

M FACULTY OF PHARMACEUTICAL SCIENCES

LABORATORY OF PHARMACEUTICAL PROCESS ANALYTICAL TECHNOLOGY

B. Vanbillemont¹, M. Ghijs², M.S. Escotet-Espinoza³, P. Cappyuns⁴, I. Van Assche⁴, F.J. Muzzio³, I. Nopens², T. De Beer¹

¹Laboratory of Pharmaceutical Process Analytical Technology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium ²BIOMATH, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium ³Chemical and Biochemical Engineering, School of Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway NJ 08854, USA ⁴The Janssen Pharmaceutical Companies of Johnson and Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium

FLOWSHEET MODELING OF THE COMPRESSION STEP OF

A CONTINUOUS WET GRANULATION PRODUCTION LINE

INTRODUCTION

Mathematical models of the unit operations match the QbD paradigm. Flowsheet modelling is a framework for gaining process and product knowledge by employing:

- Sensitivity analysis (risk assessment, CPP & CMA definition)
- State-of-Control determination (dynamic optimisation, minimize waste streams)
- Scenario analysis (interactions between unit operations and quality management)

<u>AIM</u>: A flowsheet model, of the **compression step** from a **wet granulated** product, consisting of **4 submodels**. Implementable in an overall powder-to tablet flowsheet.

1 Residence time distribution (RTD) model \rightarrow 2 Die filling model \rightarrow 3 Potency model \rightarrow 4 Tablet Hardness model

- Soft sensors
- Controller designs
- Product timings (traceability and rejection strategy)

RTD MODE

Powder dosing valve and feedframe

Methods:

- Step change of 5% NaSaccharin, determined with offline Raman spectroscopy of tablets.
- Design of experiments (DoE) with all critical process parameters (CPP) \rightarrow multiple linear regression (MLR) of the model parameters.
- Continuous stirred tank model with plug flow $(t_p + t_{cstr})$. **Results:**
- Spectroscopic PLS model with RSMEcv of 0,1726 %.
- Mean residence time between 50 and 110 s.
- t_p and t_{cstr} are dependent on the turret speed.

TABLET HARDNESS MODEL

Compression stage of a rotary press

Methods:

- Compactibility estimation by regression of 90 different conditions with a *Kuentz and Leuenberger* (*K&L*) model.
- Impact of granules with varying granule sizes (Span) and residual moisture (LoD) on tablet hardness.
- \rightarrow MLR model with LoD and Span for *K*&*L* parameters. **Results**:
- Max tensile strength ~ LoD and Span
- Critical density ~ LoD
- *K&L* MLR model has RMSEcv of 0.1447 MPa

DIE FILLING & POTENCY MODEL

Die filling stage of a rotary press

Methods:

- Tablet volume from tooling dimensions and fill depth.
- Mean tablet weight determined by regression of granules with varying bulk and tapped density.
- Solid tablet volume prediction using true density.
- Potency estimated with the API granule concentration. **Results:**
- 21.8th percentile between bulk and tapped indicative for granule density at filling position.
- First principle model with RMSE of 0.9930 %.
- Weight and potency dependent on granule properties.

INTEGRATED MODEL

Flowsheet model of the rotary tablet press

Methods:

- All models integrated in gSOLIDS (PSE)
- Dynamic modelling of transient phases

CONCLUSION & FUTURE APPLICATIONS

Conclusion

- Standalone flowsheet model of the compression step developed, integratable in a continuous powder-to-tablet line flowsheet (ConSigma-25, GEA pharma systems).
- Model capable of dynamically predicting tablet properties from varying CPP and critical material attributes (CMA). *Future applications*
- Gather process insights and develop applications using the flowsheet.
- Decision support tool for regulatory process filing.

Contact

brecht.vanbillemont@ugent.be www.ugent.be/fw/pharmaceuticalanalysis/en/research/pat

f Universiteit Gent

y @ugent

Ghent University lin

