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Abstract Many smart home applications rely on in-

door human activity recognition. This challenge is cur-

rently primarily tackled by employing video camera sen-

sors. However, the use of such sensors is characterized

by fundamental technical deficiencies in an indoor en-

vironment, often also resulting in a breach of privacy.

In contrast, a radar sensor resolves most of these flaws

and maintains privacy in particular. In this paper, we

investigate a novel approach towards automatic indoor

human activity recognition, feeding high-dimensional

radar and video camera sensor data into several deep

neural networks. Furthermore, we explore the efficacy

of sensor fusion to provide a solution in less than ideal

circumstances. We validate our approach on two newly

constructed and published data sets that consist of 2347

and 1505 samples distributed over six different types of
gestures and events, respectively. From our analysis, we

can conclude that, when considering a radar sensor, it

is optimal to make use of a three-dimensional convo-

lutional neural network that takes as input sequential

range-Doppler maps. This model achieves 12.22% and

2.97% error rate on the gestures and the events data

set, respectively. A pre-trained residual network is em-

ployed to deal with the video camera sensor data and

obtains 1.67% and 3.00% error rate on the same data

sets. We show that there exists a clear benefit in com-
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bining both sensors to enable activity recognition in the

case of less than ideal circumstances.
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1 Introduction

Indoor activity recognition is an essential feature for fu-

ture smart homes, with applications ranging from ad-

vanced security systems to health monitoring tools. A

video camera is a powerful sensor when it comes to iden-

tifying humans or recognizing actions [24,37]. However,

despite the ubiquitous availability of this sensor, it is

characterized by a number of fundamental deficiencies

in an indoor environment, like the inability to function
properly when the view is blocked or when lighting con-

ditions are unfavorable. Furthermore, the indoor use of

video cameras results in a breach of privacy. In contrast,

a radar device preserves visual privacy, while being un-

affected by poor lighting conditions. Moreover, it can

deal with obstructing elements and it even allows for

through-the-wall sensing [38].

While a camera device passively operates by mea-

suring light streams captured by a lens, a radar device

transmits an electromagnetic signal over a certain line

of sight (LOS). Thanks to the well-known Doppler ef-

fect, essential information such as velocity and range

can be extracted from the reflection of every target in

this LOS. In addition, separately moving parts are char-

acterized by their own Doppler signal. The superposi-

tion of all these Doppler signals can be summarized by

a so-called micro-Doppler (MD) signature [5].

In this paper, we present deep machine learning ap-

proaches for indoor human activity recognition, using a

frequency-modulated continuous-wave (FMCW) radar
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and a video camera. In this context, we train different

complex models for each modality and the combina-

tion thereof (i.e., we develop both single- and fusion-

based approaches). That way, we are able to combine

the strengths of both sensors and provide a robust solu-

tion for indoor human activity recognition in different

environments. Accordingly, wherever necessary privacy

can be maintained in sensitive areas by disabling the

video camera sensor and predict activities solely based

on a radar-based model.

We test our approaches on two different activity

data sets. One data set focuses on small gestures, rep-

resenting hand-based motions and is highly relevant for

the creation of intelligent human-machine interfaces.

The second data set focuses on events that occur in

daily life. Typical examples of such events are standing

up or leaving a room. This data set is relevant towards

the creation of smart health monitoring systems. Due

to the lack of publicly available data sets that contain

indoor activities recorded by both a radar and camera

sensor, we have created these data sets and make them

publicly available. Each data set contains six different

activities performed by nine different subjects.

To summarize, the main contributions of our re-

search efforts are as follows:

1. We propose robust classification models that are

independent of sensor placement and room setup,

while being highly effective at predicting fine- and

coarse-grained activities, hereby employing a low-

power radar.

2. We compare six different DNN-based architectures

on different input modalities that originate from

high-dimensional sensors. We show that a three-

dimensional CNN taking as input subsequent range-

Doppler maps and a 34-layer residual CNN is opti-

mal for radar and video data, respectively.

3. We study the fusion of video- and radar-based model

to achieve a complimentary approach which is effec-

tive in imperfect circumstances.

4. By publishing the data sets, we aim to facilitate

future follow-up research and benchmarking.

The rest of the paper is organized as follows. In Sec-

tion 2, we briefly review related work in the area of

video- and radar-based activity recognition. Section 3

provides an overview of the utilized sensors. In Sec-

tion 4 and Section 5, we describe the basics of DNNs

and the proposed approaches, respectively. In Section 6,

we outline the experimental setup used to validate our

approach, and in Section 7, we provide an in-depth dis-

cussion of our experimental results. Finally, we present

our conclusions in Section 8.

2 Related Work

Activity recognition is a widely-studied and relevant

topic applicable to many daily challenges. The authors

of [15] define an action as “the most elementary human-

surrounding interaction with a meaning”. The term ac-

tivity is looked upon as a sequence of more rudimen-

tary actions. However, both terms are interchangeably

used in literature. In general, action or activity data

sets range from coarse and clearly discernible actions

such as Brushing Teeth and Basketball Dunk (part of

the UCF101 data set1) to more subtle gestures such as

Thumbs Up and Thumbs Down (part of the Jester data

set2).

The sensor most frequently used to tackle the chal-

lenge of activity recognition is a video camera. DNNs

have been predominantly employed to acquire state-of-

the-art performances on these data sets. A pioneering

study by [17] attempts to train a three-dimensional con-

volutional neural network (CNN) to exploit the tem-

poral structure of video data. Specifically, a number

of different architectures are tested with the aim of

fully exploiting the temporal and spatial information

on a YouTube-based data set with 487 sports-related

classes. In [25], these ideas are extended by investi-

gating smart temporal pooling techniques, as well as

using long short-term memory (LSTM) networks with

the aim of leveraging longer temporal sequences. These

studies are followed by a plethora of research efforts

that build upon these ideas to develop accurate solu-

tions for activity recognition [8,10,29,31]. The authors

of [26] investigate a video-based approach for hand ges-

tures recognition. To that end, they show that it is cru-

cial to also explicitly learn features along the temporal
dimension. As opposed to the initial attempt of [17], the

relatively recent release of significantly large activity-

related video data sets have enabled the effective train-

ing of three-dimensional residual networks [13].

A different type of sensor that is becoming increas-

ingly popular is radar. This sensor can compensate for

many of the disadvantages a video camera suffers from.

Use cases that have been tackled using radar devices

range from security applications trying to detect violent

intents [11, 28] to elderly monitoring applications that

aim at detecting walking behavior or people falling [12,

22,34]. The authors of [19,33] attempt to recognize ges-

tures using DNNs and a radar device. They achieve an

accuracy of 87% and 93% for eleven and ten different

gestures, respectively.

