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ABSTRACT Cyber physical systems consist of heterogeneous elements with multiple dynamic features.
Consequently, multiple objectives in the optimality of the overall system may be relevant at various
times or during certain context conditions. Low cost, efficient implementations of such multi-objective
optimization procedures are necessary when dealing with complex systems with interactions. This work
proposes a sequential implementation of a multi-objective optimization procedure suitable for industrial
settings and cyber physical systems with strong interaction dynamics. The methodology is used in the
context of an Extended Prediction self-adaptive Control (EPSAC) strategy with prioritized objectives.
The analysis indicates that the proposed algorithm is significantly lighter in terms of computational time.
The combination with an input-output formulation for predictive control makes these algorithms suitable
for implementation with standardized process control units. Three simulation examples from different
application fields indicate the relevance and feasibility of the proposed algorithm.

INDEX TERMS priority objectives, multi-objective optimization, model predictive control, steam power
plant, unmanned aerial vehicle, drug regulatory network, interaction, safety.

I. INTRODUCTION

FROM recent reports on cyber-physical systems (CPS)
such as [1], it follows that CPS have heterogeneous sys-

tems with heterogeneous signal types of interaction among
them. Given their large scale and heterogeneity, the eco-
nomic, performance, safety and other objectives are relevant
at different levels of operation and are active at different time
scales throughout the CPS operation. A common feature is
that decoupling control is replaced by distributed control, as
the interactions increase their relevance within the CPS per-
formance. For instance, to develop a high-performance com-
pensatory control system for vehicle power train, accurate
estimations of the unmeasurable hybrid states, including dis-

crete backlash nonlinearity and continuous half-shaft torque,
are of great importance [2]. In addition, the safe operation
of the electric vehicle is related with the braking system.
Hence, an accurate estimation of brake pressure is very
importance for the design and control of automotive CPS. In
[3] a novel probabilistic estimation methods of brake pressure
based on multilayer artificial neural networks (ANNs) with
Levenberg-Marquardt backpropagation (LMBP) training al-
gorithm is developed. This method shows a superiority in
estimation accuracy of the brake pressure, with respect to
other learning-based methods.

On the other hand, driving behaviors are closely related to
fuel efficiency. The difference in fuel consumption between
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normal and aggressive driving is estimated to be as high as
40% [4], [5]. As for challenges and opportunities, a key driver
is the necessity of a multidisciplinary and an interdisciplinary
approach to resolve such complex CPS. As given in [1],
two of the most important CPS are biomedical and health-
care systems and the next-generation of air transportation
systems, both exemplified in this work. For all CPS, the
following requirements prevail: i) large scale real time opti-
mization algorithms; ii) multiple objective optimization; iii)
automation with degradation modes (de-tuning); iv) safety
and monitoring methods; v) distributed decision making; vi)
data fusion from various sub-systems.

According to the latest reviews of industrially relevant
control strategies, it follows that the most used in practice
is Proportional-Integral-Derivative (PID) control followed by
Model-based Predictive Control (MPC) [6]–[8]. Although
easy to implement and accounting for 90% of the regulatory
loops in any process, PID control has a serious drawback:
it does not optimize the control action for apriori given
constraints [9]. By contrast, MPC uses a cost function op-
timization which takes into account constraints while cal-
culating the best input to the process given current condi-
tions/operating point and future predicted process dynamics
[10]–[14]. For accurate prediction and improved loop per-
formance, MPC requires the availability of a good process
model [15], [16]. Often, such a model is limited to a range
of operating conditions, i.e. is a linear approximation of
a nonlinear dynamic function. Additionally, the presence
of interactions among various sub-systems of the global
process need to be incorporated into the MPC formulation
for satisfying the global performance specifications. In the
context of complex CPS with interactions, fully multivariable
MPC control is no longer feasible due to large scale and
high complexity, while decentralized PID control leads to
poor performance and possibly unstable situations [17]. From
[1] it followed as natural solution was to use the potential
of distributed MPC architectures as well suited alternatives
for control of CPS [18]–[20]. Still, these formulations are
far from being user-friendly as operator guide in an indus-
trial setting, with non-control expert support. The support
for plant operator in terms of tuning MPC algorithms has
been available throughout decades from both academia and
industry pioneers [15], [21]–[24], and recently successfully
revisited on a manifold of simulated and experimental plants
[25]. Complex industrial processes consist of interactions at
various levels and coming from manifold sub-systems. Each
sub-system plays its own role within a global convergence
of the CPS to the desired product specifications. These
specifications are dominated by the requirement for safety
operation (which includes stability), within limit intervals
for the manipulated variables and controlled outputs of the
involved processes. When multi-objective optimization is
required, there exist a manifold of academic solutions with
stability guaranteed [26]–[29]. Some of them have also been
applied to specific industrial settings, although their number
remains limited [30]–[33]. Industry has already proposed and

implemented process control unit tools for multi-objective
optimization with priority constraint for model predictive
control [31], [34].

