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INTRODUCTION

Boolean algebra is a mathematical system. As with other systems in

miithematics, such as the algebra of real numbers and Euclidian geometry.

Boolean algebra consists of a non-en^ty set of elements upon which are defined

abstract laws or postulates and theorems derived from these laws.

Since the 1930 's. Boolean algebra has developed from what was originally

nsgarded as merely an interesting curiosity into an extensive and mature

b:*anch of mathematics. Its postulation and development by George Boole, the

eriinent English mathematician, took place shortly after the realization by

m^ithematicians that an algebra is an abstract system. It was Boole's task

to separate the symbols of mathematical investigation from the things upon

which they operate and he proceeded to investigate these operations in their

abstract setting. Indeed, Boole produced many notable works of a mathematical

aiid logical natvire, but his prime effort was the influential treatise entitled

Ti .e Laws of Thought .

Much of the contemporary interest and development in Boolean algebra was

inspired by its application to the design of switching circuits for telephone

and control systems, and to the design of logical circiiits for electronic

computers. The subject has developed also, into a significant branch of

abstract algebra with important applications to topology (6,ix)^.

In any Boolean algebra, the members of the universe class, 1, are all of

the elements under consideration. In the first section of this report we will

e> amine the generalized Boolean algebra, that is, the algebra in which there

i£ no restriction on the number of elements. If we in^jose the restriction

^In this report the first number of the ordered pair will be used to
irdicate the reference and the second niunber will indicate the page, with the
references numbered in the bibliography.



that there are exactly k elements, then the resulting 2 classes form a

Boolean algebra of order 2^, i.e., the order of an algebra means the number

of distinct classes in it. For each value of k there is a different Boolean

algebra where two algebras are said to be "different" if and only if some law

valid in one of them is not valid in the other.

The Boolean algebra of order 2^, called binary Boolean algebra and often

written as Boolean algebra (0,1), will be the main topic of this paper. It

is the algebra of greatest significance in recent years and its applications

rmge from the prepositional calculus of symbolic logic to the logical design

of switching circuits,

A basic problem that arises in connection with applications of Boolean

algebra to switching circuits is that of the simplification of a given

circuit which is known to have the desired closure properties. The last part

0.' this paper will be devoted to several approaches to the reduction of

B)olean expressions, i.e., the "minimization problem."

There are two types of representations for logical switching f\inctions.

Q.ie may work with the disjunctive foiro (also knovm as the sum-of-products form,

normal form, or altemational form) or the conjunctive form (product-of-sums

form). One is the dual of the other. Ghazala (li, 171) has shown that a

sijnple transformation will convert one to the other. Any algorithm which

m.inipulates the disjxmctive form will, with the help of the Ghazala transfor-

mjition, manipulate the conjvinctive form.

It was therefore decided to concentrate on one of the two possible types

o;* representations. Arbitrarily we choose the disjunctive representation. '



DEFINITION OF A BOOLEAN ALGEBRA

A generalized Boolean algebra will be developed in this section in order

to indicate that the mathematical structure is independent of its applications

aid for ease of later reference. The definition of a Boolean algebra that

wLll be used is the one given by Huntington in 190li. Although many other

S3ts of postulates could be chosen that would define the system equally well,

tiis set has the property that no one postulate can be derived from the

rsmaining postulates (9, 27).

Consider a set B of elements for which the familiar concept of equality

is introduced using the common notation a = b and meaning that a and b are

t/o names for identical objects. There are no restrictions, at this point,

placed on the nature of the objects, so that one may have equality not only

between numbers, but between sets, or between functions, or indeed between

tie names of any objects.

An algebra involves operations, and it is assumed that in B there are two

b.nary operations, that is, operations that may be applied to any ordered pair

o ' elements of B to yield a unique third element of B. A Boolean algebra can

t]ien be defined in the following manner (9, 28).

Definition . A class of elements B together with two binary operations

(•) and (•) (where a-b will be written ab) is a Boolean algebra if the follow-

i3ig postulates hold:

Pj. The operations (+) and (•) are commutative,

Pg. Tliere exist in B distinct identity elements and 1 relative to the

operations (+) and (•), respectively.

P^. Each operation is distributive over the other.



Pi . For every a in B there exists an element a' in B such that

a + a' =1 and a • a' = 0.

There is no reason why the two operations in the definition must be

w:'itten ( + ) and (•)> other usual notations being o,*} U,/!; V,A. In fact, the

s;'mbol + represents the logical sum (disjunction, inclusive union, inclusive

Oil) and the symbol • represents the logical product (conjunction, intersection,

AlID).

We notice immediately the similarity with the algebra of setsj indeed,

tlie representation theorem of Boolean algebras shows that there exists an

ir.omorphism between every Boolean silgebra and an algebra of sets for some

clioice of universal set. This apparently has led Patxl R. Halmos in his

L( !ctures on Boolean Algebra to dismiss the elementary algebraic relations

wliich follow as "set-theoretic trivialities." The following theorems are,

hcwever, important and necessary for that which is to follow.

We have below a statement of the principle of duality.

