a closed convex acute cone I' of R%. We
start in Section 11.2 with a formal definition of the Laplace trans-
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form and some preliminary discussions. Then, in Section 11.3, we
provide characterizations of bounded sets and convergent sequences
in SE%] [I'] in terms of Laplace transform growth estimates; interest-
ingly, our approach to the desired Laplace transform characterization
is based on a useful convolution average description of bounded sets
of SEJ@]“ (R, originally established in [46] (cf. [109]) but improved
here by relaxing hypotheses on the weight sequences. Those results
are employed in Section 11.4 to derive a Tauberian theorem in which
the quasiasymptotic behavior of an ultradistribution is deduced from
asymptotic properties of its Laplace transform. Finally, as a natural
refinement of the main result of Section 11.4 when the weight se-
quences and the cone satisfy stronger regularity conditions, we prove
in Section 11.5 that the Laplace transform is an isomorphism of lo-
cally convex spaces between SE%] [I'] and a certain space of holomor-

phic functions on the tube domain R%+7 int I'*, with I'* the conjugate
cone of I'.

11.2 The Laplace transform of tempered
ultradistributions

Throughout this chapter I' € R? stands for a (non-empty) closed,
convex and acute cone with vertex at the origin. We denote by T¢
the tube domain with base C' = int I'*, see Section 8.1. Additionally,
M and N will always denote two weight sequences, where M satisfies
(M.1) and (M.3)". We define

ST = {f e SR | supp f < T},

which is a closed subspace of SE][\%] (R?). We formally define the
Laplace transform on SE%] [['] as follows.

Definition 11.2.1. Let 5 : R — R be a function such that n(§) =
1 for ¢ in an open neighbourhood of T' and for which 7(£)e®** €

S[%] (RY) for any 2z € T¢. The Laplace transform of f € SE%] [I'] is
then the holomorphic function

L{f;z} = (f(€),n(&)e™*),  2eT“.
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As supp f € I, this definition is independent of the function 7 as
long as such a function exists.

We first verify whether a function n as in the definition always
exists. For this, we introduce the following concept. We recall that
the set [JR] was introduced in Section 2.3.3.

Definition 11.2.2. A family {7.}.~o of non-negative smooth func-
tions 7. : R? — [0,00) is called a [M]-I"-mollifier if for every ¢ > 0
the ensuing conditions hold

((Z) 775(&) = 1 for f € FE while 775(5) = 0 for £ ¢ FQE;

(b) for every (¢,) € [R] there is a constant Hy, . > 0 such that

)| < HyeLaMa, V€€ R%Vae N (11.1)

Lemma 11.2.3. If M satisfies (M.1) and (M.3), then there are
[M]-I'-mollifiers.

Proof. The existence of such functions is guaranteed by the non-
quasianalyticity. Take any non-negative ¢ € DWMI(R?) such that

supp ¢ < B(0,1/2) and SRd 0(&)dE = 1. Set . (&) := e %p(¢/e) and
let xr,.,, be the characteristic function of I'sc 5. Taking n. = pe#xr,.,,
one easily verifies that {n.}.~¢ is a [M]-I'-mollifier. O

The next result shows that in particular we may define the Laplace
transform via [M]-I-mollifiers.

Lemma 11.2.4. Assume (M.1) and (M.3)" on M. Let (a,),(b,) €
[R] and {n:}e=0 be a [M]-I'-mollifier. Then there is ({,) € [R] such
that, for any € > 0, we have

||775 (5)6%{ ||S]]:]4“p ’11

bp»

1
< Hy,cexp <45| Im 2]+ wag, (2]) + wng, <Ac(1mz)>> '

for any z € TC. In particular, we have n.(£)e*** € S]]\\,ia’jil (R%) for all
2eTC.
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Proof. Set {;, := min{ay, b,}. Due to the support assumption on 7.,
we may assume below that & € I'o.. Then for any z € T, a, f € N,
we have

e (n0)e9)

AuM.BsN;
< ’5’667y.€2—|a| 2 o (Q‘Z’)lall 2|ozfo/\ (oz—o/)(é-)
SN o) LM, \L_ M. |
BiYB 0<a/<a o/t a—a/Ha—a/
< HE ewMép(|Z|)|£‘B€_y.g
o LgNg

where we have set £, := (/2. Now & = u + v for certain u € I and
v € B(0,2¢), so that by the Cauchy-Schwarz inequality

e v < (Ju] + 2e)Pevue v
LsNs LsN;
(|ul + 28)|5|6—Ac(y)\u|e2e|y\
<
LsNg

(=)' (2)
< Ac(y) e 28 (v)+2ely|

b LsNg

1
<o (v () o).