In this paper we investigate the feasibility of a minimal
model information multivariable process included in a multi-
objective optimization scheme with prioritized objectives for
the Extended Self-Adaptive Prediction Control (EPSAC).
The originality of the proposed methodology is the low-
computational cost implementation; i.e. the sequential prior-
ity evaluation in the algorithm and resuming the optimization
at each sampling time with a single priority active at each
time. The priority evaluation is based on past monitoring in-
formation available at each sampling time of loop execution.
In the traditional MPC, the influence from constraints will
always be considered to obtain the optimal inputs for the
system. For example, the quadratic programming (QP) can
be applied, which considers the constraints in each sampling
time. However, there is not always setpoint changes or large
scale of disturbances during the operation of the system, and
most of time the system operates at a stable operating point
with small scale of disturbances. During this kind of period,
the only thing to be considered is energy, in which the control
effort will always keep the same as the last sampling time.
Hence, no optimization process exists, and there is a huge
reduction in computing time. Our method keeps a minimal
mathematical complexity as to allow ease of implementation
in real-time process operation units like CPS, which are
an integration of interconnections between cybernetic and
physical subsystems through interfaces between software
components and interaction of hardware components con-
nected by wired or wireless communications [35], [36]. The
specific input-output formulation of the model based predic-
tive control used in this study allows to directly plug into
the process variables. The physical processes studied here
are three multivariable systems with significantly different
dynamics, of which two are derived from listed relevant CPS
applications [37]. A comparison between the fully optimized
process performance and computational time is given against
the proposed multi-objective prioritized optimization algo-
rithm.

The paper is organized as follows. The proposed method-
ology is summarized in the next section, followed by a sim-
ulation analysis on three representative CPS (sub-)processes
in section III. A discussion is given in the final section to
pinpoint the main conclusions of this work.

sectionProposed Methodology

A. BASIC MPC INPUT-OUTPUT DATA FORMULATION
Among the many formulations of MPC methodologies, there
is the EPSAC algorithm, developed in late 70s as operator
guide [21], and initially conceived as an algorithm requiring
minimal computational effort, given the available computa-
tional power at that time [38]. Hence, it has been successfully
applied in industry, as summarized in [39]. Hitherto, it was
applied in a manifold of technical and non-technical areas,
while being recently introduced in the pharmaceutical indus-
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try [40]. Stability and feasibility of this algorithm have been
given in [41], [42] and robustness has been discussed in [43].

As most of the data available in industry has the form of
input-output data, the MPC formulation investigated in this
paper will consider to use such raw data [9]. This allows
significant reduction in implementation complexity, since
industrial instrumentation can handle such data format in
standard setup conditions [44], [45]. The prediction model
usually is an approximation as first-order plus dead time by
the operator, or the result of a small amplitude sinusoidal test
to obtain the frequency response slope in a given bandwidth
of the process [9], [46]. Since the system is composed of
multiple input and multiple output variables, these are apriori
selected by the user according to their relevance in the
physical production process. The models developed are a
set of input-output functions characterizing the main process
dynamics and the internal interactions in a minimal number
of parameters. Measurable or predictable disturbances can
be also incorporated using such input-output models [47],
[48]. Next to model development, an uncertainty index can
be defined to indicate how much trust the controller can
have in the predicted future dynamics of the plant. This is
then used in the real-time multi-objective optimization cost
function (e.g. energy based, performance based, time-based,
or combinations thereof) taking into account constraints and
tuned for robustness as a function of this uncertainty degree
[25]. Realignment procedures to fed back the true measured
output of the process as opposed to only using the predicted
output, allow for model adaptation during operation. This
can be achieved using recursive identification algorithms,
or correlation models on how the process dynamics change
during variations in operating conditions.

The basic equation of EPSAC for a single-input single-
output process is given by:

y(t) = x(t)+n(t) (1)

where t is the discrete-time index (will be omitted in the
remainder of the paper for simplicity of notation) and the
output of the process x(t) is predicted based on the past model
output and past process inputs:

x(t) = f [x(t−1),x(t−2), ...,u(t−1),u(t−2), ...] (2)

and a term n(t) containing disturbances, noise and model
mis-match. Notice that these functions depend on past inputs
and past model outputs and may have any structure: linear,
nonlinear, neural networks, etc. There exists also the variant
where the past measured outputs of the process are used
instead of past model outputs, and this is known as the
realigned process model scheme; for details see [39].

