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Preface

The present dissertation encompasses several results situated in the
theory of ultradifferentiable functions and ultradistributions. More
precisely, we characterize various topological properties for multi-
ple classes of (generalized) functions and provide structural theorems
for different types of asymptotic behavior of ultradistributions. The
results discussed in the sequel are primarily based on the papers
[34, 35, 36, 93, 94, 95] that I have coauthored. However, this text
also contains many generalizations and, as of this writing, unpub-
lished results; in particular, this is the case for Chapter 5. We also
provide the reader with many open problems, whose solving we be-
lieve would lead to interesting new directions for the theory.

In Part I we are concerned with characterizing topological properties
of ultradifferentiable function spaces with respect to their defining
weight sequences and functions. Most notably, we fully character-
ize the nuclearity of several types of Gelfand-Shilov spaces, therefore
settling an open problem that goes back to the 1960’s in Mityagin’s
work. Another significant result we obtained is the first structural
theorem for the space of ultradistributions vanishing at infinity we
obtained, for which a completely novel approach was needed.

The asymptotic behavior of ultradistributions is considered in Part
II. In particular, we provide complete structural theorems for three
types of asymptotics related to translation and dilation, thus solving
long standing open problems in the field. In addition to this we also
extend the so-called general Tauberian theorem for the dilation group
from distributions to ultradistributions.
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Chapter 1

Introduction

Functional analysis is widely considered to be a vital part in the devel-
opment of modern mathematical analysis. Starting from its roots in
the study of function spaces and the linear operators between them, it
has grown into an impressive and vibrant research area with an abun-
dance of applications in fields such as partial differential equations,
numerical analysis, approximation theory, and many more. One of
its cornerstones is the theory of generalized functions, founded by
L. Schwartz [125], providing powerful tools in various mathematical
branches such as Fourier analysis, asymptotic analysis, and mathe-
matical physics. A nice example is the Malgrange-Ehrenpreis theo-
rem which states that any non-zero constant coefficient linear PDE
admits a distributional fundamental solution. However for several
natural problems the space of distributions is not a suitable setting,
for instance Colombini and Spagnolo showed that there are Cauchy
problems for weakly hyperbolic linear PDE’s with smooth coefficients
that are not well-posed in the space of distributions [31]. This mo-
tivated the search for linear spaces of generalized functions that are
strictly larger than the space of distributions. Noteworthy examples
are the spaces of ultradistributions [11, 21, 81, 121]. For instance,
under suitable conditions the above Cauchy problems become well-
posed in certain spaces of ultradistributions [29, 30, 60], whence the
topological invariants of spaces of ultradifferentiable functions be-
come of great interest.
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8 Chapter 1. Introduction

In this part we will be mainly concerned with the so-called Gelfand-
Shilov spaces. In [61, 62] Gelfand and Shilov introduced and system-
atically studied various kinds of spaces of smooth and ultradifferen-
tiable functions satisfying global decay estimates. Such spaces, also
known as spaces of type S, were initially considered in the context
of parabolic initial-value problems, and later turned out to be the
right framework for the analysis of decay and regularity properties of
global solutions to large classes of linear and semi-linear partial dif-
ferential equations on Rd. In this text, these spaces will allow us to
circumvent the condition of non-quasianalyticity as would necessarily
be the case if we were to consider compactly supported ultradiffer-
entiable functions as our foundational space of test functions in view
of the Denjoy-Carleman theorem. Our definition of the Gelfand-
Shilov spaces is done using the notion of ultradifferentiability defined
through weight matrices [119], called weight sequence systems in the
present text. In particular, as explained in [119], this leads to a uni-
fied treatment of classes of ultradifferentiable functions defined via
weight sequences [81] and via weight functions [21]. In the four main
chapters of this first part, our primary interest will be the character-
ization of certain topological properties of either the Gelfand-Shilov
spaces themselves, or spaces that contain them as a dense subspace.

The systematic approach of determining the topological invariants
needed for the validity of many well-known theorems in mathemat-
ical analysis may be considered as one of the landmarks of the last
century. One may just think of the open mapping theorem, the
Banach-Steinhaus theorem, abstract Schwartz kernel theorems, and
many more. This has led to a select list of topological notions, see
e.g. [87, 92, 103, 107, 123, 131], whose specific characterizations are
highly desirable. On an abstract level, the use of homological meth-
ods has been a remarkably fruitful way to obtain such results, see e.g.
the monograph [151]. This paved the way for the characterization of
topological properties of many well-known spaces, such as sequence
spaces and spaces of continuous functions. In this text, we are pri-
marily interested in the notions of nuclearity, (ultra-)bornologicity
and barrelledness. In particular, we aim to characterize these for
several spaces of ultradifferentiable functions and their duals by re-
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ducing them to the simpler versions mentioned above. To do this, we
will often employ techniques stemming from time-frequency analysis.

Time-frequency analysis [65], a modern branch of harmonic analy-
sis, to this day presents itself as thoroughly studied yet vibrant area
of research. Originating from the early development of quantum me-
chanics, it has matured into a formidable discipline with a plethora
of applications ranging from fields such as signal processing, data
compression, partial differential equations and many more. Lately
it has also shown itself to be an invaluable tool in the theory of
generalized functions, applicable in the context of regularity analysis
[33, 71, 84, 85] but also for the study of intrinsic topological prop-
erties of function spaces [4, 44]. For this text in particular, we will
often make use of the mapping properties of the short-time Fourier
transform and Gabor frames to completely characterize the space at
hand. It turns out that for spaces of ultradifferentiable functions
studying decay in both time and frequency is an excellent way for
grasping their essence, and has already been employed successfully
before [42, 67].

The structure of Part I is as follows. We start in Chapter 2 with
an overview of all notions and notations we will use in this part, as
well as a recollection of several well-known results. We expect the
reader to be mostly familiar with all that is written there, yet many
references are provided that give great overviews for the theory at
hand. After this, we formally introduce the Gelfand-Shilov spaces
in Chapter 3 and discuss some of their basic properties. In partic-
ular we will study the invariance of their definition via Lq-norms,
akin to the results made in [24], which will turn out to be equivalent
to the spaces being nuclear. The chapter is then concluded with a
time-frequency analysis of the Gelfand-Shilov spaces, specifically we
discuss the continuity properties of the short-time Fourier transform
and Gabor frames. The nuclearity of several variants of the Gelfand-
Shilov spaces is characterized in Chapter 4. Though each space will
require a different technique, the core idea will primarily be to embed
a suitable space into the Gelfand-Shilov spaces or vice-versa. Here
the complete characterization of the nuclearity of Köthe sequence
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spaces will play a vital role. Continuing to Chapter 5, we consider
the topological invariants of pPLBq-spaces of weighted ultradifferen-
tiable functions, for example the multiplier space. In particular we
characterize the ultrabornologicity and barrelledness using conditions
similar to those of Vogt and Wagner for the splitting of short exact
sequences of Fréchet spaces. Interestingly, the validity of our method
for showing the necessity of these conditions will depend on the ex-
istence of Gabor frames whose windows have specified rapid decay
in both time and frequency. In Chapter 6, the final chapter of Part
I, we consider the space of bounded ultradistributions and the space
of ultradistributions vanishing at infinity. In particular, we provide
first structural theorems for both of them. These results will form
the cornerstones of the theory build in Part II.



Chapter 2

Preliminaries

We fix in this chapter the notation and introduce several topological
properties and spaces which we will use throughout this text.

2.1 Notation

For a topological space X, we denote for any subset A Ď X by A
its closure and by intA its interior. If we write K Ť X, we mean K
is a compact subset of intX. We will always work with a Hausdorff
topological space X, i.e. for any x, y P X such that x ‰ y there exist
disjoint open sets U, V Ă X such that x P U and y P V .

We always include 0 in the set N of all natural numbers, while
we denote the set of all positive integers by Z`. By d we always
mean an element in Z` referring to the dimension. A multi-index
is an element α “ pα1, . . . , αdq P Nd and we write |α| “ |α1| `

¨ ¨ ¨ ` |αd| for its length. We will also write |x| “
a

x2
1 ` ¨ ¨ ¨ ` x2

d

for the Euclidean norm of a vector x “ px1, . . . , xdq P Rd, but the
distinction should always be clear from the context. For two multi-
indices α “ pα1, . . . , αdq and β “ pβ1, . . . , βdq we write α ă β if
αj ď βj for all j P t1, . . . , du with at least one strict inequality, and
α ď β means that either α ă β or α “ β. We employ the standard
multi-index notation, namely, α! “ α1! ¨ ¨ ¨αd!, x

α “ xα1
1 ¨ ¨ ¨ xαdd and

`

α
β

˘

“
`

α1

β1

˘

¨ ¨ ¨
`

αd
βd

˘

. The j-th partial derivative, with j P t1, . . . , du, is

denote by Bj and we write Bα “ Bα1
1 ¨ ¨ ¨ B

αd
d . In the context of vectors,

we write e “ p1, . . . , 1q.

11



12 Chapter 2. Preliminaries

For a function f : Rd Ñ C, we use the notation Mξfptq “
e2πit¨ξfptq and Txfptq “ fpt ´ xq. For a subset W Ď Rd and R ą 0
we denote WR :“ tx P Rd | x “ y ` z with y P W, |z| ă Ru. We fix
the constants in the Fourier transform as

Fpfqpξq :“ pfpξq “

ż

Rd
fptqe´2πit¨ξdt, f P L1

pRd
q.

We employ the following notation throughout this text.

Notation 2.1.1. We apply the brackets p ¨ q for the Beurling case and
the brackets t ¨ u for the Roumieu case, which will have an explicit
meaning in the specific context. Via the brackets r ¨ s we consider both
Beurling and Roumieu cases simultaneously, where we will often first
give the statement for the Beurling case followed by the statement
for the Roumieu case in parenthesis. If we use the brackets x ¨ y we
mean the opposite case of r ¨ s, i.e. if r ¨ s “ p ¨ q then x ¨ y “ t ¨ u and
if r ¨ s “ t ¨ u then x ¨ y “ p ¨ q. In the literature one will often find
the notation ˚ and : for r ¨ s, based on the notation first employed by
Komatsu in [81].

2.2 Locally convex spaces

The topological spaces we will be concerned with are locally convex
Hausdorff spaces (from now on abbreviated by lcHs). We refer the
reader to [73, 87, 92, 131] for extensive overviews of the theory. For
a lcHs E we denote the family of all continuous seminorms of E
by csnpEq. For two lcHs E,F we write LpE,F q for the space of
all continuous linear operators E Ñ F . By LbpE,F q we refer to
LpE,F q endowed with the topology of uniform convergence on the
bounded sets of E. We write E 1 for the topological dual of E, i.e.
E 1 “ LpE,Cq. Unless specified otherwise, we equip the dual E 1 with
the strong topology, which we specifically write as E 1b. Some of the
important topological properties on a lcHs E we will consider in this
text are the following:

• E is barrelled (resp. quasi-barrelled) if the topology on E
coincides with bpE,E 1q (with the topology induced by E2).
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• E is Schwartz if for each normed space F and any A P LpE,F q
there exists a zero neighborhood U in E such that ApUq is
precompact in F .

• E is Montel if E is quasi-barrelled and every bounded set in E
is relatively compact (called the Heine-Borel property).

• E is (ultra-)bornological if for any lcHs F and A P LpE,F q, A
is continuous if ApBq is bounded for all bounded subsets (resp.
bounded Banach disks) B in E.

A Fréchet space is a complete metrizable lcHs. A Fréchet space
E is called distinguished if E 1 is bornological. A lcHs E is called
a pDF q-space if it has a countable fundamental system of bounded
sets and if every strongly bounded countable union of equicontinuous
in E 1 is again equicontinuous. The dual of any Fréchet space is a
(complete) pDF q-space, and conversely the dual of any pDF q-space
is a Fréchet space. If a Fréchet space (resp. a pDF q-space) is Schwartz
it is denoted as an pFSq-space (resp. a pDFSq-space), and if it is
Montel it is denoted as an pFMq-space (resp. a pDFMq-space).

2.2.1 Inductive limits

An inductive spectrum X of lcHs is a sequence pXNqNPN of lcHs
such that XN Ď XN`1 with continuous inclusion for all N P N. The
inductive limit of the spectrum X , denoted by X “ lim

ÝÑNPNXN , is
given by the set X “

Ť

NPNXN and endowed with the finest locally
convex Hausdorff topology for which all inclusions XN Ñ X are
continuous. In view of [92, Lemma 24.6, p. 280] and the inductive
spectra considered in this text (whose algebraic dual always contains
the translates of the Dirac delta function), such a topology will always
exist. A lcHs X is called an pLBq-space if it can be written as the
inductive limit of a spectrum consisting of Banach spaces. Similarly,
X is called an pLF q-space (resp. pLFSq-space) if it can be written as
the inductive limit of a spectrum consisting of Fréchet spaces (resp.
pFSq-spaces).

For an inductive spectrum X “ pXNqNPN of Fréchet spaces we
consider the following two regularity conditions (cfr. [8, 143, 150,
151]):
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• X is said to be sequentially retractive if for any null sequence
in X there exists a N P N such that the sequence is contained
in XN and converges to zero in XN .

• X is said to be regular if for any bounded subset B of X there
exists a N P N such that B is contained and bounded in XN .

Remark 2.2.1. Let X “ pXNqNPN and Y “ pYNqNPN be two induc-
tive spectra consisting of Fréchet spaces. Let pP q be any of the two
conditions considered above. If lim

ÝÑNPNXn – lim
ÝÑNPN YN as locally

convex spaces, then X satisfies pP q if and only if Y does so, as fol-
lows from Grothendieck’s factorization theorem [92, Theorem 24.33,
p. 290]. This justifies calling an pLF q-space sequentially retractive,
respectively regular, if one (and hence all) of its defining inductive
spectra has this property.

We have the following chain of implications (cfr. [151] and the
references therein):

sequentially retractive ñ (quasi-)complete ñ regular. (2.1)

In the special case where the spectrum consists of Fréchet-Montel
spaces, these conditions become equivalent. We refer the reader to
[150] for further information.

We end this section by considering the dual Mittag-Leffler the-
orem, which allows us to detect topological isomorphisms between
inductive limits. We call an inductive spectrum X “ pXNqNPN com-
pact (resp. weakly compact) if each inclusion ιN : XN Ñ XN`1 is
compact (resp. weakly compact), i.e. there is a neighborhood of zero
in XN that is relatively compact (resp. relatively weakly compact)
in XN`1.

Theorem 2.2.2 (Dual Mittag-Leffler theorem, [81, Lemma 1.4, p. 37]).
Let X “ pXNqNPN, Y “ pYNqNPN and Z “ pZNqNPN be inductive spec-
tra of Banach spaces. Suppose that
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0 X1 Y1 Z1 0

0 X2 Y2 Z2 0

...
...

...

0 XN YN ZN 0

...
...

...

ρ1 π1

ρ2 π2

ρN πN

is an inductive sequence of short topologically exact sequences. Set
ρ “ lim

ÝÑNPN ρN . If X “ lim
ÝÑNPNXN is Montel, Y is regular and Z is

weakly compact, then X – ρpXq as locally convex spaces.

2.2.2 Projective limits

A projective spectrum X of lcHs is a sequence pXNqNPN of lcHs to-
gether with continuous linear linking mappings %NN`1 : XN`1 Ñ XN

for all N P N. We write %NN “ idXN and %NM “ %NN`1 ˝ ¨ ¨ ¨ ˝ %
M´1
M for

N ăM . We set

Proj0X “ lim
ÐÝ
NPN

XN

:“ tpxNqNPN P
ź

NPN

XN | ρNN`1pxN`1q “ xN for all N P Nu

and denote by %M : Proj0X Ñ XM : pxNqNPN Ñ xM the projection
on the Mth component. We call Proj0X the projective limit of X .
We endow Proj0X with the coarsest topology such that every projec-
tion %M is continuous. The projective spectrum X is called reduced
if the image of %M : Proj0X Ñ XM is dense for every M P N. For
such projective spectra, we have that X ˚ “ pX 1

NqNPN is an inductive
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spectrum of lcHs, as the transposed of ρNN`1 may be considered as a
continuous inclusion. We then have as sets [87]:

plim
ÐÝ
NPN

XNq
1
“ lim
ÝÑ
NPN

X 1
N . (2.2)

Note that (2.2) holds topologically if X is (weakly) compact [80, 127],
that is if the linking mappings %NN`1 are (weakly) compact. On the
other hand, if X “ pXNqNPN is an inductive spectrum, then X ˚ “
pX 1

N , %
N
N`1q is a projective spectrum where we put ρNN`1px

1q “ x1|XN
for any x1 P X 1

N`1. We have as sets [87]:

plim
ÝÑ
NPN

XNq
1
“ lim
ÐÝ
NPN

X 1
N . (2.3)

If X is regular, (2.3) holds topologically.
Two projective spectra X “ pXN , %

N
N`1qNPN and Y “ pYN , σNN`1q

are said to be equivalent if there exist increasing sequences pkNqNPN
and plNqNPN of natural numbers with N ď kN ď lN ď kN`1 and
linear mappings TN : XlN Ñ YkN and SN : YkN Ñ XlN´1

such that

SN ˝ TN “ %
lN´1

lN
and TN ˝ SN`1 “ σkNkN`1

. Clearly, Proj0X – Proj0 Y
as locally convex spaces if X and Y are equivalent projective spectra.

A lcHs is called a pPLBq-space (resp. a pPLSq-space) if it can
be written as the projective limit of a reduced projective spectrum
of pLBq-spaces (resp. pDFSq-spaces). We refer to [49] for more
information on these spaces.

2.2.3 Nuclearity and topological tensor products

We recall some of the fundamentals of the theory of nuclear spaces
and topological tensor products, introduced by Grothendieck in his
doctoral thesis [69] for his study of the validity of abstract Schwartz
kernel theorems.

A linear map A : E Ñ F between two Banach spaces E,F is said
to be nuclear, if there exist a sequence panqnPN in E 1 and a sequence
pbnqnPN in F such that

ř

nPN ‖an‖E1 ‖bn‖F ă 8 and

Apxq “
ÿ

nPN

〈an, x〉 bn, x P E.
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For a lcHs E and a continuous seminorm p P csnpEq, we denote
by Ep the local Banach space for the seminorm p, i.e. the completion
of E{Np w.r.t. the seminorm p where Np “ tx P E | ppxq “ 0u.

Definition 2.2.3. A lcHs E is called nuclear if for each p P csnpEq
there exists a q P csnpEq with q ě p such that the canonical embed-
ding ι : Eq Ñ Ep is nuclear.

We recall some results on nuclear spaces. Proofs for all statements
may be found in [92], or follow easily therefrom.

Lemma 2.2.4. Let E be a nuclear lcHs.

piq E is Schwartz.

piiq If E is complete and quasi-barrelled, then E is Montel.

piiiq Any subspace F of E is nuclear. If F is closed, then E{F is
nuclear.

pivq For any projective spectrum X “ pXN , %
N
N`1q of nuclear spaces,

the projective limit lim
ÐÝNPN

XN is nuclear.

pvq For any inductive spectrum X “ pXNq of nuclear spaces, the
inductive limit lim

ÝÑNPNXN is nuclear.

We now consider the nuclearity of Fréchet and pDF q-spaces, which
are then denoted as pFNq- and pDFNq-spaces. For such spaces
Grothendieck provided a criterion for nuclearity in terms of summable
sequences [69]. Let E be a lcHs. A sequence penqnPN in E is called
weakly summable if

ÿ

nPN

| 〈e1, en〉 | ă 8, @e1 P E 1.

By Mackey’s theorem, penqnPN is weakly summable if and only if the
set

ď

kPN

#

k
ÿ

n“0

cnen : |cn| ď 1, n “ 0, . . . , k

+
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is bounded in E. The sequence penqnPN is called absolutely summable
if

ÿ

nPN

ppenq ă 8, @p P csnpEq.

Clearly, penqnPN is absolutely summable if and only if
ř8

n“0 ppenq ă 8
for all p belonging to some fundamental system of continuous semi-
norms on E. Moreover, if E is a Fréchet space or a pDF q-space, then
penqnPN is absolutely summable if and only if for every bounded set B
in E it holds that

ř8

n“0 pBpenq ă 8, where pB is the gauge functional
of B [107, Theorem 1.5.8].

Proposition 2.2.5 ([107, Theorem 4.2.5]). Let E be a Fréchet space
or a pDF q-space. Then, E is nuclear if and only if every weakly
summable sequence in E is absolutely summable.

We move on to topological tensor products. We only provide
a brief discussion of the notations and results used in the sequel,
for a more thorough overview we refer the reader to such works as
[69, 83, 131]. For any two lcHs E and F we define the ε tensor
product EεF as the space of all bilinear functionals on E 1cˆF

1
c which

are hypocontinuous on the equicontinuous sets of E 1 and F 1. We
endow EεF with the topology of uniform convergence on the products
of equicontinuous sets in E 1 and F 1. The tensor product E b F is
canonically imbedded in EεF under

peb fqpe1, f 1q “ 〈e1, e〉 〈f 1, f〉 .

We write E bε F if we equip E b F with the topology induced by
EεF , and write EpbεF for its completion. For any two complete
lcHS E and F , if either E or F is nuclear, then we have the following
canonical isomorphisms as locally convex spaces:

EεF – EpbεF.

The ε-tensor product behaves well under projective limits.

Lemma 2.2.6 ([83, Proposition 1.5]). Let E be a lcHs and X “

tFN , %
N
N`1 uNPN be a projective spectrum of lcHs. Then the following

canonical isomorphism holds as locally convex spaces:

EpbεplimÐÝ
NPN

FNq – lim
ÐÝ
NPN

EpbεFN .
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The projective tensor product topology π on EbF is the strongest
locally convex topology such that the canonical bilinear mapping Eˆ
F Ñ E b F is continuous, and we denote by E bπ F the tensor
product E b F endowed with the topology π. Additionally, EpbπF
is the completion of E bπ F . If E and F are pDF q-spaces, then so
are E bπ F and EpbπF . Similarly, if E is an pFNq-space and F a
Fréchet space, then EpbπF is a Fréchet space.

The topology of E bπ F is finer than that of E bε F . However,
if either one of the spaces is nuclear, then the topologies coincide
(and in matter of fact this is an equivalent definition for nuclearity,
see [131, Theorem 50.1, p. 511]). If such is the case, we simply write
EbF “ EbεF “ EbπF and EpbF for its completion. We also note
that if both E and F are nuclear, then so is EpbF [131, Proposition
50.1, p. 514].

Suppose E1, E2, F1 and F2 are lcHs. If E1 – E2 and F1 – F2 as
locally convex spaces, then also E1pbεF1 – E2pbεF2 [131, Proposition
43.7, p. 440]. Moreover, we will also need the following general fact.

Lemma 2.2.7. Let E,E0, F, F0 be lcHs such that E0 Ď E and F0 Ď F
with dense continuous inclusions. Then, E0pbεF0 is dense in EpbεF .

2.3 Classical locally convex spaces

We recall in this section several well-known locally convex spaces
which we will frequently use throughout this text.

2.3.1 Köthe sequence spaces

Given a sequence a “ pajqjPZd of positive numbers, we define lqpZd, aq “
lqpaq, q P r1,8s, as the weighted Banach sequence space consisting
of all c “ pcjqjPZd P CZd such that

‖c‖lqpaq “

¨

˝

ÿ

jPZd
p|cj|ajq

q

˛

‚

1{q

ă 8, q P r1,8q,

and
‖c‖l8paq “ sup

jPZd
|cj|aj ă 8.
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Furthermore, we define l0pZd, aq as the space consisting of all pcjqjPZd P

CZd such that
lim
jPZd

cjaj “ 0

and endow it with the norm ‖¨‖l8paq.
A Köthe set is a family A “ taλ |λ P R`u of sequences aλ of

positive numbers such that aλj ď aµj for all j P Zd and µ ď λ. We
define the associated Köthe sequence spaces as

λqpAq “ lim
ÐÝ
λÑ0`

lqpaλq, λqtAu “ lim
ÝÑ
λÑ8

lqpaλq, q P t0u Y r1,8s.

Note that λqpAq is a Fréchet space, while λqtAu is a regular pLBq-
space, as follows from [8, Corollary 7, p. 80]. We denote by A˝ the
Köthe set A˝ “ t1{a1{λ |λ P R`u.

The nuclearity of the spaces λqrAs can be characterized in terms
of the following conditions on the Köthe set A:

pNq @λ P R` Dµ P R` : aλ{aµ P l1pZdq;

tNu @µ P R` Dλ P R` : aλ{aµ P l1pZdq.

Proposition 2.3.1 ([8, Proposition 15, p. 75]). Let A be a Köthe
set. The following statements are equivalent:

piq A satisfies rNs.

piiq λqrAs is nuclear for all q P t0u Y r1,8s.

piiiq λqrAs is nuclear for some q P t0u Y r1,8s.

pivq λqrAs “ λrrAs as locally convex spaces for all q, r P t0uYr1,8s.

pvq λqrAs “ λrrAs as sets for some q, r P t0u Y r1,8s with q ‰ r.

2.3.2 Spaces of integrable and smooth functions

For any q P r1,8s, we denote by LqpRdq the Banach space of all
measurable functions ϕ : Rd Ñ C such that

‖ϕ‖Lq “
ˆ
ż

Rd
|ϕpxq|qdx

˙1{q

ă 8, q P r1,8q,
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and
‖ϕ‖L8 “ sup

xPRd
|ϕpxq| ă 8.

In the smooth case, we consider the Fréchet spaces DLqpRdq, q P
r1,8s, of all ϕ P C8pRdq such that

‖ϕ‖DLq ,k “ max
|α|ďk

}ϕpαq}Lq ă 8, @k P N.

In keeping with Schwartz, we will write BpRdq for the space DL8pRdq.
For a compact subset K Ť Rd, we by denote DK the closed sub-

space of BpRdq of all ϕ P C8pRdq such that suppϕ Ď K. The space
of all compactly supported smooth functions is then denoted by

DpRd
q “ lim

ÝÑ
KŤRd

DK .

The Schwartz space SpRdq is the Fréchet space of all smooth func-
tions ϕ such that

‖ϕ‖S,k “ max
|α|ďk

sup
xPRd

p1` |x|qk|ϕpαqpxq| ă 8, @k P N.

We note that SpRdq may be equivalently defined via any Lq-norm.
Clearly the Fourier transform F is a topological isomorphism on
SpRdq.

2.3.3 Spaces of ultradifferentiable functions

Weight sequences

A multi-indexed sequenceM “ pMαqαPNd of positive numbers is called
a weight sequence if limαPNdpMα{M0q

1{|α| “ 8. We write ej for the
standard coordinate unit vectors in Rd, j “ 1, . . . , d. We consider the
following conditions on a weight sequence M :

pM.1q M2
α`ej

ďMαMα`2ej for all α P Nd and j P t1, . . . , du;

pM.2q1 Mα`ej ď C0H
|α|Mα for all α P Nd and j P t1, . . . , du and some

C0, H ą 0;
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pM.2q Mα`β ď C0H
|α`β|MαMβ for all α, β P Nd and some C0, H ą 0.

A well-known example is the Gevrey sequence pα!sqαPNd for some s ą
0, which always satisfies pM.1q and pM.2q.

A weight sequence M is called isotropic if Mα “ Mβ for any
α, β P Nd such that |α| “ |β|. We then also write M “ pMpqpPN
where for any p P N we set Mp :“ Mα for all α P Nd such that |α| “
p. To any isotropic weight sequence M we associate the sequence
mp :“ Mp{Mp´1 and note that mp is a non-decreasing sequence if
and only if M satisfies pM.1q.

For any two weight sequences M and N we write M ď N if
Mα ď CL|α|Nα for any α P Nd and some C,L ą 0. If M ď N
and N ď M , we write M « N . Note that when this holds, then,
M satisfies pM.2q1 (resp. pM.2q) if and only if N satisfies the same
condition. If for any ε ą 0 there exists some C “ Cε ą 0 such that
Mα ď Cε|α|Nα for all α P Nd, we write M ă N .

The associated function of M is defined as

ωMpxq “ sup
αPNd

log
|xα|M0

Mα

, |x| ą 0,

and ωMp0q “ 0. Then, ωM vanishes in some neighborhood of the ori-
gin and increases faster than log |x| as |x| Ñ 8 (cf. [81, p. 48]). Also
observe that ωMpxq “ ωMp|x1|, . . . , |xd|q for all x “ px1, . . . , xdq P Rd.

We define the tensor product of a finite number of weight se-
quences Mj “ pMj,αqαPNdj on Ndj , with j “ 1, . . . , k, as the se-
quence M1 b ¨ ¨ ¨ b Mk “ pM1,α1 ¨ ¨ ¨Mk,αkqpα1,...,αkqPNd1`¨¨¨`dk . Note
that M1 b ¨ ¨ ¨ bMk satisfies pM.1q (pM.2q1 or pM.2q, respectively) if
and only if this property holds for each Mj. Moreover,

ωM1b ¨¨¨bMk
pxq “

k
ÿ

j“1

ωMj
pxjq, x “ px1, . . . , xkq P Rd1`¨¨¨`dk .

Let M be a weight sequence on Nd. Given a permutation σ of
the indices t1, . . . , du, we write σpMq “ pMpασp1q,...,ασpdqqqα1,...,αdPNd .
We call a weight sequence M isotropically decomposable if it can be
written as a tensor product of k isotropic weight sequences, that is,
if there is a permutation σ such that σpMq “ M1 b ¨ ¨ ¨ bMk with
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each Mj isotropic. Such weight sequences may be reconstructed from
their associated function in case of logarithmic convexity.

Lemma 2.3.2. Let M be an isotropically decomposable weight se-
quence. Then M satisfies pM.1q if and only if

Mα “M0 sup
xPRd

|xα|

expωMpxq
. (2.4)

If such is the case, then,

ωMp
k
ÿ

j“1

xjq ď
k
ÿ

j“1

ωMpkd
1{2xjq, x1, . . . , xk P Rd, (2.5)

for arbitrary k P Z`.

Proof. It suffices to consider the isotropic case. It is a straightforward
calculation to see that M satisfies pM.1q if (2.4) holds. Conversely,
if M satisfies pM.1q then for any p P N and α P Nd such that |α| “ p,
by [81, Proposition 3.2, p. 49],

Mp “M0 sup
tą0

tp

expωMppt, 0, . . . , 0qq
ďM0 sup

xPRd

|xα|

expωMpxq
ďMα,

whence (2.4) holds.
Now suppose M satisfies pM.1q. Consider the function

ηptq “ sup
pPN

tpM0

Mp

, t ě 0. (2.6)

Note that

ηpd´1{2
|x|q ď ωMpxq ď ηp|x|q, x P Rd. (2.7)

As η is increasing, (2.7) implies that

ωM

˜

k
ÿ

j“1

xj

¸

ď

k
ÿ

j“1

ωMpkd
1{2xjq

for any x1, . . . , xk P Rd.
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We shall also consider the following two sets

pRq “ tp`pqpPZ` : `p “ ` for some ` ą 0u,

tRu “ tp`pqpPZ` : `p Õ 8 and `p ą 0, @p P Nu,

and use rRs as a common notation. For any p`pq P rRs, we associate
to it the isotropic weight sequence L “ pLpqpPN with Lp “

śp
j“1 `p

for p ě 1 and L0 “ 1. Then, for any isotropic weight sequence M we
consider the isotropic weight sequence M`p “ pMpLpqpPN. Whenever
M satisfies pM.1q then the ensuing useful assertions [40, Lemma 4.5,
p. 417] hold on the growth of a function g : r0,8q Ñ r0,8q:

@q ą 0 : gptq “ O
`

eωM pqtq
˘

ðñ Dp`pq P tRu : gptq “ O
´

e
ωM`p

ptq
¯

(2.8)

and

@p`pq P tRu : gptq “ O
´

e
´ωM`p

ptq
¯

ðñ Dq ą 0 : gptq “ O
`

e´ωM pqtq
˘

. (2.9)

It is important to point out that if M satisfies pM.2q or pM.2q1, then
for any given p`pq P rRs one can always find a pkpq P rRs such that
kp ď `p, @p P Z`, and Mkp satisfies the same conditions as M . For
the pRq-case this is trivial, whereas the assertion for the tRu-case
directly follows from [117, Lemma 2.3].

Ultradifferentiable functions

Given a weight sequence M , a compact subset K Ť Rd and ` ą 0,
we denote by EM,`pKq the space of all smooth functions ϕ P C8pRdq

such that

‖ϕ‖EM,`pKq “ sup
αPNd

sup
xPK

|ϕpαqpxq|

`|α|Mα

ă 8.

Then we consider the space of all ultradifferentiable functions w.r.t.
M of Beurling type, resp. Roumieu type, on Rd:

E pMqpRd
q “ lim

ÐÝ
KŤRd

lim
ÐÝ
`Ñ0`

EM,`
pKq, EtMupRd

q “ lim
ÐÝ
KŤRd

lim
ÝÑ
`Ñ8

EM,`
pKq.
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Note that the condition pM.1q implies that E rMspRdq is closed under
multiplication, while pM.2q1 guarantees that E rMspRdq is closed under
differentiation.

In this part, we will primarily be concerned with the so-called
Gelfand-Shilov spaces [24, 61]. Given two weight sequences M and
N and `, q ą 0, we denote by SM,`

N,q pRdq the Banach space of all

ϕ P C8pRdq such that

‖ϕ‖SM,`N,q
“ sup

αPNd
sup
xPRd

eωN pqxq|ϕpαqpxq|

`|α|Mα

ă 8.

Then we consider the spaces

SpMq
pNq pR

d
q “ lim

ÐÝ
qÑ8

lim
ÐÝ
`Ñ0`

SM,`
N,q pR

d
q, StMu

tNu pR
d
q “ lim

ÝÑ
qÑ0`

lim
ÝÑ
`Ñ8

SM,`
N,q pR

d
q.

In Chapter 3 we will extend the definition of the Gelfand-Shilov
spaces using so-called weight function and weight sequence systems.
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Chapter 3

Gelfand-Shilov spaces

3.1 Introduction

The aim of this chapter is to introduce and demonstrate several gen-
eral properties of the so-called Gelfand-Shilov spaces of ultradiffer-
entiable functions, both of Beurling and Roumieu type. Such spaces,
also known as spaces of type S, were first considered by Gelfand
and Shilov in the context of parabolic initial-value problems [62] and
systematically studied in [61]. Thereafter the Gelfand-Shilov spaces
turned out to be the right framework for the analysis of decay and
regularity properties of global solutions to large classes of linear and
semi-linear partial differential equations on Rd. We refer to the mono-
graph [96] and the survey article [64] for accounts on applications of
Gelfand-Shilov spaces; see also [23, 118] for global pseudo-differential
calculus in this setting. For our purposes, the Gelfand-Shilov spaces
and their duals will serve as the fundamental spaces on which we will
build our theory in the chapters to come. In particular this allows
us to circumvent the condition of non-quasianalyticity as would be
necessarily the case if we were to consider compactly supported ul-
tradifferentiable functions as our foundational space of test functions
in view of the Denjoy-Carleman theorem.

In this chapter, and those remaining in Part I, we will work with
the notion of ultradifferentiability defined through weight matrices
[119], called weight sequence systems in the present text. In particu-
lar, as explained in [119], this leads to a unified treatment of classes

27
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of ultradifferentiable functions defined via weight sequences [81] and
via weight functions [21]. Whence Section 3.2 is devoted to a general
discussion of weight function and sequence systems, where we estab-
lish several properties which will be employed throughout this text.
Moreover, we further extend the considerations from [119] to multi-
indexed weight sequence systems in order to cover the anisotropic
case as well.

We introduce the type of Gelfand-Shilov spaces employed through-
out this text, denoted by S rMs

rW s,q, in Section 3.3. The index q P r1,8s
refers to the ultradifferentiability of the smooth test functions with
respect to the weight sequence system M of their Lq-norm. Aside
of establishing some basic topological properties, one of the main re-
sults we will obtain is the independence of q under certain conditions
for M and W , which later we will show is exactly the case when the
spaces are nuclear, see Chapter 4.

Finally, in Section 3.4, we consider time-frequency analysis in the
framework of the Gelfand-Shilov spaces. The results obtained there
will prove to be invaluable tools in several of our proofs to come, see
in particular Chapters 4, 5, 6 and 11. In recent times the field of
time-frequency analysis has been employed successfully for the study
of functions and generalized functions, applicable in the context of
regularity analysis but also for the study of intrinsic topological prop-
erties of function spaces, see e.g. [4, 42, 44, 59, 67, 84]. A compre-
hensive overview of the field may be found in the monograph [65].
For our purposes, we will specifically discuss continuity properties of
the short-time Fourier transform and Gabor frames.

3.2 Weight function and sequence sys-

tems

In this section, we define and study weight sequence systems (intro-
duced in [119] under the name weight matrices) and weight function
systems.
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3.2.1 Weight function systems

Let X be a topological space. A continuous function w : X Ñ R`
is called a weight function on X . A weight function system on X is
a family W “ twλ |λ P R`u of weight functions wλ on X such that
wλpxq ď wµpxq for all x P X and µ ď λ. If X is a locally compact
topological vector space, we consider the following conditions on a
weight function system W :

pwMq @K Ť X @λ P R` Dµ P R` DC ą 0 @x P X : supyPK w
λpx`yq ď

Cwµpxq;

twMu @K Ť X @µ P R` Dλ P R` DC ą 0 @x P X : supyPK w
λpx`yq ď

Cwµpxq;

pMq @λ P R` Dµ, η P R` DC ą 0 @x, y P X : wλpx ` yq ď
Cwµpxqwηpyq;

tMu @µ, η P R` Dλ P R` DC ą 0 @x, y P X : wλpx ` yq ď
Cwµpxqwηpyq.

Clearly, rMs implies rwMs. We say W is non-degenerate if infxPX w
λpxq ą

0 for any λ P R`. Moreover, W is called symmetric if wλpxq “
wλp´xq for any λ P R` and x P X.

In the case where X “ Rd, we also consider the conditions

pNq @λ P R` Dµ P R` : wλ{wµ P L1pRdq;

tNu @µ P R` Dλ P R` : wλ{wµ P L1pRdq.

In the sequel, if we do not specify X we always mean X “ Rd.
The following result is easy to verify.

Lemma 3.2.1. Let W be a weight function system on X satisfying
rwMs. Then

@K Ť X @λ P R` Dλ1 P R` @µ1 P R` Dµ P R`
p@K Ť X @λ1 P R` Dλ P R` @µ P R` Dµ1 P R`q

DC ą 0 @x P X : sup
yPK

wλpx` yq

wµpx` yq
ď C

wλ
1

pxq

wµ1pxq
.
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Two weight function systems W and V on X may be compared
in the following ways:

W pďqV ô @λ P R` Dµ P R` DC ą 0 @x P X : ωλpxq ď Cvµpxq;

W tďuV ô @µ P R` Dλ P R` DC ą 0 @x P X : ωλpxq ď Cvµpxq;

W r«sV ô W rďs V and V rďs W .

Clearly, if W r«sV then W satisfies rwMs (rMs or rNs, respectively)
if and only if V does so.

We define the tensor product of a finite number of weight function
systems Wj “ tw

λ
j |λ P R`u on Xj, j “ 1, . . . , k, as

W1 b ¨ ¨ ¨ bWk “ tw
λ
1 b ¨ ¨ ¨ b w

λ
k |λ P R`u,

where wλ1 b ¨ ¨ ¨ b wλkpxq “ wλ1 px1q ¨ ¨ ¨w
λ
kpxkq for x “ px1, . . . , xkq P

X1 ˆ ¨ ¨ ¨ ˆXk. Note that W1 b ¨ ¨ ¨ bWk satisfies rwMs (resp. rMs) if
and only if each Wj does so.

We end with some considerations on the condition rNs. The fol-
lowing will be a useful result in the sequel. As is standard, C0pRdq de-
notes the space of continuous functions vanishing at infinity equipped
with the L8-norm.

Lemma 3.2.2. Let W be a weight function system on Rd satisfying
rwMs and rNs. Then,

@λ P R` Dµ P R` p@µ P R` Dλ P R`q : wλ{wµ P L1
pRd
q X C0pRd

q.

Proof. This is a consequence of Lemma 3.2.1.

Given a weight function system W on Zd, we associate to it the
Köthe set

AW “ tpwλpjqqjPZd |λ P R`u.

The next result shows that the notion rNs is unambiguous.

Lemma 3.2.3. Let W be a weight function system satisfying rwMs.
Then, W satisfies rNs if and only if AW satisfies rNs.

Proof. This again follows from Lemma 3.2.1.
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3.2.2 Weight sequence systems

A weight sequence system on Rd is a family M “ tMλ | λ P R`u of
weight sequences Mλ on Nd satisfying pM.1q such that Mµ

α ďMλ
α for

all α P Nd and µ ď λ. We will often work with some of the following
conditions on a weight sequence system M:

pLq @R ą 0 @λ P R` Dµ P R` DC0 ą 0 @α P Nd : R|α|Mµ
α ď C0M

λ
α ;

tLu @R ą 0 @µ P R` Dλ P R` DC0 ą 0 @α P Nd : R|α|Mµ
α ď C0M

λ
α ;

pM.2q1 @λ P R` Dµ P R` DC0, H ą 0 @α P Nd @j P t1, . . . , du : Mµ
α`ej ď

C0H
|α|Mλ

α ;

tM.2u1 @µ P R` Dλ P R` DC0, H ą 0 @α P Nd @j P t1, . . . , du : Mµ
α`ej ď

C0H
|α|Mλ

α ;

pM.2q @λ P R` Dµ P R` DC0, H ą 0 @α, β P Nd : Mµ
α`β ď C0H

|α`β|Mλ
αM

λ
β ;

tM.2u @µ P R` Dλ P R` DC0, H ą 0 @α, β P Nd : Mµ
α`β ď C0H

|α`β|Mλ
αM

λ
β .

Furthermore, M is called accelerating if Mµ
α`ej{M

µ
α ďMλ

α`ej
{Mλ

α for

all α P Nd, j P t1, . . . , du, and µ ď λ.
Two weight sequence systems M and N may be compared in the

following ways:

M pďq N ô @λ P R` Dµ P R` : Mµ
ď Nλ;

M tďu N ô @µ P R` Dλ P R` : Mµ
ď Nλ;

M r«s N ô M rďs N and N rďs M.

Clearly, if Mr«sN then M satisfies rLs (rM.2s1 or rM.2s, respectively)
if and only if N does so.

We define the tensor product of a finite number of weight sequence
systems Mj “ tM

λ
j | λ P R`u on Ndj , j “ 1, . . . , k, as

M1 b ¨ ¨ ¨ bMk “ tM
λ
1 b ¨ ¨ ¨ bM

λ
k | λ P R`u.

Clearly, M1b ¨ ¨ ¨ bMk satisfies rLs (rM.2s1 or rM.2s, respectively) if
and only if each Mj does so.
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A weight sequence system M “ tMλ | λ P R`u is called isotropic
if Mλ is isotropic for each λ P R`. Given a permutation σ of the
indices t1, . . . , du, we write σpMq “ tσpMλq | λ P R`u. We call M
isotropically decomposable if it can be written as a tensor product of
isotropic weight sequence systems, that is, if there is a permutation
σ such that σpMq “M1 b ¨ ¨ ¨ bMk with each Mj isotropic.

Given a weight sequence system M, we associate to it the non-
degenerate symmetric weight function system on Rd

WM “ te
ω
Mλ | λ P R`u.

If M is isotropically decomposable, the conditions on M may be
characterized by WM as follows.

Lemma 3.2.4. Let M be an isotropically decomposable weight se-
quence system.

piq M satisfies rLs if and only if

@R ą 0 @λ P R` Dµ P R` DC ą 0

p@R ą 0 @µ P R` Dλ P R` DC ą 0q

ωMλpRxq ď ωMµpxq ` logC.

piiq M satisfies rM.2s1 if and only if

@N P N @λ P R` Dµ P R` DC,H ą 0

p@N P N @µ P R` Dλ P R` DC,H ą 0q

ωMλpxq `N log |x| ď ωMµpHxq ` logC.

piiiq M satisfies rM.2s if and only if

@λ P R` Dµ P R` DC,H ě 0

p@µ P R` Dλ P R` DC,H ě 0q

2ωMλpxq ď ωMµpHxq ` logC.

Proof. piq Suppose that R|α|Mµ
α ď C0M

λ
α for all α P Nd. Then

ωMλpRxq “ sup
αPNd

log
|pRxqα|Mλ

0

Mλ
α

ď sup
αPNd

logC0
|xα|Mλ

0

Mµ
α

“ ωMµpxq ` log
C0M

λ
0

Mµ
0

,
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whence the first implication. Conversely, suppose the inequality
holds, then for any α P Nd, by (2.4),

R|α|Mµ
α “Mµ

0 sup
xPRd

|pRxqα|

eωMµ pxq
ď CMµ

0 sup
xPRd

|pRxqα|

eωMλ pRxq
“
CMµ

0

Mλ
0

Mλ
α .

piiq Suppose that Mµ
α`ej ď C0H

|α|Mλ
α for all α P Nd and 1 ď j ď

d. Then for any j P t1, . . . , du:

ωMλpxq ` log |xj| “ sup
αPNd

log
|xα`ej |Mλ

0

Mλ
α

ď sup
αPN

log
C0

H

|pHxqα`ej |Mλ
0

Mµ
α`ej

ď ωMµpHxq ` log
C0M

λ
0

HMµ
0

.

As log |x| ď max1ďjďd log |xj| ` log
?
d, we find

ωMλpxq ` log |x| ď ωMµpHxq ` logC1

for some C1 ą 0. For any N P Z`, iterating N -times then gives the
result. Next, assume the inequality holds and set N “ 1. Then for
any α P Nd and j P t1, . . . , du, by (2.4),

Mµ
α`ej “Mµ

0 sup
xPRd

|xα`ej |

eωMµ pxq
ď
Mµ

0

Mλ
0

H |α|Mλ
α sup
xPRd

|xj|e
ω
Mλ pH

´1xq´ωMµ pxq

ď C
Mµ

0

Mλ
0

H |α|Mλ
α .

piiiq Suppose that Mµ
α`β ď C0H

|α`β|Mλ
αM

λ
β for all α, β P Nd.

Then

2ωMλpxq “ sup
αPNd

log
|x2α|pMλ

0 q
2

Mλ
αM

λ
α

ď sup
αPNd

logC0
|pHxq2α|pMλ

0 q
2

Mµ
2α

ď ωMµpHxq ` log
C0pM

λ
0 q

2

Mµ
0

.

If the inequality holds, then for any α, β P Nd, by (2.4),

Mµ
α`β “Mµ

0 sup
xPRd

|xα`β|

eωMµ pxq
ď CMµ

0 sup
xPRd

ˆ

|xα|

eωMλ pH´1xq

˙ˆ

|xβ|

eωMλ pH´1xq

˙

ď
CMµ

0

pMλ
0 q

2
H |α`β|Mλ

αM
µ
β .
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The conditions on M and WM are related as follows.

Lemma 3.2.5. Let M be an isotropically decomposable weight se-
quence system satisfying rLs.

paq WM satisfies rMs.

pbq Consider the following statements:

piq M satisfies rM.2s1.

piiq AWM
satisfies rNs.

piiiq WM satisfies rNs.

Then, piq ñ piiq ô piiiq. If in addition M is accelerating, then
piiiq ñ piq.

Proof. We may assume that M is isotropic.
paq This follows from (2.5) and Lemma 3.2.4(i).
pbq piq ñ piiq Is a direct consequence of Lemma 3.2.4(ii).
piiq ô piiiq In view of paq, Lemma 3.2.3 yields the result.
piiiq ñ piq (if M is accelerating) Let mλptq “

ř

mλpďt
1 for t ě 0.

Let ηλ be as in (2.6) and set wλpxq “ eη
λp|x|q for x P Rd. Note that

the weight function system twλ |λ P R`u also satisfies rNs because of
(2.7) and Lemma 3.2.4piq. It is well-known that [81, Equation (3.11),
p. 50]

wλpxq “ exp

˜

ż |x|

0

mλpuq

u
du

¸

, x P Rd.

Let λ ą 0 pµ ą 0q be arbitrary and choose µ ą 0 pλ ą 0q such that
wλ{wµ P L1pRdq. In particular, µ ď λ. Since M is accelerating, we
have that mµ

p ď mλ
p for all p ě 1 and thus mλptq ď mµptq for all

t ě 0. Hence,
ż t2

t1

mλpuq ´mµpuq

u
du ď 0

for all t2 ě t1 ě 0, which implies that wλpxq{wµpxq is non-increasing
in |x| . Therefore,

|y|d
wλpyq

wµpyq
ď

1

|Bp0, 1q|

ż

Bp0,|y|q

wλpxq

wµpxq
dx ď

1

|Bp0, 1q|

ż

Rd

wλpxq

wµpxq
dx ă 8
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for all y P Rd. This implies

@λ P R` Dµ P R` p@µ P R` Dλ P R`q DC 1, H 1
ą 0 @t ě 0 :

ηλptq ` d log t ď ηµptq ` logC.

Then, by iteration and applying (2.7), we infer from Lemma 3.2.4piq
and piiq that M satisfies rM.2s1.

3.2.3 Two examples

We present two examples of important instances of classes of weight
sequence systems and weight function systems, which we will use
throughout this text.

First, given a single weight sequence M satisfying pM.1q, we set
MM “ tpλ|α|MαqαPNd | λ P R`u and WM “ WMM

“ teωM p¨ {λq | λ P
R`u.

Lemma 3.2.6. Let M be an isotropically decomposable weight se-
quence satisfying pM.1q.

paq MM is accelerating and satisfies rLs.

pbq WM satisfies rMs.

pcq M satisfies pM.2q1 if and only if MM satisfies rM.2s1 if and
only if WM satisfies rNs.

Proof. Part paq is obvious, while pbq and pcq have been established in
Lemma 3.2.5.