where we have used (8.1) and the elementary inequality m™ < e™ml.
O]

The e-term that appears in the bound of Lemma 11.2.4 is a direct
consequence of our construction via [M]-T-mollifiers. These terms
will prevent us from finding an isomorphism between SE%] [I'] and
and a certain space of holomorphic functions on the tube domain
R? 4 4int I'* unless we impose heavy restrictions on the weight se-
quences, see Section 11.5. This now raises the question whether we
may define the Laplace transform on SE%] [I'] in an alternate way,
avoiding the e-terms altogether. For distributions, such an alternate
definition was given using a Whitney type extension theorem for the
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Schwartz space of rapidly decreasing smooth functions defined on an
unbounded closed set [140] (see also [129]). Continuing from there,
we could now ask ourselves if the same can be done in the ultrad-
ifferentiable context. Work towards this has already been done, we
refer to [19, 22, 91|, however in the case of Gelfand-Shilov spaces no
satisfying answer is at hand. Hence the following open problem.

Open problem 11.2.5. Determine for an unbounded closed set V' <
R? under which conditions on the weight sequences a Whitney type
extension theorem on V" holds in the context of Gelfand-Shilov spaces.
From here, provide an alternate definition for the Laplace transform
of elements in SE%] [I].

11.3 Laplace transform characterization

of bounded sets in 8{1[4]\]4] (RY)

In this section we shall characterize those subsets of SEE\%[] [T'] that
are bounded (with respect to the relative topology inherited from
SE%] (R?)) via bounds on the Laplace transforms of their elements.
Hereafter, we assume M satisfies (M.1), (M.2)" and (M.3)" while our
assumptions on N are (M.1)* and (M.2). Furthermore, whenever
considering the Beurling case we assume in addition that N fulfils
(NA). Note that these assumptions ensure that wy, (¢) = o(t) [81,
Lemma 3.8 and Lemma 3.10, p. 52-53], W (t) < oo for all t >
0, and WNg;(t) — o as t — o for any sequence (¢,) € [R]. If
stronger assumptions on the weight sequences are needed, this will
be explicitly stated in the corresponding statement. The following
theorem is our main result in this section.

Theorem 11.3.1. Let B < SE%][F].

(i) If B is a bounded set, then, there is ({,) € [R] for which, given
any € > 0, there is L = L. > 0 such that for all f € B

|L{f; 2}

1
< LeXp (8‘ IIl’lZ’ + WMZP(’ZD +CL)N;; <m)) s (112)
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for all z e T*.

(i) Conversely, suppose there are § € C, 09 > 0, L = Lg >0, and
(¢,) € [R] such that

|L{f;x +i00}| < Lexp (wMép(|x\) +wng (%)) . (11.3)

for all f € B, v € RY, and o € (0,0¢], then B is a bounded
subset of SE][\%I] [T].

Before proving Theorem 11.3.1, let us discuss an important con-
sequence. Namely, we shall derive from it a characterization of con-
vergent sequences of S{%] [T']. Notice first that if a sequence fr — g

in SE%] (R%) and supp fr < T for each k, one easily shows that
lim L{fy; 2} = L{g; 2},
k—o0

and this limit holds uniformly for z in compact subsets of T¢; fur-
thermore, by Theorem 11.3.1, the Laplace transforms of the f; satisfy
bounds of the form (11.2) uniformly in k. The converse also holds.
In fact, the next result might be interpreted as a sort of Tauberian
theorem.

Corollary 11.3.2. Let (fi)ken be a sequence in SE][\%[] [I']. Suppose
that there is a non-empty open subset Q) = C' such that for each y € Q
the limat

lim £{fy; iy} (11.4)
exists. If there are 8 € C, 09 > 0, and (¢,) € [R] such that
[L{fi; 2 + 06}

sup < (11.5)
keN, zeRd, 0€(0,00] exp (wMep(|x|) + wy (%))
then -
. . /M
131_1[2) fev=29 in Sy [T, (11.6)

for some g € SE%] [I']. In particular, the limit (11.4) is given by
L{g;iy}.
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Proof. Notice first that if two subsequences converge, respectively, to
ultradistributions g and h, the limits (11.4) tell us £{g; iy} = L{h;iy}
for all y € Q2. By uniqueness of holomorphic functions and the in-
jectivity of the Laplace transform (which follows from that of the
Fourier transform), we conclude g = h. It therefore suffices to show
that every arbitrary subsequence of the f; possesses a convergent
subsequence in SEE\J,\]ﬂ [I'], but this follows from the fact that SE% I
is Montel because, in view of Theorem 11.3.1, the estimate (11.5) is
equivalent to {fr : k € N} being bounded in SE%[] [I'] (and hence
relatively compact). O

Let us now prepare ourselves to prove Theorem 11.3.1. Part ()
will be an easy consequence of our application of [ M]-T-mollifiers, in
particular Lemma 11.2.4. In preparation for the proof of part (i),
we first need to extend [46, Proposition 3.1] (cf. [109, Lemma 2.7])
by relaxing assumptions on the weight sequences. This provides a
useful convolution characterization of bounded sets in SE% (RY). Our
approach to this convolution characterization employs the short-time
Fourier transform, see Section 3.4.1.