The term in n(t) denotes the disturbance and includes
errors effects, modelled by coloured noise:

n(t) =
C(q−1)

D(q−1)
e(t) (3)

with e(t) white noise signal and q−1 the shift operator. The
future response in linear MPC is the cumulative result of two
effects:

y(t + k|t) = ybase(t + k|t)+ yopt(t + k|t) (4)

where k is the sample index. The notation (t + k|t) de-
notes here the future values, postulated at time t. The base
response ybase(t + k|t) can be calculated with the process
and noise model for a generic control scenario ubase. For
linear systems, the choice for these values is not important
(superposition principle applies); for nonlinear systems, their
choice is recommended as being the last input value to the
process u(t − 1). The second component, yopt , is the effect
of optimizing the future control actions δu(t|t), ...,δu(t +
Nu− 1|t) defined as δu(t + k|t) = u(t + k|t)− ubase(t + k|t),
with u(t + k|t) the optimal control input. The controller has
Nc degrees of freedom, defined by the control horizon. The
postulated optimal output can be calculated using the step
response coefficients matrix G as defined in [39]. For linear,
unconstrained systems, this matrix can be calculated only
once from the process model and kept constant. However,
in presence of (varying) constraints, nonlinear dynamics or
varying process parameters, it is advisable to determine the
content of G at every sampling time from the real process.
The vector yopt has the following matrix form:


yopt (t +N1 |t)

yopt (t +N1 +1|t)
...
...

yopt (t +N2 |t)

=


hN1

hN1−1 ... gN1−Nc+1
hN1+1 hN1

... ...

... ... ... ...

... ... ... ...
hN2

hN2−1 ... gN2−Nc+1




δu(t|t)
δu(t +1|t)

...

...
δu(t +Nc −1|t)

 (5)

In this equation, yopt(t+k|t) denotes the part in the predicted
process output y(t + k|t) coming from optimizing control
action δu(t + k|t). The matrix relating these two variables
is the step response g and impulse response h coefficients,
hence the G-matrix.

The cumulative response (4) of optimal and base response
deliver the key equation for unconstrained EPSAC:

Y = Ȳ+G ·U (6)

with Y = [y(t +N1|t)...y(t +N2|t)]T , U = [δu(t|t), ...,δu(t +
Nc−1|t)]T , Y = [ybase(t +N1|t)...ybase(t +N2|t)]T and G ·U
calculated from (5); notice that this equation, in the special
case of Nc = 1 reduces to a scalar and it delivers the explicit
solution of the first step in the flowchart given in Fig. 1. In
order to find the optimal part δu, the following cost functions
are applied according to different working state:

If safety condition is not satisfied, the objective function
for EPSAC is defined as:

J =
N2
∑

k=N1

[r(t + k|t)− y(t + k|t)]2 +λ
Nc−1

∑
k=0

[δu(t + k|t)]2

Subject to : umin ≤ u(t)≤ umax
−ymin + ε ≤ y(t)≤ ymax− ε

(7)
where, λ is the weighting factor, r is the reference to fol-
low, N1 and N2 are the minimum and maximum prediction
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horizons. In this case, the future control actions u(t) can be
obtained by minimizing the cost function given in (7).

If safety condition is satisfied, but the tracking error is out
of tolerance intervals, the objective function for EPSAC is
defined as:

J =
N2
∑

k=N1

[r(t + k|t)− y(t + k|t)]2 (8)

In this case no constraints are necessary. Therefore the opti-
mal δu can be obtained with matrix calculation.

U∗ = [GTG]−1GT[R−Y] (9)

where, U∗ is the optimal sequence of δu and R = [r(t +
N1|t)...r(t +N2|t)]T .

If safety and tracking error conditions are both satisfied,
the objective function for EPSAC is defined as:

J =
Nc−1

∑
k=0

[δu(t + k|t)]2 (10)

In this case no constraints are necessary and δu only needs
to be kept as 0.

B. MULTI-OBJECTIVE OPTIMIZATION WITH PRIORITIES
At this point, everything is ready for the next step, i.e.
the prioritized multi-objective optimization (MO) algorithm
from Fig. 1. This is a simplified approach compared to those
proposed in literature [28], [29], [33], [49]–[51]. MO algo-
rithms with artificial intelligence data processing methods
such as in [52], [53] can deal with great amount of data.
By contrast, nonlinear functions can accommodate some of
the exotic dynamics reducing the size of the problem but
increasing numerical complexity in solving the MO problem
[34]. Recent implementable solutions for existing infrastruc-
ture are possible in a portable environment [54].