Theorem 1. Let i6 be any formula expressed in the vocabulary of a Boolean

aJgebra, and let /iJ' result from /i by interchanging occurences of the operation

sjmbols '+' and '•' and identity elements '0' and '1'. Then fi is derivable

fiom the postulates of the system if and only if /tJ' is derivable from them.

Proof: The proof of this theorem follows at once from the symmetry of

the postulates with respect to the two operations and the two identities.

The general theorems about Boolean algebras, and, for that matter, their

proofs also, come in dual pairs. A practical consequence of this principle

that will be exploited to some degree in what follows, is that in the theory

of Boolean algebras it is sufficient to state and to prove only half the



theorem; the other half comes gratis from the principle of duality. Pairs of

the theorems will be stated, however, though only one of each pair will be

proven, for the steps in one proof are the dual of those in the other, and

the justification for each step is the dual in one case of that in the other.

Ihe following two theorems are known as the idempotent laws.

Theorem 2a. For every element a in a Boolean algebra B, a + a a.

Theorem 2b. For every element a in B, aa = a.

Proof: One has

a»a+0=a+ (aa') = (a + a)(a + a') -

(a + a)(l) = a + a.

Theorem 3a. For every a in B, a + 1 = 1.

Theorem 3b. For every a in B, aO = 0.

Proof: One has

a + 1 - (a + 1)(1) = (a + l)(a + a') »
'

a + (l.a') = a + a' = 1.

Tlie following two theorems are known as the absorption laws.

Theorem Ua. For every a and b in B, a + ab » a.

Theorem Ub. For every a and b in B, a(a + b) = a.

Proof: One has

a - l«a - (1 + b)a = la + ba = a + ba » a + ab.



Theorem 5a. The binary operation (+) is associative on B.

Theorem 5b. The binary operation (•) is associative on B.

Proof: It is necessary to show that a + (b + c) = (a + b) + c for any

a, b, c in B. Let T » a + (b + c) and S = (a + b) + c. Then

aP a(a + (b + c)) - a by theorem Ub. Similarly

aS = a((a + b) + c) - (a(a + b)) + (ac) -

a + (ac) = a.

Taus aT " aS. Furthermore,

a'T - a'(a + (b + c)) = (a'a) + (a'(b + c)) =

+ (a'(b + c)) = a'(b + c) and

a'S - a'((a + b) + c) = (a'(a + b)) + (a'c) -

((a'a) + (a'b)) + (a'c) -

(a'b) + (a'c) = a'(b + c).

Tlius a'T = a'S. Then

aT + a'T = aS + a'S or

aa' + T = aa' + S

or T = S. Thus a + (b + c) - (a + b) + c.

Theorem 6. The element a' corresponding to a in B is unique.

Proof: Assume there are two such elements, ai and a2 , satisfying Ph.

Then

ai = lai - (a + a2)ai = aai + a2ai

+ a2ai = a2ai = aia2 = a]La2 + -

aia2 + aa2 - (af + a)a2 - la2 = a2.



Ihe following is the law of involution:

Theorem 7. For every a in B, (a'
)

'
= a.

Proof: We have

ft' + a - 1 and a' a - 0, hence by theorem 6,

(a')' - a.

Theorem 8a. In any Boolean algebra 0' = 1.

Theorem 8b, In any Boolean algebra 1' = 0.

Proof: By theorem 3, + 1 * 1 and 0*1 = 0, and since theorem 6 shows

taat for each a there is only one element a', these equations imply that

0' - 1.

Tie following two theorems are known as DeMorgan's laws.

Theorem 9a. For every a and b in B, (a + b) ' = a'b'.

Theorem 9b. For every a and b in B, (ab) ' = a' + b'.

Proof: For arbitrary elements a and b in B we have

(a + b) + (a'b') - ((a + b) + a')((a + b) + b') -

((a + a') + b)(a + (b + b')) -

(1 + b)(a + 1) - 1.1 - 1.

Further,

(a + b)(a'b') - (a(a'b')) + (b(a'b')) -

((aa')b') + (a'(bb')) =

(Ob') + (aO) -0+0=0.

Tlien by theorem 6, (a + b) ' » a'b'.



Finally we define a binary relation "=", which we read "equal to or less

taan" for simplicity's sake and which applies to ordered pairs of elements

o: B.

Definition . The "order" relation is defined by the statement: For

every a and b in a Boolean algebra B, a = b if ab' » 0.

This differs from the relation "=" of the algebra of real numbers in

tliat, given any two elements a and b of B, we may have a = b or b = a or

neither of these. That is, some pairs of elements may not be comparable.

Tlie following are useful consequences of the above definition:

Theorem 10a. If x =» y and y = z, then x = z.

Proof: Since x = y, v/e have by the above definition, that xy' - 0. In

l:.ke manner since y = z, we have that yz' =0. Hence

xz' = xz'(y + y') » xyz' + xy'z' =» + - 0.

Bit xz = is equivalent to x = z, which was to be shown.

Theorem 10b. If x = y and x = z, then x = yz.

Proof: From x = y and x = z we have xy' = and xz' =0. Hence

xy' + xz' =0 and x(y' + z') = 0.

But by theorem 9, y' + z' >= (yz)' and thus x(yz)' = or, by the above

definition, x » yz.

Theorem 10c. If x = y, then x = y + z for any z.

