LABORATORY OF PHARMACEUTICAL PROCESS ANALYTICAL TECHNOLOGY

B. Vanbillemont¹, N. Nicolaï², P.J. Van Bockstal¹, L. De Meyer¹, S.T.F.C Mortier², J. Corver³, C. Vervaet⁴, T. De Beer¹

¹Laboratory of Pharmaceutical Process Analytical Technology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium ²BIOMATH, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium ³RheaVita, High Tech Campus 9, Beta Technology Center, 5600 AT Eindhoven, the Netherlands

⁴Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium

PRACTICAL IMPLEMENTATION OF DYNAMIC PRIMARY DRYING SETTINGS IN A CONTINUOUS FREEZE-DRYING PROCESS

INTRODUCTION

- Continuous freeze-drying = 1) Spin freezing vials with N_2 -gas (\rightarrow thin product layer) + 2) Perpetual vacuum chamber with radiation as energy supply method (\rightarrow more uniform)
- **Mechanistic** model of the continuous drying step¹ \rightarrow most **optimal** dynamic dryer **settings**: chamber pressure (P_c) & radiator temperature (T_{rad}).
- Continuous processing \rightarrow unit doses processed one by one \rightarrow enables **individualised** process **settings** per vial \rightarrow **reducing** effects of **uncontrolled factors** \rightarrow uniform quality

<u>AIM</u>: Supercooling = uncontrolled factor \rightarrow vial-to-vial dry product resistance (R_p) variability $\stackrel{\bullet}{\rightarrow}$ adjust dynamic dryer settings per unit dose based on supercooling temperature (T_{SC})

SPINFREEZIN(

Material & methods:

- Spinfrozen at 2000 RPM with 50 l/min nitrogen gas of -30±3 °C
- 3,9 ml solution (5 % mannitol) in 10R Schott vial
- Experimental groups: scratched vial wall (Scored) vs (Regular)
- Vial Temperature (T_{Vial}) with Infrared (IR) thermometer
- T_{SC} = temperature just before nucleation (1A at Graph 1)

Results:

- **Nucleation** → Appearance of **clear white ice** (Figure 1: 1A vs 1B)
 - \rightarrow Simultaneous **rise in** T_{vial} towards 0 °C (Graph 1)
- **Wide range** of T_{SC} were observed (i.e. between -4 °C and -12 °C)

∠ 1B (C) ↑ 1A t (min)

Figure 1: Spinned vial just before (1A) and right after (1B) nucleation

Graph 1: Observed vial temperature with infrared thermometer during spinfreezing

PRIMARY DRYING

Material & methods:

- 15 vials with a T_{sc} : -4 to -12 °C **dried** by **radiation** (18W) at 55 Pa (Figure 2)
- Every 20 s NIR spectra → Savitzky-Golay smooting and SNV preprocessing
- Principal component analysis (**PCA**) → primary drying **end point** (Graph 2)
- 1e Derivative \rightarrow peak shifts at 5250 & 7074 cm⁻¹ \rightarrow product temp (T_n)

(1)
$$P_i = e^{\frac{-6140,4}{T_p} + 28.916}$$
 (2) $R_p = \frac{(P_i - P_c) \times A}{\dot{m}_{sub}}$ (3) $R_p = R_{p0} + \frac{A_{Rp} \times l}{1 + B_{Rp} \times l}$

- Average sublimation rate (\dot{m}_{sub}) = filling volume / 1e drying time (by NIR)
- R_n estimated using (1) and (2) and plotted against dry layer thickness (l)
- Parameters in (3) fitted $\rightarrow A_{RD} \in B_{RD}$ linearly **regressed** to the observed T_{SC}

Rotary stage NIR probe

Figure 2: Radiation primary drying stage with NIR probe

Results: Linear **relation** between T_{SC} and 1e drying time with R² of 0.64 (Graph 3) \rightarrow similar observation by Searles in regular frozen vials² For 7 out of 15 vials the T_p prediction (RMSE: 4°C): reasonably feasible \mathfrak{F}_p $\rightarrow R_p$ calculated and plotted against l (Graph 4) Linear **relation** between A_{Rp} and T_{SC} observed with R² of 0.76

→ similar observation by Rambhatla with controlled nucleation³ **Unclear** regression of B_{Rp} to T_{SC} with R² of 0.31

 T_p dominant in R_p calculation \rightarrow error on T_p prediction to big for reasonable R_n predictions

DYNAMIC SETTINGS

<u>Material & methods:</u> A full integrated **Labview** 2015SP1 **application** was developed containing (Figure 3):

- Primary drying mechanistic model developed in Matlab R2015b¹ \rightarrow prediction of most optimal dryer settings (P_C & T_{rad})
- **Capturing** all model **input variables**: formulation properties (i.e. R_{p0} , A_{Rp} & B_{Rp}); vial dimension, freeze dryer configuration, filling volume ...
- Data acquisition from the Pirani vacuum gauge and Actuator drivers: Gas dosing valve and NIR radiator by the Power source

- A_{RD} & B_{RD} predicted for several T_{SC}
- **Safe** T_p of -10 °C assumed
- Labview → most optimal drying trajectories (graph 5 and 6)
- considerable difference in 1e drying time \rightarrow unrealistic A_{Rp}

Figure 3: Piping and instrumentation diagram of primary drying set-up; M: motor actuated

CONCLUSION

- **Supercooling temperature** (T_{sc}) effect upon the **primary drying** of spinfrozen vials observed; similar to reports by literature^{2,3}
- **NIR** spectra \rightarrow Primary drying end point detection by PCA; T_p prediction by peak shift of the 5250 & 7074 cm⁻¹ waterbands
- R_p calculations **overestimated** due to the inaccuracy of the product temperature (T_p) predictions \rightarrow unrealistic A_{Rp} parameters
- Full integrated controlled drying system developed, capable of individualised optimal drying settings to compensate for **uncontrolled factors**: i.e. supercooling temperature \rightarrow more uniform batch quality

1: Van Bockstal (2017). J. Pharm. Sci. (106) 71-82; 2: Searles (2001). J. Pharm. Sci, (90) 872–887; 3: Rambhatla (2004). AAPS PharmSciTech, (5) 1-9;

Contact

brecht.vanbillemont@ugent.be www.ugent.be/fw/pharmaceutical-analysis/en/research/pat