Consider the MO flowchart depicted in Fig. 1. As with any
process, the safety constraint is set as a hard constraint, given
limit values intervals for all input-output variables it follows.
• check safety limit: is it fulfilled? when this condition

is not satisfied, a pre-set of (suboptimal) safety values
are given to the process operation units. This step is
implemented as proposed in [31]. Consequently, the
loop stops optimization and goes to the next sampling
time;

• if the safety condition is fulfilled, then the next objective
with next level priority is evaluated; i.e. if the output
is within the tolerance intervals. If yes, then the opti-
mization evaluates the next priority level, i.e. minimize
control effort or energy.

• at every sampling time, the set of objectives are evalu-
ated/executed in order of their priority;

• once an objective is optimized, the loop goes to the next
sampling interval and repeats the procedure.

In the MOMPC, the safety is guaranteed by presenting
the system variables are in the interval of the corresponding
ranges, for example the upper bound and lower bound. The

tracking performance is indicated with the Integrate Relative
Error. And the energy is indicated with the control effort. For
example, in the steam/water loop the control efforts are about
the opening of valves. Due to that the hydraulic cylinder is
linked with the valve in the steam/water loop, the frequent
changes in valves mean the frequent changes in hydraulic
cylinder, which will result in a large amount of energy cost.
In this sense, the energy will be saved if there is no change in
the control effort.

The performance and effort are soft constraints, i.e. they
are tailored to fit the objective at hand and not to minimize
a specific cost goal. This allows a much faster computational
convergence while process operation remains active within
safety bounds. The sequential (prioritized) flowchart is iter-
ated at every sampling period and the computational time
within each iteration is recorded.

C. DEALING WITH DELAY AND NONLINEAR DYNAMICS
As the prediction step is in form of (6) and G-matrix can
be time-variable, it implies flexibility to modeling or to
uncertainty [25]. Such simple adaptation property to all types
of model (linear or nonlinear processes) has been mentioned
in a previous adaptive control work; suggesting that an instant
input-output modeling with a variable gain can express all
model dynamics and significantly reduce complexity in mod-
eling [55], [56]. As long as adaptation gain is time invariant,
i.e. not constant and updated at each iteration, it can express
instant input-output relations of all real systems whether or
not they are linear or not. This property was used in an
adaptive gradient descent control method easy to implement
and low-computational complexity [55], [56]. The study
demonstrated that it works well for stable plant functions. In
a similar manner we obtain the model flexibility by updating
G-matrix at every sampling time instead of consideration of
a constant G-matrix.

Hence, for nonlinear systems, linearization of the process
model is not necessary, in the condition that the G-matrix is
updated at every sampling time in relations (5)-(6). However,
the step input applied to the real process to obtain this G-
matrix coefficients requires an amplitude in the region of the
expected steady state values of the controller output. If this
is not the case, the information is not useful to the controller
as due to nonlinear dynamics, if a large input value is used,
then the G matrix has no longer information upon the specific
operation point currently used. See further details in [39].
A schematic flowchart is given in the blue rectangle area
denoted EPSAC in Fig. 3.

The complexity of the prediction procedure is increasing
for systems with variable time delay than for those with
constant time delay. This occurs frequently in CPS as part
of the control over communication networks problem. For a
system with time delay, changes in the controlled variable
(i.e. in the output of the process) are only visible once the
time delay has passed. Therefore, in order to find the optimal
control sequence only output predictions occurring after the
time delay should be taken in the cost function. This means
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FIGURE 1: Flowchart of the sequential prioritized optimization scheme

FIGURE 2: Graphical abstract of the optimization concept and methodology
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that N1 = 1+delay. For systems with constant time delay this
is easy to implement. Then the maximum prediction horizon
N2 can be set to an appropriate value that ensures a stable and
robust response and the control loop can be operated with
fixed controller parameters.

However, for systems with a variable time delay, such
as those presented in [57]–[59], the values of N1, N2 and
the size of the matrices used in the MPC formulation vary
with the number of dead-time samples. To avoid increased
matrix computation times and other implementation pitfalls,
the structure of the process model is revised to design a
predictive controller with constant design parameters. The
generic principle valid for both SISO and MIMO processes
is illustrated in Fig. 3 [58], [60], [61].