Lemma 11.3.3. A subset B < SE%] (R%) is bounded if and only if
there ezists (¢,) € [R] such that

sup e V| (fep)@) <0, Vo e DMIRY. (1L7)
feB, xeRd
Proof. We only make use here of the assumptions (M.1) and (M.2)’
on N. The necessity is easily obtained. Hence suppose that (11.7)
holds for some (¢,) € [9R]. We may assume the sequence NNy, satisfies
(M.2). We consider the weighted Banach space X = {g € C(R?) :
9(§) = O(exp(wn,, (€])))} and fix a compact set K € R? with non-
empty interior.
The assumption (11.7) implies that for each f € B the mapping
Ly : ¢ — f* is continuous from DIM(R9) into X, so that in par-
ticular, in view of the Banach-Steinhaus theorem, B = {(Lf)|D%w] :

f € B} is an equicontinuous subset of Lb(D[M], X). This implies that
there is (h,) € [R] such that Bc Lb(DMhp !
nous there. Fix ¢ € DM with ||1h] ;. = 1. Since {¢ “*» (rlel) g2mic); 1/}

X) and it is equicontin-
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¢ € R%} is a bounded family in D?gh’”l, we conclude that, for some
Cp > 0, independent of f € B,

Vaf (2, ) = |27 (f (7€) ) (@)
< Cpexp (w, (12l) +wan, (4rl€]))

On the other hand, let now ¢ € S[[]J‘\;[]] (RY). For any () € [R] it
follows from Proposition 3.4.1 that there is some C, > 0 such that

Vi, ~€)| < Cpexp (—uwn, (2]) = wr (1€)))

Moreover, according to the desingularization formula (3.2) for the
STFT,

Q= | | ver@ovset, s

Let h > 0 be such that logh/log H > d + 1 (with H the corre-
sponding constant occurring in (M.2)" for N, and M, ) and set
€, := h~"min(f,, (47)~'h,), then applying (8.2) one gets

sup [(f, ¢)|
feB
w 4 w w z|)—w T
< OBOL,DJ . wy,, (A€ —eonr,, (1€) s N, (2D —wn, (I Ddx <
Rd R4
which concludes the proof of the sufficiency. O]

We are now ready to present a proof of Theorem 11.3.1.

Proof of Theorem 11.3.1. Suppose that B < SE%] [I'] is bounded in
SE][\%[] (RY). By equicontinuity, there are certain (a,), (b,) € [RR] such

/
that B < <SMap (Rd)> and it is bounded there. Then, (11.2) follows

directly from Lemma 11.2.4 (in particular, one does not employ (M.2)
for N in this implication).
We now show that (11.3) is sufficient to guarantee boundedness.

We are going to do this employing Lemma 11.3.3. We may assume
that (£,) € [R] is such that M,, satisfies (M.2)" and Ny fulfills (M.2)
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(the constants occurring in these conditions are denoted by A and H
below). We may also suppose that |#] = 1. Fix p € DIM(R?). Find
R > 0 such that supp ¢ < B(0, R). We keep f € B. Take a bounded
function v : R? — (0, 0¢], which will be specified later. Inverting the
Laplace transform of f « ¢,

1 —iz-l s AL
O R LR T

By [81, Lemma 3.3, p. 49] and (2.9), we have that for any (h,) € [2R]

Lz + iv(®0}] < Ly exp (—w,, (2) + Br(1)),  weR

Choose h > 0 such that logh > (d + 1) log H. Taking h, = ¢,/h, the
condition (M.2)" in the form of estimate (8.2) yields

Wy, (7)) —war,, ([2]) = wag,, ([2]) = wag,, (Rf2]) < =(d + 1) log(|z[/A),

whence we infer the exponential function of this expression is inte-
grable on R?%. Let § = Ag(f). Employing (11.3) we then obtain

f L f ) L 2}
Re+iv(t)0

< LpL,exp <’y(t)(0 ) + W (ﬁ) + Ry(t))

J ewMep(IxD_thP(‘dex
Rd

< Lexp (WN;; (%) + |t|7(t)) 7

for some L > 0. Note that N, satisfies (M.1)*, so that (8.4) holds
for it. Also, since wy, (t) = o(t), there is a sufficiently large rq such

that
4(n1€1 + 1)wNep (’t’)

olt|

Set r = max{rg, n1¢; + 1}, we then define

S for [t| > ro.