Proof: From x = y we have xy ' = and hence

x(y + z)' = x(y'z') = (xy')z' =0.



Eat x(y + z)' = is, by the above definition, equivalent to x » y + z.

Theorem lOd. x = y if and only if y' = x'.

Proof: Assume first that x » y and thus xy' =0. Then

« t /i\ii i/t\i0-xy -(x)y -y(x),

aad from this we have that y' = x'. Conversely, if y' = x , then, applying

tie preceding statement, (x')' = (y')' and by theorem 7 this gives x » y.

With the pjreceding formal structure of a Boolean algebra now at hand we

b3gin our inquiry into the nature of Boolean functions.

BOOLEAN FUNCTIONS

Consider the independent variables a,b,. .,,X2,X]_,. .,,x^, which may take

01 values or 1. V/e then have the following definitions:

Definition . A "literal" is a complemented or unconqjlemented variable.

Definition . A "term" is defined to be either a single literal, or an

ijidicated logical product of two or more literals.

Definition . A "polynomial" is an indicated sum of terms. Often we shall

VLne the term "disjoint-type" to refer to a polynomial.

Definition . By a "Boolean function" we will mean any expression which

ropresents the combination of a finite set of symbols each representing a

constant or a variable, by the operations of (+), (•), or ('); thus

(i. +b)c+b'x+0isa Boolean function provided that each of the symbols

a b,c,x represents an element of a Boolean algebra.
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Since we are restricting the values of the independent variables to

C or 1 and thus the function f^ also to the values or 1, we shall be dealing

vith the binary Boolean algebra (O, l), i.e., switching functions,

KENTERMS

Of particular interest among switching functions of n variables are the

loolean products containing all n of the variables as factors, either comple-

r anted or not (but not both complemented and uncomplemented in any one case,

cf course). When n = 1, we isonsider x^ and x{ to be these "products."

V.hen n = 2j they are xix2, xix2, xlx2 and xlx2.

Definition . A "minterra" (fundamental product, minimal polynomial) of n

variables is a Boolean product of these n variables, with each variable

present in either its own or its complemented form.

The characteristic property of a minterm is that it takes on the value 1

for exactly one set of values of X]_ to Xj^, namely that combination which makes

each factor of the product equal to 1. This is a direct result of theorem 3b.

' 1
If we define xj = xj; and Xj = Xj then a minterm may be represented in

el e2 e3 en
tie form xi X2 X3 ...Xn , where each ei is either or 1. It is convenient

to interpret the sequence of superscripts ei,e2,e3,.. .en as integers in

binary notation. Then we use the corresponding decimal integers to nximber

tie minterms as follows:

m^ = x£-^x|2...:^",

"^^^^ (i)decimal = (^1^2' '
'^nbinary.
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Minterms for n = 3

i ^1 Xg ^3 Non-Vanishing
Product, nij_

1 1 1

X1X2X3

1 1 xix2X3

2 1 x{x2X^

3 1 1 x{x2X3

h 1 ^ X1X2X3

$ 1 1 xix^X3

6 1 1 X1X2X3

7 1 1 1 X1X2X3

Table 1.
•

Let S be any set of n variables and let all minterms mentioned below be

minterms of S.

Theorem 11. There are exactly 2"^ minterms.

Proof: The proof follows from the ftmdamental principle of permutations

srlnce in any minterm the first variable of S is either primed or Tinprimed, the

S(}Cond is either primed or unprimed, etc., for all n variables,

DISJUNCTIVE NORMAL FORM

Among the functions of n variables x-L,X2,...,Xn, which can be written, a

particular class of functions is of special interest, namely, those written as

a sum of terms in which each term is a product involving all n variables either

w-.th or without a prime, i.e., as a sum of minterms. The following definition
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g:.ves a name to such functions.

Definition . A Boolean function is said to be in "disjunctive normal

form" in n variables xi,X2,... ,x^, for n > 0, if the function is the sum of

minterms, i.e., terms of the type (fi(xi))'(f2(x2))* ...'(fnCxn)), where

fj(xi) is Xi or Xi for each i = l,2,...,n, and no two terms are identical.

In addition, and 1 are said to be in disjunctive normal form in n variables

for n = 0.

It is a relatively simple matter to express a given switching function

a£ a sum of minterms. For example suppose n = 3 and

f = (xix2) (xi + X3)

First we express f as a union of products, not necessarily fundamental,

i.e., minterms, by application of DeMorgan's law, the law of involution, the

distribution property of (*) over (+), the absorption laws, and the idempotent

l£ ws

:

f = (xi + X2)(xi + X3) » XI + X2X3.

Tlr.en by ?i^ we have

f = xi(x2 + x^)(x3 + x^) + (xi + xi)x^x3.

New expanding and removing duplicate terms by the idempotent laws we obtain

f =• xix^X3 + X1X2X3 + X1X2X3 + X1X2X3 + xix^X3

which contains only distinct fundamental products.

The method just illustrated is perfectly general and indicates the

validity of the following theorem, often called the basic theorem:
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TheorsT.1 12. Every function in a Boolean algebra which contains no

constants is equal to a function in disjunctive normal form.