From figure 3, we can observe that at each sampling
instant, the delay-free model output x(t), resulting from the
process dynamics only, is calculated using the stored values
[x(t − 1), ...,u(t − 1), ...]. At the same sampling instant, the
variable time delay is estimated/computed. Once the delay
value in samples delay = Nd is known, x(t − Nd) can be
selected out of the stored x-values, such that z(t) = x(t−Nd).
In this way, the prediction procedure is thoroughly simplified,
resulting in a Smith predictor-like scheme, with separation of
the delay-free part of the process and the varying time delay
on the other hand. In such approach the minimum prediction
horizon N1 is no longer varying and is equal to one sample
and all other optimization variables (matrices and vectors)
containing this value no longer vary in size.

II. SIMULATION ANALYSIS
A. EXAMPLE 1: EMERGENCY DRONE PATH PLANNING
This example is a part of a larger system depicted in Fig. 4,
i.e. emergency drone activation for emergency medicine [62],
[63]. It follows the more generic concept of next-generation
air transportation systems featured in [1]. The purpose is to
bring the drone in a safe manner and through the shortest
path to the location of a prospective victim (B) to assist in
heart resuscitation before the ground ambulance arrives from
its original location (A). As the system is extremely fast,
low computational times of multi-objective optimization is
a highly attractive feature.

Essentially, the drone is a multivariable and highly non-
linear system with unstable open loop dynamic features [64].
However, due to the embedded attitude controller, it can be
considered as a linear time invariant (LTI) system [65]. The
linear models for each movement have been obtained using
the prediction error method with a pseudo-random binary
sequence (PRBS) excitation, as reported in [66], [67]. The
over-simplified quadrotor model used for both simulation and
prediction in the MPC scheme are:

Hx(s) =
x(s)

V x
in(s)

= 7.27
s(1.05s+1)e−0.1s

Hy(s) =
y(s)

V y
in(s)

= 7.27
s(1.05s+1)e−0.1s

Haltitude(s) =
z(s)

V z
in(s)

= 0.72
s(0.23s+1)e−0.1s

Hyaw(s) =
ψout (s)
V ψ

in (s)
= 2.94

s(0.031s+1)e−0.1s

(11)

where [x,y,z,ψout ] are the system outputs for x , y ,z positions
(m) and yaw angle (rad). The system has four manipu-
lated variables [V x

in,V
y
in,V

z
in,V

ψ

in ] which correspond to linear
velocity commands encoded under a specific protocol for
the drone. These high-level control signals are normalized
between [−1,1] and represent the percentages between [0−
100]% of the configured values for the respective movements
of the quadrotor. The controller parameters for MO-MPC and
MPC are given in Table 1.

TABLE 1: Controller Parameters

Con-
trol

N1
Samples

N2
Samples

Nc
Samples

Ts(s) Noise
Filter:C/D

x,y 3 12 1
0.066 C(q−1)

(1−q−1)A(q−1)
z 3 12 1

yaw 3 6 1

The path followed by the AR.Drone during a certain task is
shown in Fig. 5. The task consists in sequentially following
the waypoints, starting at point 0 and ending at 6. On the
other hand, the tracking control performance for the positions
x,y,z and angle / orientation (yaw) of the quad-rotor are
shown in Fig. 6 to Fig. 8.

Finally, the computational time, tracking error and dis-
turbance rejection for both controllers with different control
horizon values is shown in Fig. 9. It is important to emphasize
that this plot was obtained during the path-follow between the
points 0 to 1.

Fig. 9 indicates that the proposed method has a shorter
computational time than the classical MPC approach, for all
control horizon values. On the other hand, it is important to
emphasize that the trade-off value between the computational
time in favour of a better tracking error or disturbance re-
jection in the MPC requires a value of 5 < Nc < 6. While,
the MO-MPC this trade-off value is 1 < Nc < 2, which
indicates that the computational complexity of classical MPC
is higher than the proposed MO-MPC for this system. The
performance indexes are summarized in the Table 2, with
definitions in (12). It can be observed a reduction of 10−25%
in the overall cost for the proposed MO-MPC algorithm.



IAEi =
Ns−1

∑
k=0
|ri(k)− yi(k)| (i = 1,2, · · · ,4)

ISEi =
Ns−1

∑
k=0

(ri(k)− yi(k))2 (i = 1,2, · · · ,4)

ISUi =
Ns−1

∑
k=0

(ui(k)−ussi(k))2 (i = 1,2, · · · ,4)

(12)

B. EXAMPLE 2: STEAM-WATER LOOP MANAGEMENT
IN LARGE SHIPS
The second example is a highly complex system with high
degree of interaction among the sub-systems (five). These
sub-processes are common in chemical, pulp, paper, petro-
chemical and steel industry. In this particular example, the
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FIGURE 3: Smith-Predictor like EPSAC-MPC formulation for processes with variable time delays (SISO) or processes with
multiple time delay functions (MIMO).