The combination of both a video and radar sensor

has been less investigated, mainly receiving some at-

1http://crcv.ucf.edu/data/UCF101.php
2https://20bn.com/datasets/jester
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(a)

(b)

Fig. 1: Sequence showing one sample of gesture Swiping left for (a) video recording and (b) radar recording. The

five RD maps shown at the bottom display the velocity (x-axis) in relation to the range (y-axis). Color scale: the

power of the reflected signal (in dB).

tention from the automotive field. In that regard, mul-

tiple sensors are for example combined to increase the

efficacy of tracking multiple objects in a particular en-

vironment [6,35]. The combination of both sensors can

also be employed for detecting hazardous situations in

vehicles [9] or monitoring an environment to help nav-

igate visually impaired people more safely [23].

In this study, and setting us apart from the research

efforts reviewed above, we compare and combine the use

of two different high-dimensional sensors as input for

multiple DNNs, with the aim of automatically recog-

nizing a wide range of indoor human activities. To that

end, we significantly extend upon the work of [27], in

which the subject of automatic activity recognition us-

ing a radar and video camera sensor is briefly explored.

Specifically, Polfliet et al. [27] only partly focuses on

activity recognition using a radar and camera sensor

by constructing a limited activity data set consisting of

540 samples distributed over three events. Due to the

low number of activities and samples in the data set,

only a limited analysis of the effects of combining both

sensors is given. In this paper, we investigate the ef-

ficacy of employing each individual sensor for the use

cases at hand and we extensively analyze the potential

benefit of combining both sensors on two newly created

and large data sets.

3 High-Dimensional Sensors

In this study, two different high-dimensional sensors are

employed, namely an FMCW radar and a video camera.

An FMCW radar works through emitting a mod-

ulated electromagnetic wave towards moving or static

targets. The transmitted radiation that scatters on these

targets is intercepted by the receiving antenna and can

deliver rich information. Based on the time delay, phase

shift, or frequency shift, valuable properties such as dis-

tance, velocity, size, and orientation can be extracted

from the different targets [3]. Specifically, a target in the

LOS of the radar moving at constant speed will induce a

constant Doppler frequency shift. Coherently, with the

translation of the main body, multiple smaller moving

parts result in micro-motion dynamics. Such dynamics

generate Doppler modulations on the reflected signal,

defined as the MD effect [4].

A 77 GHz FMCW radar can be produced at low cost

while being relatively power efficient. The disadvantage

of this lower power consumption is a degraded signal-

to-noise (SNR) ratio [21]. The reflected signal is typi-

cally processed by applying a two-dimensional Fourier

transform, resulting in range-Doppler (RD) maps that

show range and velocity information of all objects in

the LOS of the radar [5]. In Fig. 1, an example of the

gesture Swiping left, which is recorded with a video

and radar sensor, is shown. Specifically, Fig. 1b shows

five sequential RD maps. The x-axis in these RD maps

represents the Doppler dimension, also referred to as

Doppler channels throughout this paper, while the y-

axis represents the range dimension. The zero Doppler

channels contain the reflections of all static objects in

the room and thus result in higher power. To obtain an

MD signature, RD maps are summed over the range di-

mension and concatenated over time. Fig. 2 shows the

MD signature of a sample that represents the activity

Shaking, with the x-axis representing the time dimen-

sion and the y-axis denoting the Doppler dimension.

A video camera works by measuring light rays com-

ing in through a lens. These incoming light rays are

turned into electrical signals by for example a CCD

(Charge-Coupled Device) or CMOS (Complementary

Metal-Oxide Semiconductor) image sensor. In this study,

we simply made use of a full HD webcam. Fig. 1a shows

a sequence of five images, capturing the gesture Swiping

left.
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Fig. 2: MD signature displaying the gesture Shaking.

The x-axis represents the time dimension, while the y-

axis represents the velocity. Color scale: accumulated

power levels (in dB) after summing over each RD map.

4 Deep Machine Learning

Deep learning or hierarchical learning is a subfield of

machine learning that aims at the automatic construc-

tion of tailored features based on a stack of nonlinear

operations. In particular, algorithms in the field of deep

learning aim at automatically creating feature hierar-

chies, typically through the use of multi-layered feed-

forward neural networks (FFNNs) [2]. A FFNN con-

sists of a chain of functions that allow the learning of

increasingly complex concepts by stacking many sim-

pler functions:

f(x) = fL(fL−1(. . . f1(x))), (1)

f `(x) = σ(W`x + b`), ∀` ∈ {1..L}, (2)

where x represents an input vector, L denotes the num-

ber of layers in the network, σ represents a piece-wise

nonlinear function, and W` and b` describe the layer-

specific weights and biases, respectively. The piece-wise

nonlinear operation σ is commonly chosen to be the rec-

tifier linear unit (ReLU) [32], and where this function

is defined as follows: ReLU(x) = max(0, x).

In this work, we focus on deep convolutional neu-

ral networks (DCNNs), long short-term memory net-

works (LSTMs), and a combination thereof. DCNNs

make use of neurons that are only locally connected

and that share weights. This means that convolutional

filters work on small local receptive fields of input data

in a sliding-window fashion [20]. This specialized kind of

neural network has a grid-like topology. Different filters

evolve to become specific feature detectors, for instance

ranging from low-level color and edge detectors in early

layers to high-level object detectors in later layers [36].

The essential difference with a standard FFNN is the

use of convolutions instead of plain matrix multiplica-

tions.

In Fig. 3, an example of a two-dimensional convo-

lution is shown with a kernel of size 2 × 2 and stride

13. The mathematical operation of such a convolution

is defined as follows:

Sij = (X ∗K)ij (3)

=
∑
m

∑
n

Xi+m,j+nKmn, (4)

with S denoting the resulting feature map, X a two-

dimensional input, and K a kernel ∈ Rm×n. Compared

to a regular FFNN, Eq. 2 can be modified as follows:

f `j (X) = σ(X ∗W`
j + b`

j),∀` ∈ {1..L}, (5)

with f `j depicting the j-th feature map of layer `.

Input
Kernel

Output

a b c d

e f g h

i j k l

w x

y z

aw + bx+
ey + fz

bw + cx+
fy + gz

cw + dx+
gy + hz

ew + fx+
iy + jz

fw + gx+
jy + kz

gw + hx+
ky + lz

Fig. 3: Example of a two-dimensional convolutional op-

eration. A 2× 2-sized kernel is convolved over a 3× 4-

sized input with zero padding. The operation of each

element is exactly described in the resulting output fea-

ture map.