Proof: Let an arbitrary function (without constants) of the n variables

x^ ,X2,...,Xj^, be denoted by f. If f contains an expression of the form

({. + b)' or (ab)' for some variables a and b, DeMorgan's laws may be applied

tci yield a'b' and a' + b', respectively. This process may be continued until

ei.ch prime which appears applies only to a single variable Xi. Next, by

applying the distributive law of (•) over (+), f can be reduced to a poly-

nc mial

.

Nov7 suppose some term does not contain either x^ or xj^. This term may

be multiplied by (xj_ + xj_) without changing the function. Continuing this

pi ocess for each missing variable in each of the terms in f will give an

ecuivalent function whose terms contain Xj or Xa for each j = l,2,...,n.

Finally, the idempotent laws allow the elimination of duplicate terms, and

with this the proof is complete.

In practice a given switching function is often defined by means of a

truth table as shown in the case of n = 3 in Table 2. Each of the values of

f is given a name f^, where the subscript is the decimal number corresponding

tc the binary number opposite it.
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The Boolean Function f

X2 X3

= f

1 1- fl

1 = f2

1 1 = f
3

1 = f

u

1 I i = f5

1 1 = f

6

1 1

Table

1

2.

l = f7

Now suppose we want to write a Boolean expression for this new function

f . We see that f must be 1 only when x^^, X2, and X3 have the values 001,

ICl, or 111. But when X]_, X2, and X3 have the values 001 for example, then

X2X2X3 = 1. Similarly, when they have the values 101, then X1X2X3 = 1; and

when all three are 1, then X2_X2X3 = 1. Since these are the only circumstances

urder which f should be 1, we may express f as the Boolean sum of these three

mintermsj that is,

f = X1X2X3 + XXX2X3 + X]_X2X3 = mi + m^ + my.

This expression is correct because it has the value 1 for the correct combin-

ation of x^, X2, and X3, and for no other combinations. This procedure may

be translated into Boolean language very nicely by noting that the Boolean

sun of Boolean products of f^ and mJL will eliminate the undesired minterms and

retain the desired onesj i.e..
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f = O'TOo + l-mi + 0'm2 + 0'm3 + 0*% + I'ln^ + O-m^ + I'mrj

= fomo + finti_ + f2m2 + fyn^ + f]^^^ + f^m^ + f6m6 + ^T^7

i =
^i'^i

w]iich is the statement of f in disjunctive normal form.

It was stated that a Boolean function is usually derived from some sort

0.:' truth table by means of the basic theorem. In this form the function may

o;rten be simplified. The problem of simplifying a Boolean function as

formulated by Quine (2, U97) may be stated as follows: Given a (completely

dnfined) Boolean function f, find the simplest disjunctive (and/or conjunc-

t;.ve) forms which are equivalent to f. As economic design of circuits in an

ijiportant factor in synthesizing a switching system, this problem has

mceived much attention in recent years and a number of solutions are now

a^'ailable (2, 14.97).

The fact that there are alternative ways of representing functions opens

up the possibility that some form may be the simplest of all, and that there

m^y be some method for arriving at this minimal expression. However, any

s\ ch method must hinge on the exact definition of the minimum form.

Industry, \n.th Bartee's help (l, 21), has accepted three criteria to

determine the respective minimality between equivalent disjunctive representa-

tions. First, the minimal expression is that expression which contains the

least occurrences of literals j second, the minimal expression is the expres-

sion containing the least number of product terms; and third, the minimal

expression is the expression which requires the least number of diodes in an

A^D-to-OR circuit configuration which the function represents.
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Let us then become quickly familiar with the rules which must be followed

i:i order to count the number of diodes needed to implement a given Boolean

switching f^onction. Consider, for example, the following three functions:

f = ab, f2 = a + b, and f3 = ab + c + d. The circuits for fi and f2 require

tuo diodes each, one for each literal in the expression. The function f3

requires five diodes: two in an "and" circuit to form ab, and three more in

a:i "or" circuit whose three inputs are c, d, and the previously formed ab.

In order to determine the diode count of a given switching function it is

tlius necessary to count the number of literals in the given Boolean polynomial

ajid add to this the number of terms which are products of two or more literals

pr'esent in the polynomial (7, 62).

Since each disjoint-type expression is made up of a logical sum of terms,

i"!. is natural that we should take a moment to examine the terms of n variables

a little more carefully. In order to find the magnitude of the class of all

possible terras of n variables we begin by listing all terms containing n

l(;tters. Tlaese are of course the minterms, and we already know there are 2^

OJ' them. Then we list all possible combinations of (n - l) letters, (n - 2)

letters, (n - 3) letters, etc., until we finally display the terms containing

only one letter—and there must be 2n of them. There are evidently a finite

nvmber of possible terms for each n, and any polynomial expression can only

ccntain terms from the list corresponding to the particular n involved. This

le ads to the following theorem.

Theorem 13. There are 3^-1 possible terms for n = 1,

Proof: Let us associate each term with an n-digit number, written to the

bj.se three as follows:
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If a literal appears in complemented form, write 0;

literal appears uncomplemented, write 1;

literal does not appear, write 2.

