AND ARCHITECTURE

FACULTY OF ENGINEERING

DEPARTMENT OF MATERIALS, TEXTILES AND CHEMICAL ENGINEERING

Jeroen Poissonnier¹, Michiel Pelckmans², Frederik Van Waes³, Kristof Moonen³, Bert F. Sels², Joris W. Thybaut¹*, Guy B. Marin¹ ³ Eastman Chemical Company, B-9052 Gent ¹ Laboratory for Chemical Technology, Ghent University, B-9052 Gent ² Department M2S, KU Leuven, B-3001 Heverlee

KINETICS OF THE REDUCTIVE AMINOLYSIS OF GLUCOSE WITH

DIMETHYLAMINE BELOW 400 K

$$r_{2} = \left(k_{2}\theta_{0,\text{hemic}_{6}} - k_{-2}\theta_{0,\text{imC}_{6}^{+}}a_{H_{2}0}\right)W_{\text{cat}} \qquad r_{6} = \left(k_{6}a_{\text{DMA}}a_{e_{1}}\right)$$
$$r_{3} = \left(k_{3}\theta_{0,\text{imC}_{6}^{+}} - k_{-3}\theta_{0,\text{enamC}_{6}}\right)W_{\text{cat}} \qquad -k_{-6}a_{\text{DMA}}a_{C_{4}H_{9}}$$
$$r_{4} = k_{4}\theta_{0,\text{imC}_{6}^{+}}W_{\text{cat}} \qquad r_{7} = k_{7}a_{\text{glucose}}\varepsilon$$

4000

3000

KINETIC MODEL

Estimated average rate coefficient				Estimated activation energy			
					(kJ mol ⁻¹		hial
k _{Tave,1}	6.3 10 ⁻¹⁰	± 0.5 10 ⁻¹⁰	m ⁶ L mol ⁻² s ⁻¹	E _{a,1}	78.1	± 7.2	E ₋
k _{Tave,2}	2.110 ⁴	± 0.6 10 ⁴	mol kg _{cat} ⁻¹ s ⁻¹	E _{a,2}	49.9	± 4.9	
k _{Tave,3}	7.0 10 ⁻²	± 1.3 10 ⁻²	mol kg _{cat} ⁻¹ s ⁻¹	E _{a,3}	47.5	± 7.9	too
k _{Tave,4}	3.9 10 ⁻¹	± 0.7 10 ⁻¹	mol kg _{cat} ⁻¹ s ⁻¹	E _{a,4}	59.9	± 9.9	
k _{Tave,5}	5.0 10 ¹	± 0.7 10 ¹	mol kg _{cat} ⁻¹ s ⁻¹	E _{a,5}	8.8	± 2.5	
k _{Tave,6}	8.9 10 ⁻⁴	± 1.2 10 ⁻⁴	m ³ mol ⁻¹ s ⁻¹	E _{a.6}	1.6	± 0.3	С С
k _{Tave,7}	2.8 10 ⁻³	± 0.2 10 ⁻³	S⁻¹	E _{a,7}	141.7	± 13.0	Ĕ
Estimated average adsorption equilibrium				Estimated adsorption			
coefficient (m ³ , mol ⁻¹)				enthalpy (kJ mol ⁻¹)			
$K_{Tave,C6}$ 5.7 10 ⁻⁵ ± 1.0 10 ⁻⁵ -ΔH _{ads,C6} -30.3					3 ± 9.1		

 $-\Delta H_{ads,C4}$

higher temperatures favor retro-aldol cleavage and thus DMAE and TMEDA formation $E_{a,4}$ significantly lower than typical retro-aldol ~ 140 kJ mol ⁻¹ \rightarrow retro-aldol below 400K	(low)
selectivity tuning between DMAE and TMEDA not possible by varying the temperature	

high temperatures result in almost exclusively degradation products

CONCLUSIONS

renewable and **safe** production route for **DMAE** and **TMEDA** without excessive degradation

-13.7 ± 1.9

activation energy for retro-aldol (E_{a4}) is significantly reduced by the presence of a nitrogen atom \rightarrow retro-aldol occurs at temperatures below 400 K statistically significant kinetic model manages to simulate and explain experimentally observed trends

6.7 10⁻²

K_{Tave,C4}

 $\pm 0.6 \, 10^{-2}$

ACKNOWLEDGMENTS

This work was supported by Flanders Innovation & Entrepreneurship VLAIO (IWT) via the intermediary of FISCH/CATALISTI, contract 145020 – Carboleum. *Corresponding author: Joris.Thybaut@UGent.be