As a second example, following [119, Section 5], we can also intro-
duce weight sequence systems and weight function systems generated
by a weight function in the sense of [21]. We consider the following
conditions on a non-negative non-decreasing continuous function ω
on r0,8q:

pαq ωp2tq “ Opωptqq;

pγq log t “ Opωptqq;

pγ0q log t “ opωptqq;
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pδq φ : r0,8q Ñ r0,8q, φpxq “ ωpexq, is convex.

We call ω a Braun-Meise-Taylor weight function (BMT weight func-
tion) if ω|r0,1s ” 0 and ω satisfies pαq, pγ0q and pδq. In such a case,
we define the Young conjugate φ˚ of φ as

φ˚ : r0,8q Ñ r0,8q, φ˚pyq “ sup
xě0
pxy ´ φpxqq.

Note that φ˚ is convex and y “ opφ˚pyqq. We define Mω “ tM
λ
ω |λ P

R`u, where Mλ
ω “

`

exp
`

1
λ
φ˚pλ|α|q

˘˘

αPNd ; the above stated properties

of φ˚ imply that Mλ
ω is an isotropic weight sequence satisfying pM.1q.

Furthermore, we set Wω “ te
1
λ
ωp| ¨ |q |λ P R`u (for general ω).

Lemma 3.2.7. Let ω be a non-negative non-decreasing continuous
function on r0,8q.

paq If ω is a BMT weight function, then Mω satisfies rLs and rM.2s.

pbq If ω satisfies pαq, then Wω satisfies rMs.

pcq ω satisfies pγq (pγ0q) if and only if Wω satisfies pNq (tNu).

Proof. paq This is shown in [119, Corollary 5.15].
pbq This follows from the fact that ω is non-decreasing.
pcq As ω is non-decreasing, this can be shown by using a similar

argument as in the proof of implication piiiq ñ piq in Lemma 3.2.5(b).

3.3 The Gelfand-Shilov spaces

We now introduce the Gelfand-Shilov spaces S rMs
rW s,q. LetM “ pMαqαPNd

be a sequence of positive numbers and let w be a non-negative func-
tion on Rd. We define SMw,q “ SMw,qpRdq, q P r1,8s, as the seminormed
space consisting of all ϕ P C8pRdq such that

‖ϕ‖SMw,q “ sup
αPNd

1

Mα

ˆ
ż

Rd
p|ϕpαqpxq|wpxqqqdx

˙1{q

ă 8, q P r1,8q,



3.3. The Gelfand-Shilov spaces 37

and

‖ϕ‖SMw,8 “ sup
αPNd

sup
xPRd

|ϕpαqpxq|wpxq

Mα

ă 8.

If w is positive and continuous, then SMw,q is a Banach space. Given a
weight sequence system M and weight function system W , we define
the Gelfand-Shilov spaces (of Beurling and Roumieu type)

SpMq
pW q,q “ lim

ÐÝ
λÑ0`

SMλ

wλ,q, StMu
tW u,q “ lim

ÝÑ
λÑ8

SMλ

wλ,q, q P r1,8s.

Whenever M1r«sM2 and W1r«sW2, then clearly S rM1s

rW1s,q
“ S rM2s

rW2s,q
as

locally convex spaces.

Notation 3.3.1. Should Mr«sMM or W r«sWM for some weight

sequence M we shall simply write rM s instead, i.e. S rMs
rW s,q “ S

rMM s

rW s,q

and S rMs
rMs,q “ S

rMs
rWM s,q

. Similarly, if Mr«sMω or W r«sWω for some

BMT weight function ω we will write rωs instead, i.e. S rωs
rW s,q “ S

rMωs

rW s,q

and S rMs
rωs,q “ S

rMs
rWωs,q

.

Note that SpMq
pW q,q is a Fréchet space, while StMu

tW u,q is an (LB)-space.

Also, if W satisfies rwMs, then S rMs
rW s,q is translation-invariant. In the

Romieu case, we may further characterize the topology.

Lemma 3.3.2. Let M be a weight sequence system, let W be a non-
degenerate weight function system and let q P r1,8s. Then, the (LB)-

space StMu
tW u,q is regular.

Proof. By [8, Corollary 7, p. 80], it suffices to show that, for each

λ ą 0, the closed unit ball Bλ in SMλ

wλ,q
is closed in StMu

tW u,q. Note

that StMu
tW u,q Ă DLqpRdq Ă BpRdq with continuous inclusion; the first

inclusion is a consequence of the fact that 1 ď wλ for all λ ą 0
and the second one is a classical result of Schwartz [125]. Therefore
it is enough to show that Bλ is closed in BpRdq. Let pϕnqnPN be
a sequence in Bλ and ϕ P BpRdq such that ϕn Ñ ϕ in BpRdq. In

particular, ϕ
pαq
n pxq Ñ ϕpαqpxq for all α P Nd and x P Rd. Hence, we

obtain that
}ϕpαq}Lq ď lim inf

nÑ8
}ϕpαqn }Lq ďMλ

α
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for all α P Nd, where we have used Fatou’s lemma for q ă 8. This
shows that ϕ P Bλ and the proof is complete.

We now discuss the role of q. We first consider how the space
may possibly become enlarged as q increases.

Lemma 3.3.3. Let M be a weight sequence system satisfying rLs and
rM.2s1 and W be a weight function system satisfying rwMs. Then,
for any 1 ď q ď r ď 8, we have the following continuous inclusions

S rMs
rW s,1 Ď S

rMs
rW s,q Ď S

rMs
rW s,r Ď S

rMs
rW s,8.

Proof. Since ‖f‖Lr ď ‖f‖
pr´qq{r
L8 ‖f‖q{rLq for all f P L8pRdqXLqpRdq, it

is enough to consider the case r “ 8. Denote by H the characteristic
function of the orthonant r0,8qd and let e “ p1, . . . , 1q. Then BeH “

δ. Choose ψ P Dr´1{2,1{2sd such that ψ ” 1 on a neighborhood of 0.
Then, BepHψq ´ δ “ χ P L8pRdq has support in r´1{2, 1{2sd. Hence,
ϕ “ pBeϕq˚pHψq´ϕ˚χ for all ϕ P C8pRdq. By rwMs, rM.2s1 and rLs,
we find that for each λ ą 0 there are µ ą 0 and C,C 1 ą 0 (for each
µ ą 0 there are λ ą 0 and C,C 1 ą 0) such that wλpx` tq ď Cwµpxq
for all x P Rd and t P r´1{2, 1{2sd and Mµ

α`e ď C 1Mλ
α for all α P Nd.

We may assume that µ ď λ. Hence, by Jensen’s inequality,

‖ϕ‖SMλ

wλ,8

“ sup
αPNd

sup
xPRd

|ϕpαqpxq|wλpxq

Mλ
α

ď C ‖ψ‖L8 sup
αPNd

sup
xPRd

1

Mλ
α

ż

x`r´1{2,1{2sd
|B
eϕpαqptq|wµptqdt

` C ‖χ‖L8 sup
αPNd

sup
xPRd

1

Mλ
α

ż

x`r´1{2,1{2sd
|ϕpαqptq|wµptqdt

ď CC 1 ‖ψ‖L8 sup
αPNd

sup
xPRd

1

Mµ
α`e

ˆ
ż

Rd
p|ϕpα`eqptq|wµptqqqdt

˙1{q

` C ‖χ‖L8 sup
αPNd

sup
xPRd

1

Mµ
α

ˆ
ż

Rd
p|ϕpαqptq|wµptqqqdt

˙1{q

ď C2 ‖ϕ‖SMµ

wµ
,q ,

for any ϕ P SMµ

wµ,q, where C2 “ CpC 1 ‖ψ‖L8 ` ‖χ‖L8q.
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Next, we examine when the definition of the Gelfand-Shilov spaces
are q-invariant. Of course, such considerations are only relevant if the
spaces are non-trivial. A direct consequence of Lemma 3.3.3 is that
every S rMs

rW s,q is non-trivial, q P r1,8s, should S rMs
rW s,1 ‰ t0u. However,

we will now show that it suffices to prove non-triviality for some
q P r1,8s in order to conclude non-triviality for all q P r1,8s. To
this purpose, given a weight sequence system M and a weight function
system W , we introduce the auxiliary spaces

rSpMq
pW q “

č

λą0

č

kPN

SMλ

p1`|¨|qkwλ,8,
rStMu
tW u “

ď

λą0

č

kPN

SMλ

p1`|¨|qkwλ,8.

Lemma 3.3.4. Let M be a weight sequence system satisfying rLs and
let W be a weight function system satisfying rwMs. The following
statements are equivalent:

piq S rMs
rW s,q ‰ t0u for all q P r1,8s.

piiq S rMs
rW s,q ‰ t0u for some q P r1,8s.

piiiq rS rMs
rW s ‰ t0u.

Proof. piq ñ piiq Trivial.

piiq ñ piiiq Let ϕ P S rMs
rW s,q be such that ϕp0q “ 1. Choose ψ P

DpRdq so that
ş

Rd ϕpxqψp´xqdx “ 1. Next, pick χ P DpRdq such

that
ş

Rd χpxqdx “ 1. Then, ϕ0 “ pϕ ˚ ψqpχ P rS rMs
rW s and ϕ0 ı 0 (as

ϕ0p0q “ 1).

piiiq ñ piq This follows from the fact that rS rMs
rW s Ď S

rMs
rW s,q for all

q P r1,8s.

Remark 3.3.5. The non-triviality of Gelfand-Shilov spaces is an
interesting problem in and of itself. For weight sequences, a classical
result by Gelfand and Shilov states that S rp!

σs

rp!τ s,q is non-trivial if σ`τ ą

1 (if and only if σ`τ ě 1) [61, p. 235]. Other non-triviality conditions
can be found in [41].

We will now prove that the spaces S rMs
rW s,q coincide if and only if

W satisfies rNs. Moreover, in Chapter 4 we shall see that in the non-

degenerate case this is exactly the case whenever S rMs
rW s,q is nuclear.

The sufficiency of rNs is an easy result.
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Lemma 3.3.6. Let M be a weight sequence system and W be a weight
function system satisfying rwMs and rNs. Then, S rMs

rW s,q Ď S
rMs
rW s,r with

continuous inclusion for all q, r P r1,8s with q ě r.

Proof. This follows from Hölder’s inequality and Lemma 3.2.2.

Next, we establish an important connection between the spaces
S rMs
rW s,q and λqrAW s.

Proposition 3.3.7. Let M be a weight sequence system, let W be
a weight function system satisfying rwMs, and let q P r1,8s. The
mapping

Sq “ S : S rMs
rW s,q Ñ λqrAW s, Spϕq “ pϕpjqqjPZd ,

is continuous.

Proof. For q “ 8 this is obvious. Assume now that q ă 8. We again
denote by H the characteristic function of the orthonant r0,8qd and
e “ p1, . . . , 1q. As in the proof of Lemma 3.3.3 there exist ψ P

Dr´1{2,1{2sd and χ P L8pRdq with support in r´1{2, 1{2sd such that
ϕ “ pBeϕq ˚ pHψq ´ ϕ ˚ χ for all ϕ P C8pRdq. For each λ ą 0 there
are µ ą 0 and C ą 0 (for each µ ą 0 there are λ ą 0 and C ą 0)
such that wλpx ` tq ď Cwµpxq for all x P Rd and t P r´1

2
, 1

2
sd. We

obtain that

|ϕpxqwλpxq|

ď C

˜

‖ψ‖L8
ż

x`r´ 1
2
, 1
2
sd

|B
eϕptq|wµptqdt

` ‖χ‖L8
ż

x`r´ 1
2
, 1
2
sd

|ϕptq|wµptqdt

¸

for all x P Rd and ϕ P C8pRdq. By Jensen’s inequality, the latter
inequality implies that∥∥pϕpjqwλpjqqjPZd∥∥lq ď Cp‖ψ‖L8 }ϕ

peqwµ}Lq ` ‖χ‖L8 ‖ϕw
µ‖Lqq

for all ϕ P SMµ

wµ,q, from which the result follows.
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Proposition 3.3.8. Let M be a weight sequence system, let W be a
weight function system satisfying rMs, and let q P r1,8s. For each

ψ P rS rMs
rW s , the mapping

Tψ,q “ Tψ “ T : λqrAW s Ñ S rMsrW s,q, T ppcjqjPZdq “
ÿ

jPZd
cjψp ¨ ´ jq,

is continuous.

Proof. We only show the result for q P p1,8q; the proofs for q “ 1
and q “ 8 are similar and in fact less involved. Let ν ą 0 be such
that ψ P

Ş

kPN SM
ν

p1`| ¨ |qkwν ,8
; this means that ν is fixed in the Roumieu

case but can be taken as large as needed in the Beurling case. For
each λ ą 0 there are µ, ν ą 0 and C ą 0 (for each µ, ν ą 0 there
are λ ą 0 and C ą 0) such that wλpx ` yq ď Cwµpxqwνpyq for all
x, y P Rd. We may assume that ν ď λ. Let q1 “ q{pq ´ 1q be the
conjugate exponent of q. By Hölder’s inequality, we have that, for all
pcjqjPZd P l

qppwµpjqqjPZdq,

ÿ

jPZd
|cj||ψ

pαq
px´ jq|wλpxq

ď C
ÿ

jPZd

|cj|w
µpjq

p1` |x´ j|qpd`1q{q
|ψpαqpx´ jq|wνpx´ jqp1` |x´ j|qpd`1q{q

ď C

¨

˝

ÿ

jPZd

p|cj|w
µpjqqq

p1` |x´ j|qd`1

˛

‚

1{q

ˆ

¨

˝

ÿ

jPZd

`

|ψpαqpx´ jq|wνpx´ jqp1` |x´ j|qpd`1q{qq
˘q1

˛

‚

1{q1

ď C 1
∥∥ψpαqp1` | ¨ |qd`1wν

∥∥
L8

¨

˝

ÿ

jPZd

p|cj|w
µpjqqq

p1` |x´ j|qd`1

˛

‚

1{q

for all α P Nd and x P Rd, where C 1 “ 2
d`1
q1 C

´

ř

jPZdp1` |j|q
´d´1

¯1{q1

.
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Hence,

}
ÿ

jPZd
cjψp ¨ ´ jq}SMλ

wλ,q

ď sup
αPNd

1

Mν
α

}
ÿ

jPZd
cjψ

pαq
p ¨ ´ jqwλ}Lq

ď C2 ‖ψ‖SMν

p1`| ¨ |qd`1wν,8

∥∥pcjwµpjqqjPZd∥∥lq ,
with C2 “ C 1

`ş

xPRdp1` |x|q
´d´1dx

˘1{q
.

Lemma 3.3.9. Let M be a weight sequence system satisfying rLs
and let W be a weight function system satisfying rwMs. Suppose that

S rMs
rW s,q ‰ t0u for some q P r1,8s. Then there exists a ψ P rS rMs

rW s such

that ψpjq “ δj,0 for all j P Zd.

Proof. By Lemma 3.3.4, there exist ϕ P rS rMs
rW s such that ϕp0q “ 1. Set

χpξq “ Fp1r´ 1
2
, 1
2
sdqpξq “

ż

r´ 1
2
, 1
2
sd

e´2πiξ¨xdx, ξ P Rd.

Then, χpjq “ δj,0 for all j P Zd. Hence, ψ “ ϕχ satisfies all require-
ments.

We obtain the following useful corollary.

Corollary 3.3.10. Let M be a weight sequence system satisfying
rLs, let W be a weight function system satisfying rMs, and let q P

r1,8s. Suppose that S rMs
rW s,q ‰ t0u. Then, λqrAW s is isomorphic to a

complemented subspace of S rMs
rW s,q.

Proof. Choose ψ as in Lemma 3.3.9. Consider the continuous linear
mappings S : S rMs

rW s,q Ñ λqrAW s and Tψ : λqrAW s Ñ S rMs
rW s,q from

Proposition 3.3.7 and Proposition 3.3.8, respectively, and note that
S ˝ Tψ “ idλqrAW s.

We are now ready to characterize exactly when the Gelfand-Shilov
spaces coincide.

Theorem 3.3.11. Let M be a weight sequence system satisfying rLs
and rM.2s1 and let W be a weight function system satisfying rwMs.

Suppose that S rMs
rW s,q ‰ t0u for some q P r1,8s. Consider the following

statements:
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piq W satisfies rNs.

piiq S rMs
rW s,q “ S

rMs
rW s,r as locally convex spaces for all q, r P r1,8s.

piiiq S rMs
rW s,q “ S

rMs
rW s,r as sets for some q, r P r1,8s with q ‰ r.

Then, piq ñ piiq ñ piiiq. If in addition W satisfies rMs, then also
piiiq ñ piq.

Proof. piq ñ piiq Follows by Lemma 3.3.3 and 3.3.6.
piiq ñ piiiq Trivial.
piiiq ñ piq (if W satisfies rMs) Suppose that q ă r. Choose ψ as

in Lemma 3.3.9. Consider the mappings Sq : S rMs
rW s,q Ñ λqrAW s and

Tψ,r : λrrAW s Ñ S rMsrW s,r from Proposition 3.3.7 and Proposition 3.3.8,

respectively. Note that c “ SqpTψ,rpcqq P λ
qrAW s for all c P λrrAW s,

that is, λrrAW s Ď λqrAW s. Since λqrAW s Ď λrrAW s always holds
true, we have that λrrAW s “ λqrAW s as sets. The result now follows
from Proposition 2.3.1 and Lemma 3.2.3.

Notation 3.3.12. In the sequel, we shall often drop the index q in
the notation S rMs

rW s,q if M is a weight sequence system satisfying rLs

and rM.2s1 and W is a weight function system satisfying rwMs and
rNs. This is justified by Theorem 3.3.11.

3.4 Time-frequency analysis

We now consider time-frequency analysis in the framework of Gelfand-
Shilov spaces. In particular, we will be interested in continuity results
for the short-time Fourier transform and Gabor frames. For a general
overview of the research area we refer to [65].

3.4.1 The short-time Fourier transform

The short-time Fourier transform (STFT) of a function f P L2pRdq

with respect to a window ψ P L2pRdq is defined as

Vψfpx, ξq “ pf,MξTxψqL2 “

ż

Rd
fptqψpt´ xqe´2πiξ¨tdt, px, ξq P R2d.
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Now ‖Vψf‖L2 “ ‖ψ‖L2 ‖f‖L2 , so that in particular Vψ : L2pRdq Ñ

L2pR2dq is continuous. The adjoint of Vψ is given by the weak integral

V ˚ψ F “

ż ż

R2d

F px, ξqMξTxψdxdξ, F P L2
pR2d

q.

If ψ ‰ 0 then γ P L2pRdq is called a synthesis window for ψ if
pγ, ψqL2 ‰ 0. One shows [65, Corollary 3.2.3, p. 44]

1

pγ, ψqL2

V ˚γ ˝ Vψ “ idL2pRdq . (3.1)

We now wish to consider the continuity properties of the (adjoint)

STFT on the spaces S rMs
rW s,q. To do this, we will need adequate decay

properties on the window ψ. To this purpose, we introduce the notion
of admissibility for weight function systems. Let W and V be two
weight function systems, then W is said to be pV q-admissible if

@λ P R` Dµ, ν P R` DC ą 0 @x, y P Rd : wλpx` yq ď Cwµpxqvνpyq,

while W is said to be tV u-admissible if

@µ, ν P R` Dλ P R` DC ą 0 @x, y P Rd : wλpx` yq ď Cwµpxqvνpyq.

Note that in particular W is rW s-admissible if and only if W satisfies
rMs. Also, if W is rV s-admissible, then W satisfies rwMs. Finally, if
W is non-degenerate then so is V .

We study the continuity of the (adjoint) STFT on S rMs
rW s,8. As

we are interested in preserving the reconstruction formula (3.1), we
need an adequate space on which the STFT maps into. For a weight
function w we denote by CwpRdq the Banach space of all continuous
functions ϕ P CpRdq such that ‖ϕ ¨ w‖L8 ă 8. Then for a weight
function system W we consider the spaces

CpW qpRd
q “ lim

ÐÝ
λÑ0`

CwλpRd
q, CtW upRd

q “ lim
ÝÑ
λÑ8

CwλpRd
q.

We find the following result.
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Proposition 3.4.1. Let M be an isotropically decomposable weight
sequence system satisfying rLs and rM.2s1 and let W be a weight
function system which is rV s-admissible for some weight function

system V . For any ψ P S rMs
rV s,1, the mappings

Vψ : S rMs
rW s,8 Ñ CrW bWMspR

d
x ˆ Rd

ξq

and
V ˚ψ : CrW bWMspR

d
x ˆ Rd

ξq Ñ S
rMs
rW s,8

are well-defined and continuous. Moreover, when V is symmetric, if
ψ P rS rMs

rV s ‰ 0 and γ P rS rMs
rV s is a synthesis window for ψ, then the

reconstruction formula

1

pγ, ψqL2

V ˚γ ˝ Vψ “ idSrMs
rW s,8

(3.2)

holds.

Proof. Throughout the proof we have that ψ P SMλ3

vµ3 ,1 for any (resp.
for some) λ3, µ3 P R`.

We first show the continuity of Vψ. It suffices to show

@λ1, µ1 P R` Dλ2, µ2 P R` p@λ2, µ2 P R` Dλ1, µ1 P R`q :

Vψ : SMλ2

wµ2 Ñ Cwµ1bexpω
Mλ1
pRd

x ˆ Rd
ξq is well-defined and continuous.

For any λ1 P R` we choose λ1 “ λ2 “ λ3 (for every λ2 P R` we choose
λ1 “ maxpλ2, λ3q). Next, for any µ1 P R` there exist µ2, µ3 P R`
(for any µ2 P R` and fixed µ3 there exists a µ1 P R`) such that
wµ1px` yq ď C1w

µ2pxqvµ3pyq for some C1 ą 0 and any x, y P Rd. We
see that for ϕ P SMλ2

wµ2 ,8 and γ P Nd

wµ1pxq

ˇ

ˇ

ˇ

ˇ

ξγ

Mλ1
γ

Vψϕpx, ξq

ˇ

ˇ

ˇ

ˇ

ď C1M
λ1
0 p2πq

´|γ|

ÿ

γ1ďγ

ˆ

γ

γ1

˙
ż

Rd

|ϕpγ
1qptq|wµ2ptq

Mλ2

γ1

¨
|ψpγ´γ

1qpx´ tq|vµ3px´ tq

Mλ3

γ´γ1

dt

ď C1M
λ1
0 ‖ϕ‖SMλ2

wµ2 ,8

‖ψ‖SMλ3
vµ3 ,1

.
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It follows that

sup
px,ξqPR2d

eωMλ1
pξqwµ1pxq|Vψϕpx, yq| ď C ‖ϕ‖SMλ2

wµ2 ,8

for C “ C1pM
λ1
0 q

2 ‖ψ‖SMλ3
vµ3 ,1

. The continuity of Vψ now follows.

Next we treat the continuity of the adjoint mapping V ˚ψ . Here, it
suffices to show

@λ1, µ1 P R` Dλ2, µ2 P R` p@λ2, µ2 P R` Dλ1, µ1 P R`q :

V ˚ψ : Cwµ2bexpω
Mλ2
pRd

x ˆ Rd
ξq Ñ SM

λ1

wµ1 is well-defined and continuous.

By Lemma 3.2.4piq and piiq, for any λ1 P R` there exists a λ2 ď λ1

(for any λ2 P R` there exists a λ1 ě λ2) such that exprωMλ1 p4π¨q ´
ωMλ2 p¨qs P L

1pRdq. Additionally, by rLs there is some λ3 P R` (we
may possibly enlarge λ1) such that 2|α|Mλ3 ď C0M

λ1
α for all α P Nd

and some C0 ą 0. Again, for any µ1 P R` there exist µ2, µ3 P R`
(for any µ2 P R` and fixed µ3 there exists a µ1 P R`) such that
wµ1px` yq ď C1w

µ2pxqvµ3pyq for some C1 ą 0 and any x, y P Rd. For
Φ P Cwµ2bexprω

Mλ2
spRd

x ˆ Rd
ξq and α P Nd we have,

wλ1ptq
|BαV ˚ψ Φptq|

Mλ1
α

ď C1M
λ1
0

ÿ

βďα

ˆ

α

β

˙

ż ż

R2d

|Φpx, ξq||2πξ||β|wµ2pxq

Mλ2
β

|ψpα´βqpt´ xq|vµ3pt´ xq

Mλ1
α´β

dxdξ

ď C0C1
Mλ1

0

Mλ2
0

‖ψ‖SMλ3
vµ3 ,1

‖Φ‖Cwµ2bexprω
Mλ2

s

2´|α|
ÿ

βďα

ˆ

α

β

˙
ż

Rd
eωMλ1

p4πξq´ω
Mλ2

pξqdξ

ď C ‖Φ‖Cwµ2berω
Mλ2

s
,

whence the continuity of V ˚ψ .

Finally, suppose V is symmetric, ψ P rS rMs
rV s ‰ 0 and γ P rS rMs

rV s is

a synthesis window for ψ. For any ϕ P S rMs
rW s,8 we have Vψϕpx, ξq “

FtpϕTxψqpξq. As W is rV s-admissible and V is symmetric, it is clear
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that ϕTxψ P L
1pRdq for any x P Rd, whence ϕTxψ “ F´1pVψϕpx, ¨qq.

By our previous calculations, it then follows from Fubini’s Theorem
that

ϕptq “
1

pγ, ψqL2

ż

Rd
pϕptqTxψptqqTxγptqdx

“
1

pγ, ψqL2

ż

Rd

ˆ
ż

Rd
Vψϕpx, ξqe

2πiξ¨tdξ

˙

Txγptqdx

“
1

pγ, ψqL2

ż ż

R2d

Vψϕpx, ξqMξTxγptqdxdξ.

We may now impose the following conditions on M and W :

Assumption 3.4.2. M is isotropically decomposable satisfying rLs
and rM.2s1 and W is rV s-admissible for some symmetric weight func-

tion system V such that rS rMs
rV s ‰ t0u.

Corollary 3.4.3. Let M be a weight sequence system and W be
a weight function system for which Assumption 3.4.2 holds. Then
S rMs
rW s,8 is isomorphic to a complemented subspace of CrW bWMspRd

x ˆ

Rd
ξq.

3.4.2 Gabor frames

We start with a brief discussion on the theory of Gabor frames in
L2pRdq. See [65, Chaps. 5-8] for a complete account on the subject.
Given a non-zero window function ψ P L2pRdq and lattice parameters
a, b ą 0, the set of times frequency shifts

Gpψ, a, bq “ tMbnTakψ : k, n P Zdu

is called a Gabor frame for L2pRdq if there exist A,B ą 0 (frame
bounds) such that

A ‖f‖2
L2pRdq ď

ÿ

k,nPZd
|Vψfpak, bnq|

2
ď B ‖f‖2

L2pRdq , (3.3)
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for all f P L2pRdq. The Gabor frame operator

Sf “ Sa,bψ,ψf “
ÿ

k,nPZd
Vψfpak, bnqMbnTakψ

is then bounded, positive and invertible on L2pRdq. Additionally, we
consider the Gabor coefficient operator and Gabor synthesis operator
for a window ψ P L2pRdq and lattice parameters a, b ą 0

Ca,b
ψ : L2

pRd
q Ñ `2

pZ2d
q : f ÞÑ pVψfpak, bnqqpk,nqPZ2d , (3.4)

Da,b
ψ : `2

pZ2d
q Ñ L2

pRd
q : ptck,nuq ÞÑ

ÿ

pk,nqPZ2d

ck,nMbnTakψ, (3.5)

or in any space where the mappings make sense. In particular, we
have

S “ Da,b
ψ ˝ Ca,b

ψ .

The canonical dual frame of Gpψ, a, bq is the Gabor frame Gpγ˝, a, bq
where the canonical dual window is given by γ˝ “ S´1ψ P L2pRdq.
Every f P L2pRdq then possesses the Gabor frame series expansion

f “
ÿ

k,nPZd
Vψfpak, bnqMbnTakγ

˝
“

ÿ

k,nZd
Vγ˝fpak, bnqMbnTakψ (3.6)

with unconditional convergence in L2pRdq. The choice of γ˝ for the
validity of (3.6) is however not unique. Any γ P L2pRdq is called a
dual window for Gpψ, a, bq if

Sψ,γ “ Da,b
γ ˝ Ca,b

ψ “ idL2pRdq .

The duals of a window ψ are characterized via the Wexler-Raz biorthog-
onality relations.

Lemma 3.4.4 ([65, Theorem 7.3.1, p. 133]). Let a, b ą 0. For
ψ, γ P SpRdq the following statements are equivalent:

piq Gpψ, a, bq is a Gabor frame and γ is a dual window for ψ;

piiq pψ,M l
a
T k
b
γqL2 “ pabqdδk,0δl,0 for all k, l P Zd.
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For any lattice parameters a, b ą 0 we consider the Köthe set

Aa,bW bWM
“ twλpakqeωMλ pbnq | λ P R`u.

We may now describe the continuity of the Gabor coefficient operator
and Gabor synthesis operator on the Gelfand-Shilov spaces as follows.

Proposition 3.4.5. Let M be a weight sequence system and W be
a weight function system for which Assumption 3.4.2 holds for some
weight function system V and W satisfies rNs. For any ψ P S rMs

rV s,1 X

S rMs
rV s,8, the mappings

Ca,b
ψ : S rMs

rW s Ñ λ8rAa,bW bWM
s

and
Da,b
ψ : λ8rAa,bW bWM

s Ñ S rMs
rW s .

are well-defined and continuous. Moreover, the series (3.5) is abso-

lutely summable in S rMs
rW s .

Proof. The case of Ca,b
ψ follows directly from Proposition 3.4.1. For

Da,b
ψ it suffices to show

@λ1, µ1 P R` Dλ2, µ2 P R` p@λ2, µ2 P R` Dλ1, µ1q :

l8
´

wµ2pa ¨ q b eωMλ2
pb ¨ q

¯

Ñ SMλ1

wµ1 ,8 is well-defined and continuous.

We have that ψ P SMλ3

vµ3 ,8 for all (resp. for some) λ3, µ3 P R`. For
every µ1 P R` there exists µ3, µ4 P R` (for every µ4 P R` and fixed
µ3 there exists a µ1 P R`) such that wµ1px ` yq ď C0w

µ4pxqvµ3pyq
for all x, y P Rd and some C0 ą 0. By Lemma 3.2.3 there exists a
µ2 P R` (for every µ2 P R` there exists a µ4 P R`) such that

ÿ

kPZd

wµ4pakq

wµ2pakq
ă 8.

Using condition rLs we find for every λ1 P R` a λ4 P R` (for every
λ4 P R` a λ1 P R`) such that p4πq|α|Mλ4

α ď C1M
λ1
α for all α P Nd and

some C1 ą 0. Then, by application of Lemma 3.2.5 and Lemma 3.2.3,
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there exists a λ2 P R` (for every λ2 P R` there exists a λ4 P R`) such
that

ÿ

nPZd

eωMλ4
pbnq

eωMλ2
pbnq

ă 8.

Additionally, by condition rLs, for every λ1 P R` there is some λ3 P

R` (for every λ3 P R` there is some λ1 P R`) such that 2|α|Mλ3
α ď

C2M
λ1
α for all α P Nd and some C2 ą 0. We now have for any

pck,nqk,nPZd P l
8

´

wµ2pa ¨ q b eωMλ2
pb ¨ q

¯

∥∥∥Da,b
ψ ppck,nqk,nPZdq

∥∥∥
SMλ1
wµ1 ,8

ď
ÿ

pk,nqPZ2d

‖ck,nMbnTakψ‖SMλ1
wµ1 ,8

ďMλ1
0 C0

ÿ

k,nPZd
|ck,n|w

µ4pakq

sup
αPNd

sup
tPRd

ÿ

βďα

ˆ

α

β

˙

p2πbnq|β|

Mλ1
β

|ψpα´βqpt´ akq|vµ3pt´ akq

Mλ1
α´β

ď C
∥∥pck,nqk,nPZd∥∥l8´

wµ2 pa ¨ qbe
ω
Mλ2

pb ¨ q
¯

¨

˜

ÿ

kPZd

wµ4pakq

wµ2pakq

¸˜

ÿ

nPZd

eωMλ4
pbnq

eωMλ2
pbnq

¸

.

for some C ą 0. From here we may conclude the continuity of Da,b
ψ :

λ8rAa,bW bWM
s Ñ S rMs

rW s as well as the absolute summability in S rMs
rW s .

Corollary 3.4.6. Let M be a weight sequence system and W be a
weight function system for which Assumption 3.4.2 holds for some
weight function system V and W satisfies rNs. Take ψ P S rMs

rV s,1 X

S rMs
rV s,8 such that Gpψ, a, bq is a Gabor frame for certain a, b ą 0 and

let γ be a dual window for ψ. If γ P S rMs
rV s,1 X S

rMs
rV s,8, then S rMs

rW s is

isomorphic to a complemented subspace of λ8rAa,bW bWM
s.

The previous corollary carries with it an interesting problem:
when may the rapid decay in time and frequency of the window of
a Gabor frame be carried over to a dual window? We introduce the
following notion.
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Definition 3.4.7. A lcHs X of functions on which the translation
and modulation operators work continuously is called Gabor accessi-
ble if there exist ψ, γ P X and a, b ą 0 such that Gpψ, a, bq is a Gabor
frame and γ is a dual window for it.

For the remainder of this section we will discuss the problem of
Gabor accessibility for the Gelfand-Shilov spaces of Roumieu type
associated to the Gevrey sequences, i.e. Ssr pRdq “ Stp!

su

tp!rupR
dq. To this

purpose, we introduce the following notion.

Definition 3.4.8. A pair pr, sq of positive real numbers is called a
Gabor couple (for dimension d) if there exists some ψ P Ssr pRdq for
which Gpψ, a, bq is a Gabor frame for some lattice parameters a, b ą 0
and such that there exists a dual window γ for ψ in Ssr pRdq.

A classical result by Walnut [148] (see also [65, Theorem 6.5.1,
p. 121]) implies that for any ψ P SpRdq there exists a, b ą 0 such
that Gpψ, a, bq is a Gabor frame. Then Janssen showed [76] that in
this case the canonical dual window γ˝ of ψ belongs to SpRdq as
well (see also [65, Theorem 13.5.4, p. 296]). This statement does
not, in general, have an ultradifferentiable analog. Take for instance,
for d “ 1, the special case where ψpxq “ e´πx

2
is the Gaussian, so

that ψ P S1{2
1{2 pRq, then Gpψ, a, bq is a Gabor frame if ab ă 1 but its

canonical dual window does not have Gaussian decay in time and
frequency [77]. However, by considering other dual windows for ψ,
we may provide valuable sufficient conditions for pairs to be a Gabor
couple. We first start with the following observations, which state
that Gabor couples on the real line may be extended to arbitrary
dimension and are always symmetrical.

Lemma 3.4.9. For any pr, sq P R` ˆ R` the following statements
hold:

(a) If pr, sq is a Gabor couple for dimension 1, then pr, sq is a Gabor
couple for any dimension d P Z`.

(b) If pr, sq is a Gabor couple for dimension d, then so is ps, rq.

Proof. (a) Let pr, sq be a Gabor couple for dimension 1. Then take ψ1

and γ1 in Ssr pRq and a, b ą 0 such that Gpψ1, a, bq is a Gabor frame for
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L2pRq and γ1 is a dual window for ψ1. For arbitrary dimension d ě 2
we define ψdpxq :“ ψ1px1q ¨ ¨ ¨ψ1pxdq and γdpxq “ γ1px1q ¨ ¨ ¨ γ1pxdq,
then one easily sees that both ψd and γd lie in Ssr pRdq. By Lemma
3.4.4 it follows that

pψd,M l
a
T k
b
γdqL2 “

d
ź

j“1

pψ1,M lj
a

T kj
b

γ1qL2 “

d
ź

j“1

abδkj ,0δlj ,0

“ pabqdδk,0δl,0

for any k “ pk1, . . . , kdq and l “ pl1, . . . , ldq. Another application of
Lemma 3.4.4 shows that Gpψd, a, bq is a Gabor frame for L2pRdq and
γd is a dual window for ψd.

(b) Suppose pr, sq is a Gabor couple for dimension d, and let
ψ, γ P Ssr pRdq and a, b ą 0 be such that Gpψ, a, bq is a Gabor frame

and γ is a dual window for ψ. By [27, Corollary 2.5] both pψ and pγ
lie in Srs pRdq. From the Plancherel theorem and Lemma 3.4.4 it then
follows

ppγ,M k
b
T l
a

pψqL2 “ pψ,M´ l
a
T k
b
γq

L2
“ pabqdδl,0δk,0.

Whence, by Lemma 3.4.4, Gppγ, b, aq is a Gabor frame and pψ is a dual
window for pγ.

Corollary 3.4.10. Let pr, sq P R2
`. Then, pr, sq is Gabor couple, for

any dimension d, if one of the following conditions is satisfied:

piq minpr, sq ě 1{2;

piiq maxpr, sq ą 1.

Proof. In virtue of Lemma 3.4.9(a) it suffices to show this for d “ 1.
piq It is shown in [17], by use of the Bargmann transform [75],

that for the Gaussian ψpxq “ e´πx
2

there exists a dual window of
Gaussian decay in both time and frequency.
piiq By Lemma 3.4.9(b), we may suppose w.l.o.g. that s ą 1. In

[17], those Gabor frames whose window and canonical dual window
have compact support are characterised. Each one of these form
an example. Simple examples may also be constructed using [26,
Theorem 2.2].
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Open problem 3.4.11. Determine exactly which pairs pr, sq P R`ˆ
R` form a Gabor couple in dimension d. As Ssr pRdq is trivial if and
only if r ` s ă 1 [61, p. 235], it follows from Lemma 3.4.9(b) and
Corollary 3.4.10 that only the cases 0 ă r ă 1{2 and 1 ´ r ď s ď 1
are open. If one can show, for d “ 1, that any point on the line
r ` s “ 1 is a Gabor couple, then the problem would effectively be
solved for arbitrary dimension in view of Lemma 3.4.9(a). Should this
not be the case, it would be interesting to study whether or not the
dimension has an influence on the characterization of Gabor couples.
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Chapter 4

Characterizations of
nuclearity

4.1 Introduction

Nuclear spaces play a major role in functional analysis. One of their
key features is the validity of abstract Schwartz kernel theorems,
which often allows for the representation and study of important
classes of continuous linear mappings via kernels. Therefore, estab-
lishing whether a given function space is nuclear becomes a central
question from the point of view of both applications and understand-
ing its locally convex structure.

In the case of weighted Fréchet spaces of smooth functions on
Rd, the nuclearity question has been completely settled. Let W be
a weight function system and consider the associated Gelfand-Shilov
spaces of smooth functions

SpW q,q “ tϕ P C8pRd
q | max

|α|ďn
}ϕpαqwn}Lq ă 8 @n P Nu, q P r1,8s,

endowed with their natural Fréchet space topologies. If W satisfies
pwMq, then SpW q,q is nuclear if and only if W satisfies pNq. In fact,
this result follows from Vogt’s sequence space representation of SpW q,q
[144, Theorem 3.1] and the well-known corresponding characteriza-
tion of nuclearity for Köthe sequence spaces, i.e. Proposition 2.3.1.
Condition pNq appears already in the work of Gelfand and Shilov,

55
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who proved the nuclearity of SpW q,8 under it and some extra regular-
ity assumptions in a direct fashion [62, p. 181].

The aim of this chapter is to discuss several results centred around
the characterization of the nuclearity of Gelfand-Shilov type spaces.
In Section 4.2 we consider the Gelfand-Shilov spaces S rMs

rW s,q introduced

in Chapter 3. We give sufficient conditions for S rMs
rW s,q to be nuclear

in terms of M and W ; see Theorem 4.2.1 . Actually, we show that
for an important class of weight sequence systems our hypotheses
also become necessary, providing a full characterization of nuclearity
in such a case; see Theorem 4.2.6. Moreover, nuclearity is related
to the identity S rMs

rW s,q “ S
rMs
rW s,r, q ‰ r, see also Theorem 3.3.11. A

useful feature of our approach is that our considerations are stable
under tensor products. We shall exploit this fact to derive new kernel
theorems for Gelfand-Shilov spaces in Section 4.2.3. Note that these
kernel theorems are ‘global’ counterparts of Petzsche’s results from
[104].

Secondly, in Section 4.3, we consider the nuclearity of the so-
called Beurling-Björck spaces S rωs

rηs pR
dq. In recent works Boiti et

al. [14, 15, 16] have investigated the nuclearity of the Beurling-

Björck space Spωq
pωq pR

dq (in our notation). Their most general result

[16, Theorem 3.3] establishes the nuclearity of this Fréchet space
when ω is a Braun-Meise-Taylor type weight function [21] (where
non-quasianalyticity is replaced by ωptq “ optq and the condition
logptq “ opωptqq from [21] is relaxed to log t “ Opωptqq). Our aim is to
improve and generalize [16, Theorem 3.3] by considerably weakening
the set of hypotheses on the weight functions, providing a complete
characterization of the nuclearity of these spaces (for radially increas-
ing weight functions), and considering anisotropic spaces and the
Roumieu case as well. Particularly, we shall show that the conditions
pβq and pδq from [16, Definition 2.1] play no role in deducing nuclear-
ity. Furthermore, we discuss the equivalence of the various definitions
of Beurling-Björck type spaces given in the literature [16, 28, 67] but
considered here under milder assumptions. In particular, we show
that, if ω satisfies pαq and pγq, our definition of Spωq

pωq pR
dq coincides

with the one employed in [16].
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4.2 The Gelfand-Shilov spaces S rMs
rW s,q

4.2.1 Nuclearity

In this section, we characterize the nuclearity of the Gelfand-Shilov
spaces S rMs

rW s,q in terms of M and W . We start by providing suffi-
cient conditions, whose prove is based on Grothendieck’s criterion
for nuclearity in terms of summable sequences [69].

Theorem 4.2.1. Let M be a weight sequence system satisfying rLs
and rM.2s1 and let W be a non-degenerate weight function system

satisfying rwMs and rNs. Then, S rMs
rW s is nuclear.

Proof. We shall show that S rMs
rW s “ S

rMs
rW s,8 is nuclear. To this end,

we employ Proposition 2.2.5 with E “ S rMs
rW s,8. Let pϕnqnPN Ă S rMsrW s,8

be a weakly summable sequence. This means that for all λ ą 0 (for
some λ ą 0) there is C ą 0 such that

}

k
ÿ

n“0

cnϕn}SMλ

wλ,8

ď C

for all k P N and |cn| ď 1, n “ 0, . . . , k, where we have used Lemma
3.3.2 in the Roumieu case. We claim that

sup
αPNd

sup
xPRd

1

Mλ
α

8
ÿ

n“0

|ϕpαqn pxq|w
λ
pxq ď C. (4.1)

Fix arbitrary α P Nd and x P Rd. Let k P N. Choose |cnpα, xq| ď 1

such that cnpα, xqϕ
pαq
n pxq “ |ϕ

pαq
n pxq|. Then,

1

Mλ
α

k
ÿ

n“0

|ϕpαqn pxq|w
λ
pxq “

1

Mλ
α

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

n“0

cnpα, xqϕ
pαq
n pxq

ˇ

ˇ

ˇ

ˇ

ˇ

wλpxq ď C,

whence the claim follows by letting k Ñ 8. We now employ (4.1) to
show that pϕnqnPN is absolutely summable. By Theorem 3.3.11, it is
enough to prove that

8
ÿ

n“0

‖ϕn‖SMµ

wµ,1
ă 8
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for all µ ą 0 (for some µ ą 0). Let µ ą 0 be arbitrary (let λ ą 0
be such that (4.1) holds). Conditions rLs and rNs imply that there is
λ ą 0 (there is µ ą 0) such that 2|α|Mλ

α ď C 1Mµ
α for all α P Nd and

some C 1 ą 0 and wµ{wλ P L1pRdq. Hence,

8
ÿ

n“0

‖ϕn‖SMµ

wµ,1
“

8
ÿ

n“0

sup
αPNd

1

Mµ
α

ż

Rd
|ϕpαqn pxq|w

µ
pxqdx

ď C 1
ÿ

αPNd

1

2|α|

ż

Rd

1

Mλ
α

8
ÿ

n“0

|ϕpαqn pxq|w
λ
pxq

wµpxq

wλpxq
dx

ď 2dCC 1
∥∥wµ{wλ∥∥

L1 .

Our next goal is to discuss the necessity of the conditions rM.2s1

and rNs for S rMs
rW s,qpR

dq to be nuclear.

Proposition 4.2.2. Let M be a weight sequence system satisfying
rLs, let W be a weight function system satisfying rMs, and let q P

r1,8s. Suppose that S rMs
rW s,qpR

dq is non-trivial and nuclear. Then, W

satisfies rNs.

Proof. Since nuclearity is inherited to subspaces, Corollary 3.3.10
implies that λqrAW s is nuclear. The result therefore follows from
Proposition 2.3.1 and Lemma 3.2.3.

Proposition 4.2.3. Let M be a weight sequence system satisfying
rLs, let W be a non-degenerate weight function system satisfying rMs,

and let q P r1,8s. Suppose that S rMs
rW s,qpR

dq is non-trivial and nuclear.

Then, AWM
satisfies rNs.

We shall make use of the ensuing result due to Petzsche [104] in
order to show Proposition 4.2.3.

Lemma 4.2.4 ([104, Satz 3.5 and Satz 3.6]). Let A be a Köthe set
and let E be a lcHs.

paq Suppose that E is nuclear and that there are continuous linear
mappings T : λ1pAq Ñ E and S : E Ñ λ8pAq such that S ˝T “
ι, where ι : λ1pAq Ñ λ8pAq denotes the natural embedding.
Then, λ1pAq is nuclear.
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pbq Suppose that E 1b is nuclear and that there are continuous linear
mappings T : λ1tAu Ñ E and S : E Ñ λ8tAu such that S˝T “
ι, where ι : λ1tAu Ñ λ8tAu denotes the natural embedding.
Then, λ1tAu is nuclear.

Proof. This is essentially shown in [104, Satz 3.5 and Satz 3.6] but we
repeat the argument here for the sake of completeness and because
our assumptions are slightly more general.
paq Since nuclearity is inherited to subspaces, it suffices to show

that T is a topological isomorphism onto its image. We write ei “
pδj,iqjPZd for i P Zd. Then, peiqiPZd is a Schauder basis for λ1pAq with
coefficient functionals

ξi : λ1
pAq Ñ C,

〈
ξi, pcjqjPZd

〉
“ ci, i P Zd.

Since T is continuous and S˝T “ ι, pT peiqqiPZd is a Schauder basis for
T pλ1pAqq with coefficient functionals ηi “ ξi ˝T

´1 “ ξi ˝S for i P Zd.
We claim that the Schauder basis pT peiqqiPZd is equicontinuous, that
is,

@p P csnpEq Dq P csnpEq @x P T pλ1
pAqq : sup

iPZd
| 〈ηi, x〉 |ppT peiqq ď qpxq.

Let p P csnpEq be arbitrary. As T is continuous, there is λ ą 0 such
that

| 〈ηi, x〉 |ppT peiqq ď | 〈ξi, Spxq〉 | ‖ei‖l1paλq
“ | 〈ξi, Spxq〉 |aλi
ď ‖Spxq‖l8paλq

for all x P E and i P Zd. The claim now follows from the continuity
of S. Since T pλ1pAqq is nuclear (as a subspace of the nuclear space
E), the Dymin-Mityagin basis theorem [107, Theorem 10.2.1] yields
that pT peiqqiPZd is an absolute Schauder basis for T pλ1pAqq, that is,

@p P csnpEq Dq P csnpEq @x P T pλ1
pAqq :

ÿ

iPZd
| 〈ηi, x〉 |ppT peiqq ď qpxq. (4.2)
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We now show that T´1 : T pλ1pAqq Ñ λ1pAq is continuous. Let λ ą 0
be arbitrary. Since S is continuous, there is p P csnpEq such that

‖pciqiPZd‖l1paλq “
ÿ

iPZd
|ci|}ei}l1paλq

“
ÿ

iPZd
| 〈ηi, T ppciqiPZdq〉 ‖SpT peiqq‖l8paλq

ď
ÿ

iPZd
| 〈ηi, T ppciqiPZdq〉 ppT peiqq

for all pciqiPZd P λ
1pAq, whence the continuity of T´1 follows from

(4.2).
pbq By transposing, we obtain continuous linear mappings T t :

E 1b Ñ pλ1tAuq1b and S : pλ8tAuq1b Ñ E 1b such that T t ˝ St “ ιt.
Consider the natural continuous embeddings ι1 : λ1pA˝q Ñ pλ8tAuq1b
and ι2 : pλ1tAuq1b Ñ λ8pA˝q. Note that pι2 ˝T

tq ˝ pSt ˝ ι1q “ τ , where
τ : λ1pA˝q Ñ λ8pA˝q denotes the natural embedding. Hence, part
paq yields that λ1pA˝q is nuclear, which is equivalent to the nuclearity
of λ1tAu by Proposition 2.3.1.

We also need the existence of a specific element in rS rMs
rW s .

Lemma 4.2.5. Let M be a weight sequence system satisfying rLs and

W a weight function system satisfying rwMs. Suppose that S rMs
rW s,q ‰

t0u for some q P r1,8s. Then there exists ψ P rS rMs
rW s such that

ř

jPZd ψp¨ ´ jq ” 1.

Proof. By Lemma 3.3.4, there is ϕ P rS rMs
rW s such that

ş

Rd ϕpxqdx “ 1.
Then,

ψpxq “

ż

r´ 1
2
, 1
2
sd

ϕpx´ tqdt, x P Rd,

satisfies all requirements.