Residual neural networks, a specific type of neural

networks, are widely used to facilitate effective learning

while enabling very deep architectures [14]. In Fig. 4,

a basic building block is shown, which forms the foun-

dation of a residual network. Specifically, the convo-

lutional layers inside such a basic building block are

explicitly modeled to fit a residual mapping. The origi-

nal mapping is recast into F (x) + x. It is hypothesized

that it is easier to optimize the residual mapping than

to optimize the original, unreferenced mapping [14]. A

residual neural network consists of a series of such basic

blocks.

3From a strict point-of-view, we are dealing with a cross-
correlation, as the kernel is not flipped.
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3× 3× 3 3d-conv, F

Batch Normalization

ReLU

3× 3× 3 3d-conv, F

Batch Normalization

ReLU

Fig. 4: Schematic overview of the basic building block

of a residual neural network.

An LSTM network is optimally suited to model dy-

namic processes [16]. Such a network, which consists of

so-called LSTM cells, belongs to the family of recur-

rent neural networks (RNN). RNNs differ from regu-

lar FFNNs in that they contain feedback loops. These

feedback loops encode contextual information of a tem-

poral sequence. Given a certain input sequence x =

(x1, x2, . . . , xT ), with xt a feature vector given at time t,

the hidden states of a recurrent layer h = (h1, h2, . . . , hT )

and the outputs y = (y1, y2, . . . , yT ) can be obtained as

follows:

ht = σ(Wihxt +Whhht−1 + bh), (6)

yt = Whoht + bo, (7)

where the W terms denote weight matrices (e.g., Wih

is the input-hidden weight matrix), the b terms denote

bias vectors (e.g., bh is the hidden bias vector), and

σ is the hidden layer activation function, typically the

logistic sigmoid function.

As depicted in Fig. 5, the LSTM architecture uses

memory cells to store and output information, allowing

it to better discover long-range temporal relationships.

The hidden sequence h of an LSTM cell is computed as

follows:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi), (8)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ), (9)

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc), (10)

ot = σ(Wxoxt +Whoht−1 +Wcoct−1 + bo), (11)

ht = ottanh(ct) (12)

where σ is the logistic sigmoid function, and i, f , o, and

c are the input gate, forget gate, output gate, and cell

activation vectors, respectively. By default, the value

stored in the LSTM cell c is maintained, unless it is

ct

Cell

× ht×

×

ft Forget Gate

itInput Gate otOutput Gate

xt

xt xt

xt

Fig. 5: Graphical display of an LSTM unit, showing the

relationship between the different gate connections and

the memory cell ct.

added to by the input gate i or diminished by the forget

gate f . The output gate o controls the emission of the

memory value from the LSTM cell.

5 Proposed Approach

The goal of the research effort presented in this paper is

to identify activities by leveraging a low-power FMCW

radar and a video camera sensor in an indoor environ-

ment. The key research questions we attempt to answer

are:

1. can we accurately recognize activities with a differ-

ent granularity using a low-power 77 GHz FMCW

radar,

2. what is the most accurate input representation and

network architecture to recognize activities given

this radar device,

3. what is the added value when combining models

based on a radar and video sensor in less than ideal

circumstances?

In this section, we discuss the different preprocessing

steps and machine learning algorithms used to address

the aforementioned questions.

In Fig. 6, a schematic overview is given of the pro-

posed approach. The different steps are defined as fol-

lows: (a) a single subject is captured synchronously by

a low-power radar and a video camera while performing

an activity. This activity can either be an event (repre-

senting an activity containing larger movements) or a

gesture (representing specific hand-oriented motions),

(b) the recorded signals are processed and result in RD

maps and RGB images for the radar and camera sensor,

respectively, (c) fragments of k seconds of data are used
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as input for separate deep neural networks per modal-

ity and activity category, (d) via late fusion, the pre-

dictions of each sensor-specific network are combined to

compensate for weaknesses of both, and (e) predictions

are outputted over six activities.

Fig. 6: Schematic overview of the proposed approach for

the events data set. The proposed approach is similar

when considering the gestures data set.

5.1 Recording & Preprocessing

In this work, an FMCW radar device produced by IN-

RAS [1] is used. We employ the radar in Single Input

Single Output (SISO) mode and the recording param-

eters are given in Table 1.

Table 1: Recording parameters of the FMCW radar.

Fine-grained capturing of detailed movements is possi-

ble thanks to a range and velocity resolution of 10 cm

and 2 cm/s, respectively.

Waveform Parameters Sensing Parameters

Center freq. 77 GHz Range resolution 10 cm
Chirp bandwidth 1.5 GHz Velocity resolution 2 cm/s
Chirp duration 256 µs Ambiguous range 38.4 k m
Sampling freq. 2 GHz Ambiguous velocity 13.68 k m/h

An RD map is obtained by applying a 2-dimensional

Fourier transform, subsequently converting the abso-

lute value of the signal to decibels (dB). This results

in an RD map containing 256 Doppler channels, rep-

resenting velocities from −3.8 m/s to 3.8 m/s, and 160

range channels, representing a range varying from 0.5 m

to 4.5 m. The MD signature is computed by summing

the RD maps over the range dimension, thus containing

the same 256 Doppler channels per time unit. The time

dimension is represented by the frequency for which an

RD map is produced by the radar device. In this case, a

total of 256 chirps are emitted, with each chirp having

a duration of 256 µs, thus resulting in approximately

15 frames per second (FPS). Similar to [30], we remove

the three middle static Doppler channels, representing

objects with zero velocity as these primarily consist of

room characteristics.

A full HD webcam device is used to record each ac-

tivity in the visual domain. To that end, the camera is

positioned on top of the radar device, with both sen-

sors recording synchronously. To decrease the amount

of data, the frame resolution is reduced to 341×256 pix-

els and, like the FMCW radar, the speed of recording

is set at 15 FPS.

5.2 Neural Network Architectures

DNNs are not only well suited to deal with noisy data

but also have the ability to automatically infer features

from raw data [2]. Both properties are crucial elements

to answer the research questions that have been put for-

ward, given that we are dealing with challenging radar

and video camera data. In what follows, we describe

the designed neural network architectures to predict the

listed activities. We describe five different architectures

that output predictions based on radar input and one

architecture that outputs predictions based on video

input.