0o, |t| <,
Y(t) = § 4ty + Dwn,, ([t])

t| =r.
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For |t| < r obviously

exp (WNE,; (%) + |t|7(t)) < oxp (mo o (%)) |

If |t| = r, the inequality (8.4) yields

exp (s (575 ) + b))

|t] 4(nily + 1)
< Wy 4+ == t
Xp ( N[p (4(n1€1 + 1>WNZP<|t|) ) NZP(| |)

< exp <2kwN[p(|t|) + A/>

for some A" > 0 and k = [logy(1 + 4(ni¢y + 1)/9)|. By repeated
application of (8.3) for wh,, , one obtains

exp (zkw%(\t\)> < explewn,, (HMH]) + A”),

for some A” > 0. Let a, = ¢,H P*. Summing up, we have shown
that

sup e M V(4 0)(t)] < 0.
feB, teRd

Since ¢ was arbitrary, Lemma 11.3.3 applies to conclude that B is
bounded. O]

11.4 The Tauberian theorem

We shall now use our results from the previous section to general-
ize the Drozhzhinov-Vladimirov-Zav’yalov multidimensional Taube-
rian theorem for Laplace transforms [139, 140] from distributions to
ultradistributions. Our goal is to devise a Laplace transform crite-
rion for the quasiasymptotic behavior of tempered ultradistributions,
see also Chapter 9. Our Tauberian theorem is the inverse to the
ensuing Abelian statement that readily follows from the definition:
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If an ultradistribution f e SE%] [I'] has quasiasymptotic behavior
Ax) ~ p(MN)g(z) in ST (rd , then
[N]

lim —
w0+ p(1/7)

uniformly for z in compact subsets of T¢.

Theorem 11.4.1. Assume that M and N both satisfy (M.1) and
(M.2), while M also satisfies (M.3)" and N satisfies (M.1)*. Set
A, = M,N,. Let f € SEI%][F] and let p be regularly varying of
degree «. Suppose that there is a non-empty solid subcone 1" with
C'"=int IV < C such that for each y € C' the limit

lim
1m ———-—
r—0+ p(1/7)

exists. If there are 0y € C' and ({,) € [R] such that

L{f;rz} = L{g; 2} (11.8)

L{f;riy} (11.9)

1
Wk ( sin6 )
‘p

|C{f;r(x +isinbyf)}| < oo, (11.10)

limsup sup ————
r—0%  |z|2+sin?h=1 ’f’_dp(l/’l“)
0e(0,m/2]

then f has quasiasymptotic behavior with respect to p in S{%\]ﬂ (RY).

Proof. In view of Corollary 11.3.2, it suffices to show that the Laplace
transform of f satisfies a bound of the form

Td

p(1/7)

|L{f;7(z +i06y)}]

1
< Lexp (wM%(|x|) +wn, <;>) (11.11)

for some (£,) € [R], L,oo > 0 and all z € R and 0 < 0 < 5. We
may assume (1.2) holds for both My, and N (with constants A and
H). We can also assume that L, > 1 for all p € N. Using (11.10),
there are 0 < 7y < 1 and L; such that for any 0 < r < ry

T’d

p(1/7)

|L{f;r(z +isinbyf)}| < Lyexp (wA* (sii@)) . (11.12)

fp
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whenever |z]? + sin? 6 = 1, where we always keep 0 < 6 < 7/2. On
the other hand, applying Theorem 11.3.1 to the singleton B = {f}
and possibly enlarging (¢,),

|L{f;r(x + i6p0)}| < Lyexp (WMZP(|SL’|) +war (%)) ;o (11.13)

forany 0 <7 <1,z € R and 0 < ry < 1. We may assume that
p(A) =1 for A\ < rg. Furthermore, Potter’s estimate (8.6) yields

p(At)
(0
We keep arbitrary »r < 1, z € R?, 0 < 0 < 1y, and write ' =

|z + 0% 2 = x/r', and sin@ = o/r’. If rr' < ry, we obtain from
(11.14), (11.12), and the fact that wy, (¢) increases faster than logt,

< Lst*max{t~ ', t},  t,A>0. (11.14)

Td

p(1/r) » ,
cun(2) el o o (9)
- 0 e (e, e -, (1))

Similarly, if 7" = 7o, we employ (11.13), (11.14), p(1/(rr")) = 1, and
(M.2)" for both M, and A,, to conclude that for some A’ > 0

p(:jr) \L{f;r(x +iob)}| = O (exp (wMZp(h’]:):D g (hf‘)» .