Proof of Proposition 4.2.3. By Proposition 2.3.1, it suffices to show
that λ1rAWM

s is nuclear. To this end, we use Lemma 4.2.4 with

A “ AWM
and E “ S rMs

rW s,q (in the Roumieu case, E 1b is nuclear as the

strong dual of a nuclear pDF q-space). For r “ 1 or r “ 8 we define
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E rMsper,r as the space consisting of all Zd-periodic functions ϕ P C8pRdq

such that

sup
αPNd

1

Mλ
α

∥∥ϕpαq∥∥
Lrpr´ 1

2
, 1
2
sdq
ă 8

for all λ ą 0 (for some λ ą 0). We endow E rMsper,r with its natural
Fréchet space topology (pLBq-space topology). The mappings

T0 : λ1
rAWM

s Ñ E rMsper,8, T0ppcjqjPZdq “

»

–ξ Ñ
ÿ

jPZd
cje

´2πij¨ξ

fi

fl

and

S0 : E rMsper,1 Ñ λ8rAWM
s, S0pϕq “

˜

ż

r´ 1
2
, 1
2
sd

ϕpξqe2πij¨ξdξ

¸

jPZd

are continuous. Next, choose ψ as in Lemma 4.2.5 and consider the
continuous linear mapping

T1 : E rMsper,8 Ñ S
rMs
rW s,q, T1pϕq “ ψϕ.

Note that W satisfies rNs by Proposition 4.2.2. Hence, Lemma 3.3.6
yields that the mapping

S1 : S rMs
rW s,q Ñ E

rMs
per,1, S1pϕq “

ÿ

jPZd
ϕp ¨ ´ jq

is continuous. Finally, we define the continuous linear mappings T “
T1 ˝ T0 : λ1rAWM

s Ñ S rMs
rW s,q and S “ S0 ˝ S1 : S rMs

rW s,q Ñ λ8rAWM
s. The

choice of ψ implies that S ˝ T “ ι.

We obtain the following two important results.

Theorem 4.2.6. Let M be an isotropically decomposable accelerating
weight sequence system satisfying rLs and let W be a non-degenerate

weight function system satisfying rMs. Suppose that S rMs
rW s,q ‰ t0u for

some q P r1,8s. Then, the following statements are equivalent:

piq M satisfies rM.2s1 and W satisfies rNs.
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piiq S rMs
rW s,q is nuclear for all q P r1,8s.

piiiq S rMs
rW s,q is nuclear for some q P r1,8s.

Proof. piq ñ piiq This has been shown in Theorem 4.2.1.
piiq ñ piiiq Trivial.
piiiq ñ piq In view of Lemma 3.3.4, W satisfies rNs by Proposition

4.2.2, while M satisfies rM.2s1 by Proposition 4.2.3 and Lemma 3.2.5.

Theorem 4.2.7. Let M be a weight sequence system satisfying rLs
and rM.2s1. Let W be a non-degenerate weight function system sat-

isfying rMs. Suppose that S rMs
rW s,q ‰ t0u for some q P r1,8s. Then, the

following statements are equivalent:

piq W satisfies rNs.

piiq S rMs
rW s,q is nuclear for all q P r1,8s.

piiiq S rMs
rW s,q is nuclear for some q P r1,8s.

pivq S rMs
rW s,q “ S

rMs
rW s,r as locally convex spaces for all q, r P r1,8s.

pvq S rMs
rW s,q “ S

rMs
rW s,r as sets for some q, r P r1,8s with q ‰ r.

Proof. In view of Lemma 3.3.4, this follows from Theorem 3.3.11,
Theorem 4.2.1 and Proposition 4.2.2.

In the specific case of Gelfand-Shilov spaces defined by weight
sequences we obtain the following useful characterizations.

Theorem 4.2.8. Let M and A be two isotropically decomposable
weight sequences satisfying pM.1q. Suppose that S rMs

rAs,q ‰ t0u for some

q P r1,8s. Then, the following statements are equivalent:

piq M and A both satisfy pM.2q1.

piiq S rMs
rAs,q is nuclear for all q P r1,8s.

piiiq S rMs
rAs,q is nuclear for some q P r1,8s.
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Proof. By Lemma 3.2.6 and Theorem 4.2.6.

Theorem 4.2.9. Let M be an isotropically decomposable weight se-
quence satisfying pM.1q and pM.2q1. Let A be an isotropically decom-

posable weight sequence satisfying pM.1q. Suppose that S rMs
rAs,q ‰ t0u

for some q P r1,8s. Then, the following statements are equivalent:

piq A satisfies pM.2q1.

piiq S rMs
rAs,q is nuclear for all q P r1,8s.

piiiq S rMs
rAs,q is nuclear for some q P r1,8s.

pivq S rMs
rAs,q = S rMs

rAs,r as locally convex spaces for all q, r P r1,8s.

pvq S rMs
rAs,q = S rMs

rAs,r as sets for some q, r P r1,8s with q ‰ r.

Proof. By Lemma 3.2.6 and Theorem 4.2.7.

In case of Gelfand-Shilov spaces defined by BMT weight functions
we get the following result.

Theorem 4.2.10. Let ω be a BMT weight function and let η be a
non-negative non-decreasing continuous function on r0,8q satisfying

pαq. Suppose that S rωs
rηs,q ‰ t0u for some q P r1,8s. Then, the follow-

ing statements are equivalent:

piq η satisfies pγq (pγ0q).

piiq S rωs
rηs,q is nuclear for all q P r1,8s.

piiiq S rωs
rηs,q is nuclear for some q P r1,8s.

pivq S rωs
rηs,q = S rωs

rηs,r as locally convex spaces for all q, r P r1,8s.

pvq S rωs
rηs,q = S rωs

rηs,r as sets for some q, r P r1,8s with q ‰ r.

Proof. By combining Theorem 4.2.9 with Lemma 3.2.7.

In Section 4.3 we will further refine Theorem 4.2.10 by dropping
the necessity of ω being a BMT weight function (cfr. Theorem 4.3.4).
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4.2.2 Projective description

In this auxiliary section, we provide a projective description of the
Gelfand-Shilov spaces StMu

tW u . This result will be used in the next
section to prove kernel theorems.

We start by recalling some basic results about the projective de-
scription of weighted pLBq-spaces of continuous functions [8]. Let X
be a completely regular Hausdorff space. Given a non-negative func-
tion v on X, we write CvpXq for the seminormed space consisting
of all f P CpXq such that ‖f‖v “ supxPX |fpxq|vpxq ă 8. If v is
positive and continuous, then CvpXq is a Banach space. A family
V “ tvλ |λ P R`u consisting of positive continuous functions vλ on
X such that vλpxq ď vµpxq for all x P X and µ ď λ is said to be a
Nachbin family on X . We define the associated pLBq-space

VCpXq “ lim
ÝÑ
λÑ8

CvλpXq.

The maximal Nachbin family associated with V , denoted by V “

V pVq, is given by the space consisting of all non-negative upper semi-
continuous functions v on X such that supxPX vpxq{v

λpxq ă 8 for all
λ P R`. The projective hull of VCpXq is defined as the space CV pXq
consisting of all f P CpXq such that ‖f‖v ă 8 for all v P V . We
endow CV pXq with the locally convex topology generated by the sys-
tem of seminorms t‖¨‖v | v P V u. The spaces VCpXq and CV pXq are
always equal as sets. If V satisfies the condition [8, p. 94]

pSq @λ P R` Dµ P R` : vµ{vλ vanishes at infinity,

then these spaces also coincide topologically [8, Corollary 5, p. 116].
Let Xj be a completely regular Hausdorff space and let Vj “

tvλj |λ P R`u be a Nachbin family on Xj for j “ 1, 2. We denote by
V1 b V2 the Nachbin family tvλ1 b vλ2 |λ P R`u on X1 ˆ X2, where
vλ1 b vλ2 px1, x2q “ vλ1 px1qv

λ
2 px2q, x1 P X1, x2 P X2. Note that V1 b V2

satisfies pSq if and only if both V1 and V2 do so. Moreover, V pV1q b

V pV2q is upwards dense in V pV1bV2q, that is, for every v P V pV1bV2q

there are vj P V pVjq, j “ 1, 2, such that vpx1, x2q ď v1 b v2px1, x2q

for all x1 P X1, x2 P X2.
Note that every weight function system W on Rd is a Nachbin

family on X “ Rd. Lemma 3.2.2 implies that W satisfies pSq if tNu
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and twMu hold for W . Likewise, a weight sequence system M on Nd

defines a Nachbin family on X “ Nd via

M˝
“ t1{Mλ

|λ P R`u.

If M satisfies tLu, then M˝ satisfies pSq. We define V pMq as the
family consisting of all sequences M of positive numbers such that
1{M P V pM˝q. More concretely, V pMq consists of all sequences M
of positive numbers such that supαPNdM

λ
α{Mα ă 8 for all λ P R`.

Note that each element in V pMq is automatically a weight sequence.

Remark 4.2.11. Let M be a weight sequence. Then, the set

tpMα

|α|
ź

j“0

rjqαPNd | prjqjPN P tRuu (4.3)

is downwards dense in V pMMq (cf. [83, Lemma 3.4]). The family tRu
was introduced by Komatsu to obtain a projective description of the
space EtMupΩq of ultradifferentiable functions of Roumieu type [83,
Proposition 3.5]. Later on, this family was also used by Pilipović to

give a projective description of the Gelfand-Shilov spaces StMu
tAu [108,

Lemma 4]. For general weight sequence systems M, the family V pMq
is the natural generalization of the family in (4.3).

The following observations will be of great use in the sequel.

Lemma 4.2.12. Let paαqαPNd be a sequence of positive numbers.

piq We have supαPNd aα{M
λ
α ă 8 for some λ P R` if and only if

supαPNd aα{Mα ă 8 for all M P V pMq.

piiq We have supαPNd aαMα ă 8 for some M P V pMq if and only
if supαPNd aαM

λ
α ă 8 for all λ P R`.

Proof. The direct implications are clear, we now show the reverse
implications.
piq Suppose that supαPNd aα{Mα ă 8 for all M P V pMq, but

supαPNd aα{M
λ
α “ 8 for any λ ą 0. We construct a sequence M “

pMαqαPNd inductively. There is a α1 P Nd such that aα1{M
1
α1
ą 1,
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and we set Mα “ M1
α for all |α| ď |α1|. Suppose we have arrived

at step n ` 1. There exists a αn`1 P Nd such that |αn`1| ą |αn|
and aαn`1{M

n`1
αn`1

ą n ` 1. Then we set Mα “ Mn`1
α for all α P Nd

such that |αn| ă |α| ď |αn`1|. It is clear that M P V pMq but
supαPNd aα{Mα “ 8, giving a contradiction. Whence the existence of
some λ ą 0 such that supαPNd aα{M

λ
α ă 8.

piiq Suppose that Cλ “ supαPNd aαM
λ
α ă 8 for all λ P R`. We

define M “ pMαqαPNd as Mα :“ supλPR`M
λ
α{Cλ. Then clearly M P

V pMq and supαPNd aαMα ď 1.

Corollary 4.2.13. Let M be a weight sequence system.

piq If M satisfies tLu then for any R ą 0 and M P V pMq there
exists a N P V pMq and C0 ą 0 such that R|α|Nα ď C0Mα for
any α P Nd.

piiq Suppose M is isotropically decomposable satisfying tLu. If M
satisfies tM.2u1 then for any M P V pMq there exists a N P

V pMq and C0 ą 0 such that Nα`ej ď C0Mα for any α P Nd and
j P t1, . . . , du.

Proof. piq Suppose M satisfies tLu. Take arbitrary R ą 0 and
M P V pMq and consider the sequence aα “ R|α|{Mα. For any
µ ą 0 there exists a λ ą 0 and C 10 ą 0 such that R|α|Mµ

α ď C 10M
λ
α .

Then supαPNd aαM
µ
α ď C 10 supαPNdM

λ
α{Mα ă 8. Whence by Lemma

4.2.12piiq there exists a N P V pMq such that supαPNd aαNα ă 8

which is equivalent to R|α|Nα ď C0Mα for some C0 ą 0 and any
α P Nd.

piiqWe may assume M is isotropic and d “ 1. Suppose M satisfies
tM.2u1. Take any M P V pMq. Let µ ą 0 be arbitrary and λ ą
0 be such that Mµ

p`1 ď C 10M
λ
p for some C 10 ą 0 and any p P N.

Consider the sequence a0 “ 1 and an “ 1{Mn´1 for n ě 1. Then
supně1 anM

µ
n ď C 10M

λ
n´1{Mn´1 ă 8. Then by Lemma 4.2.12piiq

there is some N P V pMq such that Nn`1 ď C0Mn for some C0 ą 0
and all n ě 0.

We are ready to state and prove the main result of this section.
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Theorem 4.2.14. Let M be a weight sequence system satisfying tLu
and tM.2u1, and let W be a non-degenerate weight function system

satisfying twMu and tNu. Then, ϕ P C8pRdq belongs to StMu
tW u if and

only if ‖ϕ‖SMw,8 ă 8 for all M P V pMq and w P V pW q. More-

over, the topology of StMu
tW u is generated by the system of seminorms

t‖¨‖SMw,8 |M P V pMq, w P V pW qu.

We define

ι : C8pRd
q Ñ CpNd

ˆ Rd
q, ιpϕq “ rpα, xq ÞÑ ϕpαqpxqs.

The proof of Theorem 4.2.14 is based on the ensuing lemma.

Lemma 4.2.15. Let M be a weight sequence system satisfying tLu
and tM.2u1, and let W be a non-degenerate weight function system

satisfying twMu and tNu. Then, ϕ P C8pRdq belongs to StMu
tW u if and

only if ιpϕq P pM˝ bW qCpNd ˆ Rdq. Moreover,

ι : StMu
tW u Ñ pM˝

bW qCpNd
ˆ Rd

q

is a topological embedding.

Proof. The first part and the fact that ι is continuous are obvious.
We now show that ι is a topological embedding. Fix an arbitrary
q P p1,8q. For n P Z` we write Xn for the Banach space consisting
of all ϕ P C8pRdq such that

‖ϕ‖Xn “

˜

ÿ

αPNd

˜∥∥ϕpαqwn∥∥
Lq

Mn
α

¸q¸1{q

ă 8

and Yn for the Banach space consisting of all sequences pϕαqαPNd of
measurable functions such that

‖pϕαqαPNd‖Yn “

˜

ÿ

αPNd

ˆ

‖ϕαwn‖Lq
Mn

α

˙q
¸1{q

ă 8.

Note that both Xn and Yn are reflexive. The mapping ρn : Xn Ñ

Yn, ϕ ÞÑ pϕpαqqαPNd is a topological embedding. Set X “ lim
ÝÑnPZ`

Xn
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and Y “ lim
ÝÑnPZ`

Yn. Condition tLu implies that X “ StMu
tW u,q “ S

tMu
tW u

as locally convex spaces. We claim that ρ “ lim
ÝÑnPZ`

ρn : X “ StMu
tW u Ñ

Y is a topological embedding. Before we prove the claim, let us show
how it entails the result. Condition tLu and Lemma 3.2.2 imply that
the mapping

τ : pM˝
bW qCpNd

ˆ Rd
q Ñ Y, f ÞÑ pfpα, ¨ qqαPNd

is well-defined and continuous. Note that ρ “ τ ˝ ι. Hence, ι is a
topological embedding because ρ is so. We now show the claim with
the aid of the dual Mittag-Leffler theorem 2.2.2. For n P Z` we set
Zn “ Yn{ρnpXnq. Hence, Zn is a reflexive Banach space. We denote
by πn : Yn Ñ Zn the quotient mapping. The natural linking mappings
Zn Ñ Zn`1 are injective since ρpXn`1q X Yn “ ρpXnq. Consider
the following injective inductive sequence of short topologically exact
sequences

0 X1 Y1 Z1 0

0 X2 Y2 Z2 0

...
...

...

ρ1 π1

ρ2 π2

The linking mappings of the inductive spectra pXnqnPZ` , pYnqnPZ`
and pZnqnPZ` are weakly compact as continuous linear mappings be-
tween reflexive Banach spaces. In particular, these inductive spectra
are regular [80, Lemma 3]. Furthermore, lim

ÝÑnPZ`
Xn “ X “ StMu

tW u is

Montel since it is a nuclear pDF q-space. Therefore, the dual Mittag-
Lefller theorem 2.2.2 yields that ρ “ lim

ÝÑnPZ`
ρn is a topological em-

bedding.

Proof of Theorem 4.2.14. We write E for the space consisting of all
ϕ P C8pRdq such that ‖ϕ‖SMw,8 ă 8 for all M P V pMq and w P V pW q

endowed with the locally convex topology generated by the system of
seminorms t‖¨‖SMw,8 |M P V pMq, w P V pW qu. We need to show that
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StMu
tW u and E coincide as locally convex spaces. Since V pM˝q b V pW q

is upward dense in V pM˝ b W q, we have that ϕ P C8pRdq belongs
to E if and only if ιpϕq P CV pM˝ b W qpRdq and that ι : E Ñ

CV pM˝ bW qpRdq is a topological embedding. As both the Nachbin
families M˝ and W satisfy pSq, M˝ b W does so as well. Hence,
pM˝bW qCpNdˆRdq “ CV pM˝bW qpRdq as locally convex spaces.
The result now follows from Lemma 4.2.15.

4.2.3 Kernel theorems

We prove kernel theorems for the spaces S rMs
rW s in this section. To this

end, we introduce vector-valued versions of S rMs
rW s and give a tensor

product representation for them.
Let M be a weight sequence system, let W be a weight function

system and let E be a lcHs. We define S rMs
rW s,8pR

d;Eq “ S rMs
rW spR

d;Eq as

the space consisting of all ϕ P C8pRd;Eq such that for all p P csnpEq
and λ P R` (for all p P csnpEq, M P V pMq and w P V pW q)

pλpϕq “ sup
αPNd

sup
xPRd

ppϕpαqpxqqwλpxq

Mλ
α

ă 8

ˆ

pM,wpϕq “ sup
αPNd

sup
xPRd

ppϕpαqpxqqwpxq

Mα

ă 8

˙

.

We endow S rMs
rW spR

d;Eq with the locally convex topology generated

by the system of seminorms tpλ | p P csnpEq, λ P R`u (tpM,w | p P
csnpEq,M P V pMq, w P V pW qu).

Proposition 4.2.16. Let M be a weight sequence system satisfying
rLs and rM.2s1, let W be a non-degnerate weight function system
satisfying rwMs and rNs, and let E be a complete lcHs. Then, the
following canonical isomorphisms of locally convex spaces hold

S rMs
rW spR

d;Eq – S rMs
rW spR

d
qεE – S rMs

rW spR
d
qpbE.

We will make use of the ensuing result of Komatsu [83] to show
Proposition 4.2.16.
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Lemma 4.2.17 ([83, Lemma 1.12]). Let G be a semi-Montel lcHs
such that G is continuously included in CpRdq and let E be a complete
lcHs. Then, every function ϕ P CpRd;Eq satisfying

〈e1,ϕ〉 : Rd
Ñ C, x ÞÑ 〈e1,ϕpxq〉 belongs to G for all e1 P E 1 (4.4)

defines an element of GεE via E 1c Ñ G, e1 ÞÑ 〈e1,ϕ〉. Conversely, for
every T P GεE there is a unique ϕ P CpRd;Eq satisfying (4.4) such
that T pe1q “ 〈e1,ϕ〉 for all e1 P E 1.

Proof of Proposition 4.2.16. We only show the Roumieu case as the
Beurling case is similar. The second isomorphism follows from the
fact that StMu

tW upR
dq is complete and nuclear (recall that every nuclear

pDF q-space is complete). We now show the first isomorphism. This
amounts to showing that the mapping

StMu
tW upR

d;Eq Ñ StMu
tW upR

d
qεE, ϕ ÞÑ re1 ÞÑ 〈e1,ϕ〉s (4.5)

is a topological isomorphism. We first show that it is a well-defined
bijective mapping. By Lemma 4.2.17 with G “ StMu

tW upR
dq (G is semi-

Montel because it is nuclear), it suffices to show that a function ϕ P

CpRd;Eq belongs to StMu
tW upR

d;Eq if and only if 〈e1,ϕ〉 P StMu
tW upR

dq

for all e1 P E 1. The direct implication is obvious. Conversely, let
ϕ P CpRd;Eq be such that 〈e1,ϕ〉 P StMu

tW upR
dq for all e1 P E 1. In

particular, 〈e1,ϕ〉 P C8pRdq for all e1 P E 1. By [126, Appendice
Lemme II], we have that ϕ P C8pRd;Eq and

〈e1,ϕ〉pαq “
〈
e1,ϕpαq

〉
, e1 P E 1, α P Nd.

Theorem 4.2.14 implies that for all M P V pMq and w P V pW q the
set

"

ϕpαqpxqwpxq

Mα

|x P Rd, α P Nd

*

is weakly bounded in E. Hence, this set is bounded in E by Mackey’s
theorem. This means that ϕ P StMu

tW upR
d;Eq. Next, we show that the

isomorphism in (4.5) holds topologically. Let M P V pMq, w P V pW q
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and p P csnpEq be arbitrary. We denote by B the polar set of the
p-unit ball in E. The bipolar theorem yields that

sup
e1PB

} 〈e1,ϕ〉 }SMw,8

“ sup

#

|
〈
e1,ϕpαqpxq

〉
|wpxq

Mα

| x P Rd, α P Nd, e1 P B

+

“ pM,wpϕq

for all ϕ P StMu
tW upR

d;Eq. The result now follows from Theorem 4.2.14.

We are ready to prove the kernel theorems.

Theorem 4.2.18. Let Mj be a weight sequence system on Ndj satis-
fying rLs and rM.2s1, and let Wj be a non-degenerate weight function
system on Rdj satisfying rwMs and rNs for j “ 1, 2. The following
canonical isomorphisms of locally convex spaces hold

S rM1bM2s

rW1bW2s
pRd1`d2q – S rM1s

rW1s
pRd1qpbS rM2s

rW2s
pRd2q

– LbpS rM1s

rW1s
pRd1q

1
b,S

rM2s

rW2s
pRd2qq (4.6)

and

S rM1bM2s

rW1bW2s
pRd1`d2q

1
b – S

rM1s

rW1s
pRd1q

1
b
pbS rM2s

rW2s
pRd2q

1
b

– LbpS rM1s

rW1s
pRd1q,S rM2s

rW2s
pRd2q

1
bq. (4.7)

Proof. The isomorphisms in (4.7) follow from those in (4.6) and the
general theory of nuclear Fréchet and pDF q-spaces, see e.g. [83, The-
orem 2.2]. We now show the isomorphisms in (4.6). By Proposition

4.2.16 and the fact that S rM1s

rW1s
pRd1q is Montel (as it is nuclear and bar-

reled), it is enough to show that the following canonical isomorphism
of locally convex spaces holds

S rM1bM2s

rW1bW2s
pRd1`d2q – S rM1s

rW1s
pRd1 ;S rM2s

rW2s
pRd2qq.

This amounts to verify that the mappings

S rM1bM2s

rW1bW2s
pRd1`d2q Ñ S rM1s

rW1s
pRd1 ;S rM2s

rW2s
pRd2qq : ϕ ÞÑ rx1 ÞÑ ϕpx1, ¨ qs
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and

S rM1s

rW1s
pRd1 ;S rM2s

rW2s
pRd2qq Ñ S rM1bM2s

rW1bW2s
pRd1`d2q :

ϕ ÞÑ rpx1, x2q ÞÑ ϕpx1qpx2qs,

who are each others inverses, are well-defined and continuous. But
the proofs of these facts are standard and therefore omitted (we only
remark that in the Roumieu case one needs to use Theorem 4.2.14).

4.3 The Beurling-Björck spaces

4.3.1 The space S rωs
rηs

In this section, by a weight function on Rd we simply mean a non-
negative, measurable, and locally bounded function. We consider the
following standard conditions [11, 21] (see also Section 3.2.3):

pαq There are L,C ą 0 such that ωpx`yq ď Lpωpxq`ωpyqq`logC,
for all x, y P Rd.

pγq There are A,B ą 0 such that A logp1` |x|q ď ωpxq ` logB, for
all x P Rd.

pγ0q lim
|x|Ñ8

ωpxq

log |x|
“ 8.

A weight function ω is called radially increasing if ωpxq ď ωpyq when-
ever |x| ď |y|.

Given a weight function ω and a parameter λ ą 0, we introduce
the family of norms

‖ϕ‖ω,λ “ sup
xPRd

|ϕpxq|eλωpxq.

If η is another weight function, we consider the Banach space Sλη,ωpRdq

consisting of all ϕ P S 1pRdq such that ‖ϕ‖Sλη,ω :“ ‖ϕ‖η,λ ` ‖pϕ‖ω,λ ă
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8. Finally, we define the Beurling-Björck spaces (of Beurling and
Roumieu type) as

Spωq
pηq pR

d
q “ lim

ÐÝ
λÑ8

Sλη,ωpRd
q and Stωu

tηu pR
d
q “ lim

ÝÑ
λÑ0`

Sλη,ωpRd
q.

In literature, various definitions of the Beurling-Björck spaces
have been given [16, 28, 67]. In this section, we study the connection
between the conditions pγq and pγ0q and the equivalence of said alter-
nate definitions of Beurling-Björck type spaces. Let ω and η be two
weight functions. Given parameters k, l P N and λ ą 0, we introduce
the family of norms

‖ϕ‖ω,k,l,λ “ max
|α|ďk

max
|β|ďl

sup
xPRd

|xβϕpαqpxqeλωpxq|.

We define rSλη,ωpRdq as the Fréchet space consisting of all ϕ P SpRdq

such that

‖ϕ‖
rSk,λη,ω :“ ‖ϕ‖η,k,k,λ ` ‖pϕ‖ω,k,k,λ ă 8, @k P N.

We set

rSpωq
pηq pR

d
q “ lim

ÐÝ
λÑ8

rSλη,ωpRd
q and rStωu

tηu pR
d
q “ lim

ÝÑ
λÑ0`

rSλη,ωpRd
q.

The following result is a generalization of [28, Theorem 3.3] and [67,
Corollary 2.9] (see also [16, Theorem 2.3]).

Theorem 4.3.1. Let ω and η be two weight functions satisfying pαq.

Suppose that S rωs
rηs pR

dq ‰ t0u. The following statements are equiva-
lent:

piq ω and η satisfy pγq (pγ0q in the Roumieu case).

piiq S rωs
rηs pR

dq “ rS rωs
rηs pR

dq as locally convex spaces.

piiiq S rωs
rηs pR

d
q “ tϕ P S 1pRd

q | @λ ą 0 pDλ ą 0q @α P Nd :

sup
xPRd

|xαϕpxq|eληpxq ă 8 and sup
ξPRd

|ξαpϕpξq|eλωpξq ă 8u.
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pivq S rωs
rηs pR

d
q “ tϕ P S 1pRd

q | @λ ą 0 pDλ ą 0q @α P Nd :
ż

xPRd
|ϕpαqpxq|eληpxqdx ă 8 and

ż

ξPRd
|pϕpαqpξq|eλωpξqdξ ă 8u.

pvq S rωs
rηs pR

dq Ď SpRdq.

Following [67], our proof of Theorem 4.3.1 is based on the mapping
properties of the short-time Fourier transform (see Section 3.4.1). To
this purpose, we introduce two additional function spaces. Given a
parameter λ ą 0, we define SλωpRdq as the Fréchet space consisting
of all ϕ P C8pRdq such that ‖ϕ‖ω,k,λ :“ ‖ϕ‖ω,k,0,λ ă 8 for all k P N
and set

SpωqpRd
q “ lim

ÐÝ
λÑ8

SλωpRd
q and StωupRd

q “ lim
ÝÑ
λÑ0`

SλωpRd
q.

Given a parameter λ ą 0, we define Cλ
ωpRdq as the Banach space

consisting of all ϕ P CpRdq such that ‖ϕ‖ω,λ ă 8 and set

CpωqpRd
q “ lim

ÐÝ
λÑ8

Cλ
ωpRd

q and CtωupRd
q “ lim

ÝÑ
λÑ0`

Cλ
ωpRd

q.

We need the following extension of [67, Theorem 2.7].

Proposition 4.3.2. Let ω and η be weight functions satisfying pαq
and pγq (pγ0q in the Roumieu case). Define the weight η‘ωpx, ξq :“

ηpxq ` ωpξq for px, ξq P R2d. Fix a window ψ P rS rωs
rηs pR

dq.

paq The linear mappings

Vψ̌ : rS rωs
rηs pR

d
q Ñ Crη‘ωspR2d

q and V ˚ψ : Crη‘ωspR2d
q Ñ rS rωs

rηs pR
d
q

are continuous.

pbq The linear mappings

Vψ̌ : S rωs
rηs pR

d
q Ñ Srη‘ωspR2d

q and V ˚ψ : Srη‘ωspR2d
q Ñ S rωs

rηs pR
d
q

are continuous.
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Proof. It suffices to show that Vψ̌ : rS rωs
rηs pR

dq Ñ Srη‘ωspR2dq, Vψ̌ :

S rωs
rηs pR

dq Ñ Crη‘ωspR2dq, and V ˚ψ : Crη‘ωspR2dq Ñ rS rωs
rηs pR

dq are con-

tinuous. Indeed, the continuity of V ˚ψ : Srη‘ωspR2dq Ñ S rωs
rηs pR

dq

and Vψ̌ : rS rωs
rηs pR

dq Ñ Crη‘ωspR2dq would be immediate consequences,

whereas, in view of (3.1), we could then always factor Vψ̌ on S rωs
rηs pR

dq

as a composition of continuous mappings,

Vψ̌ : S rωs
rηs pR

d
q

Vψ̌
ÝÑ Crη‘ωspR2d

q
V ˚χ
ÝÑ rS rωs

rηs pR
d
q

Vψ̌
ÝÑ Srη‘ωspR2d

q, (4.8)

where, when ψ ‰ 0, the window χ is chosen such that χ P rS rωs
rηs pR

dq

and pψ, χ̌qL2 “ 1. (The relation (4.8) actually yields S rωs
rηs pR

dq “

rS rωs
rηs pR

dq.)

Suppose that ψ P rSλ0
η,ωpRdq, so that λ0 ą 0 is fixed in the Roumieu

case but can be taken as large as needed in the Beurling case. Let
A and B “ BA be the constants occurring in pγq (in the Roumieu
case, A can be taken as large as needed due to pγ0q). Furthermore,
we assume that all constants occurring in pαq and pγq (resp. pγ0q) are
the same for both ω and η. We may also assume that λ0 ´ k{A ą 0.
We first consider Vψ̌. Let λ ă pλ0 ´ k{Aq{L be arbitrary. For all

k P N and ϕ P SλL`
k
A

η,ω pRdq, it holds that

max
|α`β|ďk

sup
px,ξqPR2d

|B
β
ξ B

α
xVψ̌ϕpx, ξq|e

ληpxq

ď p2πqk max
|α|ďk

sup
xPRd

eληpxq
ż

Rd
|ϕptq|p1` |t|qk|ψpαqpx´ tq|dt

ď p2πqk}ψ}η,k,λ0}ϕ}η,λL` k
A

sup
xPRd

ż

Rd
eλpηpxq´Lηptqqp1` |t|qke´

k
A
ηptqe´λ0ηpx´tqdt

ď p2πqkB
k
ACλ

}ψ}η,k,λ0}ϕ}η,λL` k
A

ż

Rd
e´pλ0´λLqηpyqdy
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and

max
|α`β|ďk

sup
px,ξqPR2d

|B
β
ξ B

α
xVψ̌ϕpx, ξq|e

λωpξq

“ max
|α`β|ďk

sup
px,ξqPR2d

|B
β
ξ B

α
xVFpϕ̌q

pψpξ,´xq|eλωpξq

ď p2πqk max
|β|ďk

sup
ξPRd

eλωpξq
ż

Rd
| pψptq|p1` |t|qk|pϕpβqpξ ´ tq|dt

ď p2πqkB
k
ACλ

}pϕ}ω,k,Lλ} pψ}ω,λ0

ż

Rd
e´pλ0´λL´k{Aqωptqdt.

These inequalities imply the continuity of Vψ̌ : rS rωs
rηs pR

dq Ñ Srη‘ωspR2dq.
Taking k “ 0 in the above norm bounds, we also obtain that Vψ̌ :

S rωs
rηs pR

dq Ñ Crη‘ωspR2dq is continuous. Next, we treat V ˚ψ . Let

λ ă λ0{L be arbitrary. For all k P N and Φ P C
λL` k

A
η‘ω pR2dq it holds

that

}V ˚ψ Φ}η,k,λ

ď p2πqk max
|α|ďk

sup
tPRd

eληptq

ÿ

βďα

ˆ

α

β

˙
ĳ

R2d

|Φpx, ξq|p1` |ξ|qk|ψpβqpt´ xq|dxdξ

ď p4πqk}ψ}η,k,λ0}Φ}η‘ω,λL` k
A

ĳ

R2d

p1` |ξ|qke´p
k
A
`λLqωpξqeλpηptq´Lηpxqqe´λ0ηpt´xqdxdξ

ď p4πqkB
k
ACλ

}ψ}η,k,λ0}Φ}η‘ω,λL` k
A

ĳ

R2d

e´λLωpξq´pλ0´λLqηpyqdydξ

and

}FpV ˚ψ Φq}ω,k,λ

“ max
|α|ďk

sup
tPRd

eλωptq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B
α
t

ĳ

Rd

Φpx, ξqe2πiξ¨xe´2πit¨x
pψpt´ ξqdxdξ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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ď p4πqkB
k
ACλ

} pψ}ω,k,λ0}Φ}η‘ω,λL` k
A

ĳ

R2d

e´λLηpxq´pλ0´λLqωpξqdxdξ.

Since } ¨ }η,k,k,λ ď B
k
A } ¨ }η,k,λ` k

A
and } ¨ }ω,k,k,λ ď B

k
A } ¨ }ω,k,λ` k

A
for

all λ ą 0 and k P N, the above inequalities show the continuity of
V ˚ψ .

In order to be able to apply Proposition 4.3.2, we show the ensuing
simple lemma.

Lemma 4.3.3. Let ω and η be weight functions satisfying pαq. If

S rωs
rηs pR

dq ‰ t0u, then also rS rωs
rηs pR

dq ‰ t0u.

Proof. Let ϕ P S rωs
rηs pR

dq z t0u. Pick ψ, χ P DpRdq for which we

have
ş

Rd ϕpxqψp´xqdx “ 1 and
ş

Rd χpxqdx “ 1. Then, ϕ0 “ pϕ ˚

χqF´1pψq P rS rωs
rηs pR

dq and ϕ0 ı 0 (as ϕ0p0q “ 1).

Proof of Theorem 4.3.1. piq ñ piiq In view of Lemma 4.3.3, this fol-
lows from Proposition 4.3.2 and the reconstruction formula (3.1).
piiq ñ piiiq Trivial.
piiiq ñ pvq and pivq ñ pvq These implications follow from the

fact that SpRdq consists precisely of all those ϕ P S 1pRdq such that

sup
xPRd

|xαϕpxq| ă 8 and sup
ξPRd

|ξαpϕpξq| ă 8

for all α P Nd (see e.g. [28, Corollary 2.2]).
pvq ñ piq Since the Fourier transform is an isomorphism from

S rωs
rηs pR

dq onto S rηs
rωspR

dq and from SpRdq onto itself, it is enough to

show that η satisfies pγq (pγ0q in the Roumieu case). We start by

constructing ϕ0 P S rωsrηs pRdq such that ϕpjq “ δj,0 for all j P Zd,
similar as in Lemma 3.3.9. Choose ψ P S rωs

rηs pR
dq such that ψp0q “ 1.

Set

χpxq “

ż

r´ 1
2
, 1
2
sd

e´2πix¨tdt, x P Rd.

Then, χpjq “ δj,0 for all j P Zd. Hence, ϕ0 “ ψχ satisfies all re-
quirements. Let pλjqjPZd be an arbitrary multi-indexed sequence of
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positive numbers such that λj Ñ 8 as |j| Ñ 8 (pλjqjPZd “ pλqjPZd
for λ ą 0 in the Roumieu case). Consider

ϕ “
ÿ

jPZd

e´λjηpjq

p1` |j|qd`1
ϕ0p ¨ ´ jq P S rωsrηs pR

d
q.

Since S rωs
rηs pR

dq Ď SpRdq, there is C ą 0 such that

e´λjηpjq

p1` |j|qd`1
“ |ϕpjq| ď

C

p1` |j|qd`2

for all j P Zd. Hence,

logp1` |j|q ď λjηpjq ` logC

for all j P Zd. As η satisfies pαq and pλjqjPZd is arbitrary, the latter
inequality is equivalent to pγq (pγ0q in the Roumieu case).
piq ñ pivq Let us denote the space in the right-hand side of pivq by

S rωs,1
rηs,1 pR

dq. Since we already showed that piq ñ piiq and we have that

rS rωs
rηs pR

dq Ď S rωs,1
rηs,1 pR

dq, it suffices to show that S rωs,1
rηs,1 pR

dq Ď rS rωs
rηs pR

dq.

By Proposition 4.3.2paq, Lemma 4.3.3 and the reconstruction for-
mula (3.1), it suffices to show that Vψ̌pϕq P Crη‘ωspR2dq for all ϕ P

S rωs,1
rηs,1 pR

dq, where ψ P rS rωs
rηs pR

dq is a fixed window. But the latter can
be shown by using the same method employed in the first part of the
proof of Proposition 4.3.2.

4.3.2 Nuclearity

We characterize in this section the nuclearity of the Beurling-Björck
spaces. In particular, our goal is to show the following result.

Theorem 4.3.4. Let ω and η be weight functions satisfying pαq. If ω

and η satisfy pγq (pγ0q in the Roumieu case), then S rωs
rηs pR

dq is nuclear.
Conversely, if in addition ω and γ are radially increasing, then the
nuclearity of S rωs

rηs pR
dq implies that ω and η satisfy pγq (pγ0q in the

Roumieu case), provided that S rωs
rηs pR

dq ‰ t0u.
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Our proof of Theorem 4.3.4 is based on Proposition 4.3.2pbq,
Lemma 4.2.4 and the next auxiliary result.

Proposition 4.3.5. Let η be a weight function satisfying pαq and pγq
(pγ0q in the Roumieu case). Then, SrηspRdq is nuclear.

Proof. We present two different proofs:
piq The first one is based on a classical result of Gelfand and

Shilov [62, p. 181]. The nuclearity of SpηqpRdq is a particular case
of this result, as the increasing sequence of weight functions penηqnPN
satisfies the so-called pP q and pNq conditions because of pγq. For the
Roumieu case, note that

StηupRd
q “ lim

ÝÑ
nPZ`

lim
ÐÝ
kěn

S
1
n
´ 1
k

η pRd
q

as locally convex spaces. The above mentioned result implies that,

for each n P Z`, the Fréchet space lim
ÐÝkěn

S
1
n
´ 1
k

η pRdq is nuclear, as

the increasing sequence of weight functions pep
1
n
´ 1
kqηqkěn satisfies the

conditions pP q and pNq because of pγ0q. The result now follows from
the fact that the inductive limit of a countable spectrum of nuclear
spaces is again nuclear.
piiq Next, we give a proof that only makes use of the fact that

SpRdq is nuclear. Our argument adapts an idea of Hasumi [70]. Fix
a non-negative function χ P DpRdq such that

ş

Rd χpyqdy “ 1 and for
each λ ą 0 let

Ψλpxq “ exp

ˆ

λL

ż

Rd
χpyqηpx` yqdy

˙

.

It is clear from the assumption pαq that η should have at most poly-
nomial growth. So, we fix q ą 0 such that p1`|x|q´qηpxq is bounded.
We obtain that there are positive constants cλ, Cλ, Cλ,β, and Cλ1,λ2,β

such that

cλ exp pληpxqq ď Ψλpxq ď Cλ exppL2ληpxqq, (4.9)

|Ψ
pβq
λ pxq| ď Cλ,βp1` |x|q

q|β|Ψλpxq, (4.10)
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and
ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

Ψλ1

Ψλ2

˙pβq

pxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cλ1,λ2,βp1` |x|q
q|β|, (4.11)

for each β P Nd, and λ1 ď λ2. Let Xλ “ Ψ´1
λ SpRdq and topologize

each of these spaces in such a way that the multiplier mappings MΨλ :
Xλ Ñ SpRdq : ϕ ÞÑ Ψλ ¨ ϕ are isomorphisms. The bounds (4.11)
guarantee that the inclusion mappings Xλ2 Ñ Xλ1 are continuous
whenever λ1 ď λ2. If A is a constant such that pγq holds for η, then
the inequalities (4.9) and (4.10) clearly yield

max
|β|ďk

sup
xPRd

p1` |x|qk|pΨλϕq
pβq
pxq| ď Bk,λ,A ‖ϕ‖η,k,λL2`p1`qqk{A

and

‖ϕ‖η,k,λ ď
1

cλ
max
|β|ďk

∥∥Ψλϕ
pβq
∥∥
L8

ď
1

cλ
max
|β|ďk

˜∥∥pΨλϕq
pβq
∥∥
L8
`

ÿ

νăβ

ˆ

β

ν

˙∥∥∥Ψ
pβ´νq
λ ϕpνq

∥∥∥
L8

¸

ď b1k,λ max
|β|ďk

∥∥pΨλϕq
pβq
∥∥
L8
` max
|β|ďk´1

∥∥p1` | ¨ |qqkΨλϕ
pβq
∥∥
L8

ď bk,λ max
|β|ďk

∥∥p1` | ¨ |qqkpk`1q{2
pΨλϕq

pβq
∥∥
L8
,

for some positive constants Bk,λ,A, b
1
k,λ and bk,λ. This gives, as locally

convex spaces,
SpηqpRd

q “ lim
ÐÝ
nPZ`

Xn

and the continuity of the inclusion Xλ Ñ Sλη pRdq. If in addition pγ0q

holds, we can choose A arbitrarily large above. Consequently, the
inclusion SL2λ`ε

η pRdq Ñ Xλ is continuous as well for any arbitrary
ε ą 0, whence we infer the topological equality

StηupRd
q “ lim

ÝÑ
nPZ`

X1{n.

The claimed nuclearity of SrηspRdq therefore follows from that of
SpRdq and the well-known stability of this property under projective
and (countable) inductive limits [131, Proposition 50.1, p. 514].
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Proof of Theorem 4.3.4. We first suppose that ω and η satisfy pγq

(pγ0q in the Roumieu case). W.l.o.g. we may assume that S rωs
rηs pR

dq ‰

t0u. In view of Lemma 4.3.3, Proposition 4.3.2pbq and the recon-

struction formula (3.1) imply that S rωs
rηs pR

dq is isomorphic to a (com-

plemented) subspace of Srη‘ωspR2dq. The latter space is nuclear by
Proposition 4.3.5. The result now follows from the fact that nuclear-
ity is inherited to subspaces.

Next, we suppose that ω and η are radially increasing and that
S rωs
rηs pR

dq is nuclear and non-trivial. Since the Fourier transform is a

topological isomorphism from S rωs
rηs pR

dq onto S rηs
rωspR

dq, it is enough to

show that η satisfies pγq (pγ0q in the Roumieu case). Consider the
Köthe set Aη “ tpeληpjqqjPZd | λ P R`u. Note that, by Proposition
2.3.1, λ1rAηs is nuclear if and only if

Dλ ą 0 p@λ ą 0q :
ÿ

jPZd
e´ληpjq ă 8.

As η is radially increasing and satisfies pαq, the above condition is
equivalent to pγq (pγ0q in the Roumieu case). Hence, it suffices to
show that λ1rAηs is nuclear. To this end, we use Lemma 4.2.4 with

A “ Aη and E “ S rωs
rηs pR

dq. We start by constructing ϕ0 P Sωη pRdq

such that
ż

r0, 1
2
sd

ϕ0pj ` xqdx “ δj,0, j P Zd. (4.12)

By Lemma 4.3.3, there is a ϕ P rS rωs
rηs pR

dq such that ϕp0q “ 1. Set

χpxq “
1

2d

ż

r´1,1sd
e´2πix¨tdt, x P Rd.

Then, χpj{2q “ δj,0 for all j P Zd. Hence, ψ “ ϕχ P rS rωs
rηs pR

dq and

ψpj{2q “ δj,0 for all j P Zd. Then, ϕ0 “ p´1qdBd ¨ ¨ ¨ B1ψ satisfies all
requirements. The linear mappings

T : λ1
rAηs Ñ S rωsrηs pR

d
q, T ppcjqjPZdq “

ÿ

jPZd
cjϕ0p ¨ ´ jq



82 Chapter 4. Characterizations of nuclearity

and

S : S rωs
rηs pR

d
q Ñ λ8rAηs, Spϕq “

˜

ż

r0, 1
2
sd

ϕpx` jqdx

¸

jPZd

are continuous. Moreover, by (4.12), we have that S ˝ T “ ι.



Chapter 5

pPLBq-spaces of weighted
ultradifferentiable functions

5.1 Introduction

pPLBq-spaces, i.e. countable projective limits of countable induc-
tive limits of Banach spaces, often arise naturally in the context of
generalized functions. For instance, the space of distributions, the
space of real analytic functionals or the multiplier space OMpRdq are
all classical examples which exhibit this topological structure. More-
over, due to the elevated complexity ultradifferentiability imposes on
the topology of the spaces associated to it, pPLBq-spaces appear fre-
quently in the theory of ultradistributions. Thus the determination
of the topological properties of such spaces becomes an important
problem in functional analysis. We refer to the survey article [49] for
applications, examples, and further references on the subject.

In general, the projective limit of bornological spaces is not again
bornological, and the same is true for barrelledness. As such topo-
logical properties are highly desirable, characterizing when they hold
poses an interesting problem. One of the first and arguably most
famous results in this direction was Grothendieck’s proof for the bar-
relledness of the multiplier space OMpRdq [69], which he did by show-
ing it is isomorphic to a complemented subspace of s pb s1 (later Val-
divia showed that actually the tensor representation OMpRdq – s pb s1

holds [132]). More recently, in [1] (see also [149]) the locally convex

83
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properties of weighted pPLBq-spaces of continuous functions were
described in terms of their defining double sequence of weights. Sim-
ilarly as in Chapter 4, these results allow us to characterize the topo-
logical invariants for vastly more complex spaces of test functions.

In this chapter we consider certain variants of the Gelfand-Shilov
spaces, more precisely

SpMq
tW u “ lim

ÐÝ
λÑ0`

lim
ÝÑ
µÑ8

SMλ

wµ,8 and StMu
pW q “ lim

ÐÝ
µÑ0`

lim
ÝÑ
λÑ8

SMλ

wµ,8

for a certain weight sequence system M and a weight function system
W , where we will employ the notation Z rMsW “ S rMs

xW y. A particularly
interesting example is the space of multipliers for the Gelfand-Shilov
spaces OrMs,rW sM “ Z rMsW ˝ , where W ˝ “ t1{w1{λ |λ P R`u, see [47].
The goal is to characterize the ultrabornologicity and barrelledness
of Z rMsW through conditions on W closely related to the topologi-
cal invariants pΩq and pDNq for Fréchet spaces of Vogt and Wagner

[92]. In the case of OrMs,rW sM , we will see a clear distinction between
the Beurling and Roumieu case, where the former will in most cases
posses these properties while the latter often does not. Interestingly,
our method for showing the necessity of these conditions will require
the Gabor accessibility of the Gelfand-Shilov spaces.

The chapter is organized as follows. In Section 5.2 we formally in-
troduce the conditions pΩq and tDNu (and two variants) on a weight
function system W . Moreover, we link some of these conditions on
WM, for a weight sequence system M, to a condition rM.2s˚ on M it-
self, and they are equivalent under the right circumstances. The con-
dition rM.2s˚ is actually a generalization of the condition pM.2q˚ on
weight sequences [89], which determines when the associated function
is a BMT weight function [20]. Then, in Section 5.3, we characterize
the topological properties of pPLBq-spaces of weighted continuous
functions in our framework. After this, the strategy will be to either
embed Z rMsW as a complemented subspace in such a space or to do the
reverse, so that the locally convex property in question is inherited
by the subspace and may then be determined. Our main result, The-
orem 5.4.3, characterizing the ultrabornologicity and barrelledness of
Z rMsW is then shown in Section 5.4, where we also discuss some specific
examples.
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5.2 The conditions pΩq and tDNu

In this section we introduce and study several conditions for a weight
function system W on a topological space X which will be intrinsi-
cally linked to the topological properties of the spaces considered in
this chapter. To this regard, we introduce the following notions.

Definition 5.2.1. A weight function system W onX is said to satisfy
condition pΩq if

@λ P R` Dµ ă λ @η ă µ Dθ P p0, 1q DC ą 0 @x P X :

1

wµpxq
ď C

ˆ

1

wλpxq

˙θ ˆ
1

wηpxq

˙1´θ

.

If “Dθ P p0, 1q” is replaced by “@θ P p0, 1q”, then W is said to satisfy

pΩq.

Definition 5.2.2. A weight function system W onX is said to satisfy
condition tDNu if

Dλ P R` @µ ą λ @θ P p0, 1q Dη ą µ DC ą 0 @x P X :

1

wµpxq
ď C

ˆ

1

wλpxq

˙θ ˆ
1

wηpxq

˙1´θ

.

If “@θ P p0, 1q” is replaced by “Dθ P p0, 1q”, then W is said to satisfy
tDNu.

Remark 5.2.3. The previous conditions are inspired by and closely

related to the topological linear invariants pDNq, pDNq, pΩq and pΩq
for Fréchet spaces of Vogt and Wagner [92, 142, 146]; see [149] for
more information.

The following observation, a direct consequence of Lemma 3.2.1,
will prove itself useful in the sequel.

Lemma 5.2.4. Let W be a weight function system on Rd that sat-

isfies rwMs. Then W satisfies pΩq or pΩq (resp. tDNu or tDNu) if
and only if W|Zd does.
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Our first goal is to relate for any weight sequence system M the
conditions pΩq, resp. tDNu, on WM to conditions on the weight se-
quence system itself. To this purpose, we say that M satisfies pM.2q˚

if

Dλ P R` @µ ď λ DQ P Z` DC0 ą 0 @α P Nd : pMλ
αq

Q
ď C0M

µ
Qα

and M satisfies tM.2u˚ if

Dµ P R` @λ ě µ DQ P Z` DC0 ą 0 @α P Nd : pMλ
αq

Q
ď C0M

µ
Qα.

Note that if pMλ
αq

Q ď C0M
µ
Qα, µ ď λ, for some Q P Z`, then also

pMλ
αq

NQ ď pC0M
µ
0 q

NMµ
NQα for any N P Z`. As a consequence,

any isotropically decomposable weight sequence system M satisfies
rM.2s˚ if and only if every isotropic weight sequence system in its
decomposition satisfies rM.2s˚.