FIGURE 4: Conceptual representation of the emergency drone context for rescue assistance. This example is part of a more
generic concept: next-generation air transportation systems.
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FIGURE 5: 3D Trajectory tracking of the AR Drone system

FIGURE 6: Trajectory tracking for x,y position

FIGURE 7: Trajectory tracking for z position

method is applied to a steam/water loop with five inputs
and five outputs as detailed in [68] and depicted in Fig. 10.
The system is highly nonlinear [69] but a simplified nominal
model is given by the set of equations (13), in which the
input vector u = [u1,u2,u3,u4,u5] contains the positions of
the valves that control the flow rates of feedwater to the
drum (u1), exhaust steam from the exhaust manifold (u2),
exhaust steam to the deaerator (u3), water from the deaerator
(u4) and water to the condenser (u5); the output vector
y = [y1,y2,y3,y4,y5] contains the values of the water level in
drum (y1), pressure in exhaust manifold (y2), water level (y3)

FIGURE 8: Trajectory tracking for yaw position

TABLE 2: Performance indexes for the controllers

Control Index MO-MPC MPC

x IAE 169.65 176.76
ISU 42.27 37.96
ISE 8.2237 9.08

y IAE 167.65 174.76
ISU 42.27 37.96
ISE 2.94 3.27

z IAE 146.29 185.72
ISU 125.54 97.13
ISE 2.12 3.13

yaw IAE 18.84 23.45
ISU 8.43 6.20
ISE 1.95 2.60

Total IAE 125.60 140.17
ISU 54.62 44.81
ISE 3.81 4.52

and pressure (y4) in deaerator, and water level of condenser
(y5), respectively.

y1

y2
...

y5




G11 G12 · · · G15

G21 G22 · · · G25
...

...
. . .

...

G51 G52 · · · G55




u1

u2
...

u5

 (13)

where:
G11(s)=

0.0000987
(s+0.1131)(s+0.0085+0.032 j)(s+0.0085−0.032 j)

G22(s) =
0.7254

(s+1.2497)(s+0.0223)

G23(s) =
−0.5

(s+1.9747)(s+0.0253)

G33(s) =
0.0132

(s+0.0265+0.0244 j)(s+0.0265−0.0244 j)

G34(s) =
−0.009

(s+0.0997)(s+0.0411

G41(s) =
−0.0008

(s+0.012+0.126 j)(s+0.012−0.126 j)

G44(s) =
0.0005152

(s+0.012+0.038 j)(s+0.012−0.038 j)

G54(s) =
−0.00015

(s+0.0175+0.0179 j)(s+0.0175−0.0179 j)
8 VOLUME 4, 2016
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(a)

(b)

FIGURE 9: Computational time, absolute integral error (IAE) and integral squared error (ISE) for different control horizon
values (a) MO-MPC (top figures) and (b) MPC (bottom figures).

G55(s) =
0.00147

(s+0.025+0.0654 j)(s+0.025−0.0654 j)

G12 = G13 = · · ·= G53 = 0.

The ranges and operating points of the output variables are
listed in Table 3.

TABLE 3: Parameters used in steam/water loop operation

Output variables Operating points Range Units
Drum water level 1.79 [1.39-2.19] m

Exhaust manifold pressure 100.03 [87.03-133.8] MPa
Deaerator pressure 30 [24.9-43.86] KPa

Deaerator water level 0.7 [0.489-0.882] m
Condenser water level 0.5 [0.32-0.63] m

The rates and amplitudes of the five manipulated inputs are
constrained to:

−0.007≤ du1

dt
≤ 0.007 0≤ u1 ≤ 1

−0.01≤ du2

dt
≤ 0.01 0≤ u2 ≤ 1

−0.01≤ du3

dt
≤ 0.01 0≤ u3 ≤ 1

−0.007≤ du4

dt
≤ 0.007 0≤ u4 ≤ 1

−0.007≤ du5

dt
≤ 0.007 0≤ u5 ≤ 1

(14)

The input units are normalized as percentage values of the
valve opening (i.e., 0 represents a fully closed valve, and

1 is completely opened). Additionally, the input rates are
measured in percentage per second.