We have found in all cases

|L{f;r(x +i0c6y)}|

d

p(1/r)

for some L, and h = max{h’,2}. It remains to observe that

2405t + o0} < Laesp (s, (i), () )

o

waz (hlzl/o) < wag, (hlz]) +wyg (o),

so that (11.11) holds with £, = £,/(Hh), by (M.2). O
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11.5 Sharpening the bound (11.2)

If the sequence M and the cone I satisfy stronger conditions, it turns
out that the bound (11.2) can be considerably improved. In fact, we
shall show here how to remove the € term from (11.2).

We start with three lemmas, from which our improvement of The-
orem 11.3.1 will follow.

Lemma 11.5.1. Let {F;};e; be a family of holomorphic functions
on TC. Suppose that for some ((,) € [R] and each € > 0 there is
L = L. > 0 such that for all j € I and any z € T®:

|(1+ | Re )" F; ()]

1
< Lexp (5’ Imz| +CL)N;; <m)) . (1115)

Then there are (hy) € [R] and f; € C*(R?) with supp f; < T, Vj e I,
such that {e_thP(H)fj}jef is a bounded set in L*(RY) and F;(z) =
L{fj;z}, jel.

Proof. We closely follow the proof of the lemma in [139, Section 10.5,

p. 148]. We may assume that N, satisfies (M.1) and (M.2). From
(11.15) it follows in particular that

(L+[-NE(-+iy) e L'RY),  VyeC,jel.

From the Cauchy formula we obtain for each compact subset K € C
and each j e [

0 1
sup |[—Fi(z+wy)| =0 | ————= |, ke{l,... d}.
75562+ )] = O () toed)
Therefore,

g;i(&,y) = E™VF{F(- +1iy); €} e CHR x O), jel.
Furthermore, for each k€ {1,...,d},

0 , . . . 0 .
——g;(&,y) = &Y | 2mi& F {F(- + iy); €} +iF § 5—Fi(- + iy); €
Y oy,

~0,
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so that the C-functions f;(€) := (27)~%g,(£/27,y/27) do not depend
on y € C. By (11.15), there is L' = L. > 0 such that

, 1
1Ol < Ve (€ y el +ony (05))e (1L10)

forall ¢ e RY ye C,and j e I. Take any & ¢ I'. As (I'*)* =T, there
is some yo € C' such that & - yo = —1. Since Ac(Ayo) = MAc(yo) for
A > 0, we conclude from (11.16) for € = (2|yo|) ™" and y = Ay that

A 1
; <L ——= s | —— ), A > 0.
el < tow (-5 +omy (55205)) . 4>
By letting A — oo, it follows that this is only possible if f(&) = 0.
We conclude that supp f; < I" for each j € I.
Now take an arbitrary yo € C' such that |yo| = 1, then (11.16)
gives us for ¢ = 1/2 and y = Ayo, A > 0,

1 2
; —(1+ €)X — — < L'e 2.
@lexp (~(1+ 16D - wny (55007) ) < e
We now integrate this inequality with respect to A on (0, 00) in order
to gain an estimate on the f;. The 1-dimensional case of [24, Lemma
5.2.6, p. 97] applied to the open cone (0, ), yields the existence of
constants L”, ¢ > 0 such that

f:o exp (—(1 +IEDA — (@)) 0\

> 1 exp (—ww, (1 + [€])

Hence, using (2.5), it follows for any £ € R? and j € I that

5,0)] < 2o exp (om, (e(1 + [¢])
< QL—Z;J/, exp (wsz (2¢) + ngp(2c|f|)> .

The proof is complete noticing that by the Fourier inversion Fj(z) =

L{fj; =} O
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Lemma 11.5.2. Let I' be a solid cone and let ({,) € [R]. Suppose
that My, satisfies (M.1), (M.2), and (M.3). Then, there are an ul-
trapolynomial P of type [M] and constants L, L' = 1 such that

Llz])
Y

e < |P(2)] < L™ VzeTC. (11.17)

Proof. Set

~ © z
P(z) := H (1 + Epmp> , z e C,

p=1

which is an ultrapolynomial of type [ M] satisfying the bound P (z) =
O(exp[wsz (L"|z])]) [81, Proposition 4.5 and Proposition 4.6, pp. 58—
59]. Now for Rez > 0 as in [81, p. 89|

p

5 Mol2J?

P(2)] = sup 12l _ gup Mol2l” _ e, (2D
peN 7 lymy  pen LpM,

Since we assumed int ' # ¢, there is a basis {ey,...,e,} of R? such
that e; € int I' for 1 < j < n. Find also A > 0 such that A min; |e;-z| >
|z| for all z € C. Now define