We may characterize rM.2s˚ via WM in the following way.

Lemma 5.2.5. Let M be an isotropically decomposable weight se-
quence system. Then M satisfies rM.2s˚ if and only if

Dλ P R` @µ ď λ pDµ P R` @λ ě µq DR ą 1 DC ą 0 :

ωMµptq ď RωMλptq ` logC.

Proof. Suppose M satisfies rM.2s˚. Let λ P R` be such that for any
µ ď λ (µ P R` be such that for any λ ě µ) we have pMλ

αq
Q ď C0M

µ
Qα

for some Q P Z` and C0 ą 0. For any β ă pQ, . . . , Qq we then have

sup
αPNd

log
|tQα`β|Mµ

0

Mµ
Qα`β

ď sup
αPNd

log
|tQα|Mµ

0

Mµ
Qα

¨
|tβ|Mµ

0

Mµ
β

ď sup
αPNd

log
|tQα|pMλ

0 q
Q

pMλ
αq

Q
` log |tβ| ` log

C0M
µ
0 pM

λ
0 q

1´Q

infβăQeM
µ
β

ď pQ` 1qωMλptq ` logC

for some C ą 0, from which we may infer

ωMµptq “ max
βăQe

sup
αPNd

log
tQα`βMµ

0

Mµ
Qα`β

ď pQ` 1qωMλptq ` logC.
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Conversely, suppose the inequality holds for some λ P R` and any
µ ď λ (for some µ P R` and any λ ě µ). We may suppose R P Z`.
For any α P Nd we get

Mλ
α “Mλ

0 sup
tPRd

|tα|e´ωMλ ptq

ď CMλ
0 sup
tPRd

|tα|e´ωMµ ptq{R
“

CMλ
0

pMµ
0 q

1{R
pMµ

Rαq
1{R.

We get the following relation between the conditions rM.2s˚ on
M and pΩq and tDNu on WM.

Proposition 5.2.6. Let M be an isotropically decomposable weight
sequence system. Consider the statements

piq WM satisfies pΩq (resp. tDNu).

piiq M satisfies rM.2s˚.

Then, piq ñ piiq. If M satisfies rLs and rM.2s, then, also piiq ñ piq.

Proof. We only show the Beurling case, the Roumieu case may be
done similarly. Suppose WM satisfies pΩq. There exists some λ ď 1
such that for any µ ď λ there is some θ P p0, 1q and C ą 0 for which

p1´ θqωMµptq ď θωM1ptq ` p1´ θqωMµptq ď ωMλptq ` logC.

Putting R “ p1´ θq´1, it follows from Lemma 5.2.5 that M satisfies
rM.2s˚.

Suppose now M satisfies rLs, rM.2s and rM.2s˚. Take any λ P R`
and let λ0 ď λ be such that the inequality in Lemma 5.2.5 holds for
any µ ď λ0. By Lemma 3.2.4piq and piiiq there exists a µ ď λ0

such that 2ωMλ0 ptq ď ωMµptq ` logC1 for some C1 ą 0. By putting
θ “ pR ´ 1q{R we get for any η ď µ:

θωMλptq`p1´θqωMηptq ď p1`θqωMλ0 ptq` logC ď ωMµptq` logC1C.

We may conclude WM satisfies pΩq.
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Our notation of the condition rM.2s˚ is based on the condition
pM.2q˚ on weight sequences [20, 89]. An isotropic weight sequence
M is said to satisfy pM.2q˚ if and only if

DQ P Z` : lim inf
pÑ8

mQp{mp ą 1, p ě 1.

We mention that pM.1q and pM.3q imply pM.2q˚ [105, Proposition
1.1]. The condition is intrinsically linked to the BMT weight func-
tions, which we explore in the following result.

Proposition 5.2.7. Let M be an isotropic weight sequence satisfying
pM.1q and pM.2q. Then, the following statements are equivalent:

piq M satisfies pM.2q˚.

piiq ωM is a BMT weight function.

piiiq MM satisfies rM.2s˚.

pivq MM satisfies pΩq.

pvq MM satisfies tDNu.

If these statements are satisfied, we have MM r«s MωM and WM r«s

WωM .

Proof. piq ô piiq is shown in [20, Proposition 13], while piiiq ô pivq
and piiiq ô pvq follow from Proposition 5.2.6. We are left with
piq ô piiiq. By [20, Proposition 13] we have that M satisfies pM.2q˚

if and only if

ωMp2tq ď HωMptq ` logC, t ě 0, (5.1)

for some C,H ě 1. By Lemma 5.2.5 this is equivalent to M satisfying
rM.2s˚.

One may now easily verify the last part of the proposition.

As a matter of fact, any weight sequence associated to a BMT
weight function satisfies pΩq and tDNu.

Proposition 5.2.8. Let ω be a BMT weight function. Then, Mω

satisfies rM.2s˚. In particular, Mω satisfies pΩq and tDNu.
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Proof. By using the fact that for the Young conjugate φ˚ the function
y ÞÑ φ˚pyq{y is increasing on r0,8q, it follows that for any λ P R`,
Q P Z` and α P Nd:

pMλ
ω,αq

Q
“ e

Q
λ
φ˚pλ|α|q

ď e
1
λ
φ˚pλQ|α|q

“Mλ
ω,Qα.

We may conclude Mω satisfies rM.2s˚. As Mω satisfies rLs and rM.2s
by Lemma 3.2.7, it follows from Proposition 5.2.6 that Mω satisfies
pΩq and tDNu.

We now end with a discussion on the conditions pΩq and tDNu.
As we will see in Theorem 5.4.3, these will determine whether or not
our spaces in question are ultrabornological and barrelled. Therefore
it is of great interest to us to determine if the weight function system
W , or W ˝ “ t1{w1{λ |λ P R`u when considering multiplier spaces,
satisfies the necessary conditions. Our primary interest are the weight
function systems that arise from a weight sequence M or a weight
function ω as in Section 3.2.3. For WM and Wω, we will show that

the conditions pΩq and tDNu are rarely met. For W ˝
M and W ˝

ω , we
will see a clear distinction between the Beurling and Roumieu case.
We first look at Wω.

Proposition 5.2.9. Let ω be a non-negative non-decreasing contin-
uous function on r0,8q going to infinity. The following statements
hold.

piq Wω does not satisfy tDNu and pΩq.

piiq W ˝
ω satisfies tDNu, but not pΩq.

Proof. That Wω and W ˝
ω do not satisfy pΩq follows easily from the

fact that for any η ă µ ă λ, the inequalities

θ

λ
`

1´ θ

η
ď

1

µ
and µ ď θλ` p1´ θqη

do not hold for all θ P p0, 1q. That Wω also does not satisfy tDNu
follows from the fact that for any µ ą 1 and θ P p 1

µ
, 1q, the inequality

θ `
1´ θ

η
ď

1

µ
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cannot hold for any η ą µ. Finally, as for any µ ą 1 and θ P p0, 1q
one may always find an η ą µ such that

µ ď 1` p1´ θqη,

we infer that W ˝
ω satisfies tDNu.

Next, we consider WM . We first show the following general result.

Lemma 5.2.10. Let M be an isotropically decomposable weight se-
quence system satisfying pLq and pM.2q. Then, W ˝

M satisfies tDNu.

Proof. It suffices to show that for any µ ą 0 and θ P p0, 1q there
exists a η ă µ such that

ωMµpxq ď p1´ θqωMηpxq ` logC,

for some C ą 0. This follows easily from Lemma 3.2.4 piq and piiiq.

Corollary 5.2.11. Let M be an isotropically decomposable weight
sequence satisfying pM.1q and pM.2q. The following statements hold.

piq WM does not satisfy tDNu and pΩq.

piiq W ˝
M satisfies tDNu. If M satisfies pM.2q˚, then, W ˝

M does not

satisfy pΩq.

Proof. piq If WM satisfies pΩq, respectively tDNu, then in particular
each isotropic sequence in its decomposition does so. Hence these
satisfy pΩq, respectively tDNu, so that by Proposition 5.2.7 the weight
function system arises from a BMT weight function. We now get a
contradiction from Proposition 5.2.9piq.

piiq By Lemma 5.2.10 we see that W ˝
M satisfies tDNu. If M satis-

fies pM.2q˚, then by a similar argument as in piq one shows that W ˝
M

cannot satisfy pΩq by virtue of Proposition 5.2.9piiq.
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5.3 pPLBq-spaces of weighted continuous

functions

Let X be a topological space. A family A “ taλ,µ | λ, µ P R`u of
continuous functions X Ñ R` is called a weight function grid on X
if aλ1,µ1pxq ď aλ2,µ2pxq for every x P X when λ2 ď λ1 and µ2 ď µ1.
The following two conditions will be crucial for our analysis.

Definition 5.3.1. The weight function grid A on X is said to satisfy
Q if

@λ1 P R` Dλ2 ď λ1 Dµ1 P R` @λ3 ď λ2

@µ2 ě µ1 @ε ą 0 Dµ3 ě µ2 DC ą 0 :

1

aλ2,µ2pxq
ď

ε

aλ1,µ1pxq
`

C

aλ3,µ3pxq
, @x P X.

If “@ε ą 0” is replaced by “Dε ą 0”, then A is said to satisfy wQ.

Let X be a locally compact σ-compact topological vector space.
Given a weight function grid A on X, we define the space

ACpXq “ lim
ÐÝ
λÑ0`

lim
ÝÑ
µÑ8

Caλ,µpXq.

Then, ACpXq is a pPLBq-space. We now recall two important results
from [1] concerning the linear topological properties of the spaces
ACpXq that will be used later on.

Theorem 5.3.2. Let A be a weight function grid on X. If A satisfies
Q, then ACpXq is ultrabornological.

Proof. In view of [151, Theorem 3.3.5, p. 41], this was shown in [1,
Theorem 3.5].

Theorem 5.3.3 ([1, Theorem 3.8(2)]). Let A be a weight function
grid on X. If ACpXq is barrelled, then A satisfies wQ.

Consider two topological spaces X and Y . Let W be a weight
function system on X and V be a weight function system on Y .
We will primarily be interested in weight function grids of the form
A “ AW bV “ W b V on X ˆ Y , where we put aλ,µ “ wλ b vµ. Our
first concern is to determine when AW bV satisfies Q. We find the
following result.
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Proposition 5.3.4. Let W and V be weight function systems on
X and Y , respectively. Suppose that one of the following statements
holds:

piq W satisfies pΩq and V satisfies tDNu;

piiq W satisfies pΩq and V satisfies tDNu.

Then, AW bV satisfies Q.

Proof. Suppose piq holds. Take any λ1 P R` and take some λ2 ď λ1

as in pΩq. Pick µ1 P R` as in tDNu and any λ3 ď λ2 and fix a
corresponding θ P p0, 1q as implied by pΩq. By tDNu, for any µ2 ě µ1

there exists some µ3 ě µ2 and C ą 0 such that for any ε ą 0 and
px, yq P X ˆ Y :

1

wλ2pxqvµ2pyq
ď C2

ˆ

1

wλ1pxqvµ1pyq

˙θ ˆ
1

wλ3pxqvµ3pyq

˙1´θ

“

ˆ

ε

wλ1pxqvµ1pyq

˙θ
˜

ε´
θ

1´θC
2

1´θ

wλ3pxqvµ3pyq

¸1´θ

ď max

#

ε

wλ1pxqvµ1pyq
,
ε´

θ
1´θC

2
1´θ

wλ3pxqvµ3pyq

+

ď
ε

wλ1pxqvµ1pyq
`

ε´
θ

1´θC
2

1´θ

wλ3pxqvµ3pyq
.

Consequently, AW bV satisfies Q.
If piiq holds, then one may analogously conclude Q, where θ is

fixed by V instead of W .

Next, suppose either W or V is of the form WM for some weight
sequence system M. If we combine the observations made in Propo-
sition 5.2.6 with those of Proposition 5.3.4 we obtain the following
equivalencies, which will form a vital argument in showing necessary
conditions for ultrabornologicity and barrelledness in the sequel.

Lemma 5.3.5. Take a topological space X. Let M be an isotropically
decomposable weight sequence system. For a weight function system
W on X the following hold true.
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paq If M satisfies pLq, pM.2q, and pM.2q˚, the following statements
are equivalent:

piq AWMbW on Zd ˆX satisfies Q.

piiq AWMbW on Zd ˆX satisfies wQ.

piiiq W satisfies tDNu.

pbq If M satisfies tLu, tM.2u, and tM.2u˚, the following statements
are equivalent:

piq AW bWM
on X ˆ Zd satisfies Q.

piiq AW bWM
on X ˆ Zd satisfies wQ.

piiiq W satisfies pΩq.

Proof. paq piq ñ piiq Trivial.
piiq ñ piiiq Condition wQ implies that

@λ1 P R` Dλ2 ď λ1 Dµ1 P R` @λ3 ď λ2 @µ2 ě µ1 Dµ3 ě µ2 DC ą 0 :

1

wµ2pxq
ď C

˜

eωMλ2
pjq´ω

Mλ1
pjq

wµ1pxq
`
eωMλ2

pjq´ω
Mλ3

pjq

wµ3pxq

¸

.

for every x P X and j P Zd. Using Lemma 5.2.5, let λ1 P R` be such
that for any λ ď λ1 we have ωMλpjq ď RωMλ1 pjq ` logC1 for some
R ą 1 and C1 ą 0. We then fix λ2 and µ1 as in wQ. In particular
we have

ωMλ2 pjq ´ ωMλ1 pjq ď
R ´ 1

R
ωMλ2 pjq ` logC1.

Fix some ν ą 0. By Lemma 3.2.4piq and piiiq there is a η ď λ2 such
that

R ´ 1

R
νωMλ2 p2jq ď ωMηpjq ` logC2

for some C2 ě 1. Next, again by Lemma 3.2.4piq and piiiq, there
exists a λ3 ď η so that 2ωMηpjq ď ωMλ3 pjq ` logC3 for some C3 ą 0.
Specifically, we have

ωMλ2 pjq ´ ωMλ3 pjq ď ´ωMηpjq ` logC3.
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Set C 1 “ maxpC1, C3q, we get from wQ

Dµ1 P R` @µ2 ě µ1 Dµ3 ě µ2 DC ą 0 @x P X @j P Zd :

1

wµ2pxq
ď CC 1

˜

e
R´1
R

ω
Mλ2

pjq

wµ1pxq
`
e´ωMη pjq

wµ3pxq

¸

.

Consider the sequence jk “ pk, 0, . . . , 0q for k P Z`, then note that
eωMλ2

pjkq is a non-decreasing sequence such that limk Ñ8 e
ω
Mλ2

pjkq “

8. Also note that eωMλ2
pjk`1q ď C2e

1
ν

R
R´1

ωMη pjkq. For any r ě eωMλ2
pj1q

let k “ kr ě 1 be such that

eωMλ2
pjkq ď r ă eωMλ2

pjk`1q ď C2e
1
ν

R
R´1

ωMη pjkq.

We now see that

Dµ1 P R` @µ2 ě µ1 @ν ą 0 Dµ3 ě µ2 DC ą 0 @x P X @r ą 0 :

1

wµ2pxq
ď CC 1C2

ˆ

r

wµ1pxq
`

r´ν

wµ3pxq

˙

.

The result then follows by calculating the minimum (with respect to
r ą 0) of the right-hand side of the above inequality.
piiiq ñ piq This follows from Proposition 5.3.4 as WM satisfies pΩq

by Proposition 5.2.6.
pbq One may show the equivalencies similar as in part paq.

5.4 The space Z rMsW

We now define the weighted pPLBq-spaces of ultradifferentiable func-
tions that we will be concerned with in the remainder of this chapter.
Let M be a weight sequence and let w be a continuous positive func-
tion on Rd. We write ZMw pRdq “ ZMw for the space SMw,8, i.e. for the
Banach space consisting of all ϕ P C8pRdq such that

‖ϕ‖ZMw :“ sup
αPNd

sup
xPRd

wpxq|ϕpαqpxq|

Mα

ă 8.

Then given a weight sequence system M and a weight function system
W , we define the spaces

ZpMqW “ lim
ÐÝ
λÑ0`

lim
ÝÑ
µÑ8

ZMλ

wµ , ZtMuW “ lim
ÐÝ
µÑ0`

lim
ÝÑ
λÑ8

ZMλ

wµ .
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Then, Z rMsW is a pPLBq-space. We will also write OrMs,rW sM for the

space Z rMsW ˝ , due to its motivation as being the multiplier space asso-

ciated to S rMs
rW s . Note however that it is far from trivial whether or

not OrMs,rW sM is actually the multiplier space of S rMs
rW s .

Open problem 5.4.1. Determine when OrMs,rW sM is the multiplier

space of S rMs
rW s . In [47] this is shown to be the case for S rMs

rMs , where M

is an isotropic weight sequence satisfying pM.1q, pM.2q and pM.3q.

The goal of this chapter is characterize the topological properties

of Z rMsW via the conditions pΩq and tDNu on W . To this purpose,
we introduce the following assumption on M and W under which we
will characterize the ultrabornologicity and barrelledness of Z rMsW .

Assumption 5.4.2. M is an isotropically decomposable weight se-
quence system satisfying rLs and rM.2s1 such that WM satisfies pΩq
(resp. tDNu). Additionally, W is a weight function system satisfying
rwMs such that there exists a symmetric weight function system V
satisfying rwMs and rNs for which W ˝ is rV s-admissible, i.e.

@µ P R` Dλ, η P R` p@λ, η P R` Dµ P R`q DC ą 0 @x, y P Rd :

wλpx` yq ď Cwµpxqvηpyq (5.2)

and S rMs
rV s ‰ t0u.

We are now ready to formulate the main result of this chapter.

Theorem 5.4.3. Let M be a weight sequence system and W be a
weight function system such that Assumption 5.4.2 holds for some
weight function sequence V . Consider the statements:

piq W satisfies tDNu (resp. pΩq).

piiq ZpMqW (resp. ZtMuW ) is ultrabornological.

piiiq ZpMqW (resp. ZtMuW ) is barrelled.

Then the following are true:
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pAq The implications piq ñ piiq ñ piiiq hold.

pBq If M satisfies rM.2s and S rMs
rV s is Gabor accessible, then, piiiq ñ

piq.

Sufficient conditions for a Gelfand-Shilov space to be Gabor ac-
cessible were explored in Section 3.4.2. In particular, if StMu

tV u “

Stp!
su

tp!rupR
dq this is exactly the case when pr, sq is a Gabor couple, so

that by Corollary 3.4.10 it suffices that either minpr, sq ě 1{2 or
maxpr, sq ą 1.

To demonstrate the applicability of Theorem 5.4.3, let us consider
the multiplier spaces associated to Gelfand-Shilov spaces defined by
weight functions or weight sequences as in Section 3.2.3. In both
examples we will see a clear distinction between the Beurling and
Roumieu case.

Theorem 5.4.4. Let ω, η : r0,8q Ñ R` be continuous and non-
decreasing going to infinity such that ω is a BMT weight function
and η satisfies pαq and pγq (resp. pγ0q). Suppose that S rωs

rηs ‰ t0u.
Then, the following statements hold.

piq Opωq,pηqM is ultrabornological and barrelled.

piiq If Stωu
tηu is Gabor accessible, then Otωu,tηuM is not ultrabornological

or barrelled.

Proof. We start by verifying that Assumption 5.4.2 is met for M “

Mω, W “ W ˝
η and V “ Wη. For M, this follows directly from Lemma

3.2.7 and Proposition 5.2.8. Also, by Lemma 3.2.7 it follows that W
satisfies rwMs while V satisfies rwMs and rNs. Finally, as η satisfies
pαq, we have

ηpxq ď Lηpx` yq ` Lηpyq ` logC,

for some C ą 0, from which we may conclude (5.2) holds.
The result now follows directly from Theorem 5.4.3 and Proposi-

tion 5.2.9piiq.

Theorem 5.4.5. Let M and A be two isotropically decomposable
weight sequences satisfying pM.1q and pM.2q and let M satisfy pM.2q˚.

Suppose that S rMs
rAs ‰ t0u. Then, the following statements hold.
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piq OpMq,pAqM is ultrabornological and barrelled.

piiq If StMu
tAu is Gabor accessible and A satisfies pM.2q˚, then OtMu,tAuM

is not ultrabornological or barrelled.

Proof. As a direct consequence of Lemma 2.3.2, Lemma 3.2.6 and
Proposition 5.2.7, we see that Assumption 5.4.2 holds for M “MM ,
W “ W ˝

A and V “ WA. Whence the result follows directly from
Theorem 5.4.3 and Corollary 5.2.11.

In particular, we get the following result for Gevrey sequences.

Corollary 5.4.6. For any pr, sq P R` ˆ R` such that r ` s ą 1
(r ` s ě 1) we have that:

piq Opp!
sq,pp!rq

M is ultrabornological and barrelled;

piiq If pr, sq is a Gabor couple, then, Otp!
su,tp!ru

M is not ultrabornolog-
ical or barrelled.

Proof. For any s ą 0 and Mp “ p!s we have that m2p{mp “ 2s ą 1,
so that in particular M satisfies pM.2q˚. The proof is now completed
by Theorem 5.4.5.

Before we move on to the proof of Theorem 5.4.3, we first pose
the following interesting open problem.

Open problem 5.4.7. Consider a continuous function ρ : NdˆRd Ñ

p0,8q and a weight sequence M . We may consider the Banach space
of all smooth functions ϕ P C8pRdq such that

sup
αPNd

sup
xPRd

|ϕpαqpxq|ρpα, xq

Mα

ă 8.

Then, using a weight sequence system M and an alternate weight
function system P “ tρµ | µ P R`u with continuous functions
ρµ : Nd ˆ Rd Ñ p0,8q, one may define several variants of Gelfand-
Shilov type spaces as we did before. The problem now becomes the
determination of the topological invariants of these spaces. Note
that many of these test function spaces exhibit interference in their
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time-frequency decay, so that the techniques employed throughout
this text are often not directly applicable. A particularly inter-
esting example is where ρµpα, xq “ pαpxqw

µpxq for a weight func-
tion system W and a family tpα | α P Ndu of continuous functions
pα : Rd Ñ p0,8q. Such spaces arise naturally in the context of
asymptotic behavior for ultradistributions, see Chapters 9 and 10.

5.4.1 The proof of Part pAq

The proof of Part pAq employs the short-time Fourier transform in or-

der to embed Z rMsW into the spaceAWMbW CpR2dq (resp. AW bWM
CpR2dq),

after which the statement follows from Proposition 5.3.4 and Theo-
rem 5.3.2. The following result considers the mapping properties of
the (adjoint) STFT on Z rMsW .

Proposition 5.4.8. Let M be a weight sequence system and W a
weight function system such that Assumption 5.4.2 holds for some
weight function system V . For any ψ P S rMs

rV s , the mappings

Vψ : ZpMqW Ñ AWMbW CpR2d
ξ,xq, Vψ : ZtMuW Ñ AW bWM

CpR2d
x,ξq,

and

V ˚ψ : AWMbW CpR2d
ξ,xq Ñ Z

pMq
W , V ˚ψ : AW bWM

CpR2d
x,ξq Ñ Z

tMu
W ,

are continuous. In particular, Z rMsW is isomorphic to a complemented
subspace of AWMbW CpR2dq (of AW bWM

CpR2dq).

Proof. We have that ψ P SMλ3

vµ3 ,1 for any (resp. for some) λ3, µ3 P R`
by Theorem 3.3.11.

We first consider Vψ. It suffices to show

@λ1 P R` Dλ2 P R` @µ2 P R` Dµ1 P R`
p@µ1 P R` Dµ2 P R` @λ2 P R` Dλ1 P R`q

Vψ : ZMλ2

wµ2 Ñ Cexpω
Mλ1

bwµ1 pR2d
ξ,xq is well-defined and continuous.

In the Beurling case we put λ1 “ λ2 “ λ3, while in the Roumieu case
we put λ1 “ maxpλ2, λ3q. For any µ2 P R` we choose µ1, µ3 P R`
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(for any µ1 P R` and fixed µ3 P R` we choose µ2 P R`) such that
wµ1px ` yq ď C1w

µ2pxqvµ3pyq for some C1 ą 0 and any x, y P Rd.
Then for ϕ P ZMλ2

wµ2 and α P Nd we get

|ξαVψϕpx, ξq|w
µ1pxq

Mλ1
α

ď
C1M

λ1
0

p2πq|α|

ÿ

βďα

ˆ

α

β

˙
ż

Rd

|ϕpβqptq|wµ2ptq

Mλ2
β

¨
|ψpα´βqpx´ tq|vµ3px´ tq

Mλ3
α´β

dt

ď

ˆ

C1M
λ1
0 ‖ψ‖SMλ3

vµ3 ,1

˙

‖ϕ‖ZMλ2
wµ2

,

whence

sup
px,ξqPR2d

|Vψϕpx, ξq|w
µ1pxqeωMλ1

pξq
ď C ‖ϕ‖ZMλ2

wµ2

for some C ą 0. The continuity of Vψ follows.

We now show the continuity of V ˚ψ . It suffices to show

@λ1 P R` Dλ2 P R` @µ2 P R` Dµ1 P R`
p@µ1 P R` Dµ2 P R` @λ2 P R` Dλ1 P R`q

Vψ : Cexpω
Mλ2

bwµ2 pR2d
ξ,xq Ñ ZM

λ1

wµ1 is well-defined and continuous.

Again, for any µ2 P R` we choose µ1, µ3 P R` (for any µ1 P R`
and fixed µ3 P R` we choose µ2 P R`) such that wµ1px ` yq ď
C1w

µ2pxqvµ3pyq for some C1 ą 0 and any x, y P Rd. Using condi-
tion rLs and rM.2s1 and Lemma 3.2.5, we find that for any λ1, λ3 P

R` there exists λ2, λ4 P R` (for any λ2 P R` and fixed λ3 P R`
there exists λ1, λ4 P R`) such that p4πq|α| maxpMλ3

α ,M
λ4
α q ď C2M

λ1
α

for some C2 ą 0 and eωMλ4
p¨q
{eωMλ2

p¨q
P L1pRdq. Take any Φ P

Cwµ2bexprω
Mλ2

spR2d
x,ξq, then for any α P Nd,

ˇ

ˇ

ˇ

ˇ

B
α
t

ż ż

R2d

Φpx, ξqe2πiξ¨tψpt´ xqdxdξ

ˇ

ˇ

ˇ

ˇ

wµ1ptq

Mλ1
α
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ď
C1C

2
2M

λ1
0

2|α|

ÿ

βďα

ˆ

α

β

˙

ż ż

R2d

|tβ||Φpx, ξq|wµ2pxq

Mλ4
β

|ψpα´βqpt´ xq|vµ3pt´ xq

Mλ3
α´β

dxdξ

ď
C1C

2
2M

λ1
0

Mλ4
0

}eωMλ4
p¨q
{eωMλ2

p¨q
}L1 ‖ψ‖SMλ3

vµ3 ,1

‖Φ‖Cwµ2bexprω
Mλ2

s
.

We may conclude the continuity of V ˚ψ .

The final statement will follow if we show (3.1) holds over Z rMsW .

We choose some ψ P rS rMs
rV s with synthesis window γ P rS rMs

rV s , where

we used Lemma 3.3.4. Next, take any ϕ P Z rMsW , then Vψϕpx, ξq “
FtpϕTxψqpξq. One may easily deduce from (5.2) that ϕTxψ P L

1pRdq

for any x P Rd, whence ϕTxψ “ F´1pVψϕpx, ¨qq. By our previous
calculations, it then follows from Fubini’s Theorem that

ϕptq “
1

pγ, ψqL2

ż

Rd
pϕptqTxψptqqTxγptqdx

“
1

pγ, ψqL2

ż

Rd

ˆ
ż

Rd
Vψϕpx, ξqe

2πiξ¨tdξ

˙

Txγptqdx

“
1

pγ, ψqL2

ż ż

R2d

Vψϕpx, ξqMξTxγptqdxdξ.

We have thus shown that Z rMsW is isomorphic to a complemented
subspace of AWMbW CpR2dq (of AW bWM

CpR2dq).

Proof of Theorem 5.4.3 Part A. piq ñ piiq By Assumption 5.4.2 and
Proposition 5.3.4 it follows that AWMbW (resp. AW bWM

) satisfies Q.

Then Z rMsW is ultrabornological by Theorem 5.3.2 and Proposition
5.4.8.
piiq ñ piiiq This holds for any lcHs [103, Observation 6.1.2,

p. 167].

5.4.2 The proof of Part pBq

We now move on to prove Part pBq. We need some preparation. Let
M be a weight sequence and a ą 0. By EMp,apRdq “ EMp,a we denote the
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space of all aZd-periodic functions ϕ P C8pRdq such that

‖ϕ‖EMp,a “ sup
αPNd

sup
xPRd

|ϕpαqpxq|

Mα

ă 8.

For a weight sequence system M we then consider the spaces

E pMqp,a pRd
q “ lim

ÐÝ
λÑ0`

EMλ

p,a pRd
q, EtMup,a pRd

q “ lim
ÝÑ
λÑ8

EMλ

p,a pRd
q.

Let b ą 0 and w be a positive function on bZd. For a weight se-
quence M we write CwpbZd; EMp,apRdqq for the space consisting of all

pϕβqβPbZd P pEMp,apRdqqbZ
d

such that∥∥pϕβqβPbZd∥∥w,EMp,a “ sup
βPbZd

wpβq ‖ϕβ‖EMp,a ă 8.

Let M be a weight sequence system and W be a weight function
system on bZd. We introduce the spaces

pW qCpbZd; EtMup,a pRd
qq “ lim

ÐÝ
µÑ0`

lim
ÝÑ
λÑ8

CwµpbZd; EMλ

p,a pRd
qq

and

tW uCpbZd; E pMqp,a pRd
qq “ lim

ÐÝ
λÑ0`

lim
ÝÑ
µÑ8

CwµpbZd; EMλ

p,a pRd
qq.

Then xW yCpbZd; E rMsp,a pRdqq is a pPLBq-space.

Lemma 5.4.9. Let M be an isotropically decomposable weight se-
quence system satisfying rLs and rM.2s1 and W be a weight function
system on bZd. Then,

tW uCpbZd; E pMqp,a pRd
qq – AWMbW CpZd ˆ bZdq,

pW qCpbZd; EtMup,a pRd
qq – AW bWM

CpbZd ˆ bZdq,

as locally convex spaces.
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Proof. Take λ, µ P R` and any pϕβqβPbZd P Cw
µpbZd; EMλ

p,a pRdqq. For
any m P Zd, β P bZd and γ P Nd we have

wµpβq

Mλ
γ

ˇ

ˇ

ˇ

ˇ

ˆ

´i2πm

a

˙γ

a´d
ż

r0,asd
ϕβpxqe

´i 2πm¨x
a dx

ˇ

ˇ

ˇ

ˇ

ď a´d
ż

r0,asd

wµpβq|ϕ
pγq
β pxq|

Mλ
β

ď
∥∥pϕβqβPbZd∥∥w,EMλ

p,a
.

From here we may conclude that the injective mapping

S : tW uCpbZd; E pMqp,a pRd
qq Ñ AWMbW CpZd ˆ bZdq

presp. S : pW qCpbZd; EtMup,a pRd
qq Ñ AW bWM

CpbZd ˆ Zdqq

pϕβqβPbZd ÞÑ pa´d
ż

r0,asd
ϕβpxqe

´i 2πm¨x
a dxqmPZd,βPbZd

is continuous.
Next, for any λ, µ P R` take an arbitrary pcm,βqmPZd,βPbZd P

CwλbeωMµ pZd b bZdq. Suppose η P R` is such that

ÿ

mPZd

eωMη p2πm{aq

eωMµpmq
ă 8.

We now have for any α P Nd and β P bZd:

wλpβq

Mη
α

ˇ

ˇ

ˇ

ˇ

ˇ

B
α
ÿ

mPZd
cm,βe

i 2πm¨x
a

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

mPZd
|cm,β|w

λ
pβqeωMη p2πm{aq

ď C ‖pcm,βq‖C
wλbeωMµ

for some C ą 0 depending on µ and η. By Lemma 3.2.4 and Lemma
3.2.5, we have that the injective mapping

R : AWMbW CpZd ˆ bZdq Ñ tW uCpbZd; E pMqp,a pRd
qq

pR : AW bWM
CpbZd ˆ Zdq Ñ pW qCpbZd; EtMup,a pRd

qqq

pcm,βqmPZd,βPbZd ÞÑ
ÿ

mPZd
cm,βe

i 2πm¨x
a

is continuous. Since clearly R ˝ S “ id, our proof is complete.
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The next proposition, based on an idea of Vogt [144, Theorem

5.1], allows us to embed xW yCpbZd; E rMsp,a pRdqq into Z rMsW .

Proposition 5.4.10. Let M be a weight sequence system and W be
a weight function system such that Assumption 5.4.2 holds for some
weight function system V . Let a, b ą 0 and let ψ, γ P S rMs

rV s . Then,
the mappings

Ψ “ Ψψ : xW yCpbZd; E rMsp,a pRd
qq Ñ Z rMsW : pϕβqβPbZd ÞÑ

ÿ

βPbZd
pTβψqϕβ,

and

Φ “ Φγ : Z rMsW Ñ xW yCpbZd; E rMsp,a pRd
qq : ϕ ÞÑ

˜

ÿ

δPaZd
TδppTβγqϕq

¸

βPbZd

,

are well-defined and continuous.

Proof. We first consider Ψ. We have ψ P SMλ3

vµ3 ,8 for any (resp. for
some) λ3, µ3 P R`. It suffices to show

@λ1 P R` Dλ2 P R` @µ2 P R` Dµ1 P R`
p@µ1 P R` Dµ2 P R` @λ2 P R` Dλ1 P R`q

Ψ : Cwµ2pbZd; EMλ2

p,a pRd
qq Ñ ZMλ1

wµ1 is well-defined and continuous.

Using rLs, for any λ1 P R` there exists a λ2, λ3 P R` (for any λ2, λ3 P

R` there exists a λ1 P R`) such that 2|α| maxpMλ2
α ,M

λ3
α q ď C1M

λ1
α

for some C1 ą 0. For any µ2 P R` we have a µ1, µ
1
3 P R` (for any

µ1, µ
1
3 P R` we have µ2 P R`) such that wµ1px`yq ď C2w

µ2pxqvµ
1
3pyq

for some C2 ą 0 and any x, y P Rd. Also, by Lemma 3.2.3, there is
a µ3 P R` (for a fixed µ3 P R` there exists a µ13 P R`) such that
ř

βPbZd v
µ13pt ´ βq{vµ3pt ´ βq ď C3 for some C3 ą 0 and all t P Rd.

Now, for an arbitrary pϕβqβPbZ P Cw
µ2pbZd; EMλ2

p,a pRdqq we have that
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for any α P Nd and t P Rd,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B
α

ÿ

βPbZd
ψpt´ βqϕβptq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

wµ1ptq

Mλ1
α

ď C1C2M
λ1
0

ÿ

βPbZd
2´|α|

ÿ

α1ďα

ˆ

α

α1

˙

|ψpα
1qpt´ βq|vµ

1
3pt´ βq

Mλ3

α1

¨
|ϕ
pα´α1q
β ptq|wµ2pβq

Mλ2

α´α1

ď

ˆ

C1C2C3M
λ1
0 ‖ψ‖SMλ3

vµ3 ,8

˙ ∥∥pϕβqβPbZd∥∥wµ2 ,EMλ2
p,a

.

Whence the continuity of Ψ follows.

Next, we consider Φ. Again we have γ P SMλ3

vµ3 ,8 for any λ3, µ3 P R`
(for some λ3, µ3 P R`). It suffices to show

@λ1 P R` Dλ2 P R` @µ2 P R` Dµ1 P R`
p@µ1 P R` Dµ2 P R` @λ2 P R` Dλ1 P R`q

Φ : ZMλ2

wµ2 Ñ Cwµ1pbZd; EMλ1

p,a pRd
qq is well-defined and continuous.

Using similar considerations on the parameters as above, we have for
arbitrary ϕ P ZMλ2

wµ2 that for any α P Nd, β P bZd and t P Rd,

ˇ

ˇ

ˇ

ˇ

ˇ

B
α

ÿ

δPaZd
γpt´ β ´ δqϕpt´ δq

ˇ

ˇ

ˇ

ˇ

ˇ

wµ1pβq

Mλ1
α

ď C1C2M
λ1
0

ÿ

δPaZd
2´|α|

ÿ

α1ďα

ˆ

α

α1

˙

|γpα
1qpt´ β ´ δq|vµ

1
3pt´ β ´ δq

Mλ3

α1

|ϕpα´α
1qpt´ δq|wµ2pt´ δq

Mλ2

α´α1

ď

ˆ

C1C2C3M
λ1
0 ‖γ‖SMλ3

vµ3 ,8

˙

‖ϕ‖ZMλ2
wµ2

,

where we used the fact that V is symmetric. As
ř

δPaZd TδppTβγqϕq is
clearly aZd-periodic, we see that Φ is well-defined and continuous.
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Corollary 5.4.11. Let M be a weight sequence system and W be a
weight function system such that Assumption (5.4.2) holds for some

weight function system V . If there exists ψ, γ P S rMs
rV s and a, b ą 0

such that

ÿ

kPZd
Tak`bjψTak`blγ “ δj,l, pj, lq P Z2d, (5.3)

then xW yCpbZd; E rMsp,a pRdqq is isomorphic to a complemented subspace

of Z rMsW .

Proof. Condition (5.3) implies Φ ˝ Ψ “ id
xW yCpbZd;ErMsp,a pRdqq

, so this is

a direct consequence of Proposition 5.4.10.

In the following lemma, we establish the connection between (5.3)
and Gabor frames.

Lemma 5.4.12. Let a, b ą 0. For ψ, γ P SpRdq the following state-
ments are equivalent:

piq ψ and γ satisfy (5.3).

piiq 1
ad
Vγψ

`

bj, k
a

˘

“ δj,0δk,0 for all pk, jq P Z2d.

piiiq G
`

ψ, a, 1
b

˘

is a Gabor frame and 1
bd
γ is a dual window of ψ.

Proof. By the Poisson summation formula, we have that for any
pl, jq P Z2d:

ÿ

kPZd
Tak`bjγpxqTak`blψpxq “

1

ad

ÿ

kPZd
Vγψ

ˆ

bpj ´ lq,
k

a

˙

e2πi k
a
px´blq.

This shows piq ô piiq. The equivalence piiq ô piiiq is a consequence
of the the Wexler-Raz biorthogonality relations, see Lemma 3.4.4.

We now arrive at the proof of part B.

Proof of Theorem 5.4.3 Part B. If S rMs
rV s is Gabor accessible, then (5.3)

holds for certain ψ, γ P S rMs
rV s by Lemma 5.4.12. Consequently, the
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space xW yCpbZd; E rMsp,a pRdqq is isomorphic to a complemented sub-

space of Z rMsW by Corollary 5.4.11. As a complemented subspace of a
barrelled space is again barrelled, it follows from Lemma 5.4.9 that
AWMbW CpbZd ˆ Zdq (resp. AW bWM

CpZd ˆ bZdq) is barrelled. Com-
bining Theorem 5.3.3 with Lemma 5.3.5, we see that W|Zd satisfies

tDNu (resp. pΩq). The proof is now completed by Lemma 5.2.4.



Chapter 6

The spaces B1rMsω and 9B1rMsω

6.1 Introduction

The space B1 of bounded distributions and its subspace 9B1 of distri-
butions vanishing at infinity, introduced by Schwartz [125], play an
important role in the convolution theory for distributions [97, 99, 100]
and the asymptotic analysis of generalized functions [114]. Their
analogues in the setting of ultradistributions were first considered in
[25, 108] and further studied in [7, 24, 46, 48]. In [46], the second
structure theorem for these spaces (and their weighted variants) was
shown for weight sequences by means of the parametrix method. This
technique imposes heavy restrictions on the defining weight sequence,
namely, the assumptions pM.1q, pM.2q, and pM.3q. The main goal of
this chapter is to show the first structure theorem for the bounded
ultradistributions B1rMsω and the space of ultradistributions vanishing
at infinity 9B1rMsω (both with respect to a weight function ω). Our main
results are Theorem 6.4.1 and Theorem 6.4.12, both crucial for Part
II.

In the case of 9B1rMsω , it is important to point out that none of
the methods available in the literature applies to deliver a proof for
Theorem 6.4.1. We develop here a new approach to the problem
whose core consists in combining a criterion for the surjectivity of a
continuous linear mapping in terms of its transpose (Lemma 6.4.3)

with the computation of the dual of 9B1rMsω . The latter computation
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is achieved by exploiting the mapping properties of the short-time
Fourier transform. In fact, we shall show that the strong dual of
9B1rMsω is given by DrMsL1

ω
.

The chapter is organized as follows. We start in Section 6.2 by
studying the mapping properties of the STFT on the tempered ultra-
distributions S 1rMs

rW s . Our main result will be Proposition 6.2.7, where
in particular we have that the so-called desingularisation formula
(6.2) holds in S 1rMs

rW s . After this, in Section 6.3, we formally intro-
duce the spaces we will be working with and consider their inherent
topological properties. In particular, we characterize these spaces
by evaluating the decay of the STFT. The main results here will be
Theorem 6.3.10 and Theorem 6.3.11 where we determine the spaces
B1rMsω and 9B1rMsω by the limit behavior of their translates. Finally, in
Section 6.4 we deliver the aforementioned structural theorems as well
as discuss the projective description of DtMuL1

ω
.

6.2 The short-time Fourier transform of

tempered ultradistributions

In this preliminary section we discuss the mapping properties of the
STFT on the duals of the Gelfand-Shilov spaces S 1pMq

pW q . In particular,

our aim is to obtain the so-called desingularisation formula (6.2).
In order to do this, we must first consider the differentiability of the
STFT on SpMq

pW q . To this purpose, we introduce the following condition
on W :

psNq @λ P R` @k P N Dµ P R` :
ş

Rdp1` |t|q
kwλptq{wµptqdt ă 8.

We will work under the following strengthening of Assumption 3.4.2
on a weight sequence system M and a weight function system W .

Assumption 6.2.1. M is isotropically decomposable satisfying pLq

and pM.2q1, W is symmetric and satisfies pMq and psNq and SpMq
pW q ‰

t0u.

For a weight function system W , we define SpW q as the Fréchet
space of all ϕ P C8pRdq such that

sup
|α|ďk

sup
xPRd

|ϕpαqpxq|wλpxq ă 8, @k P N, λ P R`.
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We may then described he continuity of the STFT on SpMq
pW q as follows.

Proposition 6.2.2. Let M be a weight sequence system and W be
a weight function system such that Assumption 6.2.1 holds. For any
ψ P SpMq

pW q the mappings

Vψ : SpMq
pW q Ñ SpW bWMq

and
V ˚ψ : SpW bWMq Ñ S

pMq
pW q

are well-defined and continuous.

Proof. In view of Proposition 3.4.1 it suffices to show Vψ : SpMq
pW q Ñ

SpW bWMq is well-defined an continuous. We have that ψ P SMλ3

wµ3 ,8 for
every λ3, µ3 P R`. It suffices to show

@λ1, µ1 P R` @k P N Dλ2, µ2 P R` :

SMλ2

wµ2 ,8 Ñ Skwµ1bexpω
Mλ1
pRd

x ˆ Rd
ξq is well-defined and continuous.

Fix λ1, µ1 P R` and k P N. Let µ12, µ3 P R` be such that wµ1px`yq ď
C1w

µ12pxqwµ3pyq for some C1 ą 0 and any x, y P Rd. Using psNq, let
µ2 P R` be such that p1 ` |t|qβwµ

1
2ptq{wµ2ptq P L1pRdq for all β P Nd

such that |β| ď k. Using pLq and pM.2q1 there is some λ2 P R` such
that Mλ2

α`ν ď C2M
λ1
α for some C2 ą 0 and any α, ν P Nd with |ν| ď k.

We set λ3 “ λ2. Take any ϕ P SMλ2

wµ2 ,8, then for all γ P Nd we have

max
|α|,|β|ďk

wµ1pxq

ˇ

ˇ

ˇ

ˇ

ξγ

Mλ1
γ

B
β
ξ B

α
xVψϕpx, ξq

ˇ

ˇ

ˇ

ˇ

ď C1M
λ1
0 p2πq

k´|γ|

max
|α|,|β|ďk

ÿ

κďγ

ˆ

γ

κ

˙
ż

Rd

|ptβϕptqqpκq|wµ
1
2ptq

Mλ1
κ

|ψpα`γ´κqpx´ tq|wµ3px´ tq

Mλ1
γ´κ

dt

ď C ‖ϕ‖SMλ2
wµ2 ,8

,

for some C ą 0. We may conclude the continuity of Vψ : SpMq
pW q Ñ

SpW bWMqpRd
x ˆ Rd

ξq.
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For any ψ P SpMq
pW q and f P S 1rMs

rW s we define the STFT of f as

Vψfpx, ξq “
〈
f,MξTxψ

〉
“ e´2πiξ¨x

pf ˚Mξψ̌qpxq, px, ξq P R2d.

Then, Vψf is obviously a smooth function on R2d.

Lemma 6.2.3. Let M be a weight sequence system satisfying rLs and

W be a weight function system satisfying rMs. Let ψ P SpMq
pW q,8 and

f P S 1rMs
rW s,8. Then for some λ P R` (for any λ P R`) there is a

C “ Cλ ą 0 such that

|Vψfpx, ξq| ď CwλpxqeωMλ pξq.

In particular, if M satisfies rM.2s
1

and W satisfies rNs, then, Vψf
defines an element of S 1

pW bWMq
pR2d

x,ξq via

〈Vψf,Φ〉 :“

ż ż

R2d

Vψfpx, ξqΦpx, ξqdxdξ, Φ P SpW bWMqpR
2d
x,ξq.

Proof. For some µ ą 0 (for any µ ą 0) there exists a C “ Cµ ą 0
such that

|Vψfpx, ξq| ď C ‖MξTxψ‖SMµ

wµ,8
.

There exists a λ ą 0 (for every λ ą 0 there exists a µ ą 0) such
that wµpx ` yq ď C1w

λpxqwλpyq and p4πq|α|Mλ
α ď C2M

µ
α for some

C1, C2 ą 0. Then

‖MξTxψ‖SMµ

wµ,8

ď C1w
λ
pxq sup

αPNd

ÿ

βďα

ˆ

α

β

˙

|p2πξqβ| suptPRd |ψ
pα´βqpt´ xq|wλpt´ xq

Mµ
α

ď C1C2 ‖ψ‖SMλ

wλ,8

wλpxqeωMλ pξq.

The second assertion now follows from Lemma 3.2.5.

Corollary 6.2.4. Let M be a weight sequence system and W be a
weight function system such that Assumption 6.2.1 holds. Let ψ P
SpMq
pW q and f P S 1pMq

pW q , then

〈Vψf,Φ〉 “
〈
f, V ˚ψ Φ

〉
, Φ P SpW bWMq.
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Proof. For any Φ P SpW bWMq and h ą 0 consider

ϕhptq “
ÿ

k,lPZd
Φphk, hlqe´2πihl¨tψpt´ hkqh2d.

By Proposition 3.4.5 we see that the sum in each ϕn converges abso-
lutely in SpMq

pW q . Moreover, by applying the mean value theorem, one
sees that

ϕh Ñ

ż ż

R2d

Φpx, ξqe´2πiξ¨tψpt´ xqdxdξ in SpMq
pW q .

Consequently, we see that〈
fptq,

ż ż

R2d

Φpx, ξqe´2πiξ¨tψpt´ xqdxdξ

〉
“

ż ż

R2d

Φpx, ξq
〈
f,MξTxψ

〉
dxdξ

which completes the proof.

Under Assumption 6.2.1, for ψ P SpMq
pW q , we define the adjoint

STFT of F P S 1
pW bWMq

as〈
V ˚ψ F, ϕ

〉
“
〈
F, Vψϕ

〉
, ϕ P SpMq

pW q .

Then, V ˚ψ F P S
1pMq
pW q by Proposition 6.2.2. We are now able to estab-

lish the mappings properties of the STFT on S 1pMq
pW q and obtain the

desingularisation formula.

Proposition 6.2.5. Let M be a weight sequence system and W a
weight function system such that Assumption 6.2.1 holds. For any
ψ P SpMq

pW q the mappings

Vψ : S 1pMq
pW q Ñ S

1
pW bWMq

and

V ˚ψ : S 1pW bWMq
Ñ S 1pMq

pW q
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are continuous. Moreover, if ψ P SpMq
pW q z t0u and γ P SpMq

pW q is a syn-
thesis window for ψ, then

1

pγ, ψqL2

V ˚γ ˝ Vψ “ idS1pMq
pW q

(6.1)

and the desingularisation formula

〈f, ϕ〉 “ 1

pγ, ψqL2

ż ż

R2d

Vψfpx, ξqVγϕpx,´ξqdxdξ (6.2)

holds for any f P S 1pMq
pW q and ϕ P SpMq

pW q .

Proof. Proposition 6.2.2 directly yields the continuity of V ˚ψ , and the
continuity of Vψ also follows from here in view of Corollary 6.2.4.

Next, let ψ P SpMq
pW q z t0u and γ P SpMq

pW q be a synthesis window for ψ,

then by Corollary 6.2.4 and the reconstruction formula (3.1), we infer

that for any ϕ P SpMq
pW q〈

V ˚γ pVψfq, ϕ
〉
“
〈
Vψf, Vγϕ

〉
“

〈
f, V ˚ψ pVγϕq

〉
“ pγ, ψqL2 〈f, ϕ〉

which shows (6.1) and (6.2).

The final goal of this section is to show (6.2) also holds for any

f P S 1tMu
tW u and ϕ P StMu

tW u . This would follow easily from Lemma 6.2.3

if we can show that SpMq
pW q is dense in StMu

tW u .

Lemma 6.2.6. Let M be a weight sequence system satisfying pLq,
tLu, pM.2q1 and tM.2u1 and W a symmetric weight function system

satisfying pMq, tMu, pNq and tNu. If SpMq
pW q ‰ t0u, then the following

dense inclusions hold

SpMq
pW q ãÑ StMu

tW u ãÑ S 1tMu
tW u ãÑ S 1pMq

pW q .