5.2.1 Radar-based Classification

Fig. 7 shows the exact architecture of each of the five

radar-based networks. Each network consists of a com-

bination of either convolutional, pooling, LSTM, or fully-

connected layers. Dropout is applied to any layer (ex-

cept the last) that consists of trainable weights, with an

increasing rate depending on the proximity to the final

layer. Each convolutional and fully-connected layer is

followed by an Exponential Linear Unit (ELU) non-

linearity operation. The ELU non-linearity is defined

as follows:

ELU(x) =

{
x, if x > 0

α(exp(x)− 1) if x ≤ 0
, (13)

with x ∈ R representing the input and α a predefined

parameter greater than zero. As described in [7], ELU

non-linearities possess improved learning characteris-

tics as opposed to other non-linearities. Indeed, an effect

similar to batch normalization, but with a lower compu-

tational complexity, is accomplished by pushing mean

unit activitations closer to zero, thanks to the nega-

tive values allowed by this non-linearity. The last fully-

connected layer uses a softmax non-linearity to produce

outcome probabilities for each target class.

The architectures LSTM, 1d-CNN-LSTM, and 2d-

CNN take as input two-dimensional MD signatures.
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More precisely, the LSTM network extracts features

from the Doppler data by applying a fully-connected

layer of size 64. The time dimension is handled by ap-

plying a bidirectional recurrent layer consisting of 32

LSTM units. Finally, the network makes a prediction

based on two fully-connected layers of size 128 and

6, respectively. In the 1d-CNN-LSTM, the first fully-

connected layer of the LSTM network is replaced by

three one-dimensional convolutional layers that attempt

to extract features from the Doppler data. The convolu-

tional layers possess 8, 16, and 32 filters of size 3, respec-

tively. Each convolutional layer is followed by a non-

overlapping one-dimensional pooling layer of size 3. The

2d-CNN network does not use a recurrent layer but at-

tempts to jointly extract features from the Doppler and

time dimensions through the use of four two-dimensional

convolutional layers with 8, 16, 32, and 64 filters, re-

spectively. In order to reduce the input dimensions, each

convolutional layer is followed by a non-overlapping two-

dimensional pooling layer of size 2× 2.

The architectures 2d-CNN-LSTM and 3d-CNN take

three-dimensional RD maps as input. The 2d-CNN-

LSTM network attempts to combine feature extrac-

tion through the use of convolutional layers with a re-

current layer to handle the time dimension, similar to

the 1d-CNN-LSTM network. More precisely, the one-

dimensional convolutional and pooling layers are re-

placed by their two-dimensional counterparts. The 3d-

CNN is similar to the 2d-CNN network but increasing

the number of dimensions with one for both the convo-

lutional and pooling layers.

By investigating these five networks, we aim at un-

derstanding the influence of the different nature of the

input data on automatic activity recognition, so to be

able to develop an adequate solution.

5.2.2 Video-based Classification

The video-based model is a three-dimensional CNN con-

sisting of 34 layers with a residual structure, pretrained

on the Kinetics-400 data set [18]. This model achieves

a top-1 accuracy of 60.1% over 400 classes [13]. As

described in Table 2, we employ a slightly modified

form of this network, taking as input a stack of sequen-

tial RGB images, while giving as output predictions

over six classes. Spatial downsampling is performed by

conv1, conv3 1, conv4 1, and conv5 1 with a stride of

two. Temporal downsampling is performed in conv3 1,

conv4 1, and conv5 1 with the same stride. This net-

work is referred to as 3d-ResCNN throughout this pa-

per.

It has been shown in [13] that deeper residual net-

works obtain marginally better accuracy results on the

Table 2: Specifications of the 3d-ResCNN architecture.

The basic building block represents the core of the resid-

ual network and has been previously explained in Sec-

tion 4. F represents the number of filters learned in each

convolutional layer of a block. The last fully-connected

layer contains six output neurons and is followed by a

softmax non-linearity function.

Layer Specifications

conv1 7 × 7 × 7 3d-conv, 64
conv2 x 3 basic building blocks, F = 64
conv3 x 4 basic building blocks, F = 128
conv4 x 6 basic building blocks, F = 256
conv5 x 3 basic building blocks, F = 512
pool global avg. pooling
fc fully-connected, 6, softmax

above mentioned Kinetics data set. However, taking

into account our limited set of categories, we deem

ResNet-34 to consist of the optimal performance-to-size

ratio. By pretraining this network on a vast data set,

we enable the learning process to efficiently jump local

minima and quickly converge to a near-optimal solu-

tion.

6 Experimental Setup

In this section, we describe the characteristics of the

constructed data sets, our approach towards learning,

and the way we evaluated the proposed methods.

6.1 Data Sets

In this study, we investigate a multi-sensor- and neu-

ral network-based approach towards automatic human

activity recognition. Accordingly, we develop and eval-

uate the proposed solutions in two relevant applica-

tion domains. To that end, we constructed two real-

istic and extensive data sets. The first data set con-

cerns fine-grained activities, namely gestures that are

performed with any of two hands. As described before,

this category is tailored towards the development of ad-

vanced human-machine interfaces. The second category

entails coarse-grained activities that are useful to de-

velop smart health monitoring tools. The two data sets

are referred to as gestures and events, respectively.

In order to construct two data sets that can be

deemed large, we have recorded nine different subjects

in two different environments. Both environments entail

a meeting room in which the sensor set up is directed

towards the exit. The gestures are performed while sit-

ting on a chair in front of both sensors. The sensor setup
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2d-MD input

fc 64

lstm 32

fc 128

fc 6

LSTM

2d-MD input

3 1d-conv, 8

3 1d-pooling

3 1d-conv, 16

3 1d-pooling

3 1d-conv, 32

3 1d-pooling

fc 64

lstm 32

fc 128

fc 6

1d-CNN-LSTM

2d-MD input

3× 3 2d-conv, 8

2× 2 2d-pooling

3× 3 2d-conv, 16

2× 2 2d-pooling

3× 3 2d-conv, 32

2× 2 2d-pooling

3× 3 2d-conv, 64

2× 2 2d-pooling

fc 128

fc 6

2d-CNN

3d-RD input

3× 3 2d-conv, 8

3× 3 2d-pooling

3× 3 2d-conv, 16

3× 3 2d-pooling

3× 3 2d-conv, 32

2× 2 2d-pooling

fc 64

lstm 32

fc 128

fc 6

2d-CNN-LSTM

3d-RD input

3× 3× 3 3d-conv, 8

2× 2× 2 3d-pooling

3× 3× 3 3d-conv, 16

2× 2× 2 3d-pooling

3× 3× 3 3d-conv, 32

2× 2× 2 3d-pooling

3× 3× 3 3d-conv, 64

2× 2× 2 3d-pooling

fc 128

fc 6

3d-CNN

Fig. 7: Schematic diagram of five different neural network architectures. The architectures LSTM, 1d-CNN-LSTM,

and 2d-CNN take two-dimensional MD signatures as input. The two subsequent architectures, 2d-CNN-LSTM

and 3d-CNN, take three-dimensional RD maps as input.