Tie proof then follows from the fiindamental principle of permutations since

tnere are 3^ different numbers (base three) having n digits, and since all of

tiese except the number 3^ - 1 = 222... 2 correspond to a temi, we see there

mist be {3^ - 1) different terms of n variables.

The following definition is of importance to the discussion of the mini-

mization problem which is to follow.

Definition . A "prime implicant" is a logical product which is a term of

s Dme minimal form of a Boolean function. Each prime implicant will contain

a minimum number of literals.

The simplification methods which will now be presented all have the

ojjective of selecting from the (3^^ - l) possible terms one group which

dijfines the function and contains the least number of literals, the least

number of product terms, or which employs as few diodes as possible in the

circuit representation.

ALGEBRAIC METHOD OF SIMPLIFICATION

The first method to be described requires that the logical designer

((mgineer, mathematician or logician) employ judgment, experience, and ingen-

u:.ty to simplify an expression by applying the appropriate postulates and

tlieorems as developed in the first part of the paper. Because of the frequent

a])pearance of the following polynomial in disjunctive-type expressions we

slate as theorems:
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:'^.c^o^e:a Ilia, a + a'b = a + b.

Theorem lUb. a(a' + b) = ab.

Proof: By means of the distributive property P3 of (+) over (•) we

have,

a + a'b =- (a + a')(a + b)j

aid by P|^ and P2,

(a + a')(a + b) = a + b.

The application of these Boolean theorems and postulates to a given

f- motion may not be obvious. It is usually necessary to rearrange and even

modify the original function before any of the rules can be used. For

e: cample, it may be necessary to complicate the original function by adding

X.:' to it, or by multiplying it by (x + x"), if an x can be chosen which can

subsequently be eliminated. The general principles are illustrated in the

following examples:

Example 1. Simplify f = ab' + c + a'c'd + bc'd. Applying theorem ll;a

to the last three terms, we find

f = ab' + c + a'd + bd.

Rearranging and applying P3,

f = ab' + c + d(a' + b) =

ab' + c + d(ab')'.

Ard applying theorem Ilia again,

f - ab' + c + d.
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Example 2. Simplify f = abc + abd' + ac' + a'b'c'd' + a'c. Factoring

aiid applying theorem Ilia,

f = a(bc + c') + a'(c + b'c'd') + abd' -

a(b + c') + a'(c + b'd') + abd'.

Tl.e last term may now be eliminated by combining it with the first and using

tl.eorem ha, giving

f = ab + ac' + a'c + a'b'd'.

Ir the next exaiqjle no obvious simplification exists.

Example 3. Simplify f = ab' + be ' + b'c + a'b. If the last two terms

aie multiplied by (a + a') and (c + c') respectively, the resulting terms may

be rearranged and combined as follows:

f » ab' + be' + b'c(a + a') + a'b(c + c')

= ab' + ab'c + be' + a'bc' + a'b'e + a'bc

= ab'd + c) + bc'd + a') + a'c(b' + b)

=• ab' + be' + a'c.

Note first that in all three examples the final expression is simpler

than the original. If the diode criteria of minimality is applied, in example

1 the number of diodes necessary was reduced from twelve to fivej in example 2

from nineteen to thirteen; and in example 3 from twelve to nine. The

reduction is also obvious using the literal or term count criterias. However,

though these reductions are satisfying it is not obvious that the final

exDression in each of the three examples is actually the simplest. This

indicates in part, some of the restrictions of this approach to simplification.
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The algebraic method is indeed, useful only for the simplest of func-

lions. Though it is easy to apply, it has two difficulties: there is in

i eneral no way of determining whether or when one has obtained the siii5)lest

expression for a function; and if several alternative minimal forms exist, it

vill be difficult to find them all.

The following method has three very important advantages: the function

to be simplified may be attacked directly, without being expanded into min-

term form; the process of finding prime iraplicants is simplified by making

them correspond to patterns familiar to the eyej and the ease with which

essential terms may be identified makes it possible to reduce the labor

involved in seeking prime implicants.

THE VKCTCH-KAENAUGH MAP OF A BOOLKAN FRICTION

Of primary importance in the study of Boolean functions of n variables

are the 2n combinations of n O's and I's. A special form of Venn diagram was

suggested by Veitch (19^2) for use in the sin^lification of Boolean functions

aad is shown in Fig. 1 for n = 2, n » 3, and n - k for the Boolean variables

a, b, c, d.

Veitch Diagrams:

a 1 b

1

n

11b
a 1 1 c

1

11a
c d 1 1 b

1
1
1

1

n

Fig. 1.
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The product designated by a particular square is obtained by noting the

values of the variables in the column and row that intersects the square.

A reorganization of the Veitch maps was proposed by Karnaugh in 1953»

!;n the Veitch-Kamaugh scheme, the four combinations of values of two binary

variables x^ and X2 are represented as a linear array of four squares (Fig.

;!). It is convenient for later purposes to list the combinations in the order
r

(>0, 01, 11, 10, which is known as the Gray code. Since the squares corre-

j;ponding to the combinations are used for recording information, the

( ombinations are customarily written above the squares.

Map for Two Variables

X1X2

00 01 11 10

Fig. 2.