Proof. We start by showing the first density. Of course we have the
continuous inclusion SpMq

pW q Ď S
tMu
tW u . Take any ψ P SpMq

pW q z t0u such

that ‖ψ‖L2 “ 1. For any ϕ P StMu
tW u we have Vψϕ P CtW bWMupR2d

x,ξq

by Proposition 3.4.1. By our assumptions, CpW bWMqpR2d
x,ξq is dense
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in CtW bWMupR2d
x,ξq, so take any sequence pϕnqn Ă CpW bWMqpR2d

x,ξq such

that ϕn Ñ Vψϕ in CtW bWMupR2d
x,ξq. Then V ˚

ψ
ϕn Ñ V ˚

ψ
˝ Vψϕ “ ϕ

in StMu
tW u by Proposition 3.4.1. Now, once again by Proposition 3.4.1,

V ˚
ψ
ϕn P SpMqpW q , so that the first density follows.

We now show S rMs
rW s is dense in S 1rMs

rW s , which would complete the

proof. The embedding ι : S rMs
rW s Ñ S

1rMs
rW s ;ϕ ÞÑ pφ ÞÑ

ş

Rd φϕq is contin-

uous, and as S rMs
rW s is reflexive we have that ιt “ ι. Suppose that for

some ϕ P S rMs
rW s we have

ş

Rd φϕ “ 0 for any φ P S rMs
rW s . Take ψ P SpMq

pW q

as before, then Vψϕ “ 0, so that it follows from Proposition 3.4.1
that ϕ “ 0. Hence the mapping ιt is injective, whence it follows that
S rMs
rW s is dense in S 1rMs

rW s .

Proposition 6.2.7. Let M be a weight sequence system satisfying
pLq, tLu, pM.2q1 and tM.2u1 and W a symmetric weight function

system satisfying pMq, tMu, psNq and tNu. If ψ P SpMq
pW q z t0u and

γ P SpMq
pW q is a synthesis window for ψ, then the desingularisation

formula (6.2) holds for any f P S 1rMs
rW s and ϕ P S rMs

rW s .

Proof. We need only verify the Roumieu case. Take any f P S 1tMu
tW u .

We define rf by〈
rf, ϕ
〉
“

1

pγ, ψqL2

ż ż

R2d

Vψfpx, ξqVγϕpx,´ξqdxdξ,

then by combining Proposition 3.4.1 with Lemma 6.2.3 we see that
rf P S 1rMs

rW s . By (6.2) it follows that f and rf coincide on SpMq
pW q , so that

the proof is completed by Lemma 6.2.6.

6.3 The space DrMs
L1
ω

and its dual

In this chapter, by a weight function we mean a measurable function
ω : Rd Ñ p0,8q such that ω and ω´1 are locally bounded. Given an
isotropically decomposable weight sequence A, a weight function ω
is said to be pAq-admissible (tAu-admissible) if

Dq ą 0 p@q ą 0q DC ą 0 @x, t P Rd : ωpx` tq ď CωpxqeωApqtq.



114 Chapter 6. The spaces B1rMsω and 9B1rMsω

Next, we introduce various function and ultradistribution spaces as-
sociated to a weight function ω (cf. [48]). We define L1

ωpRdq as the
Banach space consisting of all measurable functions ϕ on Rd such
that

‖ϕ‖L1
ω

:“

ż

Rd
|ϕpxq|ωpxqdx ă 8.

Its dual is given by the space L8ω pRdq of all those measurable functions
ϕ on Rd such that

‖ϕ‖L8ω :“ ess sup
xPRd

|ϕpxq|

ωpxq
ă 8.

We write DL1
ω
pRdq for the space consisting of all ϕ P C8pRdq such

that ϕpαq P L1
ωpRdq for all α P Nd. Let M be a weight sequence. We

denote by DML1
ω

the Banach space consisting of all ϕ P DL1
ω
pRdq such

that

‖ϕ‖DM
L1
ω

:“ sup
αPNd

∥∥ϕpαq∥∥
L1
ω

Mα

ă 8.

For a weight sequence system M, we define

DpMqL1
ω

:“ lim
ÐÝ
λÑ0`

DMλ

L1
ω
, DtMuL1

ω
:“ lim
ÝÑ
λÑ8

DMλ

L1
ω
.

We introduce the following set of assumptions on a weight sequence
system M and a weight function ω.

Assumption 6.3.1. M is an isotropically decomposable weight se-
quence system satisfying pLq, tLu, pM.2q1 and tM.2u1 and there exists
an isotropically decomposable weight sequence A satisfying pM.1q and

pM.2q1 such that ω is rAs-admissible and SpMq
pAq pR

dq is non-trivial.

Remarks 6.3.2. If a weight function ω is (p!)-admissible, then As-
sumption 6.3.1 is fulfilled for M and ω, whenever M is an isotropic
weight sequence that satisfies pM.1q, pM.2q1, and plog pqp ă Mp, as
follows from [41, Proposition 2.7 and Theorem 5.9]. We point out that
[44, Remark 5.3] ω is pp!q-admissible if and only if L1

ω is translation-
invariant if and only if

ess sup
xPRd

ωp ¨ ` xq

ωpxq
P L8loc. (6.3)
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In the rest of this section, we fix a weight sequence system M
and a weight function ω such that Assumption 6.3.1 holds for some
weight sequence A. Note that in particular the assumptions posed
by Proposition 6.2.7 hold for M and WA.

We first discuss the topological properties of the space DrMsL1
ω

. In
the Roumieu case we will employ the following projective version of
DtMuL1

ω
:

rDtMuL1
ω
“ lim

ÐÝ
MPV pMq

DML1
ω
.

In view of Lemma 4.2.12piq, the spaces DtMuL1
ω

and rDtMuL1
ω

coincide as

sets. It is clear that the topology of DtMuL1
ω

is finer than that of rDtMuL1
ω

.

Later, in Section 6.4, we will discuss when DtMuL1
ω
“ rDtMuL1

ω
as locally

convex spaces.

Lemma 6.3.3. DpMqL1
ω

is a quasinormable and thus distinguished Fréchet

space, and DtMuL1
ω

is a complete and thus regular (LB)-space.

Proof. To verify that DpMqL1
ω

is quasinormable, it suffices to show that

[92, Lemma 26.14, p. 315]

@λ ą 0 Dµ ą 0 @η ą 0 @ε P p0, 1s DR ą 0

@ϕ P DpMqL1
ω

with ‖ϕ‖DMµ

L1
ω

ď 1

Dψ P DpMqL1
ω

with ‖ψ‖DMη

L1
ω

ď R such that ‖ϕ´ ψ‖DMλ

L1
ω

ď ε.

Let λ ą 0 be arbitrary and µ ą 0 be such that Mµ
α`ej ď C0M

λ
α

for any α P Nd and j P t1, . . . , du. Take any ϕ P DpMqL1
ω

such that

‖ϕ‖DMµ

L1
ω

ď 1. Choose some χ P SpMq
pAq pR

dq with
ş

Rd χpxqdx “ 1 and

put χε “ ε´dχp¨{εq for ε P p0, 1s. Take any η ą 0. For any ε P p0, 1s
let κ ą 0 be such that Mκ

α ď C 10ε
|α|Mη

α for any α P Nd. Then

‖ϕ ˚ χε‖DMη

L1
ω

“ sup
αPNd

1

Mη
α

ż

Rd
|ϕ ˚ χpαqε pxq|ωpxqdx

ď C ‖ϕ‖L1
ω

sup
αPNd

1

ε|α|Mη
α

ż

Rd
|χpαqpxq|eωApqεxqdx

ď CC 10M
µ
0 ‖χ‖SMκ

expωApq¨q,1
.
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On the other hand, applying the mean-value theorem, we obtain that

‖ϕ´ ϕ ˚ χε‖DMλ

L1
ω

“ sup
αPNd

1

Mλ
α

}ϕpαq ´ ϕpαq ˚ χε}L1
ω

ď ε sup
αPNd

1

Mλ
α

ż

Rd
ωpxq

˜

ż

Rd
|χptq||t|

d
ÿ

j“1

ż 1

0

|ϕpα`ejqpx´ γεtq|dγdt

¸

dx

ď

ˆ

CC0d

ż

Rd
χptq|t|eωApqtqdt

˙

ε,

from which the result for DpMqL1
ω

easily follows.

It suffices to show that DtMuL1
ω

is sequentially retractive in order to

conclude that it is complete by (2.1). Let pϕnqnPN be a null sequence

in DtMuL1
ω

. As DtMuL1
ω

may be continuously included into rDtMuL1
ω

, pϕnqn is

also a null sequence in rDtMuL1
ω

. Consequently, for any M P V pMq and

ε ą 0 there exists a nM,ε P N such that supαPNd }ϕ
pαq
n }L1

ω
{Mα ď ε, for

all n ě nM,ε. By Lemma 4.2.12piq we may already conclude there
exists a λ ą 0 and C ą 0 such that supαPNd ‖ϕn‖L1

ω
{Mλ

α ď C for all

n P N. Choose µ P R` so that 2|α|Mλ
α ď C0M

µ
α for any α P Nd and

take p0 P N for which 2´p ď ε{pCC0q for any p ě p0. One may easily
construct a M P V pMq such that Mα “ Mµ

α for any |α| ă p0. For
any n ě nM,ε we have for |α| ă p0,

}ϕ
pαq
n }L1

ω

Mµ
α

“
}ϕ
pαq
n }L1

ω

Mα

ď ε,

while for |α| ě p0,

}ϕ
pαq
n }L1

ω

Mµ
α

ď
C0}ϕ

pαq
n }L1

ω

2|α|Mλ
α

ď ε.

We see that pϕnqn is a null sequence in DMµ

L1
ω

. Whence DtMuL1
ω

is se-
quentially retractive.

We will need the ensuing basic density property.
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Proposition 6.3.4. We have the following dense continuous inclu-
sions,

S rMs
rAs pR

d
q ãÑ DrMsL1

ω
ãÑ S 1rMs

rAs pR
d
q.

Proof. We adapt the idea from [46, Proof of Proposition 5.2]. It is

clear that S rMs
rAs pR

dq Ă DrMsL1
ω
Ă S 1rMs

rAs pR
dq with continuous inclusions.

By Lemma 6.2.6 S rMs
rAs pR

dq is dense in S 1rMs
rAs pR

dq, whence it suffices

to show that S rMs
rAs pR

dq is dense in DrMsL1
ω

. Choose χ P SpMq
pAq pR

dq and

ψ P DpRdq such that
ş

Rd χpxqdx “ 1 and ψp0q “ 1. Next, set χn “
ndχpn ¨ q and ψn “ ψp ¨ {nq for n ě 1. For arbitrary λ ą 0 and

ϕ P DMλ

L1
ω

, in view of the inequality eωApx`yq ď eωAp2
?
dxq`ωAp2

?
dyq, it is

clear that ϕn,j “ χn ˚ pψjϕq P S rMsrAs pR
dq. Take any ϕ P DrMsL1

ω
, we shall

show that for every λ ą 0 (for some λ ą 0) and any ε ą 0 there are
n, j P N such that ‖ϕ´ ϕn,j‖DMλ

L1
ω

ď ε, which will complete the proof.

Obviously,

‖ϕ´ ϕn,j‖DMλ

L1
ω

ď ‖ϕ´ χn ˚ ϕ‖DMλ

L1
ω

` ‖χn ˚ pϕ´ ψjϕq‖DMλ

L1
ω

. (6.4)

Analogously to the first part of the proof of Lemma 6.3.3 one shows
that for every λ ą 0 (for some λ ą 0),

‖ϕ´ χn ˚ ϕ‖DMλ

L1
ω

ď
ε

2
,

for sufficiently large n. For such a fixed n, we now proceed to estimate
the second term in the right-hand side of (6.4). There is some µ P
R` such that (we may potentially enlarge λ such that for µ “ 1)
n|α|Mµ

α ď C0M
λ
α for any α P Nd. We have that

‖χn ˚ pϕ´ ψjϕq‖DMλ

L1
ω

ď C ‖ϕ´ ψjϕ‖L1
ω

sup
αPNd

n|α|

Mλ
α

ż

Rd
|χpαqpxq|eωApqxqdx

ď C ‖ϕ´ ψjϕ‖L1
ω
‖χ‖SMµ

expωApq¨q,1
ď
ε

2
,

for large enough j.



118 Chapter 6. The spaces B1rMsω and 9B1rMsω

The strong dual of DrMsL1
ω

is denoted by B1rMsω . By the previous

proposition, we may view B1rMsω as a subspace of S 1rMs
rAs pR

dq. We define

9B1rMsω as the closure in B1rMsω of the space of compactly supported
continuous functions on Rd. Notice that 9B1rMsω coincides with the
closure in B1rMsω of SpMq

pAq pR
dq.

6.3.1 Characterization via the STFT

The goal of this subsection is to characterize DrMsL1
ω

, B1rMsω and 9B1rMsω

in terms of the STFT. We first consider DrMsL1
ω

. The following two
lemmas are needed in our analysis.

Lemma 6.3.5. Let ψ P SpMq
pAq pR

dq. Then, for any λ ą 0 (for some

λ ą 0) there is a C 1 “ C 1λ ą 0 such that

‖Vψϕp ¨ , ξq‖L1
ω
ď C 1 ‖ϕ‖DMλ

L1
ω

e´ωMλ pξq, ξ P Rd,

for all ϕ P DMλ

L1
ω

.

Proof. Let ϕ P DMλ

L1
ω

be arbitrary. For any α P Nd we have that
ż

Rd
|ξαVψϕpx, ξq|ωpxqdx

ď p2πq´|α|
ÿ

βďα

ˆ

α

β

˙
ż

Rd
ωpxq

ˆ
ż

Rd
|ϕpβqptq||ψpα´βqpx´ tq|dt

˙

dx

ď Cp2πq´|α|

ÿ

βďα

ˆ

α

β

˙
ż

Rd
|ϕpβqptq|ωptq

ˆ
ż

Rd
|ψpα´βqpx´ tq|eωApqpx´tqqdx

˙

dt

ď C2 ‖ϕ‖DMλ

L1
ω

Mλ
α ,

whence
ż

Rd
|Vψϕpx, ξq|ωpxqdx ďMλ

0C
2 ‖ϕ‖DMλ

L1
ω

inf
αPNd

Mλ
α

|ξα|Mλ
0

“ C 1 ‖ϕ‖DMλ

L1
ω

e´ωMλ pξq.
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Lemma 6.3.6. Let ψ P SpMq
pAq pR

dq. For every λ ą 0 there is a µ ą 0

(for every µ ą 0 there is a λ ą 0) such that if F is a measurable
function on R2d for which

sup
ξPRd

eωMµ pξq

ż

Rd
|F px, ξq|ωpxqdx ă 8,

then, the function

t ÞÑ

ż ż

R2d

F px, ξqMξTxψptqdxdξ

belongs to DMλ

L1
ω

.

Proof. For any λ ą 0 there is a η ą 0 (for every η ą 0 there is a
λ ą 0) such that p4πq|α|Mη

α ď C0M
λ
α . Then for any α P Nd we have

that

|B
α
t rMξTxψptqs| ď

ÿ

βďα

ˆ

α

β

˙

p2πq|β||ξβ||ψpα´βqpt´ xq|

ď C0M
η
0 ‖ψ‖SMη

expωApq
1¨q,8

Mλ
αe

ωMη pξq´ωApq
1pt´xqq,

where q1 ą 0 is such that eωApq ¨q{eωApq
1 ¨q P L1pRdq. Now there exists a

µ ą 0 (for every µ ą 0 there exists a η ą 0) such that eωMη p¨q{eωMµ p¨q P

L1pRdq. Whence,∥∥∥∥ż ż

R2d

F px, ξqMξTxψdxdξ

∥∥∥∥
DMλ

L1
ω

ď C0M
η
0 ‖ψ‖SMη

expωApq
1¨q

ż

Rd
ωptq

ˆ
ż ż

R2d

|F px, ξq| exprωMηpξq ´ ωApq
1
pt´ xqqsdxdξ

˙

dt

ď CC0M
η
0 ‖ψ‖SMη

expωApq
1¨q

ż

Rd
eωMη pξq

ˆ
ż

Rd
|F px, ξq|ωpxq

ˆ
ż

Rd
eωApqpt´xqq´ωApq

1pt´xqqdt

˙

dx

˙

dξ

ď C2
ż

Rd
eωMη pξq´ωMµ pξqdξ ă 8.
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We are now able to characterize DrMsL1
ω

via the STFT.

Proposition 6.3.7. Let ψ P SpMq
pAq pR

dq z t0u and let f P S 1rMs
rAs pR

dq.

Then, f P DrMsL1
ω

if and only if

@λ ą 0 pDλ ą 0q : sup
ξPRd

eωMλ pξq ‖Vψfp ¨ , ξq‖L1
ω
ă 8. (6.5)

If B Ă DrMsL1
ω

is a bounded set, then (6.5) holds uniformly over B.

Proof. The direct implication and the fact that (6.5) holds uniformly
over bounded sets follows immediately from Lemma 6.3.5 (and, in the
Roumieu case, Lemma 6.3.3). Conversely, suppose that (6.5) holds

and choose γ P SpMq
pAq pR

dq such that pγ, ψqL2 “ 1. By (6.2), we have

that, for all ϕ P S rMs
rAs pR

dq,

〈f, ϕ〉 “
ż ż

R2d

Vψfpx, ξqVγϕpx,´ξqdxdξ

“

ż ż

R2d

Vψfpx, ξq

ˆ
ż

Rd
ϕptqMξTxγptqdt

˙

dxdξ

“

ż

Rd

ˆ
ż ż

R2d

Vψfpx, ξqMξTxγptqdxdξ

˙

ϕptqdt,

where the switching of the integrals in the last step is permitted
because of (6.5). Hence,

f “

ż ż

R2d

Vψfpx, ξqMξTxγdxdξ

and we may conclude that f P DrMsL1
ω

by applying Lemma 6.3.6 to
F “ Vψf .

Next, we treat B1rMsω and 9B1rMsω . We again need some prepara-
tion. We consider the space CωpRdq of all ϕ P CpRdq such that
‖ϕ{ω‖L8 ă 8 and its closed subspace C0,ωpRdq of all elements f
such that lim|x|Ñ8 fpxq{ωpxq “ 0. We endow C0,ωpRdq with the norm
‖ ¨ ‖L8ω . The dual of C0,ωpRdq is denoted by M1

ω. For every µ PM1
ω
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there is a unique regular complex Borel measure ν PM1 “ pC0pRdqq1

such that

〈µ, ϕ〉 “
ż

Rd

ϕpxq

ωpxq
dνpxq, ϕ P C0,ωpRd

q.

Moreover, ‖µ‖M1
ω
“ ‖ν‖M1 “ |ν|pRdq. By [122, Theorem 6.13], the

natural inclusion L1
ω ĂM1

ω holds topologically, that is,

‖ϕ‖L1
ω
“ sup

fPBC0,ω

ˇ

ˇ

ˇ

ˇ

ż

Rd
ϕpxqfpxqdx

ˇ

ˇ

ˇ

ˇ

, ϕ P L1
ω, (6.6)

where BC0,ω denotes the unit ball in C0,ωpRdq. We define

CpMqpRd
q :“ lim

ÐÝ
λÑ8

C
e
ω
Mλ p ¨ qpRd

q, CtMupRd
q :“ lim

ÝÑ
λÑ0`

C
e
ω
Mλ p ¨ qpRd

q.

The following canonical isomorphisms of lcHs hold

CωpRd
xqpbεCpMqpRd

ξq – lim
ÐÝ
λÑ0`

C
ωbe

ω
Mλ p ¨ qpR2d

x,ξq

and
C0,ωpRd

xqpbεCpMqpRd
ξq – lim

ÐÝ
λÑ0`

C
0,ωbe

ω
Mλ p ¨ qpR2d

x,ξq.

Similarly, in view of Lemma 3.2.5, [9, Theorem 3.1(d)] and [9, Theo-
rem 3.7] yield the following canonical isomorphisms of lcHs

CωpRd
xqpbεCtMupRd

ξq – lim
ÝÑ
λÑ8

C
ωbe

ω
Mλ p ¨ qpR2d

x,ξq

and
C0,ωpRd

xqpbεCtMupRd
ξq – lim

ÝÑ
λÑ8

C
0,ωbe

ω
Mλ p ¨ qpR2d

x,ξq.

We are ready to establish the mapping properties of the STFT on
B1rMsω and 9B1rMsω . Recall that x ¨ y mean the opposite of r ¨ s.

Proposition 6.3.8. Let ψ P SpMq
pAq pR

dq. The following mappings

Vψ : B1rMsω Ñ CωpRd
xqpbεCxMypRd

ξq,

Vψ : 9B1rMsω Ñ C0,ωpRd
xqpbεCxMypRd

ξq,
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and

V ˚ψ : CωpRd
xqpbεCxMypRd

ξq Ñ B1rMsω ,

V ˚ψ : C0,ωpRd
xqpbεCxMypRd

ξq Ñ
9B1rMsω ,

are well-defined and continuous. In particular, if ψ P SpMq
pAq pR

dq z t0u

and γ P SpMq
pAq pR

dq is a synthesis window for ψ, then the desingulari-

sation formula (6.2) holds for any f P B1rMsω and ϕ P DrMsL1
ω

.

Proof. We first consider Vψ. It suffices to show that the mapping

Vψ : B1rMsω Ñ CωpRd
xqpbεCxMypRd

ξq is continuous. In fact, as the space

C0,ωpRd
xqpbεCxMypRd

ξq is a closed topological subspace of the tensor

product CωpRd
xqpbεCxMypRd

ξq, the result would then follow from Propo-

sition 6.2.2 and SpAqpRd
xqpbSpMqpRd

ξq Ă C0,ωpRd
xqpbεCxMypRd

ξq. Since

B1rMsω is bornological (see Lemma 6.3.3 in the Beurling case), it suf-
fices to show that VψpBq is bounded in CωpRd

xqpbεCxMypRd
ξq for all

bounded sets B Ă B1rMsω . For some λ ą 0 (for all λ ą 0) it holds that

supfPB supϕPA | 〈f, ϕ〉 | ă 8 for all A Ă DrMsL1
ω

bounded with respect

to the norm ‖¨‖DMλ

L1
ω

. As

te´ωMλ p4πξqω´1
pxqMξTxψ : px, ξq P R2d

u Ă DrMsL1
ω

is bounded with respect to ‖¨‖DMλ

L1
ω

, it follows that

sup
fPB

sup
px,ξqPR2d

e´ωMλ p4πξqω´1
pxq|Vψfpx, ξq| ă 8.

The continuity of Vψ thus follows from Lemma 3.2.4piq.
Next, we treat V ˚ψ . Lemma 6.3.5 implies that the mapping V ˚ψ :

CωpRd
xqpbεCxMypRd

ξq Ñ B
1rMs
ω is continuous. As SpAqpRd

xqpbSpMqpRd
ξq is

dense in C0,ωpRd
xqpbεCxMypRd

ξq, V
˚
ψ : C0,ωpRd

xqpbεCxMypRd
ξq Ñ

9B1rMsω is
continuous by Proposition 6.2.2.

For the desingularisation formula, for any f P B1rMsω we define the
mapping f̃ as

f̃pϕq “
1

pγ, ψqL2

ż ż

R2d

Vψfpx, ξqVγϕpx,´ξqdxdξ, ϕ P DrMsL1
ω
,
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which is well-defined and continuous by Proposition 6.3.7. By Propo-
sition 6.2.5 f and f̃ coincide on S rMs

rAs pR
dq so that by Proposition 6.3.4

f and f̃ define the same element in B1rMsω .

Corollary 6.3.9. 9B1pMqω is a complete pLBq-space, and 9B1tMuω is a
quasinormable Fréchet space.

Proof. Proposition 6.3.8 and the reconstruction formula (6.1) imply

that 9B1rMsω is isomorphic to a complemented subspace of the space
C0,ωpRdqpbεCxMypRdq. Hence, as C0,ωpRdqpbεCtMupRdq is an pLBq-
space that is complete and C0,ωpRdqpbεCpMqpRdq is a quasinormable
Fréchet space by [5, Proposition 2], the proof is complete.

Proposition 6.3.8 allows for the following characterizations of B1rMsω

and 9B1rMsω via the STFT.

Theorem 6.3.10. Let ψ P SpMq
pAq pR

dq z t0u and let f P S 1rMs
rAs pR

dq. The
following statements are equivalent:

piq f P B1rMsω .

piiq tT´hf{ωphq | h P Rdu is bounded in S 1rMs
rAs pR

dq.

piiiq For some λ ą 0 (for all λ ą 0) it holds that

sup
px,ξqPRd

e´ωMλ pξq
|Vψfpx, ξq|

ωpxq
ă 8. (6.7)

Proof. piq ñ piiq Since S rMs
rAs is barrelled, it suffices to show that

tT´hf{ωphq | h P Rdu is weakly bounded. This follows however
immediately by observing that tϕpx´hq{ωphq | h P Rdu is a bounded

set in DrMsL1
ω

for any ϕ P S rMs
rAs pR

dq.

piiq ñ piiiq As the mapping

˚f : S rMs
rAs pR

d
q Ñ CxAypRd

q, ϕ ÞÑ f ˚ ϕ

is continuous and our assumption yields that ˚f pS rMsrAs pR
dqq Ď CωpRdq,

we may infer from the closed graph theorem that ˚f : S rMs
rAs pR

dq Ñ
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CωpRdq is continuous. Hence for some M “Mλ and v “ eωAp¨{λq (for
some M P V pMq and v P V pWAq in view of Theorem 4.2.14) we have
that ˚f can be uniquely extended to a continuous linear mapping

˚f : S rMs
rAs pRdq

SMv
Ñ CωpRdq. As te´ωM p4πξqMξψ̌ : ξ P Rdu is bounded

in S rMs
rAs pRdq

SMv
, we obtain that

te´ωM p4πξq|Vψfpx, ξq| : ξ P Rd
u “ t˚f pe

´ωM p4πξqMξψ̌q : ξ P Rd
u

is bounded in CwpRdq. This implies that

sup
px,ξqPRd

e´ωM p4πξq
|Vψfpx, ξq|

ωpxq
ă 8.

The result now follows from Lemma 3.2.4piq.
piiiq ñ piq As (6.7) implies that Vψf P CωpRd

xqpbεCxMypRd
ξq it

follows from Proposition 6.3.8 and (6.1) that f P B1rMsω .

Theorem 6.3.11. Let ψ P SpMq
pAq pR

dq z t0u and let f P S 1rMs
rAs pR

dq. The
following statements are equivalent:

piq f P 9B1rMsω .

piiq lim|h|Ñ8 T´hf{ωphq “ 0 in S 1rMs
rAs pR

dq.

piiiq For some λ ą 0 (for all λ ą 0) it holds that

lim
|px,ξq|Ñ8

e´ωMλ pξq
|Vψfpx, ξq|

ωpxq
“ 0. (6.8)

Proof. p1q ñ p2q: Since S rMs
rAs pR

dq is Montel, it suffices to show that

lim|h|Ñ8 T´hf{ωphq “ 0 weakly in S 1rMs
rAs pR

dq. Take any ϕ P S rMs
rAs pR

dq

and let ε ą 0 be arbitrary. The set tThϕ{ωphq : h P Rdu is bounded

in DrMsL1
ω

. Hence, there is χ P S rMs
rAs pR

dq such that | 〈T´hpf ´ χq, ϕ〉 | ď
εωphq for all h P Rd. We obtain that

lim sup
|h|Ñ8

| 〈T´hf, ϕ〉 |
ωphq

ď ε` lim
|h|Ñ8

1

ωphq

ˇ

ˇ

ˇ

ˇ

ż

Rd
ϕpt´ hqχptqdt

ˇ

ˇ

ˇ

ˇ

“ ε.
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p2q ñ p3q: Since the mapping

˚f : S rMs
rAs pR

d
q Ñ CxAypRd

q, ϕ ÞÑ f ˚ ϕ

is continuous and our assumption yields that ˚f pS rMsrAs pR
dqq Ă C0,ωpRdq,

we may infer from the closed graph theorem that ˚f : S rMs
rAs pR

dq Ñ

C0,ωpRdq is continuous. Hence for some M “Mλ and v “ eωAp¨{λq (for
some M P V pMq and v P V pWAq in view of Theorem 4.2.14) we have
that ˚f can be uniquely extended to a continuous linear mapping ˚f :

S rMs
rAs pRdq

SMv pRdq
Ñ C0,ωpRdq. Fix q1 ą 4π. As te´ωM pq

1ξqMξψ̌ : ξ P Rdu

is relatively compact in S rMs
rAs pRdq

SMv pRdq
, we obtain that

te´ωM pq
1ξq
|Vψfpx, ξq| : ξ P Rd

u “ t˚f pe
´ωM pq

1ξqMξψ̌q : ξ P Rd
u

is relatively compact in C0,ωpRdq. This implies that

lim
|x|Ñ8

sup
ξPRd

e´ωM pq
1ξq |Vψfpx, ξq|

ωpxq
“ 0,

whence the result follows from Lemma 3.2.4.
p3q ñ p1q: p3q means that Vψf P C0,ωpRd

xqpbεCxMypRd
ξq. The

result therefore follows from Proposition 6.3.8 and the reconstruction
formula (6.1).

6.4 Structural theorems

We provide here first structural theorems for the spaces B1rMsω and
9B1rMsω . These results will form the cornerstones of the theory we con-

struct in Part II, where we consider the structure for a variety of
types of asymptotic behavior of ultradistributions. The main results
here are Theorem 6.4.1 and Theorem 6.4.12.

6.4.1 The structure of 9B1rMsω

The goal of this section is to obtain structural theorems for 9B1rMsω . In
particular, we shall prove the following result.
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Theorem 6.4.1. Let M be a weight sequence system and ω be a
weight function such that Assumption 6.3.1 holds. Then f P 9B1rMsω if
and only if there exist continuous functions tfαuαPNd on Rd such that

f “
ÿ

αPNd
f pαqα , (6.9)

the limits

lim
|x|Ñ8

fαpxq

ωpxq
“ 0, @α P Nd, (6.10)

hold, and for some λ ą 0 (for any λ ą 0) we have that

sup
αPNd

sup
xPRd

Mλ
α |fαpxq|

ωpxq
ă 8. (6.11)

We will work with the following spaces of vector-valued multi-
sequences. Let E be a Banach space. For a weight sequence M we
define ΛMpEq as the Banach space consisting of all (multi-indexed)
sequences peαqαPNd P E

Nd such that

‖peαqαPNd‖ΛM pEq
:“ sup

αPNd
Mα ‖eα‖E ă 8.

We set

ΛpMqpEq :“ lim
ÝÑ
λÑ0`

ΛMλpEq, ΛtMupEq :“ lim
ÐÝ
λÑ8

ΛMλpEq.

ΛpMqpEq is a complete pLBq-space by [9, Theorem 2.6], and ΛtMupEq
is a Fréchet space. Given a Banach space F , we set Λ1

pMqpF q :“

ΛtM˝upF q and Λ1
tMupF q :“ ΛpM˝qpF q. We then have the following

canonical isomorphisms of lcHs

pΛpMqpEqq
1
– Λ1pMqpE

1
q, pΛtMupEqq

1
– Λ1tMupE

1
q.

Theorem 6.4.1 may now be reformulated as follows.

Theorem 6.4.2. The mapping

S : ΛrMspC0,ωpRd
qq Ñ 9B1rMsω , pfαqαPNd ÞÑ

ÿ

αPNd
f pαqα

is surjective.
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We will prove Theorem 6.4.2 by employing an abstract surjectivity
criterion. A continuous linear mapping between Fréchet spaces is
surjective if and only if its transpose is injective and has weakly
closed range [131, Theorem 37.2, p. 382]. We will make use of the
following generalization of this result.

Lemma 6.4.3. Let E and F be lcHs and let S : E Ñ F be a continu-
ous linear mapping. Suppose that E is Mackey, E{ kerS is complete,
and ImS is Mackey for the topology induced by F . Then, S is sur-
jective if the following two conditions are satisfied:

p1q St : F 1 Ñ E 1 is injective;

p2q ImSt is weakly closed in E 1.

Proof. If St is injective, then ImS is dense in F . Hence, it suffices to
show that ImS is closed in F . As ImSt is weakly closed, S is a weak
homomorphism [131, Lemma 37.4]. Since σpE{ kerS, pE{ kerSq1q co-
incides with the quotient of σpE,E 1q modulo kerS [131, p. 385] and
σpImS, pImSq1q coincides with the topology induced by σpF, F 1q, we

obtain that rS : E{ kerS Ñ ImS is a weak isomorphism. Conse-

quently, rS is also an isomorphism if we equip E{ kerS and ImS with
their Mackey topology [123, p. 158]. From this we may infer that
S is a homomorphism because E{ kerS is Mackey as E is so [123,
p. 136] and ImS is Mackey by assumption. Finally, since E{ kerS is
complete, we have that ImS – E{ kerS is complete and, thus, closed
in F .

We need several preliminary results.

Lemma 6.4.4. S is a well-defined continuous linear mapping.

Proof. One easily verifies that S : ΛrMspC0,ωpRdqq Ñ B1rMsω is a contin-
uous linear mapping and that lim|h|Ñ8 T´hSppfαqαPNdq{ωphq “ 0 in

S 1rMs
rAs pR

dq for all pfαqαPNd P ΛrMspC0,ωpRdqq. Hence, the result follows
from Theorem 6.3.11.

Our next goal is to determine the transpose of S. To this end, we
first show that, similarly as in the distributional case [125], the dual

of 9B1rMsω is given by DrMsL1
ω

.
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Proposition 6.4.5. The canonical inclusion mapping

ι : DrMsL1
ω
Ñ p 9B1rMsω q

1
b, ϕ ÞÑ pf ÞÑ 〈f, ϕ〉q

is a topological isomorphism.

Proof. Clearly, ι is continuous and injective. Since DrMsL1
ω

is webbed

and p 9B1rMsω q1b is ultrabornological (Corollary 6.3.9), it suffices, by De
Wilde’s open mapping theorem [45], to show that ι is surjective.

Let Φ P p 9B1rMsω q1 be arbitrary. Denote by ρ : S rMs
rAs pR

dq Ñ 9B1rMsω the

canonical inclusion and set f “ Φ ˝ ρ P S 1rMs
rAs pR

dq. As Φpρpχqq “

〈f, χ〉 for every χ P S rMs
rAs pR

dq and S rMs
rAs pR

dq is dense in 9B1rMsω , it is

enough to show that f P DrMsL1
ω
pRdq. Let ψ P SpMq

pAq pR
dq be a fixed

non-zero window function. Since Φ is continuous, there is a bounded
set B Ă DrMsL1

ω
such that

|Vψfpx, ξq| “ |ΦpρpMξTxψqq| ď sup
ϕPB

|
〈
MξTxψ, ϕ

〉
| “ sup

ϕPB
|Vψϕpx, ξq|.

Proposition 6.3.7 implies that for every λ ą 0 (for some λ ą 0)

sup
ξPRd

eωMλ pξq ‖Vψfp ¨ , ξq‖L1
ω
ď sup

ϕPB
sup
ξPRd

eωMλ pξq ‖Vψϕp ¨ , ξq‖L1
ω
ă 8,

so that another application of Proposition 6.3.7 shows that f P DrMsL1
ω

.

Corollary 6.4.6. The transposed mapping St may be identified with
the continuous linear mapping

DrMsL1
ω
Ñ Λ1rMspM1

ωq : ϕ ÞÑ pp´1q|α|ϕpαqqαPNd .

Proof of Theorem 6.4.2. We shall show that S is surjective via Lemma
6.4.3. The space ΛrMspC0,ωpRdqq is clearly Mackey, while the quo-
tient ΛrMspC0,ωpRdqq{ kerS is complete as ΛrMspC0,ωpRdqq is complete.
Next, we show that ImS is Mackey. In the Romieu case this is trivial
because 9B1tMuω is a Fréchet space. We now consider the Beurling case.
We shall prove that X “ ImS is infrabarreled and thus Mackey. We
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need to show that every strongly bounded set B in X 1 is equicontin-
uous. Since X is dense in 9B1pMqω (as St is injective), Proposition 6.4.5

implies that X 1 “ DpMqL1
ω

. For arbitrary λ ą 0 we consider the set

Vλ “

"

f pαq

Mλ
α

: α P Nd, f P BC0,ω

*

Ď X.

The set Vλ is bounded in X because S is continuous, so that we have
supϕPB supgPVλ | 〈ϕ, g〉 | ă 8. The relation (6.6) yields that

sup
ϕPB

sup
gPVλ

| 〈ϕ, g〉 | “ sup
ϕPB

sup
αPNd

sup
fPBC0,ω

ˇ

ˇ

ˇ

ˇ

〈
ϕ,
f pαq

Mλ
α

〉ˇ
ˇ

ˇ

ˇ

“ sup
ϕPB

sup
αPNd

1

Mλ
α

sup
fPBC0,ω

ˇ

ˇ

ˇ

ˇ

ż

Rd
ϕpαqpxqfpxqdx

ˇ

ˇ

ˇ

ˇ

“ sup
ϕPB

sup
αPNd

∥∥ϕpαq∥∥
L1
ω

Mλ
α

.

Hence,

sup
ϕPB
‖ϕ‖DMλ

L1
ω

ă 8, @λ ą 0,

which means that B is bounded in DpMqL1
ω

. Then, B is equicontinuous

because of Proposition 6.4.5 and the fact that 9B1pMqω is barreled (Corol-
lary 6.3.9). We already noticed that St is injective. Finally, we show

that ImSt is weakly closed in Λ1
rMspM1

ωq. Let pϕjqj be a net in DrMsL1
ω

and pµαqαPNd P Λ1
rMspM1

ωq such that pp´1q|α|ϕ
pαq
j qαPNd Ñ pµαqαPNd

weakly in Λ1
rMspM1

ωq. In particular, ϕ
pαq
j Ñ p´1q|α|µα weakly in M1

ω

for all α P Nd. Consequently, we have that µ
pαq
0 “ p´1q|α|µα P M1

ω

for all α P Nd (the derivatives should be interpreted in the sense of
distributions). The equality (6.6) implies that µ0 P DL1

ω
and that

p}µ
pαq
0 }L1

ω
qαPNd “ p}µ

pαq
0 }M1

ω
qαPNd “ p‖µα‖M1

ω
qαPNd P Λ1rMspCq,

which means that µ0 P DrMsL1
ω

. Hence, pµαqαPNd “ pp´1q|α|µ
pαq
0 qαPNd P

ImSt.



130 Chapter 6. The spaces B1rMsω and 9B1rMsω

6.4.2 The structure of B1rMsω

We now consider the first structural theorem for the space B1rMsω . In
the Beurling case, our proof will be straightforward along the lines of
Komatsu’s proof for [81, Theorem 8.1, p. 76] using the Hahn-Banach
theorem. In the Roumieu case, we employ a similar tactic, however
here we must rely on the projective description of DtMuL1

ω
. For this

reason we will say DtMuL1
ω

allows a projective description if

DtMuL1
ω
“ lim

ÐÝ
MPV pMq

DML1
ω

as locally convex spaces. Note that by Lemma 4.2.12piq, these spaces
always coincide as sets. In the case of isotropic weight sequences, the
description is immediate.

Theorem 6.4.7. Let M and A be isotropic weight sequences satisfy-
ing pM.1q and pM.2q1 and let ω be an tAu-admissible weight function.

Then, DtMuL1
ω

allows a projective description.

Proof. Set, as lcHs,

rDtMuL1
ω

:“ lim
ÐÝ

prpqPrRs

DMrp

L1
ω
.

Trivially, DtMuL1
ω

is continuously contained in rDtMuL1
ω

. Take any p P

csnpDtMuL1
ω
q. Let B Ă B1tMuω be the polar of the closed unit ball of p,

so that, by the bipolar theorem,

ppϕq “ sup
fPB

|〈f, ϕ〉| , ϕ P DtMuL1
ω
.

The set B is strongly bounded in B1tMuω , so that by employing Propo-
sition 6.3.8, we get that for each ψ P SpMq

pAq and q ą 0 there is some

C 1B “ C 1B,ψ,q ą 0 such that

sup
fPB

|Vψfpx, ξq| ď C 1Bωpxqe
ωM pqξq.
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If we now apply (2.8), there is some pkpq P rRs for which

sup
fPB

|Vψfpx, ξq| ď CBωpxqe
ωMkp

pξq
.

Let ψ P SpMq
pAq zt0u and γ P SpMq

pAq be a synthesis window for ψ. If

we select hp “ kpH
d`1, then, for any ϕ P rDtMuL1

ω
, it follows that from

Lemma 6.3.5 and Proposition 6.3.8

sup
fPB

|〈f, ϕ〉| ď CB
pγ, ψqL2

ż ż

R2d

ωpxq |Vγϕpx,´ξq| e
ωMkp

pξq
dxdξ

ď
CBCγ
pγ, ψqL2

‖ϕ‖
D
Mhp

L1
ω

ż

Rd
e
ωMkp

pξq´ωMkp
pHd`1ξq

dξ

ď Chp ‖ϕ‖DMhp
L1
ω

,

for some Chp ą 0, where we have made use of [81, Proposition 3.4,

p. 50]. Consequently, p is also a continuous seminorm on rDtMuL1
ω

, so
that the spaces also coincide topologically as claimed.

Whether Theorem 6.4.7 also holds in the general case of a weight
function system M remains an open question. In fact, there is an
interesting connection between this problem and the lifting properties
of the map S : ΛtMupC0,ωpRdqq Ñ 9B1tMuω . One could ask in general
whether S lifts bounded sets, i.e. for every bounded subset B Ă
9B1rMsω , does there exist a bounded set A Ă ΛrMspC0,ωpRdqq such that
SpAq “ B. Due to our non-constructive approach, a direct solution

to this is not apparent. In the Roumieu case, this is true if DtMuL1
ω

lifts
bounded sets, and moreover it is equivalent to it.

Proposition 6.4.8. The following statements are equivalent:

piq S lifts bounded sets;

piiq DtMuL1
ω

allows a projective description.

Proof. Put rDtMuL1
ω
“ lim
ÐÝMPV pMq

DML1
ω
. By using the projective descrip-

tion of Λ1
rMspM1

ωq [9, Theorem 2.3], we easily see that rDtMuL1
ω
– ImSt.
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Whence DtMuL1
ω

allows a projective description if and only if St is a

topological homomorphism. By [92, Lemma 26.7, p. 310], the latter
is equivalent to S lifting bounded sets.

For the general case, we may now state the following important
open problem.

Open problem 6.4.9. Determine whether the map

S : ΛrMspC0,ωpRd
qq Ñ 9B1rMsω .

lifts bounded sets. In the Roumieu case, by Proposition 6.4.8, this is
equivalent to determining when DtMuL1

ω
allows a projective description,

which is always true for isotropic weight sequences by Theorem 6.4.7.

Another alluring question, which would automatically imply the
former, is whether 9B1rMsω possesses a continuous structural represen-
tation.

Open problem 6.4.10. Does S have a continuous right inverse, i.e.
a continuous map R : 9B1rMsω Ñ ΛrMspC0,ωpRdqq such that S ˝ R “

id 9B1rMsω
? In other words we would like to know whether the short

exact sequence

0 ÝÑ kerS ÝÑ ΛrMspC0,ωpRd
qq ÝÑ 9B1rMsω ÝÑ 0

splits. For the Roumieu case, when dealing with Fréchet spaces,
abstract conditions for this to hold true have been found [92, 151],
which might be a good starting point for tackling this problem. We
also remark that such a solution for other spaces of ultradistributions
would be interesting as well.

We now move on to the first structural theorem of B1rMsω . We will
need the following simple auxiliary lemma that allows us to preserve
certain growth properties when regularizing functions.

Lemma 6.4.11. Given R ą 0 there are absolute constants c0,R

and c1,R such that each function g P L8locpWRq satisfying the bound
supxPW, |h|ăR |gpx` hq|{ωpxq ă 8, where W Ă Rd and ω is a positive
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function defined on W , can be written as g “ ∆g1 ` g0 in WR for
some functions gj P CpRdq that satisfy

sup
xPW

|gjpxq|

ωpxq
ď cj,R sup

xPW, |h|ăR

|gpx` hq|

ωpxq
, j “ 0, 1.

Proof. To show this, we make use of the fact that the fundamen-
tal solutions of the Laplacian belong to L1

locpRdq X C8pRdzt0uq. By
cutting-off a fundamental solution in the ball Bp0, Rq, this implies
we can select functions χ1 P L

1pRdq and χ0 P DpRdq both supported
on Bp0, Rq, such that δ “ ∆χ1 ` χ0. Extend g off WR as 0 and keep
calling this extension by g. We obtain the claim if we set gj “ g˚χj so
that the desired inequalities hold with cj,R “

ş

|x|ďR
|χjp´xq|dx.

We are now ready to describe the structure of B1rMsω .

Theorem 6.4.12. Let M be a weight sequence system and ω be a
weight function such that Assumption 6.3.1 holds. In the Roumieu
case we additionally assume that DtMuL1

ω
allows a projective descrip-

tion. Then, f P B1rMsω if and only if there exist continuous functions
tfαuαPNd on Rd such that

f “
ÿ

αPNd
f pαqα , (6.12)

and for some λ ą 0 (for any λ ą 0) we have that

sup
αPNd

sup
xPRd

Mλ
α |fαpxq|

ωpxq
ă 8. (6.13)

Proof. Clearly if (6.12) and (6.13) hold then f P B1rMsω . We now
show that it is also necessary. In view of Lemma 6.4.11 and rM.2s1 it
suffices to show (6.12) and (6.13) hold for measurable functions fα.
Given a M “Mλ (a M P V pMq), define XM as the Banach space of
all smooth functions ϕ such that

‖ϕ‖XM “
ÿ

αPNd

ż

Rd

|ϕpαqpxq|

Mα

ωpxqdx ă 8.
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As M satisfies rLs (where in the Roumieu we use Corollary 4.2.13piq

and the assumption that DtMuL1
ω

allows a projective description) we

have that DpMqL1
ω
“ lim
ÐÝλÑ0`

XMλ (resp. DtMuL1
ω
“ lim
ÐÝMPV pMq

XM). Let

then f P X 1
M . Consider the weight wMpα, xq “ wpxq{Mα on Nd ˆRd

and the weighted space L1
ωM

. The mapping j : XM Ñ L1
ωM

given by

jpϕqpα, xq “ p´1q|α|ϕpαqpxq is an isometry so that 〈f, jpϕq〉 “ 〈f, ϕ〉
defines a continuous linear functional on jpXMq. The representation
(6.12) with functions as in (6.13) then follows by applying the Hanh-
Banach theorem (and Lemma 4.2.12piiq in the Roumieu case).

We conclude this chapter with the following interesting problem.

Open problem 6.4.13. We have that f P B1rMsω , resp. f P 9B1rMsω , if
and only if f ˚ ϕ P CωpRdq, resp. f ˚ ϕ P C0,ωpRdq, for any ϕ P S rMs

rAs .

If now exchange CωpRdq or C0,ωpRdq with some other translation-
invariant Banach space E of measurable functions, could we then
provide first structural theorems for all those tempered ultradistri-
butions f such that f ˚ ϕ P E? Second structure theorems for such
spaces were obtained in [46], however first structural theorems will
require novel methods, perhaps similar to those explored here. A
particularly interesting example would be the almost periodic ultra-
distributions, see [25, 86].



Part II

Asymptotic behavior of
generalized functions
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Chapter 7

Introduction

Asymptotic analysis encompasses a wide branch of pure and applied
mathematics, with a long history and a strong promise of contin-
ued importance. Due to the general development of various areas of
mathematical analysis, especially the theory of differential equations,
it has obtained several new impulses resulting in novel approaches
and methods. One such particular field is the asymptotic behavior
of generalized functions, which has had an important role in quan-
tum physics [6, 13, 140, 141], where rigorous proofs for foundational
results were provided by the use of generalized asymptotic behavior.
This prompted mathematicians to further develop the theory, see e.g.
the monographs [113, 114]. In this part we will be concerned with
the asymptotic behavior of ultradistributions, where in particular we
will provide structural theorems for several types of asymptotics.

The asymptotic behavior of a generalized function is usually ana-
lyzed via its parametric behavior, mostly with respect to transla-
tion or dilation. Moreover, there exist three prominent approaches:
that of Vladimirov, Drozhinov and Zav’yalov [140], of Pilipović and
Stanković [114], and of Kanwal and Estrada [57]. This first and sec-
ond approach follow the direction of S-asymptotic and quasiasymp-
totic behavior. The third approach is related to the moment asymp-
totic expansion and the Cesàro behavior. All three paths will be
traversed in this text in the framework of ultradistributions.
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The idea of looking at the translates of a distribution goes back to
Schwartz [125, Chapter VII], who used it to measure the order of
growth of tempered distributions at infinity. Pilipović and Stanković
later introduced a generalization, the so called S-asymptotic behavior,
and thoroughly investigated its properties for distributions, ultradis-
tributions, and Fourier hyperfunctions. There are deep connections
between S-asymptotics and Wiener Tauberian theorems for general-
ized functions [112]. In [114] the second structure theorem for S-
asymptotics was shown using Komatsu’s parametrix. However, this
poses often unnecessarily strong restrictions on the weight sequences.
In Chapter 9 this is remedied by providing the first structure theorem
for S-asymptotics using the results obtained in Chapter 6. Further-
more, in Chapter 10, we consider the concept of S-asymptotic bound-
edness and obtain both the first and second structural theorem for it.