table

TX

RX
C

5m

4m

visualization of a recording environment. The radar and
video camera sensors are depicted by a red and blue circle,

respectively. The radar LOS is characterized by the
receiving beamwidth (RX) covering 76.5° and the

transmitting beamwidth (TX) covering 51°. The horizontal
LOS of the video camera (C) covers 70°. The green cross

denotes a possible target.

is conceptually displayed in Fig. ??. The camera is po-

sitioned on top of the radar device, with both sensors

recording synchronously. The camera device covers a

horizontal field of view of 70° and the radar sensor has

a receiving beamwidth of 76.5° in combination with a

transmitting beamwidth of 51°. Table 1 shows the spec-

ifications of the employed radar.

Every subject was repeatedly recorded in a continu-

ous way for seven minutes, during which they performed

all gestures and events. Multiple recordings were per-

formed per subject, alternating between the two record-

ing environments. These recordings were labeled by seg-

menting the video-based streams into one of twelve ac-

tivities. However, it should be noted that not all sub-

jects were able to perform the same number of record-

ings. Moreover, each subject performs the different ac-

tivities at different speeds and pausing intervals. This

uncontrolled approach allows for less generic and more

diverse activity recordings since the length of an activ-

ity is not predetermined, nor the order in which these

should be performed. As a result, the data sets are char-

acterized by non-equal distributions of the number of

activities per subject. In Table 3, an overview of the

count per activity can be found, along with the average
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duration of each activity. In Table 4, an overview of the

number of all gestures and events per subject is given.

Table 3: Overview of all recorded activities.

Activity Abbr. Total Avg. duration

Drumming D 390 2.92s (±0.94)
Shaking S 360 3.03s (±0.97)
Swiping Left Sl 436 1.60s (±0.27)
Swiping Right Sr 384 1.71s (±0.31)
Thumb Up Tu 409 1.85s (±0.37)
Thumb Down Td 368 2.06s (±0.42)

Entering Room E 221 3.01s (±0.73)
Leaving Room L 224 3.94s (±0.78)
Sitting Down Sd 342 1.98s (±0.31)
Standing Up Su 344 1.65s (±0.28)
Clothe C 195 5.62s (±1.76)
Unclothe U 179 4.97s (±1.09)

Our data sets contain 3852 activities in total, tak-

ing on average 2.56 s per activity, subdivided in 1505

event-related activities and 2347 gesture-related activi-

ties. Our data sets thus contain a total of 2.74 hours of

effectively annotated activity data distributed over 12

classes. As is depicted in Table 3, the extent of time in

which each activity is performed differs significantly per

activity class. On the one hand, gestures such as Swip-

ing Left or Swiping Right and Thumb Up or Thumb

Down are performed in 2 s or less. On the other hand,

certain events such as Clothe or Unclothe can require

up to 5 s or more. Moreover, there is a large intra-class

variability for the duration of certain activity classes, as

shown by the standard deviation. These properties add

to the diversity of the constructed data sets and to the

challenging nature of the research questions we set out

to answer. Both data sets are made publicly available

under the name HARRad (Human Activity Recogni-

tion with a Radar) to facilitate further research4.

6.2 Learning

Our models are trained on GeForce GTX 980 and Ti-

tan X graphics cards. We used the PyTorch5 library to

implement and test our different approaches. Gradients

are computed over minibatches of size 64 for both the

radar- and video-based models. We use the Adam opti-

mizer with a learning rate of 10−3 for all non-pretrained

radar-based models and 10−4 for the pretrained video-

based models. The best validation loss is used after

4The data sets are publicly available at:
https://www.imec-int.com/en/harrad

5https://pytorch.org

Table 4: Number of recorded events and gestures per

subject Si, with i ∈ {1 . . . 9}.

Gestures Events

D S Sl Sr Tu Td E L Sd Su C U

S1 49 40 44 22 41 37 20 20 29 27 30 22
S2 89 80 99 92 83 80 78 79 83 88 73 71
S3 44 43 48 46 35 38 14 14 33 33 13 14
S4 33 34 35 35 32 32 32 33 51 50 33 33
S5 40 40 45 46 52 47 22 22 43 43 14 14
S6 45 45 46 47 58 52 15 16 32 34 8 8
S7 46 40 72 62 72 47 28 28 45 42 17 12
S8 17 15 20 23 17 19 5 5 6 6 5 3
S9 27 23 27 11 19 16 7 7 20 21 2 2

training for 500 and 50 epochs for the radar- and video-

based models, respectively.

The MD and RD data are min-max normalized and

the video data are rescaled to the interval [0, 1]. For

training of any radar-based model, random shifting in-

side an activity sample is performed when this sample is

longer than the selected classification time range. This

is done to increase data diversity and to enable the

learning of robust models. When the activity is shorter

than this time range, the last frame is repeated. As dis-

cussed in Section 5, the static Doppler channels are re-

moved from both the MD signatures and the RD maps.

Furthermore, we quartered the dimensions of each RD

map to 40 × 63 by applying linear interpolation. No

other data augmentation techniques are used for these

models. The video-based models make use of random

square crops of size 112 × 112 after having resized the

frames to 170×128. Random horizontal flipping, bright-

ness, and saturation augmentations are also applied.

The computational complexity of training the pro-

posed models significantly depends on the size of the

model and the input data. The models that are based on

MD input take on average 1.2 s to complete one epoch.

Each of these models is trained for 500 epochs which

results in a training time of around ten minutes. The

RD-based models take around 5.4 s and thus train for

45 minutes to complete the same number of epochs. In

contrast, the video-based model is significantly larger

and takes around 78 s to complete one epoch. However,

since this model is pretrained, convergence can be at-

tained in 50 epochs taking around 65 minutes.

6.3 Evaluation

We report the error rate, which is defined as the num-

ber of wrongly classified samples compared to the total

number of samples. A sample is defined as a set of con-

secutive frames in which a subject performs an activity
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Table 5: Error rate for leave-one-subject Si-out cross-validation (S), with i ∈ {1 . . . 9}, and stratified random split

(RS) for gestures and events, feeding MD signatures (a, b, and c), RD maps (d and e), and RGB images (f) as

input to various DNNs. Networks (a) to (f) refer to LSTM, 1d-CNN-LSTM, 2d-CNN, 2d-CNN-LSTM, 3d-CNN,

and 3d-ResCNN, respectively. The lowest radar-based error rates are highlighted in bold.

