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Computer-aided synthesis has received much attention in recent years. It is a challenging

topic in itself, due to the high dimensionality of chemical and reaction space. It becomes

even more challenging when the aim is to suggest syntheses that can be performed in

continuous flow. Though continuous flow offers many potential benefits, not all reactions

are suited to be operated continuously. In this work, three machine learning models

have been developed to provide an assessment of whether a given reaction may benefit

from continuous operation, what the likelihood of success in continuous flow is for a

certain set of reaction components (i.e., reactants, reagents, solvents, catalysts, and

products) and, if the likelihood of success is low, which alternative reaction components

can be considered. The first model uses an abstract version of a reaction template,

obtained via gaussian mixture modeling, to quantify its relative increase in publishing

frequency in continuous flow, without relying on potentially ambiguously defined reaction

templates. The second model is an artificial neural network that categorizes feasible and

infeasible reaction components with a 75% success rate. A set of reaction components

is considered to be feasible if there is an explicit reference to it being used in continuous

synthesis in the database; all other reaction components are considered infeasible. While

several cases that are “infeasible” by this definition, are classified as feasible by the neural

network, further analysis shows that for many of these cases, it is at least plausible that

they are in fact feasible – they simply have not been tested to (dis)prove this. The final

model suggests alternative continuous flow components with a top-1 accuracy of 95%.

Combined, they offer a black-box evaluation of whether a reaction and a set of reaction

components can be considered promising for continuous syntheses.

Keywords: continuous synthesis, computer-aided synthesis planning, artificial neural networks, gaussian mixture

model, reaction conditions
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INTRODUCTION

The development of new active pharmaceutical ingredients
(APIs) is a time-consuming and expensive process (DiMasi et al.,
1991, 2003), with up to half of the total cost being spent in
the pre-clinical phase (Adams and Van Brantner, 2006). Two
important research topics in this phase are chemical discovery
– identification of promising APIs – and chemical development
– devising syntheses for the most promising ones. Methods to
accelerate these tasks can be of crucial importance in reducing
both the economic and time costs of drug development.

In the area of API identification, the advent of powerful
machine learning techniques has provided many methods for
molecule discovery (Bajorath, 2015; Schneider, 2017; Segler et al.,
2018a; Zhang et al., 2018) and molecule property assessment
(Burbidge et al., 2001; Ivanciuc, 2009; Ma et al., 2015; Maltarollo
et al., 2015; Mayr et al., 2016; Ryu et al., 2018).

The search for syntheses for target molecules was formalized

as retrosynthetic analysis in the 1960’s (Corey, 1967; Corey

and Wipke, 1969), and ever since, attempts have been made to
automate it through computer-aided synthesis planning (CASP).
While initially automated retrosynthetic tools and synthesis
planners faced the skepticism of the chemical community
(Gillies, 1996; Langley, 1998), new interest has been sparked
(Cook et al., 2012; Warr, 2014; Szymkuć et al., 2016), particularly
using machine learning algorithms (Bøgevig et al., 2015; Coley
et al., 2018a; Segler et al., 2018b). In the task of CASP, one can
identify several sub-challenges that have to be dealt with (Peplow,
2014; Szymkuć et al., 2016). A first is the retrosynthetic analysis of
a molecule – iteratively identifying possible precursors. Initially,
this was done via a rule-based approach, using a predefined set
of chemical reaction templates, which were iteratively applied to
the target molecules and its subsequent precursors (Law et al.,
2009; Christ et al., 2012; Bøgevig et al., 2015). More recently,
alternative approaches that do not rely on predefined chemical
rules have been developed. Some suggest transformations based
on the known “Network of Organic Chemistry” (Laidler and
King, 1983; Fuller et al., 2012; Gothard et al., 2012; Kowalik
et al., 2012; Cadeddu et al., 2014). Molecular similarity can
also be used to suggest chemical transformations (Coley et al.,
2017b). The currently most popular approach, however, is using
various types of artificial neural networks to predict which
transformations a given molecule can undergo (Segler et al.,
2018b; Karpov et al., 2019; Lin et al., 2020; Zheng et al., 2020).
Independent of the retrosynthetic approach, a crucial aspect of
the analysis is mitigating the combinatorial explosion of possible
reactions. Similarly to the retrosynthetic analysis step, distinction
can be made between rule-based or heuristic methods (Huang
et al., 2011) and more fuzzy methods, often based on artificial
neural networks (Segler and Waller, 2017b; Coley et al., 2018b).
Irrespective of the approach, these methods seek to eliminate
reactions that cannot be performed in practice or that lead away

Abbreviations: FCD, Flow Conditions Database; CASP, Computer-Assisted

Synthesis Planning; FRD, Flow Reactions Database; EF, Enrichment Factor; PCA,

Principal Component Analysis; API, Active Pharmaceutical Ingredient; GMM,

Gaussian Mixture Model; ORD, Overall Reactions Database; QSAR, Quantitative

Structure-Activity Relation; TPR, True Positive Rate; TNR, True Negative Rate;

AUC, Area Under Curve; PRC, Precision Recall Curve.

from the target molecule. The effect of the reaction conditions
can also be a factor in assessing whether or not to retain a certain
reaction. This requires methods that annotate a reaction with a
suitable set of reaction conditions, which has been the topic of
several studies in the past few years (Marcou et al., 2015; Segler
and Waller, 2017a; Gao et al., 2018; Nielsen et al., 2018; Li and
Eastgate, 2019).

Both CASP and the recommendation of reaction conditions
have progressed significantly – to the point of developing
a robotic synthesis platform (Coley et al., 2019b). However,
one characteristic that is attributed to such a “Robochemist”
(Peplow, 2014) – the ability to automatically synthesize
components in a continuous way – has not yet been explicitly
addressed. Continuous flow can offer several benefits compared
to traditional batch syntheses, including improved safety and
control, higher process efficiency and more efficient process
optimization (Plutschack et al., 2017). Additionally, continuous
flow reactors are an important technology in moving to greener,
more sustainable production through process intensification and,
e.g., decreased solvent usage (Wiles and Watts, 2012). On the
other hand, some batch syntheses can be equally sustainable as
their continuous flow alternative, therefore the costs of switching
existing batch processes to continuous ones cannot always be
justified (Roberge et al., 2008; Calabrese and Pissavini, 2011; Teoh
et al., 2016).