There are two very well-established approaches to asymptotics of
generalized functions related to dilation. The first one is the quasi-
asymptotic behavior, which employs regularly varying functions [10]
as gauges in the asymptotic comparisons. The concept of quasi-
asymptotic behavior for Schwartz distributions was introduced by
Zav’yalov in [155] and further developed by him, Drozhzhinov, and
Vladimirov in connection with their powerful multidimensional Taube-
rian theory for Laplace transforms [140]. A significant milestone
for the theory were the complete structural theorems Vindas and
Pilipović provided [135, 136, 137] for the quasiasymptotic behavior
of distributions on the real line. An important consequence of these
characterizations were the extension results to the tempered distribu-
tions: a distribution which has quasiasymptotic behavior at infinity
is automatically a tempered distribution an its asymptotic behavior
holds there; a similar yet local result also holds for quasiasymptotics
at the origin. In Chapter 9 we will give an ultradistributional analog
of these structural results, both at infinity and the origin. Further-
more, we also provide extension results, however not to the canonical
tempered ultradistributions. Their specific quasiasymptotic behav-
ior is studied in Chapter 11, where we extend the so-called general
Tauberian theorem for the dilation group [140, Chapter 2] from tem-
pered distributions to tempered ultradistributions.
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The second important approach to asymptotic behavior related to
dilation is the so-called moment asymptotic expansion (MAE). As ex-
plored in the monograph [58], the MAE supplies a unified approach
to several aspects of asymptotic analysis and its applications. In
the distributional case, this behavior has been extensively studied by
Estrada and Kanwal [57, 58]. In particular, in the one dimensional
case, in [56] Estrada showed that a distribution satisfies the MAE
if and only if it lies in the dual of the space of so-called GLS sym-
bols [68]. Some recent developments may be found in [124, 153]. The
subject of Chapter 10 will be the study of the MAE in the ultradistri-
butional case. One of our main results there provides a counterpart
of Estrada’s full characterization in the one-dimensional case. In ad-
dition to that, we also consider a uniform analog of the MAE and
give a partial characterization on the real line.

As opposed to Part I, we will only work under the condition of non-
quasianalytitcity. This is motivated by the fact that asymptotic be-
havior is in large part a local behavior. Also, for the sake of simplicity,
we define our spaces via isotropic weight sequences instead of weight
sequence systems.
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Chapter 8

Preliminaries

In this Chapter, we build upon the preparations we have made in
Chapter 2 and specify further towards the framework of asymptotic
behavior of generalized functions.

8.1 Cones

A set Γ Ď Rd is called a cone if u P Γ implies λu P Γ for any λ ą 0.
The cone Γ is called solid if int Γ ‰ H, while Γ is said to be acute if
there exists some y P Rd such that

y ¨ u ą 0, @u P Γ z t0u.

The conjugate cone Γ˚ is the set

Γ˚ :“ ty P Rd : y ¨ u ě 0, @u P Γu.

Then Γ˚ is a closed convex cone with vertex at the origin. We set
C “ int Γ˚, then Γ is acute if and only if C ‰ H, i.e. if and only if
Γ˚ is solid (cfr. [140, Lemma 1, p. 27]). If Γ is closed and convex,
then pΓ˚q˚ “ Γ.

Suppose Γ is a closed convex acute cone, then we denote the
distance of a point to the boundary of C by ∆Cp ¨ q, i.e.

∆Cpxq :“ dpx, BCq, @x P Rd.
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We will often make use of the following estimate ([139, p. 61])

y ¨ u ě ∆Cpyq|u|, @u P Γ, y P C. (8.1)

The tube domain TC with base C is the set

TC :“ Rd
` iC Ď Cd.

8.2 Ultradistributions

We consider once more weight sequences and the spaces of ultradif-
ferentiable functions associated to them in the specific context of this
part. In particular, we only work in the isotropic case.

8.2.1 Weight sequences

A (isotropic) weight sequence M “ pMpqpPN is a sequence of positive
numbers. To it we associated the sequence M˚ with M˚

p “Mp{p! for
any p P N. Furthermore, for p P Z`, we set mp “Mp{Mp´1. We will
make use of the following conditions on weight sequences:

pM.1q M2
p ďMp´1Mp`1 , p ě 1 ;

pM.1q˚ pM˚
p q

2 ďM˚
p´1M

˚
p`1, p ě 1;

pM.2q1 Mp`1 ď AHpMp, p P N, for constants A,H ě 1;

pM.2q Mp`q ď AHp`qMpMq, p, q P N, for constants A,H ě 1;

pM.3q1
ř8

p“1 1{mp ă 8;

pM.3q
ř8

p“q 1{mp ď c0q{mq, q ě 1, for a constant c0.

Whenever we consider weight sequences, we assume they satisfy at
least pM.1q. For multi-indices α P Nd, we will simply denote M|α| by
Mα. As usual the relation M ă N between two such sequences means
that for any h ą 0 there is an L “ Lh ą 0 for which Mp ď LhpNp,
p P N. We may then introduce the condition

pNAq p! ă M .
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Note that if M satisfies pM.1q and pM.3q1, it automatically satisfies
pNAq [81, Lemma 4.1, p. 55].

The associated function of the sequence M is given by

ωMptq :“ sup
pPN

log
tpM0

Mp

, t ą 0,

and ωMp0q “ 0. It increases faster than log t as tÑ 8 (cf. [81, p. 48]).
We define ωM on Rd as the radial function ωMpxq :“ ωMp|x|q, x P Rd

(note that this differs from the definition used in Part I). Throughout
this text we shall often exploit the following bounds:

• If M satisfies pM.2q1, then for any k ą 0

ωMptq ´ ωMpktq ď ´
logpt{Aq log k

logH
, t ą 0. (8.2)

• Mp satisfies pM.2q if and only if

2ωMptq ď ωMpHtq ` logpAM0q. (8.3)

• If Mp satisfies pM.1q˚, we have, for some A1 ą 0,

ωM˚

ˆ

t

4pm1 ` 1qωMptq

˙

ď ωMptq ` A
1, t ě m1 ` 1. (8.4)

Indeed, the first and second statement are [81, Proposition 3.4, p. 50]
and [81, Proposition 3.6, p. 51] (see also Lemma 3.2.4), while the
third one is shown in [24, Lemma 5.2.5, p. 96].

Throughout this part, we will regularly employ the set rRs. See
Section 2.3.3 for its definition and basic properties.

An ultrapolynomial of type rM s is an entire function

P pzq “
8
ÿ

m“0

amz
m, am P C,

where the coefficients satisfy |am| ď L{`pMm for some ` ą 0 (for
any ` ą 0) and some L ą 0. Note that by Lemma 4.2.12piiq this is
equivalent to |am| ď L{LmMm for some p`pq P rRs and L ą 0. If M
satisfies pM.2q, the multiplication of two ultrapolynomials is again
an ultrapolynomial (cf. [81, Proposition 4.5, p. 58]).
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8.2.2 Spaces of ultradifferentiable functions and
ultradistributions

Let M be a weight sequence and K Ť Rd a regular compact subset.
For ` ą 0 we define EM,`pKq as the Banach space of all ϕ P C8pKq
such that

‖ϕ‖EM,`pKq “ sup
αPNd

sup
xPK

|ϕpαqpxq|

`|α|Mα

ă 8.

We set

E pMqpKq “ lim
ÐÝ
`Ñ0`

EM,`
pKq, EtMupKq “ lim

ÝÑ
`Ñ8

EM,`
pKq.

Let Ω Ď Rd be open and let pKNqNPN be an exhaustion by regular
compact sets of Ω. We define

E rMspΩq “ lim
ÐÝ
NPN
E rMspKNq.

These definitions are independent of the chosen exhaustion by regular
compact sets of Ω. The elements of E pMqpΩq are called ultradiffer-
entiable functions of class pMq (of Beurling type) in Ω while the
elements of EtMupΩq are called ultradifferentiable functions of class
tMu (of Roumieu type) in Ω.

For any K Ť Ω and ` ą 0 we write DM,`
K for the closed subspace

of elements in EM,`pKq with support contained in K. Then we set

DpMqK “ lim
ÐÝ
`Ñ0`

DM,`
K , DtMuK “ lim

ÝÑ
`Ñ8

DM,`
K ,

and
DrMspΩq “ lim

ÝÑ
KŤΩ

DrMsK .

If M satisfies pM.1q, then DrMspΩq is non-trivial if and only if M
satisfies pM.3q1 [81, Theorem 4.2, p. 56].

WhenM satisfies pM.1q and pM.3q1, the dualD1rMspRdq ofDrMspRdq

is called the space of ultradistributions of Beurling (resp. Roumieu)
type . Then E 1rMspRdq is exactly the subspace of D1rMspRdq of all com-
pactly supported ultradistributions [81, Theorem 5.9, p. 64]. More-
over, its structure may be described as follows.
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Theorem 8.2.1. Let M be a weight sequence satisfying pM.1q, pM.2q1

and pM.3q1. Then, f P E 1rMspRdq with supp f “ K if and only if for
every open neighborhood U of K there are continuous fα P CcpUq,
α P Nd, such that

f “
ÿ

αPNd
f pαqα in E 1rMspRd

q.

Proof. This is a direct consequence of Komatsu’s first structural the-
orem1 for ultradistributions [81, Theorem 8.1 and Theorem 8.7].

For any two weight sequences M and N and `, q ą 0 we define
SM,`
N,q pRdq as the Banach space of all ϕ P C8pRdq such that

‖ϕ‖SM,`N,q
“ sup

α,βPNd
sup
xPRd

|xβϕpαqpxq|

`|α|Mαq|β|Nβ

ă 8.

Then, we define the test function spaces

SpMq
pNq pR

d
q “ lim

ÐÝ
`Ñ0`

SM,`
N,` pR

d
q, StMu

tNu pR
d
q “ lim

ÝÑ
`Ñ8

SM,`
N,` pR

d
q

and they are called the Gelfand-Shilov spaces. Note that by using
the weight function system WN , this definition coincides with the one
used in Chapter 3. The elements of its dual S 1rMs

rNs pR
dq are called

tempered ultradistributions .
We conclude this section with two projective descriptions.

• For a weight sequence M satisfying pM.1q, pM.2q1 and pM.3q1

and an open subset Ω Ď Rd we have as locally convex spaces
[83, Proposition 3.5]:

E rMspΩq “ lim
ÐÝ
KŤΩ

lim
ÐÝ

p`pqPrRs

EM`p ,1pKq.

• For two weight sequences M and N satisfying pM.1q and pM.2q1

we have as locally convex spaces [39, Theorem 3] (see also The-
orem 4.2.14):

S rMs
rNs pR

d
q “ lim

ÐÝ
papq,pbpqPrRs

SMap ,1

Nbp ,1
pRd
q.

1The first structural theorem even holds true under the conditions pM.1q and
pM.2q1 if one were to use [37, Theorem 1].
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8.3 Asymptotic behavior of generalized

functions

We discuss here two types of asymptotic behavior for generalized
functions, for a more thorough overview we refer the reader to the
monograph [114].

Definition 8.3.1. Let X be a lcHs of smooth functions on Rd pro-
vided with continuous action of the translation operator. Let Γ Ď Rd

be a cone with vertex at the origin and ω : Γ Ñ R`. Then f P X 1
has S-asymptotic behavior with respect to ω on Γ with limit g P X 1 if

lim
hPΓ,|h|Ñ8

〈fpx` hq, ϕpxq〉
ωphq

“ 〈gpxq, ϕpxq〉 , @ϕ P X .

In such a case we write fpx` hq „ ωphqgpxq.

When considering ultradistributions, the S-asymptotic behavior
imposes a certain structure on the limit and gauge function.

Proposition 8.3.2 ([114, Proposition 1.2, p. 12]). Let M be a weight
sequence satisfying pM.1q and pM.3q1 and Γ Ď Rd be a solid convex
cone with vertex at the origin. If f P D1rMspRdq has S-asymptotics
fpx`hq „ ωphqgpxq on Γ for some function ω : Γ Ñ R` and non-zero
limit g P D1rMspRdq, then for some y P Rd:

piq For every h0 P Rd we have

lim
hPph0`ΓqXΓ
|h|Ñ8

ωph` h0q

ωphq
“ eh0¨y.

piiq There exists C P R such that gpxq “ C exppy ¨ xq.

The second type we consider is the so-called quasiasymptotic be-
havior. In order to introduce this concept, we first recall the notion
of regularly varying functions.

A function ρ : pa,8q Ñ R, a ą 0, is called regularly varying at
infinity [10, 128] if it is positive, measurable, and if there exists a real
number α P R such that for each x ą 0

lim
λÑ8

ρpλxq

ρpλq
“ xα. (8.5)
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The number α is called the degree of regular variation. If α “ 0,
then ρ is called slowly varying at infinity and will be denoted by L.
A function ρ is called regularly (resp. slowly) varying at the origin
if rρpxq :“ ρp1{xq is regularly (resp. slowly) varying at infinity. Any
regularly varying function may then be written as ρpxq “ xαLpxq,
x ą a. The convergence of (8.5) is uniform on every fixed compact
interval rb, cs, a ă b ă c ă 8, and ρ is bounded (hence integrable) on
it [128, Theorem 1.1 and Lemma 1.2]. As we will only be interested
in the terminal behavior of ρ, one may assume [10] without any loss
of generality that the regularly varying function at infinity (resp. at
the origin) ρ is continuous on r0,8q (resp. on p0,8s).

For a slowly varying function L we will often make use of Potter’s
estimate [10, Theorem 1.5.4]: for any ε ą 0 there exists a Cε ą 0
such that

Lpλxq

Lpλq
ď Cε maxtx´ε, xεu, @x, λ ą 0. (8.6)

We may now define the quasiasymptotic behavior of a generalized
function.

Definition 8.3.3. Let X be a lcHs of smooth functions on Rd pro-
vided with continuous action of the dilation operator. Let L be a
slowly varying function at infinity (resp. at the origin). Then f P X 1
has quasiasymptotic behavior at infinity (resp. at the origin) in X 1
with respect to L of degree α, α P R, and limit g P X 1 if for all ϕ P X

lim
λÑ8

〈fpλxq, ϕpxq〉
λαLpλq

“ 〈gpxq, ϕpxq〉
ˆ

resp. lim
λÑ0`

˙

. (8.7)

If (8.7) holds, we also say that f has quasiasymptotics of degree α at
infinity (at the origin) with respect to L and write in short: fpλxq „
λαLpλqgpxq in X 1 as λÑ 8 (resp. λÑ 0`).

Remark 8.3.4. It is not necessary to define the quasiasymptotic
behavior via a gauge function that is regularly varying. However, in
case the limit is non-zero, this is automatically so [114, Proposition
2.1, p. 83]. As our arguments to come will be based on the degree of
the quasiasymptotic, this motivates our choice in the definition.
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The quasiasymptotic behavior imposes a structure on the limit.

Proposition 8.3.5 ([114, Proposition 2.1, p. 83]). If fpλxq „ λαLpλqgpxq
in X 1, then g is a homogeneous element of X 1 of degree α, i.e.
gpλxq “ λαgpxq.



Chapter 9

Quasiasymptotic behavior

9.1 Introduction

The quasiasympotic behavior of generalized functions, which em-
ploys regularly varying functions [10] as gauges in the asymptotic
comparisons, provides a framework for the study of local proper-
ties of generalized functions. The behavior was first introduced by
Zav’yalov for tempered distributions in [155] and further developed
by him, Drozhzhinov, and Vladimirov in connection with their power-
ful multidimensional Tauberian theory for Laplace transforms [140].
Notably, this behavior is commonly employed to express Tauberian
theorems for generalized functions. Starting from the 1970s until
the present, Tauberian theorems for integral transforms of gener-
alized functions has been an extensively studied subject, see e.g.
[55, 111, 114, 140], with applications to research areas such as prob-
ability theory, number theory, and mathematical physics.

A key aspect in the understanding of this concept is its description
via so-called structural theorems and complete results in that direc-
tion were achieved in [135, 136, 137] (cf. [90, 114]). The purpose
of this chapter is to present a detailed structural study of the so-
called quasiasymptotics of ultradistributions. In [110] Pilipović and
Stanković naturally extended the definition of quasiasymptotic be-
havior to the context of one-dimensional ultradistributions and stud-
ied its basic properties. We shall obtain here complete structural
theorems for quasiasymptotics of non-quasianalytic ultradistributions

149
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that generalize their distributional counterparts. Our main goal is
thus to characterize those ultradistributions having quasiasymptotic
behavior as infinite sums of derivatives of functions satisfying classical
pointwise asymptotic relations.

This chapter is organized as follows. We first establish in Section
9.2 structural theorems for the S-asymptotic behavior of ultradis-
tributions. These will be a direct consequence of the results found
in Chapter 6, in particular Theorem 6.4.1. Section 9.3 studies the
quasiasymptotic behavior at infinity. A key idea we apply here will
be to connect the quasiasymptotic behavior with the S-asymptotic
behavior via an exponential change of variables. The nature of the
problem under consideration requires to split our treatment in two
cases, depending on whether the degree of the quasiasymptotic be-
havior is a negative integer or not. We obtain in Section 9.4 structural
theorems for the quasiasymptotic behavior at the origin. Our tech-
nique there is based on a reduction to the results from Section 9.3 by
means of a change of variables and then regularization. Our method
also yields asymptotic properties of regularizations at the origin of
ultradistributions having prescribed asymptotic properties, general-
izing results for distributions from [134]. It is also worth mentioning
that our approach here differs from the one employed in the liter-
ature to deal with Schwartz distributions, and in fact can be used
to produce new proofs for the classical structural theorems for the
quasiasymptotic behavior of distributions. We conclude this chapter
by studying extensions of quasiasymptotics to new ultradistributions
spaces of Gelfand-Shilov type that we shall introduce in Section 9.5.

9.2 The structure of S-asymptotics

We start by obtaining first structural theorems for the S-asymptotic
behavior of ultradistributions. Second structural theorems were shown
in [114, Theorem 1.10, p. 46], however our results will hold under
considerably less restrictions on the weight sequence. We fix for the
remaining sections in this chapter a weight sequence M that satisfies
pM.1q, pM.2q1 and pM.3q1.

Let ω be a weight function. We consider a convex cone Γ (with
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vertex at the origin). We will work with the following assumption on
ω: the limits

lim
|h|Ñ8

hPΓ

ωpx` hq

ωphq
exist for all x P Rd. (9.1)

Suppose that for some f P D1rMspRdq the S-asymptotic fpx ` hq „
ωphqgpxq holds on Γ for some limit g P D1rMspRdq. If g ‰ 0, then
clearly (9.1) must hold uniformly for x in compact sets. However, we
will always require that (6.3) holds, so that the uniformity of (9.1) is
always true.

The idea is to apply Theorem 6.4.1 to find the structure of the
S-asymptotic behavior of ultradistributions. We start by noting that
in the non-quasianalytic case, the space 9B1rMsω may be characertized
via the limit behavior of the convolution with elements in DrMspRdq.

Theorem 9.2.1. Let f P D1rMspRdq. Then, f P 9B1rMsω if and only if
the limit lim|h|Ñ8 T´hf{ωphq “ 0 holds in D1rMspRdq.

Proof. Necessity follows immediately from Theorem 6.3.11. To show
sufficiency, we notice that ω is pp!q-admissible (see Remark 6.3.2). As
pM.1q and pM.3q1 imply that p! ă M , we have that M and ω satisfy

Assumption 6.3.1. Whence f P B1rMsω Ă S 1rMs
rp!s pR

dq. Next, one may

obtain (6.8) for some Mλ
p “ λpMp ą 0 (for all Mλ

p “ λpMp ą 0)

by taking a window function ψ P DpMqpRdq z t0u and making minor
adjustments in the proof of p2q ñ p3q in Theorem 6.3.11. Hence, the
result follows from Theorem 6.3.11.

We now find the following structural theorems.

Theorem 9.2.2. Let Γ Ď Rd be a solid convex cone and let ω be a
weight function satisfying (6.3) and (9.1). Then, f P D1rMspRdq has
S-asymptotic behavior with respect to ω on Γ if and only if for each
R ą 0 there exist fα P CpRdq, α P Nd, such that

f “
ÿ

αPNd
f pαqα on ΓR,
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the limits

lim
|x|Ñ8

xPΓR

fαpxq

ωpxq
, α P Nd,

exist, and for some ` ą 0 (for all ` ą 0) it holds that

sup
αPNd, xPΓR

`|α|Mα|fαpxq|

ωpxq
ă 8.

Proof. The conditions are clearly sufficient. To show necessity, we
first make a few reductions. Suppose fpx` hq „ ωphqgpxq on Γ. By
Proposition 8.3.2, there is y P Rd such that the limits (9.1) equal ey¨x

for each x P Rd and gpxq “ Cey¨x for some constant C. Hence, if we
put f0 “ f ´Cω, we see that f0px` hq „ ωphq ¨ 0 on Γ. Establishing
the structure for f0 will provide us with the structure of f , so we may
assume without loss of generality that fpx`hq „ ωphq ¨0 on Γ. Next,
note that we may reduce the general case to that of Γ “ Rd. Indeed,
for any R ą 0, take some ψ P DpMqpRdq such that suppψ Ă Bp0, R{2q
and

ş

Rd ψ “ 1. Let χΓ3R{2
be the characteristic function of Γ3R{2.

Then χR “ ψ ˚ χΓ3R{2
is a smooth function such that χR ” 1 on ΓR,

χR vanishes off Γ2R and

sup
αPNd,ξPRd

|χ
pαq
R pξq|

`|α|Mα

ă 8.

If we set rf :“ χR ¨ f , then rf and f coincide on ΓR. We now verify
that rfpx` hq „ ωphq ¨ 0 on Rd. Take any ϕ P DrMspRdq and let r ą 0
be such that suppϕ Ă Bp0, rq. Take any h P Rd. If h R Γr`2R then〈
rfpx` hq{ωphq, ϕpxq

〉
“ 0. Suppose now h P Γr`2R, then h “ h1`h2

with h1 P Γ and h2 P Bp0, r ` 2Rq. Then, employing (6.3), (9.1) and
the Banach-Steinhaus theorem

lim
|h|Ñ8,hPΓr`2R

〈
rfpx` hq, ϕpxq

〉
ωphq

“ lim
|h1|Ñ8,h1PΓ

sup
h2PBp0,r`2Rq

ωph1q

ωph1 ` h2q

〈
rfpx` h1q, ϕpx´ h2q

〉
ωph1q

“ 0
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because tTh2ϕ : h2 P Bp0, r ` 2Rqu is a bounded family in DrMspRdq.

Consequently, rfpx` hq „ ωphq ¨ 0 on Rd.

If fpx ` hq „ ωphq ¨ 0 on Rd, then f P 9B1rMsω by Theorem 9.2.1.
Hence, the desired structure of f follows from Theorem 6.4.1.

9.3 The structure of quasiasymptotics at

infinity

This section is devoted to the study of the quasiasymptotic behavior
at infinity. Our main results are Theorem 9.3.6 and Theorem 9.3.7,
where we provide a full description of the structure of quasiasymp-
totics at infinity. Some auxiliary lemmas used in their proofs are
shown in Section 9.3.1. Throughout this section and the ones fol-
lowing it, we will work in dimension 1 and M will denote a weight
sequence satisfying pM.1q, pM.2q1 and pM.3q1. We will also work with
the notation DrMs for DrMspRq and similar for other spaces. In this
specific section L stands for a slowly varying function at infinity.

9.3.1 Some lemmas

We start with the ensuing useful estimates for the weight sequence
M , which we shall often exploit throughout the chapter. Hereafter
Spn, kq stand for the Stirling numbers of the second kind (see e.g.
[78]).

Lemma 9.3.1. For any ` ą 0 there is C` ą 0 (independent of p)
such that

8
ÿ

k“p

k!`k

Mk

ď C`
p!

Mp

`p (9.2)

and
8
ÿ

k“p

Spk ` 1, p` 1q
`k

Mk

ď C`
p2`qp

Mp

. (9.3)

Proof. Clearly, it is enough to show (9.2) just for sufficiently large p.
Using [81, Lemma 4.1, p. 55], there is p0 such that for any p ě p0 we
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have p{mp “ pMp´1{Mp ď p2`q
´1. Hence, it follows that for p in this

range

8
ÿ

k“p

k!`k

Mk

“
p!

Mp

˜

`p `
8
ÿ

k“p`1

pp` 1q ¨ . . . ¨ k ¨ `k

mp`1 ¨ . . . ¨mk

¸

ď 2
p!

Mp

`p.

For (9.3), in view of [120, Theorem 3], we have Spk ` 1, p ` 1q ď
2k`1pp` 1qk´p ď 2k`1k!{p! for k ě p. The rest follows by application
of (9.2).

If fpλxq „ λαLpλqgpxq in D1rMs as λ Ñ 8 (λ Ñ 0`) then g is a
homogeneous ultradistribution by Proposition 8.3.5. We first show
that all the homogeneous ultradistributions are exactly the homoge-
neous distributions. We will employ the notation Hpxq “ x0

` for the
Heaviside function.

Proposition 9.3.2. Let g P D1rMs be a homogeneous ultradistribution
of degree α. If α ‰ ´1,´2,´3, . . ., there exist constants c` and c´
such that

gpxq “ c`x
α
` ` c´x

α
´.

If α “ ´n, with n P Z`, then there are constants c1 and c2 such that

gpxq “ c1x
´n
` c2δ

pn´1q
pxq.

Proof. Suppose that gpλxq “ λαgpxq for all λ ą 0, then one verifies
that

xg1pxq “ αgpxq.

This differential equation can be solved locally on R z t0u, so that g
takes the form

gpxq “ c`x
α
` ` c´x

α
´ ` fpxq

if α R Z´, or
gpxq “ c1x

α
` fpxq

if α P Z´, where f P D1rMs is homogeneous of degree α with support
in t0u. Then, the Fourier-Laplace transform pf is an entire function
of exponential type 0, homogeneous of degree ´α ´ 1. Since homo-
geneous entire functions are polynomials, it follows that pf “ 0 if
α R Z´ or pfpξq “ p´iq´α´1c2ξ

´α´1 for some constant c2 if α P Z´.
As teixξ : ξ P Ru is a dense subspace of E rMs (cf. [81, Theorem 7.3,
p. 75]), it follows that f “ 0 if α R Z´ or f “ c2δ

p´α´1q if α P Z´.
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In [135], the structure of distributional quasiasymptotics at infin-
ity was found by noting that certain primitives preserve the asymp-
totic behavior, being of a higher degree, and using the fact that even-
tually the primitives are continuous functions. As the latter part does
not hold in general for ultradistributions, a more careful analysis is
needed, although we may carry over some of the distributional re-
sults. In fact, one may retread the proofs from [135, Section 2] (see
also [114, Section 2.10])

Lemma 9.3.3. Let f P D1rMs. Suppose f has quasiasymptotics with
respect to λαLpλq.

piq If α R Z´: for any n P N and any n-primitive Fn of f there
exists a polynomial P of degree at most n´ 1 such that Fn`P
has quasiasymptotics with respect to λα`nLpλq in D1rMs.

piiq If α “ ´k, k P Z`: there is some pk´ 1q-primitive F of f such
that F has quasiasymptotics with respect to λ´1Lpλq in D1rMs.

The previous lemma roughly speaking shows that in order to find
the structure of quasiasymptotics for arbitrary degree, it suffices to
discover the structure for degreesě ´1, where extra care is needed for
the case ´1. It should also be noticed that the converse statements
for piq and piiq from Lemma 9.3.3 trivially hold true.

The next lemma, a direct consequence of the well-known moment
asymptotic expansion [58, 124] (see also Chapter 10), states that
the quasiasymptotic behavior of degree ą ´1 is a local property at
infinity, which in some arguments enables us to remove the origin
from the support of the ultradistribution in our analysis.

Lemma 9.3.4. Suppose that f1, f2 P D1rMs and that for some a ą 0,
f1 and f2 coincide on R z r´a, as. Suppose that f1pλxq „ λαLpλqgpxq
in D1rMs as λÑ 8, where α ą ´1. Then, also f2pλxq „ λαLpλqgpxq
in D1rMs as λÑ 8.

Proof. By our assumptions we have that h :“ f2´ f1 P E 1rMs, so that
by [124, Theorem 4.4] (see also Theorem 10.4.3) hpλxq “ opλ´αLpλqq
as λÑ 8. Whence

f2pλxq “ f1pλxq ` hpλxq “ λαLpλqgpλxq ` opλαLpλqq

in D1rMs as λÑ 8.
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9.3.2 Structural theorem for α R Z´
We study in this subsection quasiasymptotics of degree α R Z´. Part
of our analysis reduces the general case to that when α ą ´1, i.e., the
case when the quasiasymptotic behavior is local. Consequently, we
may restrict our discussion to those ultradistributions whose support
lie in the complement of some zero neighborhood. As both the nega-
tive and positive half-line can be treated symmetrically, it is natural
to start the analysis with ultradistributions that are supported on
the positive half-line. In the next crucial lemma we further normal-
ize the situation by assuming that our ultradistribution is supported
in pe,8q.

Lemma 9.3.5. Let α P R and let f P D1rMs be such that supp f Ă
pe,8q and f has quasiasymptotic behavior at infinity with respect to
λαLpλq in D1rMsp0,8q. Then, there are continuous functions fm such
that supp fm Ă pe,8q,

f “
8
ÿ

m“0

f pmqm ,

the limits

lim
xÑ8

fmpxq

xα`mLpxq

exist, and furthermore, for some ` ą 0 (any ` ą 0) there is a C “

C` ą 0 such that,

|fmpxq| ď C
`m

Mm

xα`mLpxq, m P N, x ą 0.

Proof. Suppose fpλxq „ λαLpλqgpxq in D1rMsp0,8q as λÑ 8. Since
composition with a real analytic function induces continuous map-
pings between spaces of ultradifferentiable functions (see e.g. [72,
Prop. 8.4.1, p. 281]), we obtain that the composition fpexq is an
element of D1rMs. Also, ψ P DrMs if and only if ψpxq “ ϕpexq with
ϕ P DrMsp0,8q.

These key observations allow us to make a change of variables in
order to apply the structural theorem for S-asymptotics. In fact, we
set upxq :“ fpexq, wpxq :“ gpexq and cphq :“ eαhLpehq (notice that



9.3. The structure of quasiasymptotics at infinity 157

w has actually the form wpxq “ Beαx for some B ą 0). A quick
computation shows that

upx` hq „ cphqwpxq in D1rMs as hÑ 8.

Theorem 9.2.2 yields the existence of continuous functions un on R,
n P N, with supports on p1,8q such that u “

ř8

n“0 u
pnq
n on p0,8q

and limhÑ8 unpx`hq{cphq exist uniformly for x on compacts of p0,8q
for any n P N and for some ` ą 0 (for any ` ą 0) there exists a
C0 “ C0,` ą 0 such that supxą0 |unpxq|{cpxq ď C0`

n{Mn.
Take any ϕ P DrMsp0,8q and put ψpxq “ exϕpexq, then the sub-

stitution y “ ex yields

〈fpyq, ϕpyq〉 “
〈
fpyq,

ϕpyq

y
y

〉
“ 〈upxq, ψpxq〉 “

8
ÿ

n“0

〈
upnqn , ψpxq

〉
.

Let us now consider each term of the sum individually. We will
need to explicitly calculate the derivatives of ψ. Using the Faà di
Bruno formula [78, Eq. (2.2)],

ψpnqpxq “ ex
n
ÿ

k“0

ˆ

n

k

˙

dk

dxk
pϕpexqq

“ ex
n
ÿ

m“0

ϕpmqpexqemx
n
ÿ

k“m

ˆ

n

k

˙

Spk,mq

“ ex
n
ÿ

m“0

Spn` 1,m` 1qemxϕpmqpexq,

where we have applied [32, Theorem 5.3.B]. Then, for any n P N,

ż 8

1

unpxqψ
pnq
pxqdx “

n
ÿ

m“0

Spn` 1,m` 1q

ż 8

e

unplog yqϕpmqpyqymdy.

We define the functions fmpyq :“ ym
ř8

n“mp´1qnSpn`1,m`1qunplog yq.
In virtue of (9.3), we obtain the bounds

|fmpyq| ď C0y
m

8
ÿ

n“m

Spn`1,m`1q
`n

Mn

yαLpyq ď C0C`
p2`qm

Mm

yα`mLpyq
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for y ą 0 and m P N. By the Lebesgue dominated convergence the-
orem we clearly have that limyÑ8 y

´α´mfmpyq{Lpyq exists for every
m P N. As, by our construction,

〈fpyq, ϕpyq〉 “
8
ÿ

m“0

〈
f pmqm pyq, ϕpyq

〉
,

our proof is complete.

We are ready to discuss the general case.

Theorem 9.3.6. Suppose α R Z´ and let k P N be the smallest non-
negative integer such that ´pk ` 1q ă α. Then, an ultradistribution
f P D1rMs has quasiasymptotic behavior

fpλxq „ λαLpλqpc´x
α
´ ` c`x

α
`q in D1rMs as λÑ 8 (9.4)

if and only if there exist continuous functions fm on R, m ě k, such
that

f “
8
ÿ

m“k

f pmqm , (9.5)

the limits

lim
xÑ˘8

fmpxq

xm|x|αLp|x|q
“ c˘m, m ě k, (9.6)

exist, and for some ` ą 0 (any ` ą 0) there is a C “ C` ą 0 such
that

|fmpxq| ď C
`m

Mm

p1` |x|qα`mLp|x|q, x P R, (9.7)

for all m ě k. Furthermore, in this case we have

c˘ “
8
ÿ

m“k

c˘m
Γpα `m` 1q

Γpα ` 1q
. (9.8)

Proof. In view of Lemma 9.3.3piq, we may assume that α ą ´1 so
that k “ 0.

Suppose then first that f has quasiasymptotic behavior (9.4). We
write f “ f´` fc` f`, where fc P E 1rMs coincides with f on an open
interval containing r´e, es and supp f´ Ă p´8,´eq and supp f` Ă
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pe,8q. Then, by Lemma 9.3.4 each f˘ has quasiasymptotic behavior
with respect to λαLpλq in D1rMsp´8, 0q and D1rMsp0,8q, respectively.
Using Lemma 9.3.5, we find continuous functions f˘1,m, m P N, with
supports in p´8,´eq and pe,8q, respectively, such that the identities

f˘ “
8
ÿ

m“0

pf˘1,mq
pmq

hold, the limits

c˘m “ p´1qm lim
xÑ8

f˘1,mp˘xq

xα`mLpxq

exist, and the bounds |f˘1,mpxq| ď C 1`m|x|α`mLp|x|q{Mm are satisfied
for some ` ą 0 (any ` ą 0) and some C 1 “ C 1` ą 0. Applying Theorem
8.2.1 one can also find continuous functions gm, whose supports lie
in some (arbitrarily chosen) neighborhood of supp fc, such that fc “
ř8

m“0 g
pmq
m in D1rMs and supxPR |gmpxq| ď C2`m{Mm for some ` ą 0

(for every ` ą 0) and C2 “ C2` ą 0. The functions

fm “ gm ` f
´
1,m ` f

`
1,m

satisfy all sought requirements. We verify the relation (9.8) below.

Conversely, assume that f satisfies all of the conditions above.
Take any φ P DrMs and suppose that for some R ą 1 we have suppφ Ď
r´R,Rs. Pick γ ą 0 such that α ´ γ ą ´1. Using Potter’s estimate
(8.6), we may assume that

Lpλxq

Lpλq
ď Cγ maxtx´γ, xγu (9.9)

holds for all x, λ ą 0. Since φ P DrMs, for any h ą 0 (for some h ą 0)
there exists a Cφ,h such that for all m P N we have supxPR |φ

pmqpxq| ď
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Cφ,hh
mMm. Due to (9.7), we now have for any m P N and λ ą 1

ˇ

ˇ

ˇ

ˇ

1

λ

ż 8

´8

fmpxq

λαLpλq

φpmqpx{λq

λm
dx

ˇ

ˇ

ˇ

ˇ

ď C`
p2`qm

Mm

˜

ż λ´1

´λ´1

|φpmqpxq|

λm`αLpλq
dx

`

ż

|x|ě1{λ

Lpλ|x|q

Lpλq
|x|α`m|φpmqpxq|dx

˙

ď 2C`Cφ,hp2h`q
m

ˆ

1

λm`1`αLpλq
` CγR

m`α`γ`1
`

Cγ
α ´ γ `m` 1

˙

ď Cp2h`Rqm,

and, as 2h` may be chosen freely, this is absolutely summable over
m P N. It follows by applying the Lebesgue dominated convergence
theorem twice that

lim
λÑ8

〈
fpλxq

λαLpλq
, φpxq

〉
“ lim

λÑ8

1

λ

8
ÿ

m“0

p´1qm
ż 8

´8

fmpxq

λαLpλq

φpmqpx{λq

λm
dx

“

8
ÿ

m“0

p´1qm
ż 8

´8

pc´mx
α
´ ` c

`
mx

α
`qx

mφpmqpxqdx

“ c´

ż 0

´8

|x|αφpxqdx` c`

ż 8

0

xαφpxqdx,

with c´ and c` given by (9.8).

9.3.3 Structural Theorem for negative integral
degrees

We now address the case of quasiasymptotics of degree α P Z´. The
next structural theorem is the second main result of this section.

Theorem 9.3.7. Let k P Z` and f P D1rMs. Then, f has the quasi-
asymptotic behavior

fpλxq „
Lpλq

λk
pγδpk´1q

pxq ` βx´kq in D1rMs as λÑ 8 (9.10)
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if and only if there exist continuous functions fm on R, m ě k ´ 1,
such that

f “
8
ÿ

m“k´1

f pmqm , (9.11)

the limits

lim
xÑ˘8

fmpxq

xm´kLp|x|q
“ c˘m, m ě k ´ 1, (9.12)

and

lim
xÑ8

1

Lpxq

ż x

´x

fk´1ptqdt “ c˚k´1 (9.13)

exist, and for some ` ą 0 (any ` ą 0) there is C “ C` ą 0 such that

|fmpxq| ď C
`m

Mm

p1` |x|qm´kLp|x|q, x P R, (9.14)

for all m ě k. Furthermore, we must have

γ “ c˚k´1 `

8
ÿ

m“k

pc`m ´ c
´
mq (9.15)

β “ p´1qk´1
pk ´ 1q!c`k´1 “ p´1qk´1

pk ´ 1q!c´k´1. (9.16)

Proof. In view of Lemma 9.3.3piiq we may assume that k “ 1.
Necessity. We start by showing the necessity of the conditions

if f has the quasiasymptotic behavior (9.10). Our strategy consists
of modifying the quasiasymptotics to one of order 0 by multiplying
f by x, applying Lemma 9.3.5, and then studying the structure it
imposes on f . Take a compactly supported ultradistribution fc that
coincides with f on r´e, es and consider f̃ “ f ´fc, so that supppf ´
fcq X r´e, es “ H. We set gpxq “ xpfpxq ´ fcpxqq, which, in view of
Lemma 9.3.4, has quasiasymptotic behavior

gpλxq „ βLpλq in D1rMs as λÑ 8.

Splitting g as the sum of two distributions supported on p´8,´eq and
pe,8q respectively, we can apply Lemma 9.3.5 to obtain its structure
as

g “
8
ÿ

m“0

gpmqm ,
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where each of the functions has support in p´8,´eqYpe,8q, satisfies
the corresponding bounds implied by the lemma, and is such that for
any m P N the limit limxÑ˘8 x

´mgmpxq{Lp|x|q exists. Define, for any
j P N, the following continuous functions

f̃jpxq “

$

’

&

’

%

0, x “ 0,

xj´1

j!

8
ÿ

m“j

m!gmpxqx
´m, x ‰ 0.

Let us verify they satisfy the requirements that the fj should satisfy.
First of all, for some ` ą 0 (any ` ą 0) and C “ C` ą 0,

|f̃jpxq| ď C
|x|j´1

j!
Lp|x|q

8
ÿ

m“j

m!`m

Mm

ď C 1|x|j´1 `
j

Mj

Lp|x|q,

by (9.2). This not only shows that each f̃j is well-defined and con-
tinuous on R, but also provides the bounds (9.14) for them. From
dominated convergence we infer the existence of

lim
xÑ˘8

f̃jpxq

xj´1Lp|x|q
“ lim

xÑ˘8

1

j!

8
ÿ

m“j

m!gmpxq

xmLp|x|q
“

1

j!

8
ÿ

m“j

lim
xÑ˘8

m!gmpxq

xmLp|x|q
.

Take an arbitrary φ P DrMs and let ϕ P DrMs be another correspond-
ing test function that coincides with φ on Rzp´e, eq, while its support
does not contain the origin. We then have〈

f̃pxq, φpxq
〉
“

〈
gpxq,

ϕpxq

x

〉
“

8
ÿ

m“0

m
ÿ

j“0

p´1qm
ˆ

m

j

˙〈
gmpxq, p´1qm´jpm´ jq!

ϕpjqpxq

xm´j`1

〉

“

8
ÿ

j“0

p´1qj

j!

8
ÿ

m“j

〈
m!xj´1 gmpxq

xm
, ϕpjqpxq

〉

“

8
ÿ

j“0

〈
f̃
pjq
j , φpxq

〉
.
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Applying Theorem 8.2.1 to fc as in the proof of Theorem 9.3.6, we
obtain compactly supported continuous functions gm such that fm “
f̃m ` gm satisfy (9.11), (9.12), and (9.14). The necessity of (9.13)
follows from (9.17) below. That (9.15) and (9.16) must necessarily
hold will also be shown below in the proof of the converse.

Sufficiency. Conversely, assume that (9.11) holds with fm ful-
filling (9.12), (9.13) and (9.14) (recall we work with the reduction
k “ 1). We assume without loss of generality that Lpxq is every-
where continuous and vanishes for x ď 1. We consider

g “
8
ÿ

m“1

f pm´1q
m .

It follows from Theorem 9.3.6 that g has quasiasymptotic behavior
of degree 0 with respect to Lpλq, and differentiation then yields

fpλxq ´ f0pλxq “ g1pλxq „ pγ ´ c˚0q
Lpλq

λ
δpxq in D1rMs as λÑ 8,

with γ precisely given as in (9.15). It thus remains to determine the
quasiasymptotic properties of f0. Write F pxq “

şx

0
f0ptqdt. Since

f0p˘xq „ ˘c
˘
0 Lpxq{x, xÑ 8, one readily shows that

F pλxqHp˘xq “ F p˘λqHp˘xq ` c˘0

ż ˘λx

λ

Lptq

t
dt` o pLpλqq

“ F p˘λqHp˘xq ` c˘0 LpλqHp˘xq log |x| ` o pLpλqq ,

as λÑ 8 uniformly for x on compact intervals, and in particular the
relation holds in D1rMs. Differentiating

F pλxq “ F p´λqHp´xq ` F pλqHpxq

` Lpλq
`

c´0 Hp´xq ` c
`
0 Hpxq

˘

log |x| ` o pLpλqq ,

we conclude that

f0pλxq “
F pλq ´ F p´λq

λ
δpxq

`
Lpλq

λ

ˆ

c´0 Pf

ˆ

Hp´xq

x

˙

` c`0 Pf

ˆ

Hpxq

x

˙˙

` o

ˆ

Lpλq

λ

˙

, (9.17)

whence the result follows.
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9.3.4 Extension from R z t0u to R
The methods employed in the previous two subsections also allow
us to study the following question. Suppose that the restriction of
f P D1rMs to R z t0u is known to have quasiasymptotic behavior in
D1rMspR z t0uq, what can we say about the quasiasymptotic properties
of f? In view of symmetry considerations, it is clear that it suffices
to restrict our attention to ultradistributions supported on r0,8q.

Theorem 9.3.8. Suppose that f P D1rMs is supported in r0,8q and
has quasiasymptotic behavior

fpλxq „ cλαLpλqxα in D1rMsp0,8q as λÑ 8.

piq If α ą ´1, then fpλxq „ cλαLpλqxα` in D1rMs as λÑ 8.

piiq If α ă ´1 and N P N is such that ´pN ` 1q ă α ă ´N , then
there exist constants a0, . . . , aN´1 such that

fpλxq ´
N´1
ÿ

n“0

an
δpnqpxq

λn`1
„ cλαLpλqxα` in D1rMs as λÑ 8.

piiiq If α “ ´k P Z´, then there is a function b satisfying1 for each
a ą 0

bpaxq “ bpxq ` c
p´1qk´1

pk ´ 1q!
Lpxq log a` o pLpxqq , (9.18)

xÑ 8, and constants a0, . . . , ak´1 such that

fpλxq “ c
Lpλq

λk
Pf

ˆ

Hpxq

xk

˙

`
bpλq

λk
δpk´1q

pxq `
k´1
ÿ

j“0

aj
δpjqpxq

λj`1

` o

ˆ

Lpλq

λk

˙

, (9.19)

in D1rMs as λÑ 8.
1Such functions are called associate homogeneous of degree 0 with respect to

L in [114, 135]. They coincide with functions of the so-called De Haan class [10].
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Proof. The moment asymptotic expansion [124, Theorem 4.4] (see
also Theorem 10.4.3) says that we may assume that, say, supp f Ă
pe,8q by removing a neighborhood of the origin. So, we can apply
exactly the same argument as in the proof of Theorem 9.3.6 (via
Lemma 9.3.5 and Lemma 9.3.3piq) to show parts piq and piiq. For piiiq,
we assume without loss of generality that k “ 1 (Lemma 9.3.3piiq)
and apply the same argument as in the proof of Theorem 9.3.7 to
conclude that

fpλxq “ f0pλxq ` γLpλqδpλxq ` o pLpλq{λq in D1rMs

where the continuous function f0 has also support in pe,8q and satis-
fies f0pxq „ cLpxq{x, xÑ 8, in the ordinary sense. At this point the
result can be derived from [135, Theorem 4.3] (see also [114, Theo-
rem 2.38, p. 155]), but we might argue directly as follows. In fact, we
proceed in the same way we arrived at (9.17). Set bpxq “

şx

1
f0ptqdt,

then, uniformly for x in compact subsets of p0,8q,

bpλxq “ bpλqHpxq ` c

ż λx

λ

Lptq

t
dt` opLpλqq

“ bpλqHpxq ` cLpλqHpxq log x` opLpλqq,

so that differentiation finally shows

f0pλxq “
bpλq

λ
δpxq ` c

Lpλq

λ
Pf

ˆ

Hpxq

x

˙

` o

ˆ

Lpλq

λ

˙

in D1.

9.4 The structure of quasiasymptotics at

the origin

We now focus our attention on quasiasymptotic behavior at the ori-
gin. The reader should notice that Lemma 9.3.3 holds for quasi-
asymptotics at the origin as well. Furthermore, it is a simple con-
sequence of the definition that quasiasymptotics at the origin is a
local property, in the sense that two ultradistributions that coincide
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in a neighborhood of the origin must have precisely the same quasi-
asymptotic properties. Throughout this section L stands for a slowly
varying function at the origin and we set L̃pxq “ Lp1{xq. From now
on, by convention the parameters εÑ 0` and λÑ 8.

We will reduce the analysis of the structure of quasiasymptotics
at the origin to that of the quasiasymptotics at infinity via a substi-
tution. Our starting key observation is the following lemma:

Lemma 9.4.1. If f P D1rMspR z t0uq has quasiasymptotic behavior

with respect to εαLpεq, α P R, then rfpxq :“ fp1{xq has quasiasymp-

totics in D1rMspR z t0uq with respect to λ´αrLpλq.

Proof. Take any φ P DrMspR z t0uq and set rφpxq :“ φp1{xq. Suppose
that fpεxq „ εαLpεqgpxq in D1rMspR z t0uq. If we set λ :“ ε´1, then
we get

lim
λÑ8

〈
rfpλxq

λ´αrLpλq
, φpxq

〉
“ lim

λÑ8

〈
fpxq

λ´α`1
rLpλq

, rφpλxqx´2

〉

“ lim
εÑ0`

〈
fpxq

εα`1Lpεq
, rφ

´x

ε

¯´x

ε

¯´2
〉

“

〈
gpxq, rφpxqx´2

〉
“ 〈gp1{xq, φpxq〉 .

We would now like to proceed applying the structure theorem
to rf and transform back via the change of variables x Ø 1{x. We
therefore need to see how this substitution acts on derivatives, which
can be done via Faà di Bruno’s formula.

Lemma 9.4.2. Let φ P C8pR z t0uq and set ψpxq :“ x´2φp1{xq.
Then for any m P N, there exist constants cm,0, . . . , cm,m such that

dm

dxm
pψpxqq “

m
ÿ

j“0

cm,j
φpjqp1{xq

xm`j`2
, (9.20)

where we have the bounds

|cm,j| ď
m!

j!
4m, 0 ď j ď m. (9.21)
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Proof. Applying the Faà di Bruno formula [78, Eq. (2.2)],

dk

dxk
pφp1{xqq “

k
ÿ

j“1

p´1qkx´pk`jqφpjqp1{xqBk,jp1!, 2!, . . . , pk ´ j ` 1q!q,

where Bk,j are the Bell polynomials; from their generating function
identity [32, (3a’), p. 133] we infer that

Bk,jp1!, . . . , pk´j`1q!q “
dk

dtk

˜

1

j!

ˆ

t

1´ t

˙j
¸
ˇ

ˇ

ˇ

ˇ

ˇ

t“0

“
k!pk ´ 1q!

j!pj ´ 1q!pk ´ jq!
.

Therefore, we obtain that (9.20) holds with

cm,0 “ p´1qmpm`1q! and cm,j “ p´1qm
m!

j!

m
ÿ

k“j

pm´k`1q

ˆ

k ´ 1

j ´ 1

˙

when 0 ă j ď m. In the latter case,

|cm,j| ď
m!

j!

pm´ j ` 1qpm´ j ` 2q

2

ˆ

m´ 1

j ´ 1

˙

ď
m!

j!
mpm` 1q2m´2,

which shows (9.21).