The labeling of the coordinates of these squares may be sinqjlified as

shown in Fig. 3. Here the two columns embraced by the symbol "x^" are those

in which the variable x^ has the value 1. The columns not embraced by the

same symbol are those in which x^ is 0. Again this is the case for X2 and •

also for X3, and xj^ in Fig. k. Thus, in the square marked x in Fig. 3

x^ = and X2 = 1 and the combination corresponding to this square is 01,
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Simplified Map for n = 2

^1
r »

X

^^ J
V
X2

Fig. 3.

Now to each combination of values of the variables x-j_, X2, Xo, xi , when

r = U there corresponds a unique minterm xf-^xl x^^k^ which takes on the

\alue 1 for that combination and no others so that the squares may be put

into 1-to-l correspondence with the rainterms. This correspondence enables us

to construct a map of a given switching function: we sinqjly record a 1 in

each square corresponding to a combination for which the function is 1, i.e.,

in each square corresponding to a minterm which appears in the disjunctive

normal form of the function. The same procedure applies, of course, in the

case of two, or of three variables. Fig. U gives maps of a variety of

functions.
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1 1

^2

f = ^2J^2 * ^1^2

4

i2.

1

1 1

•^ J

^l1

il

1

1

1

V J

f = XnX.

X2

1X2X3X1^ + ^2X2X^1^ + XjX2XyXl^

i = x-[x2Xo + x-|_X2Xo + X2^X2Xo

Fig. h.

Definition . The squares in which I's are recorded are called the

"3-squares" of the function, where p means product.

Definition . If two I's are in squares whose combinations differ by only

oie digit, the squares are called "adjacent."

The combination of variables may be interpreted as vertices of a

1; -dimensional cube and, in such cases, combinations corresponding to adjacent

sjuares determine adjacent vertices of the cube. One should consider the

lijft and right edges of the map as identical and also consider the top and

bottom edges of the map as identical. That is, a p-square in the left hand

column of the map is adjacent to the corresponding p-square in the same row
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cf the right hand column of the map, and similarly for the top and bottom

r ows

.

The fimction corresponding to two adjacent I's is obtained by writing

down the product of all those variables whose values are fixed in the two

squares in question, uncomplemented if this fixed value is 1, complemented if

it is 0.

Maps Corresponding to Three-Factor Products:

^{

/
*-

\

1 1

». J

xu

F2

XI

XI;

il

1

1

^ J

X2

f = X].X2Xi; f = X2X3XI;

^1

r- 51

Xi;

f = xix2xi;

1 1
r

!». J

^^2

Fig. $.
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In the first example we wrote xf because xi is in both squares, X2

hecause X2 is 1 in both, xl^ because x^ is in both. X3 was omitted because

: 3 is in one square, 1 in the other. The legitimacy of this procedure

i ollows from the disj\inctive non.ial expansion of the function represented

ly the two squares:

f = x{x2X3X]^ + X2X2Xjici^ = x{x2Xi^(x3 + X3) = x{x2X|^.

In the second example:

f = xix2X3Xi^ + xiX2X3Xi^ = (xi + xi)x2X3Xi^ = X2X3Xi;,

a ad in the third example:

f = x{x2x'jxl + xix2X3xJ = xix2X^(x3 + x^ = xfxgxi^.

Definition . N adjacent p-squares are said to constitute an "n-dimen-

SLonal p-subcube" where 2^ = N, since they correspond to the endpoints of an

edge of an N-cube.

Thus in the above examples we have 1-dimensional p-subcubes.

In Fig. 6 the principles used to write down the functions corresponding

to the maps are the same as those used in the preceding exair5)les and may be

verified in the same manner.
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X-

^l'^

—y-

1 1 1 1

' J^2

^<

1

1

1

1

^2

f = xjX2 f = xox;yh

X-1

.
?3.

1 1

1 1

xu

^1

^3
.

1 1

1 1

XI,

f = x2Xi, f = X2X3

Fig. 6.

In each of the above examples, the four p-squares correspond to four

Vortices of a square face of the U-cube and hence are called 2-dimensional

p--subcubes.

The maps of Fig. 7 illu^ irate some 3-dimensional p-subcubes. Again they

nuy be verified as in the first set of examples.
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^

^
1111
1111

xk

K2

XI

1 1

1 1

1 1

1 1

Xi;

F2

f = xi r = xi

il

XI

1 1

1 1

1 1

1 1

X2

xu

f = X3

Fig. 7.

In review, the use of the map method requires that the function to be

sr'jTiplified be represented first in the form of a polynomial, i.e., disjunctive

t;/pe form. For each term in the function, a 1 is placed in the square corre-

sponding to that particvilar product of literals. Then the map is inspected

for the purpose of recognizing which of several possible groupings of terras

represents the best factoring of terms in the function. The usefulness of
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the map derives from the fact that patterns of p-squares containing I's which

will yield the simplest terms can, after sufficient practice, be easily and

caickly determined by inspection. Larger p-subcubes correspond to products of

fewer variables, since fewer variables are fixed for them. This suggests the

following rules for obtaining a minimal representation of a function in

disjunctive normal form:

1. Select a set of p-subcubes

(a) which includes every p-square at least once,

(b) is such that the p-subcubes are as large as possible, and

(c) are as few in number as possible.