Running a process in a continuous fashion introduces many
additional considerations for process design (Hartman and
Jensen, 2009). Reactions in which some reagents are solids or
those in which the equilibrium is driven in a certain direction
via precipitation of the products are difficult to develop in flow
as the solids can clog the channels (e.g., cross-couplings in
organic solvents leading to precipitation of metal-halide salts).
Improper combinations of solvents and reactants, products, or
catalysts can also result in precipitation of certain compounds,
again increasing the risk of clogging. Reactions requiring long
residence times may require unpractically long reactors or
inefficiently low flow rates. At very low flow rates, mixing
becomes an important issue, implying that the use of a stirred
spheroidal reactor is much more economical. As a result, it is
very difficult to anticipate whether a synthesis can be performed
continuously in an economic way. A detailed in silico evaluation
would require the quantitative calculation of both solubilities
of many different chemicals in organic solvents and reaction
kinetics. Both of these are very difficult, especially at typical
reaction temperatures and each form an entire research field
on their own, for any single reaction. Nonetheless, a method
has been developed to allow ab-initio exploration of organic
chemistry (Wang et al., 2014). The alternative is performing
time-consuming laboratory scale experiments. Given the above
considerations and the vast number of reactions that must
be evaluated, it is clear that it is very challenging to – with
an acceptable precision – direct a CASP program toward
syntheses with a high likelihood of being an economic option in
continuous flow.

In this work we propose a data-driven method, based
on a statistical analysis of published reactions, that can
identify such continuous syntheses and can potentially guide
retrosynthetic software toward such syntheses. Generally, the
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FIGURE 1 | Schematic overview of the algorithm to assess the suitability of a

given reaction for continuous flow. A reaction case comprises reactants and

(major) products and the (chemical) reaction conditions. The colors

correspond to the different subtasks of the algorithm, which are discussed in

different sections. Rounded fields are inputs/outputs, while the rectangular

fields represent models.

aforementioned obstacles can be categorized into two main
categories. A first general obstacle is the reaction chemistry. The
second is related to the reaction conditions (reagents, solvents,
catalysts, temperature, etc.). A schematic illustration of the
combined algorithm is given in Figure 1. Reaction chemistry and
conditions are evaluated separately. For those reactions of which
the chemistry is evaluated positively, but the initially suggested
conditions have been evaluated negatively, an alternative set of
conditions is suggested. The final result for each reaction is a
fast, numerical assessment of the likelihood that the reaction
can be economically executed in a continuous flow reactor,
combined with an alternative set of conditions for those reactions
with a poor evaluation. This score can extend existing scoring
methods already used to bias or filter the retrosynthetic tree
search (Kowalik et al., 2012; Li and Eastgate, 2015; Coley et al.,
2017a, 2018b).

DATA PREPARATION

The data-driven method described in this work is based on
available literature data from the Reaxys database (Elsevier R&D
Solutions, 2016). In what follows, an important distinction is be
made between a reaction and an instance of a reaction. A reaction
refers to a certain combination of reactants and products, e.g.,
“C1=CC=CC1.COC(=O)C=C>>C1=CC(C2)C(CC(=O)OC)
CC12” in SMILES notation (Weininger, 1988), and hence
contains only information of the overall transformation that
occurs during the reaction. An instance is a specific instantiation
of that reaction—one specific published example—with
additional details including the reagents, solvents, catalysts,

temperature, etc. used. Therefore, an instance implicitly contains
information about other chemical and physical properties
of the reaction, such as the reaction rate. Instances in the
Reaxys database may also contain an additional hand-curated
annotation describing aspects of the implementation, including
“flow,” “flow reactor,” and “micro reactor” in addition to more
general statements like “inert atmosphere.”

Our data processing pipeline (Figure 2) focuses on only
reactions for which at least one instantiation is explicitly
labeled as compatible with flow. Any reaction that has at
least one instance that contains a keyword implying it has
been performed in continuous flow, is added to the Flow
Reactions Database (FRD). In the example in Figure 2, two
of the three instances associated with the reaction contain a
keyword indicating they have been used in continuous synthesis.
Therefore, the example reaction is included in the FRD (without
any reaction conditions). If none of the instances have such
a keyword, the reaction is excluded from the set. Though
the set of search keywords is made as inclusive as possible
(cfr. Supporting Information S-1.1), it is not guaranteed that
all continuous synthesis papers in Reaxys are extracted and
considered. 7,042 such reactions are identified in the Reaxys
database. This dataset is used to train the model that provides
an assessment whether continuous synthesis is beneficial to
the reaction in terms of the chemistry. For only the reactions
in the FRD, all associated instances are processed into the
Flow Conditions Database (FCD) by collecting their reported
reaction conditions and assigning a label “flow” or “batch,”
depending on whether the instance has an explicit label
indicating flow (or its conditions exactly match those of a flow-
labeled instance of the same reaction). For the example, this
would imply that three new instances are entered in the FCD: “4-
chloroaniline + phenylboronic acic→4-chloro-N-phenylaniline
with triethylamine in dichloromethane,” “4-chloroaniline +

phenylboronic acic→4-chloro-N-phenylaniline with pyridine
and oxygen in dichloromethane” and “4-chloroaniline +

phenylboronic acic→4-chloro-N-phenylaniline with potassium
carbonate in acetonitrile.” In total, 72,800 such instances are
collected in the FCD, implying an average of 10.34 published sets
of reaction conditions per reaction. For the example reaction,
two instances carry the “flow” label. Overall, 11,275 of the 72,800
instances are assigned the “flow” label, indicating that on average
each reaction in the FRD is associated with 1.6 flow-benefitting
instances. The FCD is used to train a model to evaluate whether
a reaction benefits from continuous synthesis in term of the
applied reaction conditions and to train another model to predict
flow-benefitting alternatives for batch conditions.