Theorem 9.4.3. Let α R Z´ and let k P N be the smallest integer
such that ´pk`1q ă α. Then, f P D1rMs has quasiasymptotic behavior

fpεxq „ εαLpεqpc´x
α
´ ` c`x

α
`q in D1rMs as εÑ 0` (9.22)

if and only if there exist functions fm P L
1p´1, 1q, m ě k, that are

continuous on r´1, 1s z t0u such that

f “
8
ÿ

m“k

f pmqm , on p´1, 1q, (9.23)

the limits

c˘m “ lim
xÑ0˘

fmpxq

xm|x|αLp|x|q
, m ě k, (9.24)

exist, and furthermore, for some ` ą 0 (for any ` ą 0) there is a
C “ C` ą 0 such that

|fmpxq| ď C
`m

Mm

|x|α`mLp|x|q, 0 ă |x| ď 1, (9.25)

for all m ě k. Moreover, the relation (9.8) must hold.
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Proof. The proof of sufficiency can be done analogously as in The-
orem 9.3.6. Hence we are only left with necessity. If we can show
the theorem for degree larger than ´1, then the full structure theo-
rem will follow from Lemma 9.3.3piq, hence we assume that α ą ´1
(and thus k “ 0). If f has quasiasymptotic behavior with respect

to εαLpεq, then rfpxq :“ fp1{xq has quasiasymptotic behavior in

D1rMspR z t0uq with respect to λ´αrLpλq, where rLpxq :“ Lp1{xq. Then
by Theorem 9.3.6 or Theorem 9.3.7 if α P Z` and keeping in mind our
observations from Section 9.3.4, there exist continuous rfm in R z t0u,
m ě 0, that satisfy (9.5), (9.6) and (9.7). Consider now for any
m ě 0,

fmpxq :“
8
ÿ

k“m

p´1qk`mck,m rfkp1{xqx
m`k,

where the ck,m are as in Lemma 9.4.2. By (9.7) and (9.21) it follows
that for some ` ą 0 (for any ` ą 0) and any 0 ă |x| ď 1,

|fmpxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“m

p´1qk`mck,m rfkp1{xqx
m`k

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

k“m

k!

m!
4k ¨ C

`k

Mk

|x|α´kLp|x|q|x|m`k

“ C|x|α`mLp|x|q
1

m!

8
ÿ

k“m

k!
p4`qk

Mk

ď CC4`
p4`qm

Mm

|x|α`mLp|x|q,

by (9.2). This not only shows existence and continuity in r´1, 1s z t0u,
but also shows that the fm satisfy (9.25). By (9.6) and dominated
convergence, it also follows that for these functions the limits (9.24)
exist. Now take any φ P DrMspR z t0uq with suppφ Ď p´1, 1q and set
ψpxq :“ φp1{xqx´2. Then,

〈fpxq, φpxq〉 “
〈
rfpxq, ψpxq

〉
“

8
ÿ

k“0

〈
rfkpxq, p´1qkψpkqpxq

〉
.
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Since for any k P N, by Lemma 9.4.2,

ż 8

´8

rfkpxqψ
pkq
pxqdx “

k
ÿ

m“0

ck,m

ż 8

´8

rfkpxq
φpmqp1{xq

xm`k`2
dx

“

k
ÿ

m“0

ck,m

ż 8

´8

rfkp1{xqφ
pmq
pxqxm`kdx,

it follows by switching the order of summation that

f “
8
ÿ

m“0

f pmqm ,

in D1rMspp´1, 1q z t0uq. Now as α ą ´1, the latter sum is an element
of D1rMs, so that there is some g P E 1rMs with supp g Ď t0u for which

f “
8
ÿ

m“0

f pmqm ` g,

inD1rMs
r´1,1s. Since we have already shown sufficiency, the sum has quasi-

asymptotics with respect to εαLpεq, implying that the same holds for
g. As supp g Ď t0u, its Fourier-Laplace transform pg is an entire func-
tion of exponential type 0. By the quasiasymptotic behavior of g,
it follows that pgprq “ opr2q as |r| Ñ 8. By [12, Theorem 10.2.11,
p. 183]. we see that pgpzq “ ´4π2a2z

2 ` p2πia1qz ` a0 for certain
ai P C, i “ 0, 1, 2. Whence g “ a2δ

p2q`a1δ
p1q`a0δ. However the lat-

ter function can only have quasiasymptotic behavior at the origin of
degree α if and only if a0 “ a1 “ a2 “ 0, so we may conclude g must
be identically 0 and this completes the proof of the theorem.

The structure for negative integral degree can be described as
follows.

Theorem 9.4.4. Let f P D1rMs and k P Z`. Then, f has quasi-
asymptotic behavior

fpεxq „
Lpεq

εk
pγδpk´1q

pxq ` βx´kq in D1rMs as εÑ 0` (9.26)
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if and only if there are continuous functions F and fm on r´1, 1s z t0u,
m ě k, such that

f “ F pkq `
8
ÿ

m“k

f pmqm on p´1, 1q, (9.27)

the limits

c˘m “ lim
xÑ0˘

fmpxq

xm´kLp|x|q
, m ě k, (9.28)

exist, for some ` ą 0 (for any ` ą 0) there exists C “ C` ą 0 such
that

|fmpxq| ď C
`m

Mm

|x|m´kLp|x|q, 0 ă |x| ď 1, (9.29)

for all m ě k, and for any a ą 0 the limit

lim
xÑ0`

F paxq ´ F p´xq

Lpxq
“ c˚1 ` c

˚
2 log a (9.30)

exists. In this case,

γ “ c˚1 `
8
ÿ

m“k

pc`m ´ c
´
mq and β “ p´1qk´1

pk ´ 1q!c˚2 . (9.31)

Proof. For the sufficiency, by applying Theorem 9.4.3 to the series
ř8

m“k f
pm´1q
m , one deduces

fpεxq ´ F pkqpεxq „ pγ ´ c˚1qδ
pk´1q

pεxq, in D1rMs as εÑ 0`.

In view of [137, Theorem 5.3] (see also [114, Theorem 2.33, p. 149]),
we have

F pkqpεxq „ Lpεqpc˚1δ
pk´1q

pεxq ` βpεxq´kq, in D1 as εÑ 0`,

which yields the result.
For the necessity, we may assume that k “ 1 by Lemma 9.3.3piiq.

We now apply Theorem 9.4.3 to xfpxq. Using the same reasoning as

in the proof of Theorem 9.3.7, one can write fpxq “ f0 `
ř8

m“1 f
pmq
m

on p´1, 1q z t0u, with continuous functions f0, f1, . . . on r´1, 1s z t0u
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such that the limits (9.28) exist including the case m “ 0. Applying

again Theorem 9.4.3 to the series
ř8

m“1 f
pm´1q
m , we deduce that f0

has an extension g0 to R with quasiasymptotic behavior of order ´1
with respect to Lpεq. Let F be a first order primitive of g0. Due to
the fact that F 1 “ f0 off the origin and the quasiasymptotic behavior
of F 1, it is clear that F is integrable at the origin and that it must
have the form

F pxq “ ´Hpxq

ˆ
ż 1

x

f0ptqdt` C`

˙

`Hp´xq

ˆ
ż x

´1

f0ptqdt` C´

˙

.

Similarly as in the proof of Theorem 9.3.7, we conclude that

c˚1 “ lim
xÑ0`

F pxq ´ F p´xq

Lpxq

must exist by comparing with the quasiasymptotics of g0. Hence, for
each a ą 0

lim
xÑ0`

F paxq ´ F p´xq

Lpxq
“ c˚1 ` lim

xÑ0`

1

Lpxq

ż ax

x

f0ptqdt “ c˚1 ` c
`
0 log a.

Our method also yields:

Theorem 9.4.5. Suppose that f0 P D1rMsp0,8q has quasiasymptotic
behavior

f0pεxq „ cεαLpεqxα in D1rMsp0,8q as εÑ 0`.

Then f0 admits extensions to R. Let f P D1rMs be any of such exten-
sions with support in r0,8q. Then:

piq If α R Z´, then there is g P D1rMs with supp g Ď t0u such that

fpεxq ´ gpεxq „ cεαLpεqxα` in D1rMs as εÑ 0`.

piiq If α “ ´k P Z´, then there are a function b satisfying (9.18) as
x Ñ 0` for each a ą 0 and an ultradistribution g P D1rMs with
supp g Ď t0u such that

fpεxq “ c
Lpεq

εk
Pf

ˆ

Hpxq

xk

˙

`
bpεq

εk
δpk´1q

pxq ` gpεxq ` o

ˆ

Lpεq

εk

˙

in D1rMs as εÑ 0`.
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We conclude this section with an open problem.

Open problem 9.4.6. Provide structural theorems for the quasi-
asymptotic behavior of (ultra-)distributions, both at infinity and the
origin, for dimension 2 or higher. Note that our previous techniques,
which mainly consist out of a suitable change of variables, do not
work in general if d ě 2. One possibility for solving this problem
could be via an application of spherical representations, where the
work of Drozhzhinov and Zav’yalov [53] is of relevance (we also refer
to [147] for the ultradistributional case). Another possibility would
be to characterize the dual of the space of all ultradistributions with
quasiasymptotic behavior of degree α and employ similar techniques
as in Chapter 6.

9.5 Extension of quasiasymptotic behav-

ior

As an application of our structural theorems, we now discuss some
other extension results for quasiasymptotics of ultradistributions. For
distributions, the connection between tempered distributions and the
quasiasymptotic behavior has been extensively studied [114, 115, 135,
137, 154]. The following properties are well known:

1. If f P D1 has quasiasymptotic behavior at infinity, then f P S 1
and it has the same quasiasymptotic behavior in S 1.

2. If f P S 1 has quasiasymptotic behavior at the origin in D1, then
it has the same quasiasymptotic behavior in S 1.

Our goal here is to obtain ultradistributional analogs of these results.
For this, we introduce new ultradistribution spaces Z 1rMs, who gen-
eralize S 1 however differ from the canonical tempered ultradistribu-
tions. They resemble (in the Roumieu case) the spaces we considered
in Chapter 5, however exhibit interference in their time-frequency de-
cay (see Open Problem 5.4.7). The spaces are defined as follows. For
any n P N and ` ą 0, ZM,`

n denotes the Banach space of all ϕ P C8
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for which the norm

‖ϕ‖ZM,`n
:“ sup

xPR,mPN

p1` |x|qn`m|ϕpmqpxq|

`mMm

is finite. Then we consider the following locally convex spaces

ZpMqn “ lim
ÐÝ
`Ñ0`

ZM,`
n , ZtMun “ lim

ÝÑ
`Ñ8

ZM,`
n ,

and finally we define
Z rMs “ lim

ÐÝ
nPN
Z rMsn .

The aim of this section is to show that quasiasymptotic behavior in
D1rMs naturally extends to quasiasymptotic behavior in Z 1rMs. Let us
first consider the case at infinity.

Theorem 9.5.1. If f P D1rMs has quasiasymptotic behavior with re-
spect to λαLpλq, with L slowly varying at infinity and α P R, then
f P Z 1rMs and it has the same quasiasymptotic behavior in Z 1rMs.

Proof. Let k P N be the smallest natural number such that ´pk`1q ď
α. Then by either Theorem 9.3.6 or Theorem 9.3.7 we find for some
` ą 0 (for any ` ą 0) a C “ C` ą 0 such that (9.5) and (9.7)
hold. Wet set n “ rα ` 1s. Employing Potter’s estimate (8.6) (with
ε “ λ “ 1), we find that for any ϕ P Z rMs and any m ě k we have

ˇ

ˇ

ˇ

ˇ

ż 8

´8

fmpxqϕ
pmq
pxqdx

ˇ

ˇ

ˇ

ˇ

ď C
`m

Mm

ż

R
p1` |x|qm`n|ϕpmqpxq|dx

ď C 1 ‖ϕ‖ZM,hn`2
ph`qm,

and as h` may be chosen freely, it follows that this is absolutely
summable over m ě k. Consequently, f “

ř8

m“k f
pmq
m P Z 1rMs.

For the quasiasymptotic behavior of f , the case where α is not a
negative integer can be shown in a similar fashion as the sufficiency
proof of Theorem 9.3.6. For α “ ´k P Z´, it is clear that we only
need to treat the case k “ 1, as the general case then automatically
follows by differentiating. By Theorem 9.3.7, there exist continuous
functions fm, m P N, satisfying (9.12), (9.13), and (9.14) such that

f “ f0 `

8
ÿ

m“1

f pmqm .
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The infinite sum in the previous identity clearly has a primitive with
quasiasymptotic behavior with respect to Lpλq, so that its quasi-
asymptotic behavior may be extended to the whole of Z 1rMs, and
in turn its derivative

ř8

m“1 f
pmq
m has quasiasymptotic behavior with

respect to λ´1Lpλq in Z 1rMs. By (9.12) and (9.13), f0 has quasiasymp-
totic behavior with respect λ´1Lpλq in D1, hence, by [135, Remark
3.1] (see also [114, Theorem 2.41, p. 158]), it has the same quasi-
asymptotic behavior in S 1, hence certainly also in Z 1rMs. Therefore,
the same also holds for f .

Let us now turn our attention to the case at the origin. The next
lemma proves that the quasiasymptotic at the origin in Z 1rMs is a
local property.

Lemma 9.5.2. Let L be a slowly varying function at the origin and
α P R. Suppose f1, f2 P Z 1rMs are such that for some a ą 0, f1 and
f2 coincide on p´a, aq. Suppose that f1pεxq „ εαLpεqgpxq in Z 1rMs
as εÑ 0`, then, also f2pεxq „ εαLpεqgpxq in Z 1rMs.

Proof. We only show the Beurling case; the Roumieu case can be
shown analogously by employing a projective description for ZtMu
obtained similarly as in [24]. It suffices to show that if f P Z 1pMq
vanishes near the origin, then fpεxq „ εN ¨ 0 for all N P N. Let f be
as described, then there exist 0 ă R ă 1, n P N, `, C ą 0 such that

|〈fpxq, φpxq〉| ď C sup
|x|ěR,mPN

|x|n`m|φpmqpxq|

`mMm

, φ P ZpMq.

Taking φpxq “ ε´1ϕpx{εq with ϕ P ZpMq and arbitrary 0 ă ε ă 1 we
have for N ě n

ε´N |〈fpεxq, ϕ〉| ď C sup
|x|ěR,mPN

|x|n`m|ϕpmqpx{εq|

εN`m`1`mMm

ď CR´N`n´1 sup
|x|ěR{ε,mPN

|x|N`m`1|ϕpmqpxq|

`mMm

Ñ 0,

as εÑ 0`.
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Theorem 9.5.3. Suppose f P Z 1rMs has quasiasymptotic behavior in
D1rMs with respect to εαLpεq, with L slowly varying at the origin and
α P R, then f has the same quasiasymptotic behavior in Z 1rMs.

Proof. By Lemma 9.5.2 we may assume that supp f Ă r´1, 1s. Sup-
pose first that α R Z´ and let k P N be the smallest integer such that
´pk`1q ă α. From Theorem 9.4.3 we find continuous functions fm on
r´1, 1s z t0u, satisfying (9.23), (9.24) and (9.25). Take any ψ P Z rMs
and decompose it as ψ “ ψ´`ψc`ψ` where suppψ´ Ď p´8,´1s, ψc
has compact support and suppψ` Ď r1,8q. Then by the hypothesis

lim
εÑ0`

〈
fpεxq

εαLpεq
, ψcpxq

〉
“ c`

〈
xα`, ψcpxq

〉
` c´

〈
xα´, ψcpxq

〉
.

It suffices to show that the same limit holds for ψ˘ placed instead of
ψc. As the two cases are symmetrical, we only look at ψ`. It follows
from (9.9), (9.25) and the Lebesgue dominated convergence theorem
that for any m ě k,

lim
εÑ0`

〈
f
pmq
m pεxq

εαLpεq
, ψ`pxq

〉

“ lim
εÑ0`

ż 1{ε

1

Lpεxq

Lpεq

ˆ

fmpεxq

pεxqα`mLpεxq

˙

xα`mψ
pmq
` pxqdx

“ c`m

ż 8

0

xαψ`pxqdx.

Then another application of dominated convergence shows that

lim
εÑ0`

〈
fpεxq

εαLpεq
, ψ`pxq

〉
“ c`

〈
xα`, ψ`pxq

〉
.

This shows the case for α R Z´. The case of negative integral degree
can then be done as in the proof of [137, Theorem 6.1].

We have thus shown that, similar to the distributional case, there
are extension principles for the quasiasymptotic behavior of ultra-
distributions. However, the space of extension differs to that of the
tempered ultradistributions. As quasiasymptotic behavior over the
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Gelfand-Shilov spaces is of great significance for applications, its the-
oretical study becomes of interest to us. In Chapter 11, we will
determine when a tempered ultradistributions has quasiasymptotic
behavior via its Laplace transform. Structural theorems are at the
moment of writing still lacking. Whence the following interesting
open problem.

Open problem 9.5.4. Provide structural theorems for the quasi-
asymptotic behavior, both at infinity and the origin, of tempered
ultradistributions.



Chapter 10

The moment asymptotic
expansion

10.1 Introduction

Another important approach to asymptotic behavior related to di-
lation is the so-called moment asymptotic expansion (MAE), whose
properties have been extensively investigated by Estrada and Kan-
wal [57, 58]. Some recent contributions can be found in [124, 153].
A generalized function f is said to satisfy the MAE if there is a cer-
tain multi-sequence tµαuαPNd , called the moments of f , such that the
following asymptotic expansion holds

fpλxq „
ÿ

αPNd

p´1q|α|µαδ
pαqpxq

α!λ|α|`d
, λÑ 8. (10.1)

As is shown in the monograph [58], the MAE supplies a unified ap-
proach to several aspects of asymptotic analysis and its applications.
Interestingly, Estrada characterized [56] the largest space of distri-
butions where the MAE holds as the dual of the space of so-called
GLS symbols [68]. We will consider in this chapter the MAE for
ultradistributions.

The chapter is organized as follows. We start in Section 10.2
with a discussion on the structure of asymptotic boundedness for
ultradistributions. Using the same techniques as in Chapter 9, we

177
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obtain characterizations for both S-asymptotic and quasiasymptotic
boundedness. In Section 10.3 we provide a counterpart of Estrada’s
full characterization in the one-dimensional case. We shall also study
a uniform version of (10.1) in Section 10.4, which we call the UMAE.
Our considerations naturally lead us to introduce the ultradistribu-
tion spaces K1rMspRdq and K1rMs

rNs pR
dq, which are intimately connected

with the MAE and UMAE, respectively. We note that in even di-
mension our space K1rMs

rNs pR
2dq arises as the dual of one of the spaces

of symbols of ‘infinite order’ pseudo-differential operators from [118].

10.2 Asymptotic boundedness

We provide in this section structural theorems for the bounded vari-
ants of the asymptotic behavior considered in Chapter 9.

10.2.1 S-asymptotic boundedness

We aim to study the structure of those ultradistributions that satisfy

fpx` hq “ O pωphqq , h P W, in D1rMspRd
q, (10.2)

where W Ď Rd is simply an unbounded set and ω is a positive func-
tion. Explicitly this means that for each test function ϕ P DrMspRdq,

sup
hPW

〈fpx` hq, ϕpxq〉
ωphq

“ sup
hPW

pf ˚ ϕ̌qphq

ωphq
ă 8. (10.3)

We will impose the following mild regularity condition on the gauge
function ω,

sup
xPRd

ωp ¨ ` xq

ωpxq
P L8locpRd

q. (10.4)

To find structural theorems for the behavior (10.2) one may follow
the proof of Theorem 9.2.2 and apply the structural theorems found
for the space B1rMsω , i.e. Theorem 6.4.12. However, we present here an
alternative proof, based on a technique by Gómez-Collado that she
applied to obtain various characterizations of the space of bounded
ultradistributions in [63].
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Theorem 10.2.1. Let W Ă Rd be an unbounded set and let ω
be a positive measurable function on Rd that satisfies (10.4). Sup-
pose pM.1q, pM.2q1, and pM.3q1 hold. Then, an ultradistribution
f P D1rMspRdq satisfies (10.2) if and only if for each R ą 0 there
are continuous functions tfαuαPNd defined on WR such that for some
` ą 0 (for each ` ą 0) there exists C` ą 0 for which the bounds

|fαpxq| ď C`
`|α|

Mα

ωpxq, x P WR, α P Nd, (10.5)

hold and
f “

ÿ

αPNd
f pαqα in WR. (10.6)

Proof. The sufficiency of the conditions is easily verified. To show the
necessity, similar as in the proof of Theorem 9.2.2, we may assume
W “ Rd. Also, by Lemma 6.4.11, it suffices to show (10.5) and (10.6)
hold for measurable functions fα. Hence, suppose tfpx`hq{ωphq : h P

Rdu is a bounded subset of D1rMspRdq. Let ψ P DrMs
r´1,1sd

be such that
ř

nPZd ψpx´nq “ 1 for each x P Rd. We have that tψfp ¨ `nq{ωpnq :
n P Zdu is now a bounded set in the space E 1rMspRdq. Using pM.2q1,
we obtain the existence of some p`pq P rRs such that for some C ą 0
and all n P Zd and φ P E rMspRdq

| 〈f, Tnψφ〉 | ď C
ÿ

αPNd

ωpnq

LαMα

ż

r´1,1sd
|φpαqpxq|dx, (10.7)

where in the Roumieu case we have used the projective description of
EtMupRdq. We consider the Banach space X of all ϕ P C8pRdq such
that

‖ϕ‖X “
ÿ

αPNd

ż

Rd
|ϕpαqpxq|

ωpxq

LαMα

dx ă 8.

Let ϕ P DrMspRdq be arbitrary. Applying (10.7) to each φpxq “
ϕpx ` nq and using the hypothesis (10.4), we obtain, with C 1 “
C supxPRd, yPr´1,1sd ωpx` yq{ωpxq,

| 〈f, ϕ〉 | ď
ÿ

nPZd
| 〈fpxq, ψpx´ nqϕpxq〉 | ď 3dC 1 ‖ϕ‖X .
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By using the Hahn-Banach theorem, we may then extend f to an
element of X 1. Embedding X into L1pNd ˆ Rd, dµq via the isometry
jpϕqpα, xq “ p´1q|α|ϕpαqpxq, where the measure is given by dµ “
ωpxq{pLαMαqdαdx with dα the natural counting measure on Nd, we
can apply the Hahn-Banach theorem to get the representation (10.6)
with measurable functions fα on Rd that satisfy bounds |fαpxq| ď
C2ωpxq{pLαMαq. This yields already the result in the Beurling case.
In the Roumieu case we finally employ Lemma 4.2.12piiq to obtain
the bounds (10.5) for each ` ą 0 and some C` ą 0.

In applications it is very useful to combine Theorem 10.2.1 with
the ensuing proposition, which provides conditions under which one
might essentially apply Theorem 10.2.1 with a function ω that is just
defined on the set W .

Proposition 10.2.2. Let W Ă Rd be a closed convex set. Any posi-
tive function ω on W satisfying

p@R ą 0q sup
x, x`hPW

|h|ďR

ωpx` hq

ωpxq
ă 8 (10.8)

can be extended to a positive function on Rd satisfying (10.4). In
addition, if ω is measurable (or continuous), the extension can be
chosen measurable (or continuous) as well.

Proof. For any x P Rd we denote by rx P W the (unique in view
of convexity) closest point to x in W . Then, we set rωpxq :“ ωprxq.
Since x ÞÑ rx is continuous, rω inherits measurability or continuity if
ω has the property. We now verify (10.4) for rω. Let R ą 0 and let
CR be an upper bound for ωpt ` yq{ωpyq, where y, t ` y P W and
t P Bp0, Rq. Let x P Rd and h P Bp0, Rq be arbitrary. Consider the

points x, x`h, rx and Ćx` h. By the obtuse angle criterion, the angles
defined by the line segments rx, rx, Ćx` hs and rx` h, Ćx` h, rxs are at

least π{2, whence |rx ´ Ćx` h| ď |x ´ px ` hq| ď R. It then follows
that rωpx` hq ď CRrωpxq, as required.

If the weight sequence satisfies stronger assumption, one can drop
any regularity assumption on ω, as stated in the next result.
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Theorem 10.2.3. Let W Ă Rd be an unbounded set and let ω be a
positive function on W . Suppose that pM.1q, pM.2q, and pM.3q hold.
An ultradistribution f P D1rMspRdq satisfies (10.2) if and only if for
each R ą 0 there are continuous functions tfαuαPNd defined on WR

such that for some ` ą 0 (for each ` ą 0) there exists C` ą 0 such
that

|fαpx` hq| ď C`
`|α|

Mα

ωpxq, x P W, |h| ă R, α P Nd, (10.9)

and the representation (10.6) holds.

Proof. The proof is similar to that of [114, Theorem 1.10, p. 46], but
we provide some simplifications. The converse is easy to show, so
we concentrate on showing the necessity of the conditions for the S-
asymptotic boundedness relation (10.2). Let R ą 0. We consider the
linear mapping A : DrMspRdq Ñ X, with values in the Banach space
X “ tg : W Ñ C : supxPW |gpxq|{ωpxq ă 8u, given by Aϕ “ f ˚ϕ. It
follows from the closed graph theorem that A is continuous. Conse-
quently, we obtain from the Banach-Steinhaus theorem the existence

of p`pq P rRs such that A P LpDM`p ,1

Bp0,2Rq
, Xq and f ˚ ϕ P X for each

ϕ P DM`p ,1

Bp0,2Rq
. Since for each ϕ P DM`p ,1

Bp0,Rq
the set tTxϕ : |x| ď Ru is

compact in DM`p ,1

Bp0,2Rq
, we conclude that for any such a ϕ the function

f ˚ ϕ is continuous on WR and

sup
hPW, |x|ăR

pf ˚ ϕqpx` hq

ωphq
ă 8.

We now employ the parametrix method. As shown in [79, p. 199],
there is an ultradifferential operator P pDq of class rM s that admits

a DM`p ,1

B̄p0,Rq
-parametrix, namely, for which there are χ P DrMs

B̄p0,Rq
and

ϕ P DM`p ,1

B̄p0,Rq
such that δ “ P pDqϕ ` χ. Setting f0 “ f ˚ χ and

g “ f ˚ ϕ, we obtain the decomposition f “ P pDqg ` f0, which
in particular establishes the representation (10.6) with functions fα
satisfying the bounds (10.9).
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10.2.2 Quasiasymptotic boundedness

Similar as in Chapter 9, our results on the S-asymptotic boundedness
of ultradistributions may be used to obtain structural theorems for
ultradistributions being quasiasymptotically bounded in dimension
1. Let ρ be a positive function defined on an interval of the form
rλ0,8q. We are interested in the relation

fpλxq “ Opρpλqq, λÑ 8

in ultradistribution spaces. The analog of the condition (10.8) for a
function ρ in this multiplicative setting is being O-regularly varying
(at infinity) [10, p. 65]. The latter means (cf. [10, Theorem 2.0.4,
p. 64]) that ρ is measurable and for each R ą 1

lim sup
xÑ8

sup
λPrR´1,Rs

ρpλxq

ρpλq
ă 8.

The next proposition can be established with the aid of Theorem
10.2.1 and Theorem 10.2.3 via an exponential change of variables as
in the proof of Lemma 9.3.5; we leave its verification to the reader.

Proposition 10.2.4. Let f P D1rMspRq and ρ be a positive function.
Suppose that

fpλxq “ Opρpλqq, as λÑ 8

in D1rMspR z t0uq.

piq If pM.1q, pM.2q1, and pM.3q1 hold and ρ is O-regularly varying
at infinity, then there are continuous functions fm and x0 ą 0
such that

f “
8
ÿ

m“0

f pmqm on R z r´x0, x0s (10.10)

and for some ` ą 0 (for any ` ą 0) there is C` ą 0 such that

|fmpxq| ď C`
`m

Mm

|x|mρp|x|q, |x| ą x0, m P N. (10.11)
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piiq If pM.1q, pM.2q, and pM.3q hold, for each R ą 1 one can find
x0 and continuous functions such that f has the representation
(10.10), where the fm satisfy the bounds

|fmpaxq| ď C`
`m

Mm

|x|mρp|x|q, |x| ą x0, a P rR
´1, Rs (10.12)

for all m P N and some ` ą 0 (for any ` ą 0).

Remark 10.2.5. Clearly, (10.11) implies (10.12) for an O-regularly
varying function ρ. Assume pM.1q, pM.2q1, and pM.3q1 hold. Notice
the representations (10.10) with bounds (10.12) are also sufficient
to yield fpλxq “ Opρpλqq as λ Ñ 8 in D1rMspR z t0uq, so that the
converses of both parts piq and piiq of Proposition 10.2.4 are valid.

For the remainder of this section we are interested in describing
quasiasymptotic boundedness in the full space D1rMspRq. For it, we
need to impose stronger variation assumptions on the gauge function
ρ. We call a positive measurable function O-slowly varying at infintiy
if for each ε ą 0 there are Cε, cε, Rε ą 0 such that

cε
λε
ď
Lpλxq

Lpxq
ď Cελ

ε, λ ě 1, x ą Rε. (10.13)

In the terminology from [10] this means that the upper and lower
Matuszewska indices of L are both equal to 0. Thus, a function of
the form ρpλq “ λqLpλq is an O-regularly varying function with both
upper and lower Matuszewska indices equal to q P R.

Employing the same technique1 as in Chapter 9, where we simply
need to exchange Lemma 9.3.5 with Proposition 10.2.4, leads to two
ensuing structural theorems for quasiasymptotic boundedness.

Theorem 10.2.6. Assume pM.1q, pM.2q1, and pM.3q1 hold. Let
f P D1rMspRq, α P R, and let L P L8locr0,8q be O-slowly varying

1One still needs an O-version of Lemma 9.3.3; however, careful inspection in
the arguments given in [114, Subsection 2.10.2 and Proposition 2.17] shows that
having the inequalities (10.13) is all one needs to establish the validity of such an
O-version.
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at infinity. Let k be the smallest positive integer such that ´k ď α.
Then,

fpλxq “ O pλαLpλqq as λÑ 8 in D1rMspRq (10.14)

holds if and only if there are continuous functions fm on R such that

f “
8
ÿ

m“k´1

f pmqm ,

for some ` ą 0 (for any ` ą 0) there exists C` ą 0 such that

|fmpxq| ď C`
`m

Mm

p1` |x|qα`mLp|x|q, m ě k ´ 1, (10.15)

and additionally (only) when α “ ´k
ż x

´x

fk´1pxqdx “ O pLpxqq , xÑ 8. (10.16)

A function L is O-regularly varying at the origin if Lp1{xq is O-
regularly varying at infinity.

Theorem 10.2.7. Assume pM.1q, pM.2q1, and pM.3q1. Let f P

D1rMspRq, α P R, and let L be O-slowly varying at the origin. Let
k be the smallest positive integer such that ´k ď α. Then, we have
that

fpεxq “ O pεαLpεqq as εÑ 0` in D1rMspRq (10.17)

holds if and only if there exist x0 ą 0 and continuous functions F
and fm on r´x0, x0s z t0u, m ě k, such that

fpxq “ F pkq `
8
ÿ

m“k

f pmqm , on p´x0, x0q,

for some ` ą 0 (for any ` ą 0) there exists C` ą 0 such that

|fmpxq| ď C`
`m

Mm

|x|α`mLp|x|q, 0 ă |x| ď x0,

for all m ě k, and F “ 0 when α ą ´k while if α “ ´k the function
F satisfies, for each a ą 0, the bounds

F paxq ´ F p´xq “ OapLpxqq, xÑ 0`.
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We end this section with a brief discussion on the extension prop-
erties of quasiasymptotic boundedness. Let Z 1rMspRq be the space
of ultradifferentiable functions introduced in Section 9.3.4. Without
much alteration of the proofs shown in Section 9.3.4 one finds.

Proposition 10.2.8. Assume pM.1q, pM.2q1, pM.3q1.

piq If (10.14) holds with an O-regularly varying function at infinity
L , then f P Z 1rMspRq and the quasiasymptotic boundedness
relation (10.14) actually holds true in Z 1rMspRq.

piiq If f P Z 1rMspRq and (10.17) holds with an O-regularly vary-
ing function at the origin L, then (10.17) is actually valid in
Z 1rMspRq.

We now obtain the following characterization of Z 1rMspRq.
Theorem 10.2.9. An ultradistribution f P D1rMspRq belongs to the
space Z 1rMspRq if and only if there is some α P R such that fpλxq “
Opλαq as λÑ 8 in D1rMspRq.
Proof. As any constant function is O-slowly varying, sufficiency fol-
lows immediately from Proposition 10.2.8. Suppose now that f P
Z 1rMspRq. Then there is some q P N such that f P pZ rMsq`1 q

1. In par-
ticular, there is an ` ą 0 such that (for any ` ą 0 we have that) for
some C “ C` ą 0, any R ą 1 and all ϕ P DrMspBp0, Rqq:

| 〈fpλxq, ϕpxq〉 | ď C

λ
‖ϕpx{λq‖ZM,`q`1

“
1

λ
sup

xPR,mPN

p1` |x|qq`1`m|ϕpmqpx{λq|

pλ`qmMm

ď Cp2Rqq`1 ‖ϕ‖DM,`{2R λ
q

where in the Roumieu case ` is fixed by ϕ. Whence we may conclude
that fpλxq “ Opλqq as λÑ 8 in D1rMspRq.

10.3 The moment asymptotic expansion

This section is devoted to the study of the moment asymptotic expan-
sion (10.1), which in general we interpret in the sense of the following
definition.
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Definition 10.3.1. Let X be a lcHs of smooth functions provided
with continuous actions of the dilation operators and the Dirac delta
and all its partial derivatives. An element f P X 1 is said to satisfy
the moment asymptotic expansion (MAE) in X 1 if there are µα P C,
α P Nd, called its moments, such that for any ϕ P X and k P N we
have

〈fpλxq, ϕpxq〉 “
ÿ

|α|ăk

µαϕ
pαqp0q

α!λ|α|`d
`O

ˆ

1

λk`d

˙

, λÑ 8. (10.18)

Similarly as in the case of compactly supported distributions [57,
58] or analytic functionals [124], one can show that any compactly
supported ultradistribution satisfies the MAE in E 1rMspRdq (we will
actually state a stronger result in Proposition 10.4.3 below). Nat-
urally, as in the distributional case, we expect the MAE to be also
valid in larger ultradistribution spaces. In dimension 1, Estrada gave
in [56, Theorem 7.1] (cf. [58]) a full characterization of the largest
distribution space where the moment asymptotic expansion holds; in
fact, he showed that f P D1pRq satisfies the MAE (in D1pRq) if and
only if f P K1pRq (and the MAE holds in this space), where K1pRq is
the dual of the so-called space of GLS symbols of pseudodifferential
operators [68]. One of our goals here is to give an ultradistributional
counterpart of Estrada’s result.

We start by introducing an ultradistributional version of KpRdq.
For each q P N and ` ą 0 we denote by KM,`

q pRdq the Banach space
of all smooth functions ϕ for which the norm

‖ϕ‖KM,`q
“ sup

αPNd
sup
xPRd

p1` |x|q|α|´q|ϕpαqpxq|

`|α|Mα

is finite. From this we construct the spaces

KpMqq pRd
q “ lim

ÐÝ
`Ñ0`

KM,`
q pRd

q, KtMuq pRd
q “ lim

ÝÑ
`Ñ8

KM,`
q pRd

q,

and finally the test function space

KrMspRd
q “ lim

ÝÑ
qPN
KrMsq pRd

q.
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It should be noticed that this is space is never trivial; in fact, KrMspRdq

contains the space of polynomials.
Our first important result in this subsection asserts that the ele-

ments of K1rMspRdq automatically satisfy the MAE. Interestingly, no
restriction on the weight sequence M is needed to achieve this.

Theorem 10.3.2. Any element f P K1rMspRdq satisfies the MAE in
K1rMspRdq and its moments are exactly µα “ 〈fpxq, xα〉, α P Nd.

Proof. Let f P K1rMspRdq. We keep λ ě 1 and fix k P N. Take

any arbitrary ϕ P KrMsq pRdq, where we may assume q ě k. Consider
the pk ´ 1qth order Taylor polynomial of ϕ at the origin, that is,
ϕkpxq :“

ř

|α|ăk ϕ
pαqp0qxα{α!. Since ϕk P KrMspRdq,

〈fpλxq, ϕpxq〉 “
ÿ

|α|ăk

µαϕ
pαqp0q

α!λ|α|`d
` 〈fpλxq, ϕpxq ´ ϕkpxq〉 .

Thus, we need to show 〈fpλxq, ϕpxq ´ ϕkpxq〉 “ Op1{λk`dq. This
bound does not require any uniformity in k; therefore, we may just
assume that ϕpαqp0q “ 0 for any |α| ă k so that our problem reduces
to estimate | 〈fpλxq, ϕpxq〉 |. There exists some ` “ `f ą 0 (some
` “ `φ ą 0) such that ϕ P KM,`

q pRdq and

|〈fpλxq, ϕpxq〉| ď
‖f‖

pKM,`q pRdqq1

λd
sup
αPNd

sup
xPRd

p1` |x|q|α|´q|ϕpαqpx{λq|

λ|α|`|α|Mα

.

If |α| ě q, we have

sup
xPRd

p1` |x|q|α|´q|ϕpαqpx{λq|

λ|α|`|α|Mα

“
1

λq
sup
xPRd

ˆ

1` |x|

λ` |x|

˙|α|´q
p1` |x|{λq|α|´q|ϕpαqpx{λq|

`|α|Mα

ď
‖ϕ‖KM,`q

λk
.

We further consider |α| ă q. When |x| ě λ, obviously

1

2
ď

1` |x|

λ` |x|
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and we obtain

sup
|x|ěλ

p1` |x|q|α|´q|ϕpαqpx{λq|

λ|α|`|α|Mα

ď 2q
‖ϕ‖KM,`q

λk

We are left with the case |x| ď λ and |α| ă q. If k ď |α| ă q we get

sup
|x|ďλ

p1` |x|q|α|´q|ϕpαqpx{λq|

λ|α|`|α|Mα

ď
1

λk
sup
|x|ďλ

|ϕpαqpx{λq|

`|α|Mα

ď 2q´k
‖ϕ‖KM,`q

λk
.

Finally, for |α| ă k, the Taylor formula yields

sup
|x|ďλ

p1` |x|q|α|´q|ϕpαqpx{λq|

λ|α|`|α|Mα

ď sup
|x|ďλ

p1` |x|q|α|´q

λ|α|`|α|Mα

ÿ

αďβ

|β|“k

|ϕpβqpξx{λq|

pβ ´ αq!

|x||β´α|

λ|β´α|

ď 2q
C`,k
λk
‖ϕ‖KM,`p

.

The proof is now complete.

Next, we describe the structure of the elements of K1rMspRdq. We
first need the ensuing lemma.

Lemma 10.3.3. Let ω : Rd Ñ R` be such that supxPRd ωpx`¨q{ωpxq P
L8locpRdq. There exists a k P Z`, independent of ω, such that for any
p P r1,8s there is a C “ Cp ą 0 so that for each f P Lp1{ω there exist

fj P CpRdq, j P t0, 1u, such that

f “ ∆kf1 ` f0

and
|fjpxq| ď C ‖f{ω‖Lp ωpxq, x P Rd, j P t0, 1u.

Proof. Using Schwartz’s parametrix method [125] we find a k P Z`
such that δ “ ∆kχ1 ` χ0 where χ0 P DpRdq and χ1 is a compactly
supported continuous function. Take any symmetric compact subset
K Ť Rd containing suppχ0 and suppχ1 and let CK ą 0 be such
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that supyPK ωpx ` yq ď CKωpxq. Suppose f is a function for which
f{ω P LppRdq with p P r1,8s and let q “ p{pp ´ 1q. By Hölder’s
inequality we have

|f ˚ χjptq|

ωptq
ď C

ż

K

|χjpxq|
|fpt´ xq|

ωpt´ xq
dx ď CK ‖χj‖Lq ‖f{ω‖Lp

for j P t0, 1u. The claim now follows by setting fj “ f ˚ χj and
Cp “ CK maxp‖χ0‖Lq , ‖χ1‖Lqq.

Going from here we obtain the following structural theorem. We
point out that the converse of Proposition 10.3.4 holds uncondition-
ally, that is, without having to impose any assumption on M .

Proposition 10.3.4. Let M satisfy pM.1q and pM.2q1. Let f P

K1rMspRdq. Then, given any q P N one can find a multi-sequence
of continuous functions fα “ fq,α P CpRdq such that

f “
ÿ

αPNd
f pαqα (10.19)

and for some ` ą 0 (for any ` ą 0) there is C “ Cq,` ą 0 such that

|fαpxq| ď C
`|α|

Mα

p1` |x|q|α|´q, x P Rd, α P Nd. (10.20)

Proof. We only show the Roumieu case, the proof of the Beurling
case is standard. For any r P r1,8q and some `, q ą 0 we denote by
KM,`
Lr,qpRdq the Banach space of all ϕ P C8pRdq such that

‖ϕ‖KM,`Lr,q
“

˜

ÿ

αPNd

ˆ

}p1` | ¨ |q|α|´qϕpαq}Lr

`|α|Mα

˙r
¸1{r

ă 8.

We also write KM,`
L8,qpRdq “ KM,`

q pRdq. For any r P r1,8s and j P Z`
we put Xr,j “ KM,j

Lr,j. Then, using Jensen’s inequality and Sobolev’s
theorem, one may easily verify that for any r P r1,8s

KtMupRd
q “ lim

ÝÑ
jÑ8

Xr,j
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as locally convex spaces. Next, for any r P p1,8q and j P Z` we
consider the Banach space Yr,j of all sequences of functions pϕαqαPNd
such that

‖pϕαq‖Yr,j “

˜

ÿ

αPNd

ˆ

}p1` | ¨ |q|α|´jϕα}Lr

`|α|Mα

˙r
¸1{r

ă 8.

Note that both Xr,j and Yr,j are reflexive. The mapping ρr,j : Xr,j Ñ

Yr,j, ϕ ÞÑ pp´1q|α|ϕpαqqα is a topological embedding. We set Zr,j “
Yr,j{ρr,jpXr,jq, then Zr,j is a reflexive Banach space. We denote by
πj : Yr,j Ñ Zr,j the quotient mapping. The natural linking mappings
Zr,j Ñ Zr,j`1 are injective since ρr,j`1pXr,j`1qXYr,j “ ρr,jpXr,jq. Con-
sider the following injective inductive sequence of short topologically
exact sequences

0 Xr,1 Yr,1 Zr,1 0

0 Xr,2 Yr,2 Zr,2 0

...
...

...

ρr,1 πr,1

ρr,2 πr,2

The linking mappings of the inductive spectra pXr,jqjPZ` , pYr,jqjPZ`
and pZr,jqjPZ` are weakly compact as continuous linear mappings be-
tween reflexive Banach spaces. In particular, these inductive spectra
are regular [80, Lemma 3]. One may easily verify the embedding
X8,j Ñ X8,j`1 is compact for any j P Z`, whence X “ lim

ÝÑjPZ`
X8,j

is a pDFSq-space. Consequently, X is Montel. Applying the dual
Mittag Leffler theorem 2.2.2, we have that ρr “ lim

ÝÑjPZ`
ρr,j : X Ñ

Yr “ lim
ÝÑjPZ`

Yr,j is a topological embedding. From here the struc-

ture of K1tMupRdq follows easily from the Hahn-Banach theorem and
Lemma 10.3.3.

Notice that when pM.1q and pM.3q1 hold, then one has the con-
tinuous and dense inclusions DrMspRdq ãÑ KrMspRdq ãÑ E rMspRdq, so
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that in particular K1rMspRdq Ď D1rMspRdq. Upon combining Propo-
sition 10.2.4piq with Theorem 10.3.2, one obtains the following com-
plete characterization of those one-dimensional ultradistributions f P
D1rMspRdq satisfying the MAE:

Theorem 10.3.5. Suppose M satisfies pM.1q, pM.2q1, and pM.3q1.
An ultradistribution f P D1rMspRq satisfies the MAE in D1rMspRq if
and only if f P K1rMspRq.

Proof. If f satisfies the MAE, then in particular fpλxq “ Opλ´qq in
D1rMspR z t0uq for each q P N. Hence, for a fixed but arbitrary q P N,
using Proposition 10.2.4piq and Theorem 8.2.1, we can write f “
ř8

m“1 f
pmq
m in D1rMspRq with fm “ fq,m P CpRq such that for some (for

each) ` ą 0 they fulfil bounds fmpxq “ Oq,`p`
mp|x| ` 1qm´q´2{Mmq.

Clearly, this representation yields f P K1rMsq pRq. Since q was arbi-
trary, we conclude that f P K1rMspRq. For the converse, Theorem
10.3.2 shows that a stronger conclusion actually holds.

Remark 10.3.6. In dimension d “ 1, this argument gives an alter-
native way for proving Proposition 10.3.4 in the non-quasianalytic
case without having to resort in the dual Mittag-Leffler theorem.

Evidently, for higher dimensions we now get the following inter-
esting problem.

Open problem 10.3.7. Show whether or not Theorem 10.3.5 holds
for dimension d ě 2. A possible avenue to solve this would be to find
structural theorems for multidimensional quasiasymptotic bounded-
ness, see also Open Problem 9.4.6.

10.4 The uniform moment asymptotic ex-

pansion

The bound in (10.18) is not uniform in general, but in the ultradis-
tributional case it is natural to expect that some sort of uniformity
could be present. For instance, we see below in Proposition 10.4.3
that this is the case for compactly supported ultradistributions. Let
us introduce the following uniform variant of the MAE.
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Definition 10.4.1. Let A be a weight sequence and let X be a lcHs
of smooth functions provided with continuous actions of the dilation
operators and the Dirac delta and all its partial derivatives. An
element f P X 1 satisfies the uniform moment asymptotic expansion
(UMAE) in X 1 with respect to rAs if there are µα P C, α P Nd, such
that for any ϕ P X and each ` ą 0 (for some ` “ `ϕ ą 0) the
asymptotic formula

〈fpλxq, ϕpxq〉 “
ÿ

|α|ăk

µαϕ
pαqp0q

α!λ|α|`d
`O

ˆ

`kAk
λk`d

˙

, λÑ 8, (10.21)

holds uniformly for k P N.

Fix three weight sequences M , N and A for the remainder of this
section. We now introduce ultradistribution spaces that are closely
related to the UMAE. Given q, ` ą 0 we denote by KM,`

N,q pRdq the

Banach space of all ϕ P C8pRdq for which

‖ϕ‖KM,`N,q
:“ sup

αPNd
sup
xPRd

e´ωN pq|x|qp1` |x|q|α|
ˇ

ˇϕpαqpxq
ˇ

ˇ

`|α|Mα

(10.22)

is finite. We then define

KpMq
pNq pR

d
q “ lim

ÝÑ
qÑ8

lim
ÐÝ
`Ñ0`

KM,`
N,q pR

d
q, KtMu

tNu pR
d
q “ lim

ÝÑ
`Ñ8

lim
ÐÝ
qÑ0`

KM,`
N,q pR

d
q,

and consider the dual K1rMs
rNs pR

dq, whose elements satisfy the UMAE
as stated in the next theorem.

Theorem 10.4.2. Suppose M and N satisfy pM.1q and pM.2q. Set

Ap “ Np maxjďppMj{j!q. Then, any element f P K1rMs
rNs pR

dq satisfies

the UMAE in K1rMs
rNs pR

dq w.r.t. rAs.

Proof. By replacing it by an equivalent sequence, we may assume that
Np ą 1 for each p P N. Fix an arbitrary 0 ă ε ď 1 in the Beurling
case, while we put ε “ 1 in the Roumieu case. We will always assume
λ ě H ě 1, where H is the parameter in pM.2q (for both sequences

M and N). Take any f P K1rMs
rNs pR

dq and ϕ P KrMs
rNs pR

dq. Arguing
as in the proof of Theorem 10.3.2, we need to find a uniform bound
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for | 〈fpλxq, ϕpxq ´ ϕkpxq〉 |, where ϕk is the pk ´ 1qth order Taylor
polynomial of ϕ at the origin. There exist q “ qϕ ą 0 and ` “ `f ą 0

(` “ `ϕ ą 0 and q “ qf ą 0) such that ϕ P KM,`
N,q pRdq and for some

C ą 0

|〈fpλxq, ϕpxq ´ ϕkpxq〉|

ď
C

λd
sup
αPNd

sup
xPRd

e´ωN pq|x|qp1` |x|q|α|
ˇ

ˇBαrϕ
`

x
λ

˘

´ ϕk
`

x
λ

˘

s
ˇ

ˇ

`|α|Mα

.

We split according to the size of α P Nd.
First suppose that |α| ă k. Set `0 :“ maxp1, `q. From the Taylor

expansion and (8.3) applied to the sequence N ,

p1` |x|q|α||ϕpαqpx{λq ´ ϕ
pαq
k px{λq|

eωN pq|x|qλ|α|`|α|Mα

ď
e´ωN pq|x|qp1` |x|q|α|

pλ`q|α|Mα

ÿ

αďβ
|β|“k

|ϕpβqpξ x
λ
q|

pβ ´ αq!

ˆ

|x|

λ

˙|β´α|

ď λ´k ‖ϕ‖KM,ε`N,q
εkp1` |x|qkeωN pq|x|{λq´ωN pq|x|q

ÿ

αďβ
|β|“k

`|β´α|Mβ

Mαpβ ´ αq!

ď λ´kAN0 ‖ϕ‖KM,ε`N,q
pdH`0εq

k
p1` |x|qke´ωN pq|x|{Hq

ÿ

αďβ
|β|“k

Mβ´α

|β ´ α|!

ď λ´k2d´1A2 ‖ϕ‖KM,ε`N,q

`

4dq´1H2`0ε
˘k
Nk max

0ďjďk

Mj

j!
.

Now let |α| ě k. For |x| ě λ, one has

λk exprωNpq|x|{λqs “ λk sup
pPN

pq|x|{λqpN0

Np

ď max

"

sup
pěk

qp|x|pN0

Np

, sup
0ďpăk

qp|x|kN0

Np

*

ď q´k0 Nk exprωNpq|x|qs,



194 Chapter 10. The moment asymptotic expansion

where q0 “ minp1, qq. Then, since p1` |x|q|α|{p1` |x|{λq|α| ď λ|α| for
any α P Nd, we have

sup
|α|ěk

sup
|x|ěλ

e´ωN pq|x|qp1` |x|q|α|
ˇ

ˇϕpαq px{λq
ˇ

ˇ

pλ`q|α|Mα

ď λ´k ‖ϕ‖KM,ε`N,q
pε{q0q

kNk.