Gestures Events

input Micro-Doppler Range-Doppler RGB Micro-Doppler Range-Doppler RGB

network (a) (b) (c) (d) (e) (f) (f) (a) (b) (c) (d) (e) (f) (f)

S1 25.18 25.32 25.32 9.30 10.73 1.43 23.89 14.19 13.96 13.29 14.41 13.29 15.09 23.42
S2 18.99 19.18 22.75 6.05 5.61 0.25 16.06 8.05 6.36 9.18 7.98 9.18 5.16 11.23
S3 30.18 28.48 28.74 12.60 11.68 4.86 17.98 2.48 1.65 2.48 2.75 2.75 6.06 21.49
S4 38.97 31.67 31.34 19.73 16.92 0.50 18.91 5.89 5.46 7.90 4.60 2.30 2.16 13.07
S5 32.96 30.62 31.73 15.93 12.84 4.57 20.49 1.27 1.05 2.95 1.05 1.05 2.95 14.56
S6 30.83 27.65 29.01 17.86 15.81 1.93 19.11 3.24 3.54 3.54 1.18 1.47 2.65 25.07
S7 31.66 28.52 29.11 12.09 15.04 1.18 12.68 5.43 4.65 5.81 4.07 3.88 2.13 12.40
S8 32.13 38.74 32.43 17.12 17.42 6.31 28.53 3.33 2.22 4.44 2.22 2.22 5.56 25.56
S9 30.89 30.89 31.71 13.82 18.97 3.25 30.62 3.39 0.56 0.00 0.00 0.00 1.69 16.95

S 30.20 29.01 29.13 13.89 13.89 2.70 20.92 5.28 4.38 5.51 4.25 4.02 4.83 18.19

RS 15.28 12.50 15.56 2.50 5.28 0.28 16.67 4.72 4.17 6.67 4.17 2.78 3.61 15.28

from beginning to end. The label of a sample is pre-

dicted based on a fragment of k seconds, temporally

cropped from the middle frames of the sample. Two

different methods are applied to correctly evaluate our

different approaches. The first is leave-one-subject-out

cross-validation for which we report the average vali-

dation error rate over all splits. Since we have an un-

balanced distribution of the number of labels per sub-

ject, we also report training, validation, and test error

rate for a stratified randomized split, with each activ-

ity having a fixed number of 20 and 50 samples in the

validation and test set, respectively. This ensures that

there is no over- or under-representation of classes in

the validation or test set. Similar to the training pro-

cedure, we extend samples that contain less than the

required number of consecutive frames by repeating the

last frame.

7 Results

In this section, we give a detailed overview of a num-

ber of experiments. First, six different network architec-

tures are analyzed, quantifying the effect of each model

on the effectiveness of activity recognition. Second, the

sample length is investigated in order to determine the

optimal amount of temporal data that are necessary

for both the gestures and events data set. Third, we

analyze the combination of a video- and radar-based

model, measuring the effect of sensor fusion. Finally,

we give an overview of the best performing model and

its configuration, also providing a number of additional

insights.

7.1 Analysis of Micro-Doppler as Input Modality

We analyze the effectiveness of using MD signatures as

the input for three different DNN architectures. These

architectures are described in more detail in Section 5.

They are defined as (a) LSTM, (b) 1d-CNN-LSTM, and

(c) 2d-CNN. The results for the cross-validation (S) and

random stratified split (RS) are listed in Table 5. The

sample length of all MD inputs is fixed to 2 s or 30

frames.

Table 5 shows that we cannot observe a clear dif-

ference among the three networks for both the gestures

and the events data set. However, a significant differ-

ence can be noted when comparing the effectiveness

between the two separate data sets. While the best per-

forming network for predicting gestures achieves an er-

ror rate of 29.01%, the best performing network for pre-

dicting events achieves an error rate of 4.38%. In both

cases, this is the 1d-CNN-LSTM network. Therefore,

we can conclude that MD signatures provide sufficient

information to tackle clear and distinct activities but

fail to grasp more fine-grained movements that occur

frequently in smaller gestures.

7.2 Analysis of Range-Doppler as Input Modality

We analyze the use of RD maps as input for two differ-

ent networks, namely (d) 2d-CNN-LSTM and (e) 3d-

CNN. By maintaining the range dimension, we hypoth-

esize that these models will be able to better recognize

fine-grained activities such as gestures. Table 5 shows

the results obtained for both networks. Indeed, the use
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of RD maps directly enables the use of more advanced

networks that are able to take into account the extra

information in an effective way. This is proven by com-

paring the three MD-based networks to the two RD-

based networks. In general, for the gestures data set,

the error rate is decreased by more than 50% to 13.89%

and 5.89% for the S and RS evaluation methods, re-

spectively. This difference in error rate is not observed

for the events data set, as MD-based networks already

achieved error rates down to 4.38%. In this case, the er-

ror rate is improved to 4.02% by the 3d-CNN network.

Furthermore, there is no significant difference between

the use of a three-dimensional CNN compared to a two-

dimensional CNN that integrates an LSTM layer.

Regarding the difference between the two evalua-

tion methods (S and RS), we can conclude that there

is a significant difference in error rate when focusing on

the gestures data set. It is clearly beneficial to allow

the network to learn directly from the specific way a

subject performs different gestures. We notice an ab-

solute improvement of more than 11% and 8% on the

error rate when considering the 2d-CNN-LSTM and

3d-CNN networks, respectively. Again, this difference

is not significantly noticeable in the case of the events

data set as these different events are more general and

less person-specific.

7.3 Analysis of Video Frames as Input Modality

Notwithstanding the reluctance to use video cameras in

an indoor environment because of privacy concerns, it

is the primary sensor to tackle the challenge of activity

recognition. Moreover, privacy concerns are less rele-
vant in professional environments, which often already

deploy video cameras for various applications such as

video conferencing or security measures.

In this experiment, we analyze the effectiveness of

learning a model to recognize six gestures or six events

based on RGB input data. As can be seen in Table 5,

using a video camera in normal circumstances signifi-

cantly outperforms the use of a radar device in the case

of the gestures data set. Specifically, the 3d-ResCNN

achieves an error rate of 2.70% and 0.28% on the S

and RS evaluation methods, respectively. However, this

neglects suboptimal settings such as dimly lit environ-

ments or obstructing elements in front of the camera

sensor. Moreover, the video-based 3d-ResCNN can take

advantage of having been pretrained on a vast online

data set, which aids the training of this model. Regard-

ing the events data set, the video-based model achieves

similar results as the radar-based models. It is clear

that a radar is in this case the most viable option to

solve the challenge of activity recognition.