d
P(z) := H ]3(—)\0[1/22'6]- - 2),
=1

J

which is an ultrapolynomial of type [M] as well and the upper bound
in (11.17) holds because of (8.3) applied to wyy, . Since for any z € T¢
we have Re(—die; - z) > 0, 1 < j < d, one then obtains for any z in
the tube domain

|P(2)| = exp <Z wM£p<d1/2)\\ej . z|)> > exp <wM2p (|z\)> :

j=1

Lemma 11.5.3. Let (¢,) € [R]. It holds that for any y e C

Sup exp (wNep(\fD —y- f) < exp (wN;; (ﬁ(y))) . (11.18)
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Proof. We only make use of (M.1)*. Using the estimate (8.1), we
obtain for any y € C'

sup ¢V IED=vE o, (0=t

gerl t=0

so that (11.18) follows from [106, Lemma 5.6]

t>0 S

1
sup {wsz (t) — st} < wyx <—> : s > 0.

]

Theorem 11.5.4. Suppose that the cone I' is solid, M and N both
satisfy (M.1) and (M.2), and M also satisfies (M.3). Then, a set

Bc SE%] [I'] is bounded if and only if there are L > 0 and (¢,) € [R]
such that for all f € B

421 < Lo (s, (D + oy (my)) - (G119

Im z)

for all ze TC.

Proof. We only need to show that if B = {f;},e; is bounded then
(11.19) holds. By Theorem 11.3.1, there is (¢,) € [2] such that for
any € > 0 there is L = L. > 0 such that for all j €

1
|L{f;; 2}| < Lexp (5\3;\ + (JJMZP(‘ZD + W, (W)) , VzeTC.

We may assume M, satisfies (M.1), (M.2) and (M.3). Let P be
the ultrapolynomial constructed as in Lemma 11.5.2. Fix k > H+2,
where H is the constant occurring in (M.2)" for M,,. We consider
the ultrapolynomial Q(z) = P(kz), so that it satisfies the bounds

ewMZp (k|z]) < ’Q(Z)’ < Llewl\/fgp (v]z])
for all z € T and some v > 0. Set now Fj(z) = L{f;; 2z}, which are

holomorphic functions on 7¢. In view of (8.2), the family {F}/Q}er
satisfies the conditions of Lemma 11.5.1, so that there are g; € C*(R?)
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with suppg; < I' for which there is some (£,) € [9R] such that
{exp(—wn,, (| - |))g;}jer is a bounded subset of L*(R?) and Fj(z) =

)
Q(2)L{gj; z} for each j € I. Now, taking into account (8.2) (we may
assume H is the same constant for both My, and Ny ) and Lemma
11.5.3, there are some L”, L” > 0 such that for all jel

IFy(2)] < L'ee 12D f oy VD=0
I
war,, (V]2 wn,, (KIEN =y d¢
< LM V) qup f 6
g€l r (1 + g

<ar' ([ g ) oo (o v (55) )

Hence, we obtain a bound of type (11.19) for the sequence k, =
min{l,/v, £, /k}. O

Theorem 11.5.4 can be used to draw further to ologlcal informa-
tion. In fact, it leads to an isomorphism between S [ | and analogs
of the Vladimirov algebra [139, Chapter 12] H (TC) of holomorphic
functions on T¢. Given ¢ > 0, we define the Banach space Oy(T°)
of all holomorphic functions F' on the tube domain T¢ that satisfy
the bounds

/4
2€TC

We then introduce the (DF'S)- and (F'S)-spaces

O (1) =lim O(T%)  and O[IN(T) = 1im O(T).
¢ ¢

The arguments we have given above actually show that the Laplace
transform maps SE%] [I'] bijectively into OH\?]] (T¢) and that this map-
ping and its inverse maps bounded sets into bounded sets (cf. the
property (2.8) in the Roumieu case). Since the spaces under con-
sideration are all bornological, we might summarize the results from
this section as follows,
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Theorem 11.5.5. Let I' be a solid convex acute cone and suppose
that M and N both satisfy (M.1) and (M.2), while M, also satisfies
(M.3). Then, the Laplace transform

£: ST — oll(re)

1s an isomorphism of locally convex spaces.



English summary

This dissertation contains several new results situated in the theory
of ultradifferentiable functions and ultradistributions. Specifically,
we consider their topological invariants and asymptotic behavior.

The main goal of Part I is to characterize topological properties of ul-
tradifferentiable function spaces with respect to their defining weight
sequences and weight functions. In particular we consider the topo-
logical invariants of the Gelfand-Shilov spaces or spaces that contain
them as a dense subspace. This results in several theorems that
completely characterize certain locally convex properties, such as nu-
clearity and ultrabornologicity, of the spaces in question.