In the case |x| ď λ, we have for |α| ě k,

e´ωN pq|x|qp1` |x|q|α|
ˇ

ˇϕpαqpx{λq
ˇ

ˇ

pλ`q|α|Mα

ď
e´ωN pq|x|qp1` |x|qk

λk
p1` |x|q|α|´k|ϕpαqpx{λq|

λ|α|´k`|α|Mα

ď λ´kN´1
0 eωN pqq ‖ϕ‖KM,ε`N,q

p2ε{qqkNk,

which concludes the proof.

The next result describes the UMAE for compactly supported
ultradistributions. The proof goes alone the same lines as that of
Theorem 10.4.2 and we therefore leave details to the reader.

Proposition 10.4.3. Any element f P E 1rMspRdq satisfies the UMAE
in E 1rMspRdq w.r.t. rAs, where Ap “ maxjďppMj{j!q.

Via an analogous argument as in the proof of Proposition 10.3.4,
one shows the ensuing structural description for K1rMs

rNs pR
dq.

Proposition 10.4.4. Let M and N satisfy pM.1q and pM.2q1. Let

f P K1rMs
rNs pR

dq. Then, for each q ą 0, there is some ` “ `q (for

each ` there some q` ą 0) such that one can find a multi-sequence of
continuous functions fα “ fq,`,α P CpRdq for which

f “
ÿ

αPNd
f pαqα (10.23)

and there is a C “ Cq,` ą 0 such that

|fαpxq| ď C
`|α|

Mα

p1` |x|q|α|e´ωN pq|x|q, x P Rd, α P Nd. (10.24)
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Let us now consider the one-dimensional case. The ensuing theo-
rem is a counterpart of Theorem 10.3.5 for the UMAE; notice however
that a full characterization is lacking in this case. We mention that
if pM.1q and pM.3q1 hold, one verifies that DrMspRdq ãÑ KrMs

rNs pR
dq ãÑ

E rMspRdq.

Theorem 10.4.5. Suppose that N satisfies pM.1q and that pM.1q,
pM.2q, and pM.3q hold for the weight sequence M . Set Ap “MpNp{p!.
If f P D1rMspRq satisfies the UMAE in D1rMspRq with respect to rN s,

then f P K1rMs
rNs pRq and if in addition N satisfies pM.2q, the UMAE

holds for f in K1rMs
rNs pRq w.r.t. rAs.

Proof. It suffices to show that f P K1rMs
rNs pRq. In the Beurling case

we take an arbitrary constant sequence rp “ 1{q ą 0 and in the
Roumieu case an arbitrary prpq P tRu. We have that, whenever
ϕ P DrMspR z t0uq,

|〈fpλxq, ϕpxq〉| ď O

ˆ

Rk´1Nk´1

λk`1N0

˙

,

which implies, taking infimum over k,

|〈fpλxq, ϕpxq〉| “ O
`

λ´2 exp
`

´ωNrp pλq
˘˘

.

Applying Proposition 10.2.4piiq, we can write f “
ř

mPN f
pmq
m with

continuous functions fm satisfying the bounds

|fmpxq| ď C`
`m

Mm

p1` |x|qm´2e´ωNrq p|x|q, x P R, m P N,

for some ` ą 0 (for each ` ą 0). This yields f P K1rMs
rNs pRq in both

cases, as required (in the Roumieu case we apply (2.8)). It has been
proved by Petzsche [105, Proposition 1.1] that pM.3q implies the so-
called Rudin condition, namely, there is C ą 0 such that

max
jďp

ˆ

Mj

j!

˙1{j

ď C

ˆ

Mp

p!

˙1{p

, p P N;

therefore, the rest follows from Theorem 10.4.2.
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Chapter 11

A multidimensional
Tauberian theorem for the
Laplace transform

11.1 Introduction

In 1976, Vladimirov obtained an important multidimensional gen-
eralization of the Hardy-Littlewood-Karamata Tauberian theorem
[138]. Multidimensional Tauberian theorems were then systemat-
ically investigated by him, Drozhzhinov, and Zav’yalov, and their
approach resulted in a powerful Tauberian machinery for multidi-
mensional Laplace transforms of Schwartz distributions. Such re-
sults have been very useful in probability theory [152] and mathe-
matical physics [6, 52, 141]. Tauberian theorems for other integral
transforms of generalized functions have been extensively studied by
several authors as well, see e.g. [51, 54, 111, 115, 116]. We refer to
the monographs [114, 139, 140] for accounts on the subject and its
applications; see also the recent survey article [50].

The aim of this chapter is to extend the so-called general Taube-
rian theorem for the dilation group [140, Chapter 2] from distri-
butions to ultradistributions. Our considerations apply to Laplace
transforms of elements in S 1rMs

rNs rΓs, the space of Gelfand-Shilov ultra-

distributions with supports in a closed convex acute cone Γ of Rd. We
start in Section 11.2 with a formal definition of the Laplace trans-
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form and some preliminary discussions. Then, in Section 11.3, we
provide characterizations of bounded sets and convergent sequences
in S 1rMs

rNs rΓs in terms of Laplace transform growth estimates; interest-
ingly, our approach to the desired Laplace transform characterization
is based on a useful convolution average description of bounded sets
of S 1rMs

rNs pR
dq, originally established in [46] (cf. [109]) but improved

here by relaxing hypotheses on the weight sequences. Those results
are employed in Section 11.4 to derive a Tauberian theorem in which
the quasiasymptotic behavior of an ultradistribution is deduced from
asymptotic properties of its Laplace transform. Finally, as a natural
refinement of the main result of Section 11.4 when the weight se-
quences and the cone satisfy stronger regularity conditions, we prove
in Section 11.5 that the Laplace transform is an isomorphism of lo-
cally convex spaces between S 1rMs

rNs rΓs and a certain space of holomor-

phic functions on the tube domain Rd`i int Γ˚, with Γ˚ the conjugate
cone of Γ.

11.2 The Laplace transform of tempered

ultradistributions

Throughout this chapter Γ Ď Rd stands for a (non-empty) closed,
convex and acute cone with vertex at the origin. We denote by TC

the tube domain with base C “ int Γ˚, see Section 8.1. Additionally,
M and N will always denote two weight sequences, where M satisfies
pM.1q and pM.3q1. We define

S 1rMs
rNs rΓs :“ tf P S 1rMs

rNs pR
d
q | supp f Ď Γu,

which is a closed subspace of S 1rMs
rNs pR

dq. We formally define the

Laplace transform on S 1rMs
rNs rΓs as follows.

Definition 11.2.1. Let η : Rd Ñ R be a function such that ηpξq “
1 for ξ in an open neighbourhood of Γ and for which ηpξqeiz¨ξ P

S rMs
rNs pR

dq for any z P TC . The Laplace transform of f P S 1rMs
rNs rΓs is

then the holomorphic function

Ltf ; zu :“
〈
fpξq, ηpξqeiz¨ξ

〉
, z P TC .
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As supp f Ď Γ, this definition is independent of the function η as
long as such a function exists.

We first verify whether a function η as in the definition always
exists. For this, we introduce the following concept. We recall that
the set rRs was introduced in Section 2.3.3.

Definition 11.2.2. A family tηεuεą0 of non-negative smooth func-
tions ηε : Rd Ñ r0,8q is called a rM s-Γ-mollifier if for every ε ą 0
the ensuing conditions hold

paq ηεpξq “ 1 for ξ P Γε while ηεpξq “ 0 for ξ R Γ2ε;

pbq for every p`pq P rRs there is a constant H`p,ε ą 0 such that

ˇ

ˇηpαqε pξq
ˇ

ˇ ď H`p,εLαMα, @ξ P Rd, @α P Nd. (11.1)

Lemma 11.2.3. If M satisfies pM.1q and pM.3q1, then there are
rM s-Γ-mollifiers.

Proof. The existence of such functions is guaranteed by the non-
quasianalyticity. Take any non-negative ϕ P DrMspRdq such that
suppϕ Ă Bp0, 1{2q and

ş

Rd ϕpξqdξ “ 1. Set ϕεpξq :“ ε´dϕpξ{εq and
let χΓ3ε{2

be the characteristic function of Γ3ε{2. Taking ηε “ ϕε˚χΓ3ε{2
,

one easily verifies that tηεuεą0 is a rM s-Γ-mollifier.

The next result shows that in particular we may define the Laplace
transform via rM s-Γ-mollifiers.

Lemma 11.2.4. Assume pM.1q and pM.3q1 on M . Let papq, pbpq P
rRs and tηεuεą0 be a rM s-Γ-mollifier. Then there is p`pq P rRs such
that, for any ε ą 0, we have∥∥ηεpξqeiz¨ξ∥∥SMap,1Nbp

,1

ď H`p,ε exp

ˆ

4ε| Im z| ` ωM`p
p|z|q ` ωN˚`p

ˆ

1

∆CpIm zq

˙˙

.

for any z P TC. In particular, we have ηεpξqe
iz¨ξ P SMap ,1

Nbp ,1
pRdq for all

z P TC.
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Proof. Set `1p :“ mintap, bpu. Due to the support assumption on ηε,
we may assume below that ξ P Γ2ε. Then for any z P TC , α, β P Nd,
we have
ˇ

ˇ

ˇ
ξβ B

α

Bξα
`

ηεpξqe
iz¨ξ

˘

ˇ

ˇ

ˇ

AαMαBβNβ

ď
|ξ|βe´y¨ξ

L1βNβ

2´|α|
ÿ

0ďα1ďα

ˆ

α

α1

˙

p2|z|q|α
1|

L1α1Mα1

ˆ

2|α´α
1|

L1α´α1Mα´α1

ˇ

ˇ

ˇ
ηpα´α

1q
ε pξq

ˇ

ˇ

ˇ

˙

ď H`p,εe
ωM`p

p|z|q |ξ|βe´y¨ξ

LβNβ

,

where we have set `p :“ `1p{2. Now ξ “ u ` v for certain u P Γ and
v P Bp0, 2εq, so that by the Cauchy-Schwarz inequality

|ξ|βe´y¨ξ

LβNβ

ď
p|u| ` 2εqβe´y¨ue´y¨v

LβNβ

ď
p|u| ` 2εq|β|e´∆Cpyq|u|e2ε|y|

LβNβ

ď

´

1
∆Cpyq

¯β ´
|β|
e

¯β

LβNβ

e2ε∆Cpyq`2ε|y|

ď exp

ˆ

ωN˚`p

ˆ

1

∆Cpyq

˙

` 4ε|y|

˙

,

where we have used (8.1) and the elementary inequality mm ď emm!.

The ε-term that appears in the bound of Lemma 11.2.4 is a direct
consequence of our construction via rM s-Γ-mollifiers. These terms

will prevent us from finding an isomorphism between S 1rMs
rNs rΓs and

and a certain space of holomorphic functions on the tube domain
Rd ` i int Γ˚ unless we impose heavy restrictions on the weight se-
quences, see Section 11.5. This now raises the question whether we
may define the Laplace transform on S 1rMs

rNs rΓs in an alternate way,
avoiding the ε-terms altogether. For distributions, such an alternate
definition was given using a Whitney type extension theorem for the
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Schwartz space of rapidly decreasing smooth functions defined on an
unbounded closed set [140] (see also [129]). Continuing from there,
we could now ask ourselves if the same can be done in the ultrad-
ifferentiable context. Work towards this has already been done, we
refer to [19, 22, 91], however in the case of Gelfand-Shilov spaces no
satisfying answer is at hand. Hence the following open problem.

Open problem 11.2.5. Determine for an unbounded closed set V Ă
Rd under which conditions on the weight sequences a Whitney type
extension theorem on V holds in the context of Gelfand-Shilov spaces.
From here, provide an alternate definition for the Laplace transform
of elements in S 1rMs

rNs rΓs.

11.3 Laplace transform characterization

of bounded sets in S 1rM s
rAs pR

dq

In this section we shall characterize those subsets of S 1rMs
rNs rΓs that

are bounded (with respect to the relative topology inherited from

S 1rMs
rNs pR

dq) via bounds on the Laplace transforms of their elements.

Hereafter, we assume M satisfies pM.1q, pM.2q1 and pM.3q1 while our
assumptions on N are pM.1q˚ and pM.2q. Furthermore, whenever
considering the Beurling case we assume in addition that N fulfils
pNAq. Note that these assumptions ensure that ωN`p ptq “ optq [81,
Lemma 3.8 and Lemma 3.10, p. 52–53], ωN˚`p

ptq ă 8 for all t ě

0, and ωN˚`p
ptq Ñ 8 as t Ñ 8 for any sequence p`pq P rRs. If

stronger assumptions on the weight sequences are needed, this will
be explicitly stated in the corresponding statement. The following
theorem is our main result in this section.

Theorem 11.3.1. Let B Ď S 1rMs
rNs rΓs.

piq If B is a bounded set, then, there is p`pq P rRs for which, given
any ε ą 0, there is L “ Lε ą 0 such that for all f P B

|Ltf ; zu|

ď L exp

ˆ

ε| Im z| ` ωM`p
p|z|q ` ωN˚`p

ˆ

1

∆CpIm zq

˙˙

, (11.2)
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for all z P T c.

piiq Conversely, suppose there are θ P C, σ0 ą 0, L “ LB ą 0, and
p`pq P rRs such that

|Ltf ;x` iσθu| ď L exp

ˆ

ωM`p
p|x|q ` ωN˚`p

ˆ

1

σ

˙˙

, (11.3)

for all f P B, x P Rd, and σ P p0, σ0s, then B is a bounded

subset of S 1rMs
rNs rΓs.

Before proving Theorem 11.3.1, let us discuss an important con-
sequence. Namely, we shall derive from it a characterization of con-
vergent sequences of S 1rMs

rNs rΓs. Notice first that if a sequence fk Ñ g

in S 1rMs
rNs pR

dq and supp fk Ď Γ for each k, one easily shows that

lim
kÑ8
Ltfk; zu “ Ltg; zu,

and this limit holds uniformly for z in compact subsets of TC ; fur-
thermore, by Theorem 11.3.1, the Laplace transforms of the fk satisfy
bounds of the form (11.2) uniformly in k. The converse also holds.
In fact, the next result might be interpreted as a sort of Tauberian
theorem.

Corollary 11.3.2. Let pfkqkPN be a sequence in S 1rMs
rNs rΓs. Suppose

that there is a non-empty open subset Ω Ď C such that for each y P Ω
the limit

lim
kÑ8
Ltfk; iyu (11.4)

exists. If there are θ P C, σ0 ą 0, and p`pq P rRs such that

sup
kPN, xPRd, σPp0,σ0s

|Ltfk;x` iσθu|

exp
´

ωM`p
p|x|q ` ωN˚`p

`

1
σ

˘

¯ ă 8 (11.5)

then
lim
kÑ8

fk “ g in S 1rMs
rNs rΓs, (11.6)

for some g P S 1rMs
rNs rΓs. In particular, the limit (11.4) is given by

Ltg; iyu.
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Proof. Notice first that if two subsequences converge, respectively, to
ultradistributions g and h, the limits (11.4) tell us Ltg; iyu “ Lth; iyu
for all y P Ω. By uniqueness of holomorphic functions and the in-
jectivity of the Laplace transform (which follows from that of the
Fourier transform), we conclude g “ h. It therefore suffices to show
that every arbitrary subsequence of the fk possesses a convergent
subsequence in S 1rMs

rNs rΓs, but this follows from the fact that S 1rMs
rNs rΓs

is Montel because, in view of Theorem 11.3.1, the estimate (11.5) is

equivalent to tfk : k P Nu being bounded in S 1rMs
rNs rΓs (and hence

relatively compact).

Let us now prepare ourselves to prove Theorem 11.3.1. Part piq
will be an easy consequence of our application of rM s-Γ-mollifiers, in
particular Lemma 11.2.4. In preparation for the proof of part piiq,
we first need to extend [46, Proposition 3.1] (cf. [109, Lemma 2.7])
by relaxing assumptions on the weight sequences. This provides a
useful convolution characterization of bounded sets in S 1rMs

rNs pR
dq. Our

approach to this convolution characterization employs the short-time
Fourier transform, see Section 3.4.1.

Lemma 11.3.3. A subset B Ă S 1rMs
rNs pR

dq is bounded if and only if

there exists p`pq P rRs such that

sup
fPB, xPRd

e
´ωN`p

p|x|q
|pf ˚ ψqpxq| ă 8, @ψ P DrMspRd

q. (11.7)

Proof. We only make use here of the assumptions pM.1q and pM.2q1

on N . The necessity is easily obtained. Hence suppose that (11.7)
holds for some p`pq P rRs. We may assume the sequence N`p satisfies
pM.2q1. We consider the weighted Banach space X “ tg P CpRdq :
gpξq “ OpexppωN`p p|ξ|qqqu and fix a compact set K Ť Rd with non-
empty interior.

The assumption (11.7) implies that for each f P B the mapping
Lf : ϕ ÞÑ f ˚ ϕ is continuous from DrMspRdq into X, so that in par-
ticular, in view of the Banach-Steinhaus theorem, B̃ “ tpLf q|DrMsK

:

f P Bu is an equicontinuous subset of LbpDrMsK , Xq. This implies that

there is phpq P rRs such that B̃ Ă LbpD
Mhp ,1

K , Xq and it is equicontin-

uous there. Fix ψ P DpMqK with ‖ψ‖L2 “ 1. Since te
´ωMhp

p4π|ξ|q
e2πiξ¨qψ :



204 Chapter 11. Tauberian theorem for Laplace transforms

ξ P Rdu is a bounded family in DMhp ,1

K , we conclude that, for some
CB ą 0, independent of f P B,

|Vψfpx, ξq| “
ˇ

ˇ

ˇ
e´2πiξ¨x

´

f ˚ pe2πiξ¨qψq
¯

pxq
ˇ

ˇ

ˇ

ď CB exp
´

ωN`p p|x|q ` ωMhp
p4π|ξ|q

¯

.

On the other hand, let now ϕ P S rMs
rNs pR

dq. For any p`1pq P rRs it
follows from Proposition 3.4.1 that there is some Cϕ ą 0 such that

ˇ

ˇVψϕpx,´ξq
ˇ

ˇ ď Cϕ exp
´

´ωN`1p
p|x|q ´ ωM`1p

p|ξ|q
¯

.

Moreover, according to the desingularization formula (3.2) for the
STFT,

〈f, ϕ〉 “
ż ż

R2d

Vψfpx, ξqVψϕpx,´ξqdxdξ.

Let h ą 0 be such that log h{ logH ě d ` 1 (with H the corre-
sponding constant occurring in pM.2q1 for N`p and Mhp) and set
`1p :“ h´1 minp`p, p4πq

´1hpq, then applying (8.2) one gets

sup
fPB

|〈f, ϕ〉|

ď CBCϕ

ż

Rd
e
ωMhp

p4π|ξ|q´ωM
`1p
p|ξ|q

dξ

ż

Rd
e
ωN`p

p|x|q´ωN
`1p
p|x|q

dx ă 8,

which concludes the proof of the sufficiency.

We are now ready to present a proof of Theorem 11.3.1.

Proof of Theorem 11.3.1. Suppose that B Ď S 1rMs
rNs rΓs is bounded in

S 1rMs
rNs pR

dq. By equicontinuity, there are certain papq, pbpq P rRs such

that B Ď
´

SMap ,1

Nbp ,1
pRdq

¯1

and it is bounded there. Then, (11.2) follows

directly from Lemma 11.2.4 (in particular, one does not employ pM.2q
for N in this implication).

We now show that (11.3) is sufficient to guarantee boundedness.
We are going to do this employing Lemma 11.3.3. We may assume
that p`pq P rRs is such that M`p satisfies pM.2q1 and N˚

`p
fulfills pM.2q



11.3. Laplace transform characterization of bounded sets 205

(the constants occurring in these conditions are denoted by A and H
below). We may also suppose that |θ| “ 1. Fix ϕ P DrMspRdq. Find
R ą 0 such that suppϕ Ă Bp0, Rq. We keep f P B. Take a bounded
function γ : Rd Ñ p0, σ0s, which will be specified later. Inverting the
Laplace transform of f ˚ ϕ,

pf ˚ ϕqptq “
1

p2πqd

ż

Rd`iγptqθ
e´iz¨tLtf ; zuLtϕ; zudz.

By [81, Lemma 3.3, p. 49] and (2.9), we have that for any phpq P rRs

|Ltϕ;x` iγptqθu| ď Lϕ exp
´

´ωMhp
p|x|q `Rγptq

¯

, x P Rd.

Choose h ą 0 such that log h ě pd` 1q logH. Taking hp “ `p{h, the
condition pM.2q1 in the form of estimate (8.2) yields

ωM`p
p|x|q´ωMhp

p|x|q “ ωM`p
p|x|q´ωM`p

ph|x|q ď ´pd` 1q logp|x|{Aq,

whence we infer the exponential function of this expression is inte-
grable on Rd. Let δ “ ∆Cpθq. Employing (11.3) we then obtain

ˇ

ˇ

ˇ

ˇ

ż

Rd`iγptqθ
e´iz¨tLtf ; zuLtϕ; zudz

ˇ

ˇ

ˇ

ˇ

ď LBLϕ exp

ˆ

γptqpθ ¨ tq ` ωN˚`p

ˆ

1

δγptq

˙

`Rγptq

˙

¨

ż

Rd
e
ωM`p

p|x|q´ωMhp
p|x|q

dx

ď L exp

ˆ

ωN˚`p

ˆ

1

δγptq

˙

` |t|γptq

˙

,

for some L ą 0. Note that N`p satisfies pM.1q˚, so that (8.4) holds
for it. Also, since ωN`p ptq “ optq, there is a sufficiently large r0 such
that

4pn1`1 ` 1qωN`p p|t|q

δ|t|
ď σ0 for |t| ą r0.

Set r “ maxtr0, n1`1 ` 1u, we then define

γptq “

$

’

&

’

%

σ0, |t| ă r,

4pn1`1 ` 1qωN`p p|t|q

δ|t|
, |t| ě r.
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For |t| ă r obviously

exp

ˆ

ωN˚`p

ˆ

1

δγptq

˙

` |t|γptq

˙

ď exp

ˆ

rσ0 ` ωN˚`p

ˆ

1

σ0δ

˙˙

.

If |t| ě r, the inequality (8.4) yields

exp

ˆ

ωN˚`p

ˆ

1

δγptq

˙

` |t|γptq

˙

ď exp

˜

ωN˚`p

˜

|t|

4pn1`1 ` 1qωN`p p|t|q

¸

`
4pn1`1 ` 1q

δ
ωN`p p|t|q

¸

ď exp
´

2kωN`p p|t|q ` A
1
¯

for some A1 ą 0 and k “ rlog2p1 ` 4pn1`1 ` 1q{δqs. By repeated
application of (8.3) for ωN`p , one obtains

exp
´

2kωN`p p|t|q
¯

ď exppωN`p
`

Hk
|t|
˘

` A2q,

for some A3 ą 0. Let ap “ `pH
´pk. Summing up, we have shown

that

sup
fPB, tPRd

e´ωNap p|t|q |pf ˚ ϕqptq| ă 8.

Since ϕ was arbitrary, Lemma 11.3.3 applies to conclude that B is
bounded.

11.4 The Tauberian theorem

We shall now use our results from the previous section to general-
ize the Drozhzhinov-Vladimirov-Zav’yalov multidimensional Taube-
rian theorem for Laplace transforms [139, 140] from distributions to
ultradistributions. Our goal is to devise a Laplace transform crite-
rion for the quasiasymptotic behavior of tempered ultradistributions,
see also Chapter 9. Our Tauberian theorem is the inverse to the
ensuing Abelian statement that readily follows from the definition:
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If an ultradistribution f P S 1rMs
rNs rΓs has quasiasymptotic behavior

fpλxq „ ρpλqgpxq in S 1rMs
rNs pR

dq, then

lim
rÑ0`

rd

ρp1{rq
Ltf ; rzu “ Ltg; zu (11.8)

uniformly for z in compact subsets of TC .

Theorem 11.4.1. Assume that M and N both satisfy pM.1q and
pM.2q, while M also satisfies pM.3q1 and N satisfies pM.1q˚. Set

Ap “ MpNp. Let f P S 1rMs
rAs rΓs and let ρ be regularly varying of

degree α. Suppose that there is a non-empty solid subcone Γ1 with
C 1 “ int Γ1 Ă C such that for each y P C 1 the limit

lim
rÑ0`

rd

ρp1{rq
Ltf ; riyu (11.9)

exists. If there are θ0 P C and p`pq P rRs such that

lim sup
rÑ0`

sup
|x|2`sin2 θ“1

θPp0,π{2s

e
´ω

A˚
`p
p 1

sin θ q

r´dρp1{rq
|Ltf ; rpx` i sin θ0θqu| ă 8, (11.10)

then f has quasiasymptotic behavior with respect to ρ in S 1rMs
rNs pR

dq.

Proof. In view of Corollary 11.3.2, it suffices to show that the Laplace
transform of f satisfies a bound of the form

rd

ρp1{rq
|Ltf ; rpx` iσθ0qu|

ď L exp

ˆ

ωM`1p
p|x|q ` ωN`1p

ˆ

1

σ

˙˙

(11.11)

for some p`1pq P rRs, L, σ0 ą 0 and all x P Rd and 0 ă σ ă σ0. We
may assume pM.2q holds for both M`p and N˚

`p
(with constants A and

H). We can also assume that Lp ě 1 for all p P N. Using (11.10),
there are 0 ă r0 ă 1 and L1 such that for any 0 ă r ă r0

rd

ρp1{rq
|Ltf ; rpx` i sin θ0θqu| ď L1 exp

ˆ

ωA˚`p

ˆ

1

sin θ

˙˙

, (11.12)
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whenever |x|2 ` sin2 θ “ 1, where we always keep 0 ă θ ă π{2. On
the other hand, applying Theorem 11.3.1 to the singleton B “ tfu
and possibly enlarging p`pq,

|Ltf ; rpx` iθ0σqu| ď L2 exp

ˆ

ωM`p
p|x|q ` ωA˚`p

ˆ

1

rσ

˙˙

, (11.13)

for any 0 ă r ă 1, x P Rd and σ ă r0 ă 1. We may assume that
ρpλq “ 1 for λ ă r0. Furthermore, Potter’s estimate (8.6) yields

ρpλtq

ρpλq
ď L3t

α maxtt´1, tu, t, λ ą 0. (11.14)

We keep arbitrary r ă 1, x P Rd, 0 ă σ ă r0, and write r1 “
a

|x|2 ` σ2, x1 “ x{r1, and sin θ “ σ{r1. If rr1 ă r0, we obtain from
(11.14), (11.12), and the fact that ωM`p

ptq increases faster than log t,

rd

ρp1{rq
|Ltf ; rpx` iσθ0qu|

ď L1L3

ˆ

1

r1

˙α`d

max

"

r1,
1

r1

*

exp

ˆ

ωA˚`p

ˆ

r1

σ

˙˙

“ O

ˆ

exp

ˆ

ωM`p
p2|x|q ` ωA˚`p

ˆ

2|x|

σ

˙˙˙

.

Similarly, if rr1 ě r0, we employ (11.13), (11.14), ρp1{prr1qq “ 1, and
pM.2q1 for both M`p and A`p to conclude that for some h1 ą 0

rd

ρp1{rq
|Ltf ; rpx` iσθ0qu| “ O

ˆ

exp

ˆ

ωM`p
ph1|x|q ` ωA˚`p

ˆ

h1|x|

σ

˙˙˙

.

We have found in all cases

rd

ρp1{rq
|Ltf ; rpx` iσθ0qu| ď L4 exp

ˆ

ωM`p
ph|x|q ` ωA˚`p

ˆ

h|x|

σ

˙˙

for some L4 and h “ maxth1, 2u. It remains to observe that

ωA˚`p
ph|x|{σq ď ωM`p

ph|x|q ` ωN˚`p
ph{σq,

so that (11.11) holds with `1p “ `p{pHhq, by pM.2q.
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11.5 Sharpening the bound (11.2)

If the sequence M and the cone Γ satisfy stronger conditions, it turns
out that the bound (11.2) can be considerably improved. In fact, we
shall show here how to remove the ε term from (11.2).

We start with three lemmas, from which our improvement of The-
orem 11.3.1 will follow.

Lemma 11.5.1. Let tFjujPI be a family of holomorphic functions
on TC. Suppose that for some p`pq P rRs and each ε ą 0 there is
L “ Lε ą 0 such that for all j P I and any z P TC:

ˇ

ˇp1` |Re z|qd`2Fjpzq
ˇ

ˇ

ď L exp

ˆ

ε| Im z| ` ωN˚`p

ˆ

1

∆CpIm zq

˙˙

. (11.15)

Then there are phpq P rRs and fj P C
1pRdq with supp fj Ď Γ, @j P I,

such that te
´ωNhp

p| ¨ |q
fjujPI is a bounded set in L8pRdq and Fjpzq “

Ltfj; zu, j P I.

Proof. We closely follow the proof of the lemma in [139, Section 10.5,
p. 148]. We may assume that N`p satisfies pM.1q and pM.2q. From
(11.15) it follows in particular that

p1` | ¨ |qFjp¨ ` iyq P L
1
pRd
q, @y P C, j P I.

From the Cauchy formula we obtain for each compact subset K Ť C
and each j P I

sup
yPK

ˇ

ˇ

ˇ

ˇ

B

Byk
Fjpx` iyq

ˇ

ˇ

ˇ

ˇ

“ O

ˆ

1

p1` |x|qd`2

˙

, k P t1, . . . , du.

Therefore,

gjpξ, yq “ e2πξ¨yF tFjp¨ ` iyq; ξu P C1
pRd

ˆ Cq, j P I.

Furthermore, for each k P t1, . . . , du,

B

Byk
gjpξ, yq “ eξ¨y

„

2πiξkF tFjp¨ ` iyq; ξu ` iF
"

B

Bxk
Fjp¨ ` iyq; ξ

*

“ 0,
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so that the C1-functions fjpξq :“ p2πq´dgjpξ{2π, y{2πq do not depend
on y P C. By (11.15), there is L1 “ L1ε ą 0 such that

|fjpξq| ď L1 exp

ˆ

ξ ¨ y ` ε|y| ` ωN˚`p

ˆ

1

∆Cpyq

˙˙

, (11.16)

for all ξ P Rd, y P C , and j P I. Take any ξ0 R Γ. As pΓ˚q˚ “ Γ, there
is some y0 P C such that ξ0 ¨ y0 “ ´1. Since ∆Cpλy0q “ λ∆Cpy0q for
λ ą 0, we conclude from (11.16) for ε “ p2|y0|q

´1 and y “ λy0 that

|fjpξ0q| ď L1 exp

ˆ

´
λ

2
` ωN˚`p

ˆ

1

λ∆Cpy0q

˙˙

, λ ą 0.

By letting λ Ñ 8, it follows that this is only possible if fpξ0q “ 0.
We conclude that supp fj Ď Γ for each j P I.

Now take an arbitrary y0 P C such that |y0| “ 1, then (11.16)
gives us for ε “ 1{2 and y “ λy0, λ ą 0,

|fjpξq| exp

ˆ

´p1` |ξ|qλ´ ωN˚`p

ˆ

1

λ∆Cpy0q

˙˙

ď L1e´
λ
2 .

We now integrate this inequality with respect to λ on p0,8q in order
to gain an estimate on the fj. The 1-dimensional case of [24, Lemma
5.2.6, p. 97] applied to the open cone p0,8q, yields the existence of
constants L2, c ą 0 such that

ż 8

0

exp

ˆ

´p1` |ξ|qλ´ ωN˚`p

ˆ

1

λ∆Cpy0q

˙˙

dλ

ě L2 exp
´

´ωN`p pcp1` |ξ|qq
¯

.

Hence, using (2.5), it follows for any ξ P Rd and j P I that

|fjpξq| ď
2L1

L2
exp

´

ωN`p pcp1` |ξ|qq
¯

ď
2L1

L2
exp

´

ωN`p p2cq ` ωN`p p2c|ξ|q
¯

.

The proof is complete noticing that by the Fourier inversion Fjpzq “
Ltfj; zu.
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Lemma 11.5.2. Let Γ be a solid cone and let p`pq P rRs. Suppose
that M`p satisfies pM.1q, pM.2q, and pM.3q. Then, there are an ul-
trapolynomial P of type rM s and constants L,L1 ě 1 such that

e
ωM`p

p|z|q
ď |P pzq| ď L1e

ωM`p
pL|z|q

, @z P TC . (11.17)

Proof. Set

rP pzq :“
8
ź

p“1

ˆ

1`
z

`pmp

˙

, z P C,

which is an ultrapolynomial of type rM s satisfying the bound rP pzq “
OpexprωM`p

pL2|z|qsq [81, Proposition 4.5 and Proposition 4.6, pp. 58–
59]. Now for Re z ě 0 as in [81, p. 89]

ˇ

ˇ

ˇ

rP pzq
ˇ

ˇ

ˇ
ě sup

pPN

p
ź

q“1

|z|

`qmq

“ sup
pPN

M0|z|
p

LpMp

“ e
ωM`p

p|z|q
.

Since we assumed int Γ ‰ H, there is a basis te1, . . . , enu of Rd such
that ej P int Γ for 1 ď j ď n. Find also λ ą 0 such that λminj |ej ¨z| ě
|z| for all z P C. Now define

P pzq :“
d
ź

j“1

rP p´λd1{2iej ¨ zq,

which is an ultrapolynomial of type rM s as well and the upper bound
in (11.17) holds because of (8.3) applied to ωM`p

. Since for any z P TC

we have Rep´diej ¨ zq ą 0, 1 ď j ď d, one then obtains for any z in
the tube domain

|P pzq| ě exp

˜

d
ÿ

j“1

ωM`p
pd1{2λ|ej ¨ z|q

¸

ě exp
´

ωM`p
p|z|q

¯

.

Lemma 11.5.3. Let p`pq P rRs. It holds that for any y P C

sup
ξPΓ

exp
´

ωN`p p|ξ|q ´ y ¨ ξ
¯

ď exp

ˆ

ωN˚`p

ˆ

1

∆Cpyq

˙˙

. (11.18)
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Proof. We only make use of pM.1q˚. Using the estimate (8.1), we
obtain for any y P C

sup
ξPΓ

e
ωN`p

p|ξ|q´y¨ξ
ď sup

tě0
e
ωN`p

ptq´∆Cpyqt,

so that (11.18) follows from [106, Lemma 5.6]

sup
tą0

!

ωN`p ptq ´ st
)

ď ωN˚`p

ˆ

1

s

˙

, s ą 0.

Theorem 11.5.4. Suppose that the cone Γ is solid, M and N both
satisfy pM.1q and pM.2q, and M also satisfies pM.3q. Then, a set

B Ă S 1rMs
rNs rΓs is bounded if and only if there are L ą 0 and p`pq P rRs

such that for all f P B

|Ltf ; zu| ď L exp

ˆ

ωM`p
p|z|q ` ωN˚`p

ˆ

1

∆CpIm zq

˙˙

, (11.19)

for all z P TC.

Proof. We only need to show that if B “ tfjujPI is bounded then
(11.19) holds. By Theorem 11.3.1, there is p`pq P rRs such that for
any ε ą 0 there is L “ Lε ą 0 such that for all j P I

|Ltfj; zu| ď L exp

ˆ

ε|y| ` ωM`p
p|z|q ` ωN˚`p

ˆ

1

∆Cpyq

˙˙

, @z P TC .

We may assume M`p satisfies pM.1q, pM.2q and pM.3q. Let P be
the ultrapolynomial constructed as in Lemma 11.5.2. Fix k ě Hd`2,
where H is the constant occurring in pM.2q1 for M`p . We consider
the ultrapolynomial Qpzq “ P pkzq, so that it satisfies the bounds

e
ωM`p

pk|z|q
ď |Qpzq| ď L1e

ωM`p
pν|z|q

for all z P TC and some ν ą 0. Set now Fjpzq “ Ltfj; zu, which are
holomorphic functions on TC . In view of (8.2), the family tFj{QujPI
satisfies the conditions of Lemma 11.5.1, so that there are gj P C

1pRdq
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with supp gj Ď Γ for which there is some p`1pq P rRs such that
texpp´ωN`1p

p| ¨ |qqgjujPI is a bounded subset of L8pRdq and Fjpzq “

QpzqLtgj; zu for each j P I. Now, taking into account (8.2) (we may
assume H is the same constant for both M`p and N`1p) and Lemma
11.5.3, there are some L2, L3 ą 0 such that for all j P I

|Fjpzq| ď L2e
ωM`p

pν|z|q
ż

Γ

e
ωN

`1p
p|ξ|q´y¨ξ

dξ

ď L3e
ωM`p

pν|z|q
sup
ξPΓ

e
ωN

`1p
pk|ξ|q´y¨ξ

ż

Γ

dξ

p1` |ξ|qd`2

ď AL1
ˆ
ż

Γ

dξ

p1` |ξ|qd`2

˙

exp

ˆ

ωM`p
pν|z|q ` ωN˚

`1p

ˆ

k

∆Cpyq

˙˙

.

Hence, we obtain a bound of type (11.19) for the sequence kp “
mint`p{ν, `

1
p{ku.

Theorem 11.5.4 can be used to draw further topological informa-
tion. In fact, it leads to an isomorphism between S 1rMs

rNs rΓs and analogs

of the Vladimirov algebra [139, Chapter 12] HpTCq of holomorphic
functions on TC . Given ` ą 0, we define the Banach space O`pTCq
of all holomorphic functions F on the tube domain TC that satisfy
the bounds

}F }` “ sup
zPTC

|F pzq|e
´ωM p`|z|q´ωN˚

´

`
∆C pIm zq

¯

ă 8.

We then introduce the pDFSq- and pFSq-spaces

OpMq
pNq pT

C
q “ lim

ÝÑ
`

O`pTCq and OtMu
tNu pT

C
q “ lim

ÐÝ
`

O`pTCq.

The arguments we have given above actually show that the Laplace
transform maps S 1rMs

rNs rΓs bijectively intoOrMs
rNs pT

Cq and that this map-

ping and its inverse maps bounded sets into bounded sets (cf. the
property (2.8) in the Roumieu case). Since the spaces under con-
sideration are all bornological, we might summarize the results from
this section as follows,
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Theorem 11.5.5. Let Γ be a solid convex acute cone and suppose
that M and N both satisfy pM.1q and pM.2q, while Mp also satisfies
pM.3q. Then, the Laplace transform

L : S 1rMs
rNs rΓs Ñ O

rMs
rNs pT

C
q

is an isomorphism of locally convex spaces.



English summary

This dissertation contains several new results situated in the theory
of ultradifferentiable functions and ultradistributions. Specifically,
we consider their topological invariants and asymptotic behavior.

The main goal of Part I is to characterize topological properties of ul-
tradifferentiable function spaces with respect to their defining weight
sequences and weight functions. In particular we consider the topo-
logical invariants of the Gelfand-Shilov spaces or spaces that contain
them as a dense subspace. This results in several theorems that
completely characterize certain locally convex properties, such as nu-
clearity and ultrabornologicity, of the spaces in question.
In Chapter 3 we introduce the Gelfand-Shilov spaces via weight se-
quence and weight function systems. This is done with respect to
a parameter q P r1,8s, where the ultradifferentiability is measured
through the Lq-norm. In the main result of this chapter, we deter-
mine exactly when the definition of the Gelfand-Shilov space is inde-
pendent of the parameter q that is used, which later we show to be
equivalent to the nuclearity of this space. The chapter is then closed
by a time-frequency analysis of the Gelfand-Shilov spaces, where we
discuss the continuity of the short-time Fourier transform (STFT)
and Gabor frames.
Chapter 4 considers nuclearity. More specific, we characterize ex-
actly for two versions of the Gelfand-Shilov spaces when they are
nuclear. The determination of the nuclearity of the first kind, the
Gelfand-Shilov spaces considered in Chapter 3, is the main result of
this chapter. Particular corollaries of this result are the kernel theo-
rems for the Gelfand-Shilov spaces and their duals. The second type
we consider are the so-called Beurling-Björck spaces. In a concise

215



216 English summary

manner we determine their nuclearity, which significantly extends
the known results from the literature.

Next, in Chapter 5, we study the topological properties of certain
variants of the Gelfand-Shilov spaces, whose topological structure
take the form of pPLBq-spaces. A particular example are the multi-
plier spaces of the Gelfand-Shilov spaces. In this chapter we charac-
terize exactly when such spaces are ultrabornological and barrelled.
This is done via similar conditions as those of Vogt and Wagner for
the splitting of short exact sequences of Fréchet spaces. To show that
the conditions are sufficient we apply the STFT. Our technique for
demonstrating that the conditions are necessary depends surprisingly
enough on the existence of Gabor frames whose windows have specific
rapid decay in time and frequency.

In Chapter 6, the final chapter of Part I, we look at the spaces of
bounded ultradistributions and ultradistributions vanishing at infin-
ity. The main results here are the so-called first structural theorems
we obtain for both spaces. These results will serve as the cornerstones
for the structural theorems we obtain in Part II.

Part II considers the asymptotic behavior of ultradistributions. In
particular we obtain structural theorems for three types of asymptotic
behavior related to translation and dilation. Moreover we also prove
a general Tauberian theorem for the Laplace transform.

Chapter 9 looks at the quasiasymptotic behavior of ultradistribu-
tions. Specifically, we provide structural theorems for the quasi-
asymptotic behavior on the real line, both at infinity and at the
origin. The crux of our proof is to convert the quasiasymptotics
into the so-called S-asymptotic behavior, whose structure we may
describe using the results obtained in Chapter 6. Once the structural
theorems have been obtained, we analyse extension results. For in-
stance we show that every ultradistribution having quasiasymptotics
at infinity is in fact an element of an extension of the dual of the
Schwartz space S 1 and her quasiasymptotic behavior holds there; an
analogous yet local result is also obtained for quasiasymptotics at the
origin.

The moment asymptotic expansion (MAE) is another major form of
asymptotic behavior related to dilation, and in Chapter 10 we study
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it in the context of ultradistributions. We introduce an ultradifferen-
tiable version of the space of so-called GLS symbols and show that
every element in its dual has the MAE. Moreover, we show that in
the one-dimensional case every ultradistribution that has the MAE
is contained in this dual. We also introduce a uniform analog of the
MAE and demonstrate a partial characterization on the real line.
Finally, in Chapter 11, we extend a general Tauberian theorem for
the dilation group from the context of distributions into that of ul-
tradistributions.



218 English summary



Nederlandstalige
samenvatting

Deze dissertatie omvat verschillende nieuwe resultaten gesitueerd in
de theorie van ultradifferentieerbare functies and ultradistributies.
Meer bepaald behandelen we hun topologische invarianten en hun
asymptotisch gedrag.

Het hoofddoel van Deel I is het karakteriseren van topologische eigen-
schappen van ultradifferentieerbare functieruimten ten opzichte van
hun bepalende gewichtsrijen en gewichtsfuncties. Specifiek bekijken
we de topologische invariant van de Gelfand-Shilov ruimtes of ruimtes
die deze bevatten als een dichte deelruimte. Dit resulteert in meerdere
stellingen die bepaalde lokaal convexe eigenschappen, zoals nucle-
ariteit of ultrabornologiciteit, van de ruimtes in kwestie compleet
bepalen.
In Hoodstuk 3 introduceren we de Gelfand-Shilov ruimtes aan de
hand van gewichtsrij- en gewichtsfunctiesystemen. Dit doen we via
een parameter q P r1,8s, waarbij de ultradifferentieerbaarheid geme-
ten wordt door middel van de Lq-norm. In het voornaamste resul-
taat van dit hoofdstuk bepalen we exact wanneer de definitie van
de Gelfand-Shilov ruimte onafhankelijk is van de gebruikte q, wat
later equivalent blijkt te zijn met de nucleariteit van deze ruimte.
We sluiten het hoofdstuk af met een tijd-frequentieanalyse van de
Gelfand-Shilov ruimtes, waar we de continuiteit van de short-time
Fourier transform (STFT) en Gabor frames bespreken.
Hoofdstuk 4 staat in het teken van nucleariteit. Meer bepaald karak-
teriseren we voor twee varianten van de Gelfand-Shilov ruimtes exact
wanneer deze nuclear zijn. De karakterisatie van nucleariteit bij de
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eerste variant, de Gelfand-Shilov ruimtes beschouwd in Hoofdstuk 3,
is het hoofdresultaat van dit hoofdstuk. In het bijzonder leiden deze
resultaten tot kernstellingen voor de Gelfand-Shilov ruimtes en hun
dualen. Het tweede type die we in beschouwing nemen zijn de zo-
gehete Beurling-Björck ruimtes. Kort maar krachtig bepalen we hun
nucleariteit, waarmee we de reeds gekende resultaten uit de literatuur
significant uitbreiden.

Daarna, in Hoofdstuk 5, bestuderen we de topologische eigenschap-
pen van varianten op de Gelfand-Shilov ruimtes, waar de topologische
structuur de vorm aanneemt van pPLBq-ruimtes. Onder meer de ver-
menigvuldigersruimte van de Gelfand-Shilov ruimte is een voorbeeld
van dit type ruimte. In dit hoofdstuk karakteriseren we exact wan-
neer deze ruimtes ultrabornologisch en barrelled zijn. Dit doen we
aan de hand van condities gelijkaardig als deze van Vogt en Wagner
voor de splitsing van korte exacte rijen van Fréchet ruimtes. Om
aan te tonen dat de condities voldoende zijn maken we gebruik van
de STFT. Onze methode voor de noodzaak van de condities aan te
tonen hangt verassend genoeg af van het bestaan van Gabor frames
waarvan de vensters een specifiek snel verval hebben in tijd en fre-
quentie.

In Hoofdstuk 6, het laatste hoofdstuk van Deel I, bekijken we de
ruimtes van begrensde ultradistributies en ultradistributies die verd-
wijnen op oneindig. De hoofdresultaten hier zijn de zogenaamde
eerste structuurstellingen die we behalen voor beide ruimtes. Deze re-
sultaten zullen de dienen als de bouwstenen voor de structuurstellin-
gen uit Deel II.

Deel II behandelt het asymptotisch gedrag van ultradistributies. Meer
bepaald bewijzen we structuurstellingen voor drie vormen van asymp-
totisch gedrag gerelateerd aan translatie en dilatatie. Tevens bewi-
jzen we alsook een algemene Tauberse stelling voor de Laplacetrans-
formatie.

Hoofdstuk 9 bekijkt het quasiasymptotisch gedrag van ultradistribu-
ties. In het bijzonder geven we structuurstellingen voor het quasi-
asymptotisch gedrag op de reële rechte, zowel op oneindig als in de
oorsprong. De kern van onze techniek is het herleiden van het quasi-
asymptotisch gedrag naar zogenaamd S-asymptotisch gedrag, wiens
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structuur we kunnen beschrijven aan de hand van de resultaten uit
Hoofdstuk 6. Eens we de structuur verkregen hebben, analyseren
we extensie resultaten. Zo tonen we aan dat elke ultradistributie
die quasasymptotisch gedrag heeft op oneindig in feite een element
is van een veralgemening van de duale Schwartz ruimte S 1 en haar
quasiasymptotisch gedrag daar ook geldt; een analoog maar lokaal
resultaat wordt verkregen voor quasiasymptotisch gedrag in de oor-
sprong.
De moment asymptotic expansion (MAE) is een tweede voorname
vorm van asymptotisch gedrag gerelateerd aan dilatatie, en wordt
in Hoofdstuk 10 bestudeerd in de context van ultradistributies. We
introduceren een ultradifferentieerbare versie van de ruimte van zoge-
noemde GLS symbolen en bewijzen dat elk element in diens duale de
MAE heeft. Bovendien tonen we aan dat in het ééndimensionaal geval
elke ultradistributie die de MAE heeft bevat zit in deze duale. Verder
introduceren we een uniforme variant van de MAE en demonstreren
we op de reële rechte een partiële karakterisering.
Tot slot breiden we in Hoofdstuk 11 de algemene Tauberse stelling
voor de dilatatiegroep uit van distributies naar ultradistributies.
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Euclidean spaces, Birkhäuser Verlag, Basel, 2010.

[97] E. A. Nigsch and N. Ortner, The space 9B1 of distributions
vanishing at infinity - duals of tensor products, Rev. R. Acad.
Cienc. Exactas F́ıs. Nat., Ser. A Mat. 112 (2017), 251–269.

[98] H. M. Obiedat, Z. Mustafa, F. Awawdeh, Short-time
Fourier transform over the Silva space, Inter. J. Pure Appl.
Math. 44 (2008), 755–764.

[99] N. Ortner, On convolvability conditions for distributions,
Monatsh. Math. 160 (2010), 313–335.

[100] N. Ortner, Sur la convolution des distributions, C. R. Acad.
Sci. Paris Sér. A-B 290 (1980), A533–A536.

[101] V. P. Palamodov, The projective limit functor in the category
of linear topological spaces, Math. USSR-Sb. 4 (1968), 529–559.

[102] A. Pelczynski, Projections in certain Banach spaces, Studia
Math. 19 (1960), 209–228.
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couple, 51
dual window, 48
frame, 47

synthesis operator, 48
Gelfand-Shilov space, 25, 37,

145
Gevrey sequence, 22

inductive limit, 13
isotropic, 22, 32

decomposable, 22, 32

Köthe
sequence space, 20
set, 20

moment asymptotic expansion
(MAE), 186

Montel, 13

Nachbin family, 64
maximal, 64

non-degenerate, 29
nuclear, 17

O-regularly varying, 183
O-slowly varying, 183

PLB-space, 16
PLS-space, 16
projective hull, 64
projective limit, 15

239
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quasiasymptotic behavior, 147

radially increasing, 72
reduced, 15
regular, 14
regularly varying, 146

S-asymptotic, 146
Schwartz, 13
sequentially retractive, 14
short-time Fourier transform

(STFT), 43
slowly varying, 147
Stirling numbers of the second

kind, 153
symmetric, 29
synthesis window, 44

tensor product topology
π, 19

ε, 18
tube domain, 142

ultradistribution, 144
tempered, 145

ultrapolynomial, 143
uniform moment asymptotic

expansion (UMAE),
192

weakly summable, 17
weight

function, 29, 72, 113
function grid, 91
function system, 29
sequence, 21, 142
sequence system, 31

Young conjugate, 36