To illustrate the weaknesses of using a video camera

as the primary sensor, we repeat the same experiment

after artificially darkening the data. For this experi-

ment, we do not retrain the model but test its capacity

to deal with these artificial data based on its originally

learned weights. We state that this is a fair compari-

son since radar-based models likewise do not need to

be retrained for dimly-lit or dark circumstances. The

video frames are darkened by lowering the RGB val-

ues by 60%. In Table 5, we can observe that there is

a degradation of effectiveness when such modifications

are applied to the data. Specifically, the effectiveness

obtained for S degrades from an error rate of 2.70% to

an error rate of 20.92% and from 4.83% to 18.19% for

the gestures and the events data set, respectively. These

values are significantly worse than the radar-based vari-

ants, where the best models achieve an error rate of

13.89% and 4.02% for the two respective data sets.

7.4 Analysis of Sample Length

We analyze the optimal sample length for both the ges-

tures and the events data set. Given the average length

of a gesture (see Table 3), we hypothesize that the ideal

classification length is below 2 s. In case of the events

data set, a longer sample length should be more ef-

fective. For this experiment, we consider the best per-

forming 3d-CNN network to measure the influence of

the sample length for RD maps. The following results

are obtained by evaluating with the cross-validation (S)

method. We assume the optimal sample length mea-

sured based on radar data will act as an upper boundary

for the error rate produced by the video-based model.

This assumption is based on the fact that single static

video frames by themselves already contain rich infor-

mation that can be employed to accurately predict the

performed activity. Therefore, the 3d-ResCNN network

is not considered in this experiment.

For the gestures data set, Fig 8 allows observing that

the optimal sample length is 20 frames, correspond-

ing to a duration of 1.33 s. For the events data set,

we can see that the optimal sample length is signifi-

cantly longer. The lowest error rate is achieved when

using a sample length that is in-between 50 and 60

frames, which corresponds to a duration that is in-

between 3.33 s to 4 s. These findings can be attributed

to the general observation that gestures correspond to

short swift movements, while events can consist of smaller

sub-actions that take place over a longer period of time.

For all subsequent experiments, we make use of the op-

timal sample length, which is 20 and 50 frames for ges-

tures and events, respectively.
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Fig. 8: Analysis of the optimal sample length (in

frames) for both the gestures and the events data set.

The measured sample length runs from 0 s to 6 s. The

results are based on the 3d-CNN network, taking RD

maps as input, and where this network is evaluated by

the cross-validation method (S).

7.5 Analysis of Model Complexity

In this section, we analyze the complexity of the mod-

els regarding the number of trainable parameters and

time efficiency to evaluate one sample. The following re-

sults are obtained by executing the networks on a Titan

X graphics card. When using the default input sizes of

the MD and the RD data in combination with a sample

length of 2 s, the MD-based networks LSTM, 1d-CNN-

LSTM, and 2d-CNN possess 36.2 k, 38.3 k, and 148.2 k

trainable parameters, respectively. The RD-based net-

works 2d-CNN-LSTM and 3d-CNN contain 52.4 k and

123.0 k trainable parameters, respectively. The predic-

tion of one sample takes on average 3 ms for the MD-

based models and 5 ms for the RD-based models. In

terms of computational complexity, we conclude there

is a negligible difference among the radar-based net-

works. Moreover, the proposed radar-based models are

not restricted based on time efficiency.

In contrast, the residual CNN that is employed for

the video-based predictions possesses 63.5 M trainable

parameters and takes 20 ms to predict one sample. The

large number of trainable parameters shows the neces-

sity to train this network by starting from a set of pre-

trained weights, in order to allow effective finetuning of

the weights using our constructed data sets. Although,

this model takes significantly more time to predict one

sample in comparison to the radar-based networks, it

is still able to provide real-time predictions at a speed

of 50 samples per second.

7.6 Sensor Fusion

In this section, we analyze the effectiveness of fusing

the predictions of the best performing models, one for

each sensor. To that end, we apply late fusion and av-

erage the predictions returned by each sensor-specific

model. Regarding the radar-specific model, we make

use of the 3d-CNN network, whereas the video-based

input is handled by the 3d-ResCNN model. We use 20

and 50 frames as the input sample length for both data

sets. Fig. 9 shows the results of fusion based on the

clean data (Fused) and the artificially darkened data

(Fused* ).

In ideal circumstances and for professional environ-

ments without privacy concerns, we can observe that

a video sensor outperforms a radar sensor; there is no

added value in fusing its predictions with a radar-based

model. The fusion of both sensors achieves an error

rate that is 7% higher in absolute terms in compari-

son with the video-based model for the gestures data

set, while it achieves similar results in the case of the

events data set. However, the combined use of both

sensors becomes credible when taking into account the

added value of a radar sensor, which can function prop-

erly when the effectiveness of a video camera sensor

strongly or completely degrades. These results can be

read from Fig. 9, where the Video* category shows the

degraded effectiveness of a video sensor in less than

ideal circumstances. The Fused category shows an ab-

solute improvement of 3.5% and 0.20% over using solely

a radar sensor for the gestures and the events data set,

respectively. The Fused* category shows an even more

obvious benefit of using both sensors in less than ideal

circumstances.
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Fig. 9: Average error rates on the leave-one-subject-out

cross-validation splits (S) for both data sets.
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Table 6: Error rate for the S and RS evaluation meth-

ods for the best performing models. In the case of

the Video* and Fused* categories artificially darkened

video data is used as input data for the 3d-ResCNN

model.

Gestures Events

S RS S RS

valid valid test valid valid test

Radar 12.22 4.17 6.00 2.97 1.67 4.56
Video 1.67 0.00 1.89 3.00 3.61 3.22
Fused 8.82 3.89 3.89 2.76 1.67 4.22

Video* 18.19 10.00 10.78 15.31 10.84 8.22
Fused* 10.70 4.17 5.11 2.97 1.94 4.33

7.7 Main Results

In this section, we list the best performing model con-

figuration based on our previous analyses. The exact

results can be found in Table 6. We conclude that us-

ing the 3d-CNN network results in the best performing

set up, with 20 and 50 consecutive RD maps as input

for the gestures and the events data set, respectively.