Before using the FRD or FCD for statistical learning, we
examine the nature of these datasets. As one would expect,
only a small fraction of known reaction types have been
studied under continuous flow conditions. Following previously-
reported heuristic extraction procedures (Law et al., 2009;
Bøgevig et al., 2015; Coley et al., 2019a), 2,586 reaction templates
are identified from the FRD, in contrast to 2.9 million reaction
templates from the entire Reaxys database, of which 366,000 are
represented by five or more different reaction examples. This
indicates that the scientific community has been focusing on
rather specific types of chemistry when continuous synthesis
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FIGURE 2 | Illustration of data extraction from the Reaxys reaction database. The InFlow filter selects reactions for which at least one publication mentions application

of continuous flow. The publications contained in the reaction entries of the Flow Reaction Database (FRD) are expanded into a second database – the Flow

Conditions Database (FCD). The bullets represent the data fields associated with each entry of the respective database. The green-colored bullets are used as input

for the chemistry and reaction components evaluation, while the blue-colored bullets are the outputs the reaction components evaluation models are trained on.

is concerned (e.g., related to hazardous reagents or “forbidden
chemistry”). Figure 3 provides further support and shows that
certain templates aremuchmore popular in continuous synthesis
when compared to their overall popularity in literature and
vice versa. Of the 10 overall most popular templates, three
are not found in the FRD at all, while only two are reported
in the FRD with a significant frequency. In contrast to the
other eight templates on the “most-popular” list, these two
reactions commonly involve forcing conditions to achieve redox
chemistry, such as hydrogen and harsh oxidizing agents. A
second observation on the template popularity is made from
Figure 4A, where the enrichment factor (EF) is defined as the
ratio of the relative frequency of a template in the flow reaction
database and the relative frequency of the same template in
the overall database. Figure 4A shows that the majority of the
templates enjoys a significantly higher popularity within the flow
database than overall, with a median enrichment factor of 125.
Hazardous reactions such as the ones mentioned above, but also
azidations and nitrations, are examples that tend to have high
enrichment factors. In those cases, increased process safety is one
of the main benefits of continuous synthesis (Movsisyan et al.,
2016).

These concepts of popularity and enrichment can be extended
to the reaction conditions as well. Figure 4B indicates that there
is no general enrichment for the solvents. Figure 5 shows that the
overall most popular solvents remain quite popular in continuous
synthesis. There are, however, certain solvents that show a high
preference when used in continuous synthesis. One example is
cyclohexane, which is used as solvent in 2.7% of the reported
continuous syntheses, ranking it as 10th most popular solvent.
In the overall Reaxys database however, cyclohexane is used

in only 0.3% of the syntheses, ranking it 28th. Other solvents
with a high enrichment are N,N-dimethyl-acetamide, 2-methyl
tetrahydrofuran, propanol, and nitrogen. More interesting is the
case of the reagents. Reaxys distinguishes between a “catalyst”
and a “reagent” in their tabulation, but in this work, no
distinction is made between catalysts and reagents: the two fields
are grouped into one that is henceforth referred to as “reagents.”
Figure 4C indicates that there are many reagents with an
increased popularity in continuous syntheses. The relatively large
number of reagents in the bottom left quarter of the plot is due
to a large number of unique reagents being reported in Reaxys
only once or twice. Many of these are very specific mixtures
of metal(oxide)s – Cr1.3Fe0.7O3 and Cr1.1−Fe0.9−O3 would be
classified as two different reagents – explaining why they are
so rarely reported. In contrast, some very specific catalysts are
very popular due to their commercial availability. Hydrogen
and oxygen are ranked the 1st and 2nd reagents in continuous
synthesis but only 4 and 78th overall. These two gasses are highly
reactive and can pose important safety hazards, especially in
processes operated at high pressures and temperatures (Gutmann
et al., 2015). By operating such processes in continuous flow
(micro) reactors, gas volumes can be reduced and equipment
can be made safer for high-pressure operation (Gutmann et al.,
2015; Kockmann et al., 2017). Organo-lithium reagents such as
sec-butyl lithium and phenyl lithium are also found to have high
EFs. Tert-butyl nitrite is almost 20 times as popular in continuous
synthesis as overall. These reagents are again highly reactive and
can cause safety hazards such as hotspots and runaway reactions
in batch conditions. Due to the ability to achieve excellent heat
transfer using continuous flow reactors with relatively small
channel diameters, the exothermicity of reactions involving these
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FIGURE 3 | Relative reporting frequency of the 10 overall most popular chemical templates and their respective relative frequencies in the flow reaction database.

Numbers indicate popularity ranking within the flow reaction database. It is observed that protecting-group-reactions are well-represented overall, whereas they

conclusively lack representation in the flow template set. Redox chemistry (reductions, oxidations) on the other hand, is well-represented in the flow template set.

reagents can be more easily controlled, again resulting in safer
operation (Gutmann et al., 2015; Kockmann et al., 2017). A
final stand-out reagent is rose bengal, which is 43 times more
frequently reported in continuous synthesis than overall. Rose
Bengal is a known good photocatalyst (Zhang et al., 2009, 2010).
Other reagents that have been used as photocatalyst, such as
titanium oxide (EF: 35) (Kitano et al., 2007) and zinc oxide
(EF: 16) (Lee et al., 2016), also have high EFs. Photochemical
reactions are a group of reactions that can greatly benefit from
continuous operation as the higher surface-to-volume ratio and
the small channel diameters of continuous flow reactors allow
more light to penetrate into the reaction mixture (Gilmore
and Seeberger, 2014). The high enrichment factors for typical
photocatalysts indicates that photochemical syntheses are indeed
disproportionately performed in continuous flow vs. batch.

The above analysis of the publication frequency of chemical
reaction templates, solvents and reagents in continuous organic
synthesis has shown that there are strong preferences toward
specific types of chemistry and chemicals for continuous
operation. In other words, both the FRD and FCD datasets are
strongly biased. Several factors contribute to this bias. First of
all, certain groups have built up a historical experience with
certain reaction types, and stick to those when performing
continuous syntheses, which can bias the performance of
statistical models toward being more accurate for these reaction
types than for others. Secondly, reactions that are easily carried
out continuously are often preferred. Many issues encountered
in continuous synthesis, such as the use of solids or multiphase
flow can technically be resolved, though not always easily.
Thirdly, given the somewhat larger scale of continuous flow
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FIGURE 4 | Popularity enrichment of (A) the flow templates and (B) the reported solvents used in flow. This only includes the cases for which at least one example

exists in flow, so cases with and EF of 0 are not included in the figure. Enrichment factor = reported freqency FRD
reported frequency Reaxys

Green: positive enrichment – Yellow: no or little

enrichment – Red: negative enrichment. For the reagents (C), the relative frequencies overall and in flow are plotted, along with lines of constant enrichment factors.