In Chapter 3 we introduce the Gelfand-Shilov spaces via weight se-
quence and weight function systems. This is done with respect to
a parameter ¢ € [1,00], where the ultradifferentiability is measured
through the L-norm. In the main result of this chapter, we deter-
mine exactly when the definition of the Gelfand-Shilov space is inde-
pendent of the parameter g that is used, which later we show to be
equivalent to the nuclearity of this space. The chapter is then closed
by a time-frequency analysis of the Gelfand-Shilov spaces, where we
discuss the continuity of the short-time Fourier transform (STFT)
and Gabor frames.

Chapter 4 considers nuclearity. More specific, we characterize ex-
actly for two versions of the Gelfand-Shilov spaces when they are
nuclear. The determination of the nuclearity of the first kind, the
Gelfand-Shilov spaces considered in Chapter 3, is the main result of
this chapter. Particular corollaries of this result are the kernel theo-
rems for the Gelfand-Shilov spaces and their duals. The second type
we consider are the so-called Beurling-Bjorck spaces. In a concise
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manner we determine their nuclearity, which significantly extends
the known results from the literature.

Next, in Chapter 5, we study the topological properties of certain
variants of the Gelfand-Shilov spaces, whose topological structure
take the form of (PLB)-spaces. A particular example are the multi-
plier spaces of the Gelfand-Shilov spaces. In this chapter we charac-
terize exactly when such spaces are ultrabornological and barrelled.
This is done via similar conditions as those of Vogt and Wagner for
the splitting of short exact sequences of Fréchet spaces. To show that
the conditions are sufficient we apply the STFT. Our technique for
demonstrating that the conditions are necessary depends surprisingly
enough on the existence of Gabor frames whose windows have specific
rapid decay in time and frequency.

In Chapter 6, the final chapter of Part I, we look at the spaces of
bounded ultradistributions and ultradistributions vanishing at infin-
ity. The main results here are the so-called first structural theorems
we obtain for both spaces. These results will serve as the cornerstones
for the structural theorems we obtain in Part II.

Part II considers the asymptotic behavior of ultradistributions. In
particular we obtain structural theorems for three types of asymptotic
behavior related to translation and dilation. Moreover we also prove
a general Tauberian theorem for the Laplace transform.

Chapter 9 looks at the quasiasymptotic behavior of ultradistribu-
tions. Specifically, we provide structural theorems for the quasi-
asymptotic behavior on the real line, both at infinity and at the
origin. The crux of our proof is to convert the quasiasymptotics
into the so-called S-asymptotic behavior, whose structure we may
describe using the results obtained in Chapter 6. Once the structural
theorems have been obtained, we analyse extension results. For in-
stance we show that every ultradistribution having quasiasymptotics
at infinity is in fact an element of an extension of the dual of the
Schwartz space S’ and her quasiasymptotic behavior holds there; an
analogous yet local result is also obtained for quasiasymptotics at the
origin.

The moment asymptotic expansion (MAE) is another major form of
asymptotic behavior related to dilation, and in Chapter 10 we study



217

it in the context of ultradistributions. We introduce an ultradifferen-
tiable version of the space of so-called GLS symbols and show that
every element in its dual has the MAE. Moreover, we show that in
the one-dimensional case every ultradistribution that has the MAE
is contained in this dual. We also introduce a uniform analog of the
MAE and demonstrate a partial characterization on the real line.
Finally, in Chapter 11, we extend a general Tauberian theorem for
the dilation group from the context of distributions into that of ul-
tradistributions.
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Nederlandstalige
samenvatting

Deze dissertatie omvat verschillende nieuwe resultaten gesitueerd in
de theorie van ultradifferentieerbare functies and ultradistributies.
Meer bepaald behandelen we hun topologische invarianten en hun
asymptotisch gedrag.

Het hoofddoel van Deel I is het karakteriseren van topologische eigen-
schappen van ultradifferentieerbare functieruimten ten opzichte van
hun bepalende gewichtsrijen en gewichtsfuncties. Specifiek bekijken
we de topologische invariant van de Gelfand-Shilov ruimtes of ruimtes
die deze bevatten als een dichte deelruimte. Dit resulteert in meerdere
stellingen die bepaalde lokaal convexe eigenschappen, zoals nucle-
ariteit of ultrabornologiciteit, van de ruimtes in kwestie compleet
bepalen.