Specifically, this network takes as input 64 × 1 × k ×
40× 63-dimensional matrices, with 64 representing the

batch size, k equaling 20 or 50 depending on the ac-

tivity data set, and 40 × 63 representing an RD map

after resizing and removal of the static Doppler chan-

nels. Using the cross-validation evaluation method, this

radar-based model achieves an error rate of 12.22% and

2.97% on the events and the gestures data set, respec-

tively. By evaluating on the RS test set, the advantage

of using person-specific gesture information when train-

ing a model becomes evident, given that the error rate

lowers to 6.00%. Regarding the video-based model, we

achieve an error rate of 1.67% and 3.00% for both data

sets, resulting from fine-tuning a pretrained 34-layered

residual CNN on clean video sensor data. This error

rate increases to 18.19% and 15.31% when testing the

same model on artificially darkened video data. Our fu-

sion results show that there is a clear advantage of com-

plementing a video sensor with a radar sensor, even in

non-privacy sensitive environments.

Table 7 displays the summed confusion matrices for

predictions on each Si, i ∈ {1 . . . 9} split for both data

sets using the 3d-CNN model. It can be noted that in

the case of the gestures data set, the most static ac-

tivities, namely Thumb Up and Thumb Down, are con-

fused among each other and are the least accurately

recognized. Similar confusion exists between the activi-

ties Clothe and Unclothe. This can be attributed to the

very similar nature of both events.

Table 7: The resulting confusion matrix for both data

sets after summing the confusion matrices of all splits of

the leave-one-subject-out cross validation. The predic-

tions are obtained by the 3d-CNN radar-based network.

Predicted Label Predicted Label
D S Sl Sr Td Tu Su Sd G E C U

T
ru

e
L

a
b

el

D 356 16 1 2 5 10 Su 342 2 0 0 0 0

S 5 353 0 0 0 2 Sd 1 337 1 0 3 0

Sl 0 3 425 5 0 3 G 0 0 224 0 0 0

Sr 0 1 12 362 1 8 E 0 0 0 221 0 0

Tu 12 4 3 2 295 52 C 0 1 0 0 175 19

Td 5 2 1 6 56 339 U 0 1 3 0 16 159

Gestures Events

In Appendix A, we test the efficacy of our proposed

approach on an integrated system that combines both

data sets. More specifically, we show that similar results

can be obtained using the same networks and configura-

tions when making predictions over the combined data

sets of gestures and events.

8 Conclusions

In this paper, we have proposed a novel approach to-

wards automatic indoor human activity recognition, us-

ing deep neural networks that take as input data orig-

inating from radar and video camera sensors. To that

end, we have constructed two data sets that consist

of 2347 and 1505 samples distributed over six different

types of gestures and events, respectively. When regard-
ing the radar sensor, we concluded that it is optimal to

use a three-dimensional CNN that takes as input 20 and

50 sequential RD maps for the gestures and the events

data set, respectively. These models achieve 12.22% and

2.97% error rate on the gestures and the events data

set, respectively. In the case of privacy-sensitive envi-

ronments, we suggest to only employ the radar-based

solution that can operate in an effective and efficient

manner without the need for video cameras. When re-

garding the camera sensor, we make use of a pretrained

residual CNN and obtain 1.67% and 3.00% error rate

on the same data sets. In ideal and non-privacy sensi-

tive circumstances, it is optimal to make use of a video

camera sensor. However, there is a clear benefit of com-

bining both sensors to enable activity recognition in the

case of non-ideal circumstances such as dark environ-

ments or in the case the view of a video camera sensor

is partially blocked. By artificially darkening the cam-

era sensor data, the effectiveness of these models signifi-

cantly worsens to 18.19% and 15.31% for both data sets.
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By applying late fusion to the predictions obtained from

each model, the benefit of using both sensors becomes

obvious. To summarize, we successfully built a solution

to automatically recognize gestures and events in a re-

alistic scenario, taking advantage of both an FMCW

radar and a video camera sensor.
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A Indoor Human Activity Recognition on

Combined Data Set

In this study, we developed a deep learning approach towards
automatic indoor human activity recognition. Moreover, this
approach is validated on two separate data sets that are both
applicable in a different domain. For the sake of complete-
ness, we explore the efficacy of an integrated system that is
capable of predicting the correct activity when dealing with a
combined data set of gestures and events. To that end, both
data sets are merged and the 3d-CNN and ResCNN networks
are employed for the radar and camera sensors, respectively.
The combined data set consists of 3852 samples distributed
over 12 different activities. Table 4 lists the total number of
samples per activity. Similar to the experiments performed

in Sections 7.2 and 7.3, the sample length is set to 2 s or 30
frames.

Table 8 shows the obtained results of both the radar-
and video-based model. The results suggest that our devel-
oped approach is valid for the combined data set. The radar-
based 3d-CNN achieves 14.40 % and 6.67 % error rate on the
cross-validation and random split evaluation approach, re-
spectively. These results are similar to those obtained on the
gestures data set (c.f., Section 7.2). Similarly, the video-based
ResCNN network obtains 3.52 % and 2.70 % error rates for S
and RS, respectively.

Furthermore, an experiment is conducted that shows the
benefit of fusing both sensors. More precisely, artificially dark-
ened frames (denoted by the ∗ operator) are used as input for
the video-based model. This input has a clear negative effect
on the error rate of the ResCNN network since it degrades
by nearly 20 % and 13 % for S and RS, respectively. How-
ever, through the combined use of both sensor-specific net-
works this effect is not pronounced in the late fusion approach
(Fused*). The performance of this approach only degrades by
2 % in comparison with the use of clean RGB data. Moreover,
the fused approach that uses artificially darkened video data
still outperforms the radar-only approach by a margin of 2 %.

Table 8: Results for leave-one-subject Si-out cross-

validation (S), with i ∈ {1 . . . 9}, and stratified ran-

dom split (RS) for the combined data set. The Fused

approach makes use of late fusion of the probabilities

of each sensor-specific network. The * operator depicts

the use of artificially darkened RGB input frames.

Combined Data Set

Radar Video Fused Video* Fused*

S1 14.87 9.54 14.35 44.97 14.96
S2 10.59 2.38 8.78 24.96 9.82
S3 12.98 3.73 11.56 26.13 12.44
S4 11.55 1.00 9.47 27.87 10.85
S5 16.28 3.35 13.71 31.39 15.97
S6 16.63 3.45 15.02 30.30 17.57
S7 12.79 2.02 7.37 15.53 9.98
S8 23.64 4.02 19.39 47.75 23.40
S9 10.99 2.20 6.96 26.01 9.71

S 14.40 3.52 11.46 30.54 13.86

RS 6.67 2.70 5.83 18.33 6.88
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