Both the distributions of (A) reaction templates and (C) reagents/catalysts used in continuous flow show that many are over-represented relative to the broader

reaction literature; (B) solvents used in continuous flow, in contrast, are not substantially different from those used overall.

units, cheaper chemicals are often preferred. These last two
forms of bias are exactly what may be considered as beneficial,
and are hence positive for the model performance. Analysis of
the individual reagent enhancement factors has highlighted four
such classes of reactions that benefit from continuous operation:
(a) reactions involving gaseous reagents, (b) reactions that
are highly exothermic and/or involve highly reactive reagents,
(c) photochemical reactions, and (d) reactions that involve
hazardous reagents. Reagents that have been reportedly used
in these systems are found to have (very) high enrichment
factors and their benefits from continuous flow are supported
by literature. Given that for each of the highlighted classes,
the benefits of continuous synthesis have been demonstrated (a

variant of), the enrichment factor for reaction templates will be
used in the next paragraph to assess which types of chemistry are
likely to benefit from being carried out in continuous flow.

CHEMISTRY EVALUATION

Approach
As suggested in the introduction, the goal of the computermodels
developed here is not to definitively determine whether or not a
given reaction is chemically suitable for continuous synthesis, but
rather to recommend whether it might be beneficial to perform
the given reaction in continuous flow, based on historical trends.
Section Data Preparation indicates that certain types of chemistry

Frontiers in Chemical Engineering | www.frontiersin.org 6 August 2020 | Volume 2 | Article 5

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles


Plehiers et al. Computer-Aided Synthesis in Flow

FIGURE 5 | Relative reporting frequency of the 10 overall most used solvents and their relative usage frequency in continuous synthesis.

are favored when the reactions are carried out in continuous flow
(cfr. Figure 3).

Based on the analysis of the relative template popularity
in literature, it can be inferred that templates with a high
enrichment factor in the FRD are reactions that may benefit from
continuous operation, while those with a low enrichment factor
only benefit limitedly. The chemistry evaluation exploits this
idea via an unsupervised clustering approach, based on Morgan
fingerprints (Morgan, 1965). Each cluster is then assigned a
score, based on the respective fractions of data in the FRD and
data in the overall database that are assigned to that cluster. A
Gaussian mixture model (GMM) or Gaussian clustering model
based on Morgan fingerprints is preferred over directly using
the templates and their corresponding enrichment factors, as
reaction templates are potentially ambiguous (i.e., their definition
is sensitive to the algorithmically-defined level of specificity
or generality). The resulting clusters or categories can be
seen as a generalized form of reaction templates. Additionally,
a fingerprint can be constructed for any reaction, while –
depending on the template database used – it is possible that no
template is found for a new reaction that was not previously in
the database.

The Morgan fingerprint of a reaction is first constructed by
subtracting the reactant fingerprint from the product fingerprint
(Schneider et al., 2015). This results in a fingerprint that contains
information on what changes during the reaction and can
therefore be interpreted as a fingerprint of the reaction template,
without having to explicitly define the template. To improve
the performance of the clustering approach, the fingerprints
are first scaled to a standard deviation of 1 and centered to
a zero mean. Next, the fingerprints are projected on the first
150 principal components (covering 70% of the total variance

in the data). These 150-dimensional projections are used to
construct a Gaussian clustering model with 500 categories – or
as mentioned earlier, in this context, abstract reaction templates.
The choice of the number of components is elucidated in the
Supporting Information. The clustering model is built on a
dataset that consists of a selection of 119,354 reactions drawn
from all templates that have more than 50 reaction examples
(a total of 29,948 templates). For each template, 4 examples are
randomly chosen. This dataset is further referred to as ORDsel.
Only a limited selection of reactions is made, as using all available
reactions in the ORD would result in an excessive computational
cost for training the clustering model. During the optimization
of the clustering model, no information about whether or not
a reaction has been successfully performed in continuous flow
is used. This information is only introduced during the final
analysis step, in which the scores for each category of the
GMM are determined. To do so, the selected reactions from
the overall reaction database (ORDsel) and the FRD reactions
are independently categorized and the relative number of data
points in each category is determined. fi,FRD and fi,ORDsel

are the
fractions of the FRD and ORDsel that are assigned to category
i. The score for each category can then be calculated according
to equation 1. A category score of zero indicates that there is
no published evidence that reactions in that category benefit
from continuous synthesis. The closer the score gets to one, the
more evidence is available that such reactions can benefit from
flow. The quantitative assessment of whether or not continuous
synthesis is beneficial for a given reaction is then calculated
via equation 2, where pi (reaction) is the probability that the
reaction belongs to category i, as determined by the Gaussian
clustering model. The meaning of the scores is similar to that of
the category scores – 0 indicates that the reaction has no benefit
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from flow based on published data, whereas values close to 1
indicate the opposite.

scorei =
fi,FRD

fi,FRD + fi,ORDsel

(1)

score(reaction) =

∑
#clusters
i=0 pi(reaction) · scorei (2)

Results
The gaussian clustering model distributes the template-based

reactions fairly evenly across the 500 categories. As expected,

the different categories are observed to contain reactions that
are very similar in nature, but do not necessarily follow a single

reaction template. This is illustrated by Figure 6, which shows

FIGURE 6 | Several examples of reactions categorized into category number 177. Only the reactions from the overall reactions database (ORD) were used to train the

GMM. The reactions from the flow reactions database (FRD) are only assigned to the categories a posteriori.