We compare performance of MO-MPC, distributed MPC
and centralized MPC. In particular for this process, a dis-
tributed MO-MPC as proposed in [18] is applied to the
steam/water loop, in which the outputs of the controller
are calculated individually, as through a communication net-
work, the interactions of the system take place. The controller
tuning parameters are summarized in Table 4. The tuning of
the parameters followed the recommendations from [25].

TABLE 4: Controller Parameters

Con-
trol

N1
Samples

N2
Samples

Nc
Samples

Ts(s) Noise
Filter:C/D

Loop1 1 20 1

5 C(q−1)

(1−q−1)A(q−1)

Loop2 1 15 1
Loop3 1 15 1
Loop4 1 20 1
Loop5 1 20 1

The simulation performance of the system for all five loops
for reference tracking are shown in Fig. 11 and Fig. 12, de-
picting controlled and manipulated variables and comparing
all three control strategies.

A significant difference has been obtained among the two
methods, as the computational time for MO-MPC is 2.8085
seconds, while for distributed MPC is 17.7620 and for cen-
tralized MPC is 29.3658 seconds. The indexes about tracking
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FIGURE 10: Schematic representation of the steam/water loop in large ships and the interaction between the various sub-
systems; see text for variable notation.

error and control effort are listed in Table 5 with definitions
in (15).


IAREi =

Ns−1

∑
k=0
|ri(k)− yi(k)|/ri(k) (i = 1,2, · · · ,5)

ISUi =
Ns−1

∑
k=0

(ui(k)−ussi(k))2 (i = 1,2, · · · ,5)

(15)
The simulation results suggest that a significant com-

putational effort can be saved, without much trade-off for
performance and control effort. Despite the high complexity
of the interaction in this system, the MO-MPC method proves
to be a suitable control strategy.

C. EXAMPLE 3: SEDATION-HEMODYNAMIC
REGULATION DURING GENERAL ANESTHESIA

This example is again a relevant choice as discussed in [1],
within the biomedical and healthcare systems. The selected
process is a regulatory problem for drug management in gen-
eral anesthesia, with two major systems (counter) interacting
in terms of clinical effects: sedation and hemodynamic state.
The regulatory paradigm has been detailed in [59], [70]–[72].
The conceptual representation of the various synergic and
antagonistic interactions between sedation and hemodynamic
systems is given in Fig. 13.

The following is a description of the model parameters and
the references from where their values have been extracted or
adapted to mimic the clinical effect.

The PK part of the hypnosis model is a transfer function

model of the form

HP(s) =
K(s+ z1)(s+ z2)

(s+ p1)(s+ p2)(s+ p3)(s+ p4)
(16)

with parameters z1 = −10;z2 = −15; p1 = −1; p2 =
−0.8; p3 =−0.02; p4 =−0.5 and K =−0.005. The hypnotic
drug input of this model is Propofol (mg/kg*min) and the
output is effect site concentration CeP (mg/ml). The PD part
of the hypnosis model is a nonlinear Hill curve in the form

E f f ect =
CePγP

CePγP +C50PγP
(17)

where CeP is the output of the PK model from (16), C50P
is the concentration at half-effect and γP denotes the drug
resistance/sensitivity of the patient. For this simulator, the
values C50P = 2.2 and γP = 2. The PK part of the analgesia
model is a transfer function model of the form as in (16) with
parameters z1 = −15;z2 = −5; p1 = −2; p2 = −1.5; p3 =
−0.01; p4 =−0.75 and K =−0.0025. The opioid drug input
of this model is Remifentanil (mg/kg*min) and the output
is effect site concentration CeR (mg/ml). The PD part of
the hypnosis model is a nonlinear Hill curve in the form of
(17), with values C50R = 13.7 and γR = 2.4 have been used.
The combined synergic effect of Propofol and Remifentanil
on the hypnotic output (Bispectral Index in this case) has
been taken into account in a simplified model proposed in
[73]. There is evidence to support the claim that Remifentanil
affects negatively mean arterial pressure (MAP) and a model
has been approximated from [74]:

MAPRemi =
−1

0.81∗15s+0.81
(18)
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(a)

(b)

(c)

FIGURE 11: Responses of the steam/water loop under the MODIMPC, distributed (DIMPC) and centralized (CMPC)
controllers (a) drum water level control loop, (b) exhaust manifold pressure control loop, (c) deaerator pressure control loop.
Left column depicts the controlled variables (reference tracking test), right column gives the manipulated variables.