In Hoodstuk 3 introduceren we de Gelfand-Shilov ruimtes aan de
hand van gewichtsrij- en gewichtsfunctiesystemen. Dit doen we via
een parameter ¢ € [1, 0], waarbij de ultradifferentieerbaarheid geme-
ten wordt door middel van de L?%-norm. In het voornaamste resul-
taat van dit hoofdstuk bepalen we exact wanneer de definitie van
de Gelfand-Shilov ruimte onafhankelijk is van de gebruikte ¢, wat
later equivalent blijkt te zijn met de nucleariteit van deze ruimte.
We sluiten het hoofdstuk af met een tijd-frequentieanalyse van de
Gelfand-Shilov ruimtes, waar we de continuiteit van de short-time
Fourier transform (STFT) en Gabor frames bespreken.

Hoofdstuk 4 staat in het teken van nucleariteit. Meer bepaald karak-
teriseren we voor twee varianten van de Gelfand-Shilov ruimtes exact
wanneer deze nuclear zijn. De karakterisatie van nucleariteit bij de
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eerste variant, de Gelfand-Shilov ruimtes beschouwd in Hoofdstuk 3,
is het hoofdresultaat van dit hoofdstuk. In het bijzonder leiden deze
resultaten tot kernstellingen voor de Gelfand-Shilov ruimtes en hun
dualen. Het tweede type die we in beschouwing nemen zijn de zo-
gehete Beurling-Bjorck ruimtes. Kort maar krachtig bepalen we hun
nucleariteit, waarmee we de reeds gekende resultaten uit de literatuur
significant uitbreiden.

Daarna, in Hoofdstuk 5, bestuderen we de topologische eigenschap-
pen van varianten op de Gelfand-Shilov ruimtes, waar de topologische
structuur de vorm aanneemt van (PLB)-ruimtes. Onder meer de ver-
menigvuldigersruimte van de Gelfand-Shilov ruimte is een voorbeeld
van dit type ruimte. In dit hoofdstuk karakteriseren we exact wan-
neer deze ruimtes ultrabornologisch en barrelled zijn. Dit doen we
aan de hand van condities gelijkaardig als deze van Vogt en Wagner
voor de splitsing van korte exacte rijen van Fréchet ruimtes. Om
aan te tonen dat de condities voldoende zijn maken we gebruik van
de STFT. Onze methode voor de noodzaak van de condities aan te
tonen hangt verassend genoeg af van het bestaan van Gabor frames
waarvan de vensters een specifiek snel verval hebben in tijd en fre-
quentie.

In Hoofdstuk 6, het laatste hoofdstuk van Deel I, bekijken we de
ruimtes van begrensde ultradistributies en ultradistributies die verd-
wijnen op oneindig. De hoofdresultaten hier zijn de zogenaamde
eerste structuurstellingen die we behalen voor beide ruimtes. Deze re-
sultaten zullen de dienen als de bouwstenen voor de structuurstellin-
gen uit Deel II.

Deel I behandelt het asymptotisch gedrag van ultradistributies. Meer
bepaald bewijzen we structuurstellingen voor drie vormen van asymp-
totisch gedrag gerelateerd aan translatie en dilatatie. Tevens bewi-
jzen we alsook een algemene Tauberse stelling voor de Laplacetrans-
formatie.

Hoofdstuk 9 bekijkt het quasiasymptotisch gedrag van ultradistribu-
ties. In het bijzonder geven we structuurstellingen voor het quasi-
asymptotisch gedrag op de reéle rechte, zowel op oneindig als in de
oorsprong. De kern van onze techniek is het herleiden van het quasi-
asymptotisch gedrag naar zogenaamd S-asymptotisch gedrag, wiens
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structuur we kunnen beschrijven aan de hand van de resultaten uit
Hoofdstuk 6. Eens we de structuur verkregen hebben, analyseren
we extensie resultaten. Zo tonen we aan dat elke ultradistributie
die quasasymptotisch gedrag heeft op oneindig in feite een element
is van een veralgemening van de duale Schwartz ruimte S’ en haar
quasiasymptotisch gedrag daar ook geldt; een analoog maar lokaal
resultaat wordt verkregen voor quasiasymptotisch gedrag in de oor-
sprong.

De moment asymptotic expansion (MAE) is een tweede voorname
vorm van asymptotisch gedrag gerelateerd aan dilatatie, en wordt
in Hoofdstuk 10 bestudeerd in de context van ultradistributies. We
introduceren een ultradifferentieerbare versie van de ruimte van zoge-
noemde GLS symbolen en bewijzen dat elk element in diens duale de
MAE heeft. Bovendien tonen we aan dat in het ééndimensionaal geval
elke ultradistributie die de MAE heeft bevat zit in deze duale. Verder
introduceren we een uniforme variant van de MAE en demonstreren
we op de reéle rechte een partiele karakterisering.

Tot slot breiden we in Hoofdstuk 11 de algemene Tauberse stelling
voor de dilatatiegroep uit van distributies naar ultradistributies.
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