FIGURE 7 | Visualization of a fraction of the reaction space via t-SNE, where reactions are colored by the categories assigned via the Gaussian mixture model (GMM)

for a subset of 15 categories (compared to the full model’s 500). A representative example for each GMM category is shown, along with the score of each category. All

categories (except the red one) with a score (cfr. equation 2) that is >0.5 are grouped closely together in the same highlighted green region of the reaction space.
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several specific reactions that were assigned to the same category.
In all these reactions, a functional group is converted to an
azide, though the exact mechanism is clearly different. In fact,
some reactions that follow the same template, but that have
highly dissimilar reactants and products, are assigned to different
categories. Figure 7 visualizes the reaction space and the result of
the GMM for a limited selection of reactions, drawn from 15 of
the categories identified in the GMM. The high-dimensional (150
PCA components) reaction space is visualized in 2D via t-SNE
(van der Maaten and Hinton, 2008) and each reaction is colored
by the category it has been assigned to in the GMM. A number of
the categories appear to form a larger cluster in the central region
of the reaction space.While there are distinct differences between
these clusters in types of reactions, reactants, and products, the
overall reactions are observed to be quite similar and generally
involve carboxylic substitutions or additions. Around this central
agglomeration, there are several, more isolated reaction clusters.
From the examples it is immediately clear that these categories
describe very different types of chemistry compared to those in
the central categories. Additionally, the reaction clusters with
high scores are grouped closely together in a specific area of the
reaction space.

As mentioned in the previous section, once the gaussian
mixture model has been constructed based on the reactions from
the ORDsel, the reactions from the FRD are categorized as well.
The reactions from the FRD are distributed across only 241 of
the 500 categories, which is in agreement with the presumption
of the used approach – continuous synthesis focusses on certain
chemistries. Five reactions from the FRD are assigned to the
example category 177. This corresponds to 0.07% of the FRD.
Based on equation 1 and given that 114 reactions or 0.096% of the
ORDsel are assigned to category 177, it receives a score of 0.426.
Any score>0 indicates that there is some benefit toward running
reactions in that category in continuous flow, so the score of 0.426
indicates that the reactions in this category could be considered
for flow, but that there are potentially stronger candidates
as well. In section Data Preparation, azidation reactions were
mentioned as reaction types with a high enrichment factor for
which continuous synthesis provided improved process safety.
Figure 8 illustrates the distribution of the scores for the other
categories. Very few categories group reactions with chemistry
that is strongly over-represented in the FRD and therefore only
a few types of chemistry are predicted to strongly benefit from
continuous synthesis. In Figure 7, only a limited number of
categories are seen to have a zero score – from Figure 8, however,
it is clear that they are underrepresented in our selection with
respect to their overall prevalence.

As mentioned before, the presented clustering and scoring
method is essentially just another way of approaching the
template enrichment discussed under Data Preparation.
The major difference is that it does not depend on pre-
defined reaction templates, but on a statistical analysis of the
substructural changes that take place during a reaction as
represented by a reaction fingerprint. Therefore, it can be used
as a user-independent, fast screening tool to quantitatively assess
whether the chemistry of a given reaction is similar to that of
reactions which have been reported in continuous flow relatively

FIGURE 8 | Score distribution for the categories found by the gaussian

mixture model – more than 50% of the categories have no reactions from the

FRD assigned to them, resulting in a score of 0, indicating no published

evidence of benefit from continuous synthesis.

more frequently than overall. This score can be used to assess
whether a given reaction is likely to chemically benefit from
continuous synthesis.

REACTION COMPONENTS EVALUATION

Approach
To assess how beneficial continuous synthesis can be for
a reaction, given a certain set of reaction components, an
artificial neural network with an architecture as shown in
Figure 9A, is trained on the FCD. Ideally, the model would
evaluate the reaction conditions (reagents, solvents, residence
times, temperature, etc.) instead of just the reaction components
(reagents and solvents). However, the number of reactions in
the Reaxys database for which the full set of reaction conditions
is available, is extremely limited, and would not allow for the
construction of a meaningful statistical model. A set of reaction
components is assumed to benefit from continuous synthesis
if the corresponding entry in the FCD has the “InFlow” label
(as shown in Figure 2). These cases are further referred to as
benefitting cases. If it carries the “NoFlow” label, no benefits
are assumed. They are further described as non-benefitting cases.
All chemicals in the input to the neural network – reactants,
products, solvents and reagents – are represented by their
256-bit-long Morgan fingerprints (Morgan, 1965; Rogers and
Hahn, 2010). Further details on the model architecture and
input representation can be found in section 2.4.2.1 of the
Supporting Information. The model is trained using 10-fold
cross-validation and a 90-10 random training-test split of the
reactions. During training, the model performance is monitored
via the (average) validation area under the precision-recall curve
(PRC) over the 10 cross-validation models. Early stopping is
applied when this area attains a minimum, in order to prevent

Frontiers in Chemical Engineering | www.frontiersin.org 9 August 2020 | Volume 2 | Article 5

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles


Plehiers et al. Computer-Aided Synthesis in Flow

FIGURE 9 | (A) Classification network architecture. The input fingerprints are obtained via the Morgan algorithm. (B) Classification network performance on training,

validation and test sets. The insert displays the true positive rate (TPR) and true negative rate (TNR) at a decision threshold of 0.5. The prediction error is the difference

between the predicted score and the actual score (a benefitting case should be scored as 1, a non-benefitting one as 0). The darker shading indicates which fraction

of the total cases in that category was labeled as benefitting, while the lighter shading indicates the fraction that was labeled as non-benefitting.

FIGURE 10 | Visualization of the performance of the reaction components evaluation model. (A) Receiver operating characteristic and (B) Precision-recall curve. The

green area represents the envelope of the cross-validation performance. The “balanced randomized guess” in both (A,B) predicts 6.5 times more values in (0,0.5)

than in (0.5,1). The squares indicate the position on the curves at a decision threshold of 0.5.

overtraining of the model. In order to account for the bias
toward non-benefitting cases in the dataset – there are 6.457 non-
benefitting cases for every benefitting case – all benefitting cases
are given a weight of 6.457 during training.