2. Write the Boolean sma. corresponding to these subcubes.

A3 an illustration we choose the function

f = xix2X3Xj]^ + xix2X3Xj^ + xix2X3Xl| + xix2X3xl4. + xix2X3xj||. + xix2X3xi|

corresponding to the map of Fig. 8. By inspection and recognizing the patterns

or the previous exan^jles we see that we can express f as the Boolean sum of the

f motions corresponding to one 2-dimensional p-subcube and to two 1-dimen-

s.onal p-subcubes:

f = xix2 + xix3xl4. + x2X3xi;.
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Map Corresponding to the Boolean Function f

:

xM

1

y—

^

b 1 1 1)

1,

*- >

Fig. 8.

The accomplishment of 1. (b) and 1. (c) was trivial in the example given

above, but this is not always the case. M. Karnaugh provided the following

example:

I I I . I t

f = x^X2X^x^ + x^X2X^x^ + xjx^x^xi^ + ^i^^yx^ * ^i^^y^ *

^1^^3^ + X3^x^X3Xi^ + XiX^X3X3|^ + xix2X3Xj^ + XiX2X3Xj^

with the following map:

Map Corresponding to Karnaugh Example;

".3

p P
il1 y

f
0- l; i;

XI,
r

i

X2

Fig. 9.
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ii.^iv it u: v.lcJdr ihAi Ktf ah^ll want to uad two 2-diitiensional p-subcubea

corresponding, for example, to ths terms X2X3 and X]_X2 respectively. The

p:'oblem then is to account for the I's in the remaining p-squares. To do

tlds, since only two of these squares are adjacent, will require three more

t(;rms. To keep those terms as simple as possible we employ two previously

ured adjacent p-squares which enable us to use 1-diraensional p-subcubes.

Tl.ese finally yield

I I

f = X1X2 + X2X3 + X]_X3X]^ + x^^x^x]^ + xiX3X^

A second and third possible form of f is shown in Fig. 10.

Maps Corresponding to Karnaugh Example:

XI

\

T ])

1^

^
lil s

w 1 rr S
!

1

1

\
1—(^—

1

v^
1

/

^i; y

«2

il

XI

r r

X1"
li

k'
1, 1 bJ

1

1

1

1

1
1

1

1

X2

xu

Fig. 10.

V/e new have in the first case of Fig. 10:

• . I '

f = X1X2 + X2X^ + xiX3Xi^ + xxX3Xij + xiX3X^,

and in the second case of Fig. 10:

t I I

f - X2X3 + X2X[^ + xixyxi^ + xiX3Xj_^ + xiX3X|^.
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Any number of variables can be plotted on a Veitch-Kamaugh diagram,

though the diagrams are difficult to use for more than eight variables.

Eapresentations for n = ^ and n = 6 are given in Fig. 11 with the inscribed

integral representations for the corresponding rainterras,

Veitch-Kamaugh Diagrams for n = 5 and n = 6:

U Xn

X2-

25 29 13 9 21; 28 12 8

27 31 15 11 26 30 Ik 10

19 23 7 3 18 22 6 2

17 21 5 1 16 20 k

Xi;

X3 ^3

^ Xn

^6-

X2''

X2"

51 59 27 19 ii9 57 25 17

^^ 63 31 23 53 61 29 21

39 U7 15 7 37 U5 13 5

35 U3 11 3 33 Ul 9 1

50 58 26 18 kQ 56 2U 16

5U 62 30 22 52 60 28 20

38 i;6 11; 6 36 UU 12 ii

3U i|2 10 2 32 i;0 8

xk

^3 ^3

'^U

Fig. 11.

THE QUINE SIMPLIFICATION METHOD

The Quine approach to the simplification problem is straightforward

tjiough somewhat tedious. It is valuable in the sense that the algorithm can

b*i readily programmed for use on digital computing devices. The system leads

automatically to the set of all possible minimal solutions (7, 93).
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V.\^-> Ouin<5 proo<5.1m-o will be deacribod by specifying a set of rules, as

i ollows

:

a. Express the function in disjunctive normal form. Of course, the

function may already be in this form, but if it contains terms which are not

minterms they must be expanded.

b. The next step is to derive a set of "prime ijnplicants" from the min-

terms. First compare each minterra vrith every other minterm. VJhenever two

minterms differ by only one variable (x in one, x' in the other), list the

term formed by omitting that variable from the minterm, and put an asterisk

opposite each minterm. This is the equivalent of employing Pi;. If the

minterms each comprise n variables, this first group of terms will each con-

tain (n - 1) variables. Now the same procedure is followed with them; i.e.,

each term is compared with all the other tenas of (n - l) variables, and

wienever two tenms differ by only one variable, the term formed by omitting

tiat variable is written down and each of the parent terms is marked with an

asterisk. There are now three groups of terms: minterms, terms containing

( 1 - 1) variables, and terms containing (n - 2) variables. Groups containing

(i - 3)> (n - U), (n - 5),...variables are now formed in the same way from

tie groups containing (n - 2), (n - 3), (n - ii),...variables respectively,

uitil finally a group of terms is formed, none of which can be combined with

aiy other. Step b is now complete, and all the terms having no asterisks

bjside them are identified as prime implicants. (Note that a minterm may

i":.self be a prijne iraplicant if it does not combine with any other minterm.)