TABLE 5: Performance indexes for the compared controllers

Index Controller Loop1 Loop2 Loop3 Loop4 Loop5

IARE MO-MPC 1.3713 2.1597 2.1788 1.9938 3.6409
DiMPC 1.0192 1.8132 1.9317 1.5887 3.4300

MPC 1.1998 1.8919 1.9661 1.8586 3.3456

ISU MO-MPC 0.0216 0.5152 0.0941 0.1449 1.6413
DiMPC 0.02412 0.4853 0.09782 0.1492 1.6159

MPC 0.0237 0.4783 0.0967 0.1413 1.6435

followed by a PD model with γRMAP = 4.5 and C50RMAP =
17.

The hemodynamic model has been taken from [75] and has
two inputs: Dopamine and Sodium Nitroprusside (SNP), and
two outputs: Cardiac Output (CO) and MAP:[ 5

300s+1 e−60s 12
150s+1 e−50s

3
40s+1 e−60s −15

40s+1 e−50s

]
(19)

This sub-process is a highly challenging one in terms of
control, as the time delay is significantly high over the time
constant of the process and the system has a large interaction
degree. As the cardiac output tends to increase, the hypnotic
state tends to increase towards consciousness values, as the
drug is cleared at faster rates from the organisms. This
antagonistic situation is difficult to maintain in clinical onset.
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(a)

(b)

FIGURE 12: Responses of the steam/water loop the MODIMPC, distributed (DIMPC) and centralized (CMPC) controllers
(a) deaerator water level control loop and (b) condenser water level control loop. Left column depicts the controlled variables
(reference tracking test), right column gives the manipulated variables.

Sedation tends to lower MAP and CO, while these need
to be maintained at a safe interval value for the patient to
remain in stable vital conditions. The controller parameters
for both cases have been a control horizon Nc = 1, delay
N1 = 1 and prediction horizon of N2 = 20 samples, with a
sampling period of 5 seconds. The special scheme for delay
compensation has been used as explained in previous section
to accommodate the delay values in the hemodynamic model.
The results of the comparison are given in Fig. 14 for the
sedation state of the patient and in Fig. 15 for the cardiac
output. The results indicate the MO-MPC scheme has lower
performance compared to the MPC scheme, but manages
to remain within the desired tolerance intervals. The com-
putational time for MO-MPC was 1.459 seconds, while for
centralized MPC was 2.78 seconds and for distributed MPC
was 2.09 seconds.

III. DISCUSSION
The simplified multi-objective approach for optimization of
MPC for multivariable systems presented in this paper has
the benefit of low computational burden and a relatively
easy to implement flow of execution. The results obtained
in simulations of representative CPS suggest the method is
suitable for control of highly interactive systems with con-
straints. As safety is taken into account, it implies a minimal
stability present in the loop and this is observable from the
results. The study has been performed under ideal process
dynamic conditions, i.e. no modelling errors were assumed.

In this way, the differences observed between MO-MPC and
distributed and centralized MPC algorithms are solely due
to the differences in the implementation of the optimization
flow diagrams. Analysis in presence of higher model mis-
match indicates a performance degradation for MO-MPC, as
expected.

The proposed sequential minimal MO-MPC method is ap-
plicable to processes which do not require precision control
or high control accuracy. Such processes are mainly observed
in mechanical system manufacturing and mechatronic appli-
cations, and heterogeneous processes such as cyber physical
systems. Moreover, process control for product manufactur-
ing, steel, chemical, food and other such related industrial
applications always indicates tolerance intervals for perfor-
mance specifications and requires that most importantly,
safety limits are kept at all times. Energy saving by means of
penalizing control action variability is an important feature
but in this study has been used with lowest priority; we have
presented a separate study on a windmill park for indicating
the further potential of using multiobjective optimization
with various timelapse priorities [29]. One may consider to
switch priorities between performance (i.e. product specifi-
cation) and consumption (i.e. control effort saving). In this
case, the MO-MPC results in a conservative performance,
i.e. a robust control which may be relevant in case of high
model-plant mis-match.

Finally, from all relevant features of CPS we have suc-
cessfully addressed most of them, in what concerns hetero-
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FIGURE 13: Conceptual representation of the interactions present in the sedation and hemodynamic systems during general
anesthesia.

FIGURE 14: Hypnosis induction phase for MO-MPC, MPC
and DIMPC optimization schemes.

FIGURE 15: Cardiac output regulation during the induc-
tion phase for MO-MPC, MPC and DIMPC optimization
schemes.

geneity of the sub-systems, strong interactions, distributed
control and multi-objective optimization requirements. The
examples presented in this paper are versatile and may be
used as a basis for other related applications.

As a further challenge related to CPS, it would be inter-
esting to investigate the effect of variable time delays with
the proposed scheme against a fully compensated centralized
MPC scheme.
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