Results
The performance of the trained network is presented in
Figure 9B. Applying the classifier, using a decision threshold
of 0.5, results in a correct prediction on 75% of the test set.
Both the true positive rate (TPR) and true negative rate (TNR)
are high for the test set, and comparable to the values for
the validation dataset. The high TPR indicates that the model
successfully identifies flow-benefitting cases, whereas the high

TNR shows that the model is specific and can identify non-flow-
benefitting cases. In Figure 9B, the prediction error interval (0.0,
0.1) collects all predictions that are >0.9 for the benefitting cases
and <0.1 for the non-benefitting cases. The overall validation
and testing performance of the model is quite similar, though
there is a noticeable drop in performance compared to the
training performance. Nonetheless, Figure 10 shows that the
model performs significantly better than a “balanced” random
guess, where for every guess >0.5, 6.457 guesses are made
below 0.5 to account for the sample balance in the dataset. In
Figure 10B, the precision and corresponding recall at a threshold
of 0.5 are singled out. For the test set, the precision is 0.52,
whereas the recall is 0.8. This implies that a large number of
non-benefitting cases is predicted to be benefitting. It should be
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noted that the value of the threshold is subjective and tunable.
For example, with a decision threshold of 0.377, the precision on
the test set is still 0.5, though the recall has increased to 0.93.

One reason for the overall low precision is the imperfect
assumption that reaction components not explicitly labeled as
flow in Reaxys do not benefit from continuous flow synthesis.
This is a very strict criterion, and it is quite conceivable that
many of those cases could benefit from or be compatible with
continuous flow. Next, an example is presented of a case where
the model predicts a case, labeled as non-benefitting, to be
benefitting. Though arguably, the prediction is understandable.
After that, a number of additional cases – both benefitting and
non-benefitting – are presented where the model makes the
correct prediction.

The first example is the reaction of 4-(tetrahydropyran-
2-yloxy)butan-1-ol to 2-(4-fluoro-butoxy)-tetrahydro-2H-pyran
(Figure 11A). Of its three reported cases, two are labeled
as flow (Baumann et al., 2008), while one is not (Akihiro
et al., 2006). The flow cases were both performed using
the same components, namely diethylamino-sulfur trifluoride
as reagent and dichloromethane as solvent. The third case
was performed with fluorosulfonyl fluoride, triethylamine
tris(hydrogen fluoride) and triethylamine as reagents and
acetonitrile as solvent. The two flow-benefitting cases are
attributed a score of 0.996, while the case labeled as non-
benefitting is attributed a score of 0.872. All three cases are
therefore assessed as likely to benefit from continuous synthesis.
In this case, solely based on the similarity and properties of
the used solvents and reagents, given the reported success
of the first two cases, it seems plausible that the second
reaction can benefit as well. In all cases, the reagents contain
ethylated amines and fluorinated sulfur compounds. Especially
the latter present significant safety hazards, and as stated
previously, reactions involving hazardous reagents or solvents
are typical candidates to benefit from continuous syntheses. The
literature provides some additional evidence to this plausibility.
Fluorosulfonyl fluoride in combination with triethyl amine
has been used as reagent in the Beckman rearrangement of
ketoximines (Zhang et al., 2019). While the reported case does
not state that it was carried out in flow, there are several
examples of acid-catalyzed Beckman rearrangements that have
been performed continuously (Curtin et al., 1993; Ko et al.,
2000; Botella et al., 2007). Under the made assumption, the
fact that other systems using similar reagents can benefit
from continuous synthesis, is an indication that this reaction
can also benefit. Further supportive evidence is found in the
successful use in continuous flow of arylsulfonyl chlorides with
acetonitrile as solvent (Malet-Sanz et al., 2010). Altogether,
this seemingly erroneous assessment is understandable at
least, and at best, the model identified a case that has been
labeled as non-benefitting, but could, in reality, benefit from a
continuous synthesis.

A second example is the synthesis of the fluorinated aziridine
shown in Figure 11B (Baumann and Baxendale, 2016). This case
is correctly predicted by the model, and provides an additional
explanation for the erroneous prediction for the non-benefitting-
labeled case in Figure 11A. Though the reactions themselves

are quite different, the components used are very similar. Both
cases use acetonitrile as solvent and triethylamine as one of
the reagents. While Figure 11B uses methyl sulfonyl chloride
where Figure 11A uses fluoro sulfonyl fluoride, both reagents are
halogenated sulfonyl compounds.

Figure 11C (Josyula and Mitesh, 2014) and Figure 11D (Tsai
et al., 2013; Han et al., 2015; Mallia et al., 2016) shows four more
cases the model conclusively labeled correctly. The performance
for the cases in Figure 11E varies again, with the first two being
labeled correctly (Safari and Javadian, 2013; Monteiro et al.,
2016). The third case is rather indecisive (Safari et al., 2013),
whereas the last case is predicted incorrectly (Prevet et al., 2016).
For these last two cases, the combination of polar and ionic
reactants with polar solvents that are similar to those used in
the benefitting case, is an explanation for the poor performance.
Additionally, based on the solvents used in the benefitting case,
there is no apparent reason why these two sets of components
would benefit less from continuous synthesis.

As mentioned earlier, residence times and temperatures were
not considered in the analysis as too few database entries are
recorded with both. However, when investigating those cases for
which reaction times are available, an interesting observation
is made. For the reaction components that are labeled as
benefitting, the incorrect predictions tend only to be made for
cases that report short reaction times. Reactions that require long
residence times are typically unpractical in continuous operation,
which immediately limits the potential benefit those reactions can
have from flow syntheses. The fact that the model predictions are
in agreement with this observation is further evidence to the good
performance of the model. This is illustrated in Figure 12, which
shows a clearly decreasing trend of themaximal model prediction
with increasing reported reaction time.