VJ.) have at this point minimized the literal count per term.

c. Next, prepare a table (Table A) having as many rows as there are

p:-ime implicants, and as many columns as there are minterms in step a.
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I ientiiy each roi-r with a prime ijmplicant , and each column with a minterm.

Place an asterisk in a square on the table wherever the prime ajnplicant to

tie left of the square is derived, in part, from the minterm above the

square. This xd.ll be true wherever the letters in the prime implicant all

aDpear in the same form as they do in the minterm.

d. Now examine the columns in Table A. If any column in the table con-

tiins only one asterisk, the corresponding prime implicant is called an

" jssential term" and must be included in the final expression for f . Encircle

tie essential terms, together id.th all asterisks on the same row with essen-

tial terms. A new table. Table B, may now be drawn up having the same form

as Table A, but containing only the prime implicants (rows) that have not

bjen encircled and only the minterms (columns) which contain no encircled

asterisks. The minterms omitted from Table B need not be considered further

bicause they will be included in the final expression for f by virtue of the

f.ict that the essential terms appear in that expression.

e. VJherever in Table B there are columns raj_ and m^ such that m^^ has

asterisks on every row that m-? has asterisks, eliminate column m^.

f

.

Form Table C from Table B by omitting the columns eliminated by step

e and any rows which remain but contain no asterisks.

g. Examine Table C, and choose from it the simplest set (or sets) of

p;.-dme implicants which, taken together, include at least one asterisk in each

column. The Boolean sum of these prime implicants, together with the essen-

t:.al terms of step d, forms the simplest expression for f . Note also that

tliis last step may be a very difficult or a very trivial one, depending on

tlie nature of and number of entries in Table C.

Thus we arrive at the minimal term count.
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Let us examine the follcfwing as an illustration of the above technique;

Sirrplify

f = ab' + be' + b'c + a'b.

a. Expanding f to obtain a sum of minterms:

f = ab'(c + c') + bc'(a + a') + b'c(a + a') + a'b(c + c')

= ab'c + ab'c' + abc' + a'bc' + ab'c + a'b'c + a'bc + a'bc'

= ab'c + ab'c' + abc' + a'bc' + a'b'c + a'bc.

b. The set of prime implicants is foiind as follows:

ab'c i^

ab'c' -J^-

abc' *

a'bc' -K-

a'b'c "»

a'bc }«

ab' (combining ab'c with ab'c')

b'c (combining ab'c Td.th a'b'c)

ac' (combining abc' with ab'c')

be' (combining abc with a'bc')

a'b (combining a'bc' with abc)

a'c (combining a'b'c with a'bc)

None of the tt^o-letter terns combine with one another, so there are no more

p:-ime implicants. The function f may be written as the Boolean sum of these

prime inplicants, but we continue with the rules, hoping to find a set of

prime implicants which will form a siitpler expression.



35

:. Table A may now be prepared, as follows:

abc' a'bc' a'b'c a'bcab'c ab'c'

ab' K- *

b'c *

ac' •«•

be'

a'b

a'c

Table A.

c ., e., and f. No column contains only one asterisk. There are therefore no

essential terms, and Table B is the same as Table A. It is also evident that

i.o two columns have the same configuration of asterisks and there does not

€xist any rows containing no asterisks. Thus Table C is the same as Table A.

f . Examining the table, ve see there are two ways of choosing prime implicants

£0 as to include the smallest number of prime implicants and an asterisk in

every column. These two ways indicate the following minimal Boolean functions:

f = ab' + be' + a'c

£nd

f = b'c + ac' + a'b.

The firist of these expressions for f is the same as the result obtained

in example 3. The second, which by the way, employs the same number of diodes

in a switching circuit, could also be derived that way. However, not every

function has alternative simplest forms, and the Quine method provides an
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ec.sy way for finding any and all of them where the algebraic approach (in

p£,rticular) gives no indication as to whether or not there may be more than

or.e.
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An introductory treatment of a generalized Boolean algebra is presented

in this report. The algebra is stated in terms of a set of postulates with

tlie logical sum and logical product defined as binary operations and comple-

mentation as an unary operation. Three approaches to the minimization of

completely specified Boolean functions are then indicated in the final section

o:' this report.

A generalized Boolean algebra is defined in the first section by stating

postulates concerning the operations of a Boolean algebra. Subsequently,

theorems are developed which relate to these operations of a Boolean algebra

aiid which concern particular elements of the Boolean algebra. The structure

ifi completed by introducing an ordering relation.

In the next section the generalized Boolean algebra is restricted and

the concept of a Boolean function is introduced whose range of values is

aiid 1. This is followed by a description of the representation of completely

specified Boolean functions and of the necessity of arriving at a simplest

form for Boolean expressions. There can be many of these irreducible expres-

sions, so a minimality measure is assigned to each representation; these are

literal count, terra count, and diode count.

Finally, the concept of prime iraplicants is introduced and three methods

of simplification and the corresponding advantages are discussed. The methods

of minimization include: the direct application of algebraic operations, the

Veitch-Kamaugh map, and the Quine algorithm.