Overall, it can be concluded that given its assumptions, the
model makes a reasonable assessment of which type of reaction
components tend to benefit from continuous flow and which
ones do not. For cases that appear to be miscategorized, the
incorrect prediction can often be justified, based on similar
cases present in the data and overall trends. Additionally, the
assumption on which the model is built is quite weak and
could label certain reaction components as non-benefitting from
continuous synthesis, while they could benefit in reality. It is
also important to keep in mind that this model has a descriptive
nature, and does not explicitly answer the question of why
a certain case does not benefit from continuous synthesis,
which is important during the actual development of a new
synthesis. However, currently, the main role of CASP is not
to independently develop new syntheses, rather to support
scientists by narrowing down the search space to a number
of possibly routes, that are considered to be promising. The
presented model can be used in a similar way, by flagging
reactions that, based on historical literature data, are considered
to benefit from continuously operated syntheses. After narrowing
down the search synthesis search space to a number of
plausible candidates, more detailed evaluations using detailed
kinetics (Yuan et al., 2018; Koch et al., 2019; Konze et al.,
2019; Unsleber and Reiher, 2020) could further evaluate the
different possibilities to maximize the likelihood of success
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FIGURE 11 | Five reaction examples (A-E) for the reaction components scoring model. The score column is shaded by the case label: green is labeled as benefitting,

orange is labeled as non-benefitting.

of the suggested syntheses. A possible improvement of the
model to allow for a more explorative interpretation of its
predictions, would be to include methods for the prediction
of individual prediction confidence intervals. High epistemic
uncertainties could be used as indicators for data scarcity on
the queried reaction (Scalia et al., 2020), pointing it out as
a potentially interesting case for an experimental study. The
current dataset can then be augmented with the newly acquired
information, improving the model performance. Similar active
learning approaches have proven to be successful in other

fields (Naik et al., 2013; Melnikov et al., 2018; Konze et al.,
2019).

PROPOSITION OF ALTERNATIVE
REACTION COMPONENTS

Approach
The method described in section Reaction Components
Evaluation predicts how likely it is that a reaction benefits from
continuous flow, given certain reaction components. For those
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cases that this is considered highly improbable, one might want
a CASP program to propose alternate components. A second
neural network is trained to predict those components that are
most likely to benefit from flow synthesis, for a given reaction.
The assignment of the reaction components is done by iterating
through the FRD, described previously. For each reaction, the
components of the highest-yielding “InFlow”-labeled instance
are treated as the optimal alternate components. The general
architecture of the network drawn in Figure 13, is chosen along
the same reasoning as the network described by Gao et al.
(2018) for the prediction of reaction conditions in general.
A one-hot-encoding method is used for the output, though

FIGURE 12 | Model prediction as function of the reported reaction time for

non-flow-benefitting labeled cases in the test set. Although the model is not

made aware of reaction times, it tends to assign reactions with high reported

reaction times a lower flow-benefitting score.

in contrast to Gao’s work, no minimal frequency is utilized.
Because only 82 different solvents are reported in the flow
conditions database and 980 reagents, it is not considered
necessary to further reduce the variation in chemicals. As already
mentioned previously, very few cases fully describe the reaction
conditions, often leaving out one or more of e.g., reaction time,
temperature and pressure. Including these parameters in the
network output would significantly reduce the already limited
amount of data the network could be trained on. Therefore,
the prediction is again limited to the chemical components, i.e.,
reagents and solvents, where reagents and catalysts are again
grouped into a single class. Furthermore, in order to limit the
complexity of the model, only two reagents and two solvents
are allowed. While the selectable components are limited to
those reported in the dataset, biased by the preferences of the
scientists performing the experiments, they do represent the
components that generally allow for the most straightforward
use in continuous flow.

Sigmoid activation functions are used in the hidden layers,
while softmax activation is used in the output layers. A large
number of reactions in the FRD are reported with no reagents
or solvents at all, or at most one. As a result, the input strongly
biases the model toward simply predicting “no reagents” and “no
solvents” for any case, especially for the second reagent/solvent.
To counteract this, three weights are used for the input. It is
observed that 51.7% of the cases only report a single solvent
or reagent. Therefore, such cases are assigned a weight factor
of 0.517. Similarly, 22.6% of the cases report no solvents or
reagents at all. Analogously, they are weighted by a factor 0.226.
All other cases are attributed a weight of 1. The same 10-fold
cross-validation approach as used for the components evaluation
network is applied, with a 90-10 random training-test ratio. Early
stopping is applied using the product of the accuracies on the four
outputs as an overall accuracy metric.

FIGURE 13 | Network architecture for suggesting alternative reaction components.
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FIGURE 14 | Network performance for suggesting alternative reaction components. (A) “Top – x” performance – minimal rank required to encounter the true

flow-compatible alternative. R,S refer to reagent and solvent. (B) Number of components that are predicted at rank 1 on a per-case basis.

Results
Figure 14 summarizes the performance of the network
that suggests an alternative set of flow-benefitting reaction
components. Figure 14A shows that in over 96% of test cases,
the true alternative components are (individually) attributed
the highest probability. In general, prediction of the solvents
is found to be more accurate than prediction of the reagents,
due to the fact that there are fewer options for the model to
choose from. In almost 95% of the test reactions all four of
the alternative components are predicted as the most likely
combined alternative. The model performs only slightly better
on the combined training and validation sets – in 97%, all four
components are predicted as top-1.

In what follows, a number of specific cases of both successful
and unsuccessful predictions will be discussed to illustrate the
performance of the neural network.

The first one is the reaction of amplex red (10-acetyl-
3,7-dihydroxyphenoxazine) to resorufin using horseradish
peroxidase, hydrogen peroxide and a tris-HCl buffer as reagents
and dimethyl sulfoxide as solvent [Figure 15A (Hellman
et al., 2007)]. Given that this reaction has been performed in
continuous flow, the model should preserve these components.
As the model is limited to predicting two reagents and solvents,
the last reported reagent (in this case hydrogen peroxide) is
left out. The model predicts the following reagents: horseradish
peroxidase (HRP)-APSN-APTES and hydrogen peroxide. As
solvents it predicts an aqueous phosphate buffer and dimethyl
sulfoxide (in that order). It is quite clear that the predicted
reaction components are very similar to the ones that should
have been predicted. The enzyme is a variation on the correct
enzyme, reported by Seia et al. (2014). The acidic buffer is
predicted as solvent, while it was listed as reagent in the reference
case. The dimethyl sulfoxide is correctly predicted, but not as
first solvent, resulting in it being classified as incorrect.

A second example is the oxidation of 4-methyl-1-indanol
to 4-methyl-1-indanone [Figure 15B (Chorghade et al., 2013)].

This reaction has been performed in continuous flow using
acetone as an (rather unconventional) oxidant and toluene as
solvent. The model predicts four different components: sulfuric
acid and hydrogen peroxide as reagents and 1,4-dioxane and
water as solvents. As oxidizing components are required for
the reaction, the proposed components chemically make sense
– the combination of sulfuric acid and hydrogen peroxide
is a well-known strong oxidizing agent, much stronger than
acetone, reported by the “InFlow”-labeled case. As mentioned
previously, slow reaction rates can negatively impact the possible
benefit of continuous synthesis. Using a stronger oxidizing agent
than reported for the “InFlow”-labeled case will hence only
increase the potential of that reaction. Both 1-indanol1 and
1-indanone2 are soluble in water, so it is expected that the
methylated derivatives will be as well, indicating that practical
challenges such as component solubility are not expected to
negatively impact the potential benefit of flow. The model
makes its predictions with relatively high scores: 0.66, 0.8,
0.96, and 0.99, respectively. For all four chemicals however,
the second ranked suggestion is the one that is listed as the
correct suggestion.

The examples in Figure 15C (Brooke et al., 1961; McPake
et al., 2012), Figure 15D (Chadwick et al., 2010; Pieri et al.,
2014; Jong and Bradley, 2015) and Figure 15E (Jirkovsky,
1974; Pathak et al., 2014; OBrien and Cooper, 2016) show
how the model correctly preserves the components for the
flow-benefitting cases, while it adjusts the components for the
non-benefitting cases.

Based on the overall performance and the cases shown above,
it can be concluded that the alternative reaction components
suggestions are close to the ones that were reported for the

1Chemical Book 1-Indanol. Available online at: https://www.chemicalbook.com/

ChemicalProductProperty_EN_CB2685759.htm (accessed October 16, 2019).
2Chemical Book 1-Indanone. Available online at: https://www.chemicalbook.com/

ProductChemicalPropertiesCB0384120_EN.htm (accessed October 16, 2019).
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FIGURE 15 | Five example reactions (A–E) from the test set for the active suggestion of flow-benefitting reaction components. The components listed in the Reaction

column are those that were selected as the optimal flow components. The Input and Output columns list the chemicals that were, respectively, used as input to the

model and obtained as suggestion from the model.

associated continuously operated reaction. Even for the cases
with the poorest performance, the suggestions are still chemically
acceptable, but experimental testing is required to ascertain
this. Similarly to the previous models, this model does not
explain why certain components are suggested. However, given
that the output of the model is a ranked list of possible
reaction components, it can still be of value for narrowing
down the search space of solvents and reagents to a limited

number, which have proven their usefulness in past continuous
flow studies.

CONCLUSIONS

A data-driven, deep learning method for guiding retrosynthetic
software toward syntheses that benefit from being executed in
a continuous flow reactor has been presented. All data has
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been sourced from Reaxys. This extracted flow chemistry data
is naturally biased toward well-known reactions that can be
performed relatively easily and cheaply in continuous flow. This
bias is, however, aligned with what the method is learning
to detect.

In the context of continuous organic synthesis, three questions
have been identified. A first is whether or not a given reaction
might chemically benefit from being performed in continuous
synthesis. A second question is whether a given set of reaction
components would allow the reaction to benefit from continuous
operation. A final question is, if a proposed set of reaction
components appears to offer no or little benefit, what are the
reaction components that are likely to provide the greatest
benefit. For each of these three questions, a descriptive, machine
learning-based model has been developed. This implies that
neither of the models give insights into why a reaction might
or might not benefit from continuous synthesis. However, by
providing a fast, quantitative assessment of its potential in
continuous synthesis, large sets of reactions can be filtered down
to a more manageable set. This set can subsequently be analyzed
in more detail, e.g., using detailed computational methods to
determine reaction rates and solubilities, in order to arrive to a
definitive assessment.

To assess the potential benefit of continuous flow for a given
reaction, a Gaussianmixture model has been developed, based on
the difference between the Morgan fingerprints of the products
and reactants. This unsupervised learning method identifies
clusters of reaction types. Only a limited number of clusters
contain reactions that have been performed in continuous flow.
This is in line with the observation that only a very limited
number of reaction templates have been reported in continuous
synthesis. The ratio between the relative amount of flow and non-
flow cases categorized into each cluster is used as measure for
how likely it is that a reaction in that cluster will benefit from
continuous synthesis.

For the two other questions, artificial neural network models
have been developed. The first ANN classifies the combination
of reaction and reaction components as benefitting or non-
benefitting on a continuous scale. It successfully classifies 75%
of all data correctly. However, the precision of the model is
relatively low – only half of the cases predicted as benefitting
were also explicitly labeled as benefitting from flow. As the
method has been developed to direct computer-aided synthesis
planners toward continuous syntheses where desirable, the fact
that several assumedly non-benefitting reactions are still labeled
as benefitting is not considered as problematic. Additionally, all
reactions were labeled based on the assumption that if a reaction
is not explicitly annotated as “performed in continuous flow” in
Reaxys, it does not benefit from continuous synthesis. This is a
very strict criterion, which likely led to several reactions being
labeled incorrectly with respect to reality. In this regard, the low
precision is an indication that the model actually learns which
types of reactions and reaction components tend to benefit from
flow. The second ANN predicts a combination of two reagents
and two solvents from all reagents and solvents reported in
successful continuous syntheses for those cases which received a
low score by the first ANN. The second trained neural network

achieves a combined top-1 accuracy of 95% on the test data.
Even here, several of the incorrect predictions are chemically still
acceptable and or components were predicted in a different order
than listed in the dataset.

Combining the three models presented in this work will
provide a preliminary assessment on whether or not it is
useful to perform a reaction in continuous flow, and which
alternative components could be evaluated. Based on that
assessment, computer-aided synthesis planners can be directed
toward suggesting more efficient, continuous syntheses wherever
possible. In potential follow-up studies, the models could be
extended with methods to predict individual uncertainties in
order to suggest interesting reaction classes for which the current
data do not allow conclusive evaluations. Expanding the dataset
with new information on these reaction classes, will further
improve the model performance. We also expect that with
sufficient annotations, similar data-driven analyses might enable
the biasing of CASP programs toward environmentally-friendly
reactions or reactions that are conducive to scale-up.
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