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REACTION NETWORK: 3 TYPES OF CATALYSIS

statistically significant model: Ftest = 160 > Ftab = 2.79

Cellulose pulp as a renewable resource for the production of aminoalcohols
(N,N-dimethylaminoethanol, DMAE) and diamines
(N,N,N’,N’-tetramethylethylenediamine, TMEDA). These chemicals are currently made
from ethylene oxide and dichloroethane.

Specific research goal: Development of a competitive , greener and inherently safe
production process for DMAE and TMEDA by means of an experimental and
kinetic modeling investigation of the reductive aminolysis of glucose, as a model
component, with DMA as aminating agent
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homogeneous base catalysis heterogeneous acid catalysis ◊ heterogeneous metal catalysis *
1. amination step

6. keto-enol tautomerism

2. iminium ion formation

3. enamine rearrangement

4. retro-aldol

5. enamine hydrogenation

° 7. susceptible to homogeneous degradation

Wcat 2.9 – 7.4 gcat

T 383 – 398 K
P 6.0 – 7.5 MPa

nglucose
0 0.2 – 0.4 mol

nH2/nglucose
0 4.7 – 9.6 mol mol-1

nDMA/nglucose
0 11.9 – 23.6 mol mol-1

Fglucose 5 - 30 10-5 mol s-1

Glucose concentration 500 gglucose lH2O
-1

fed-batch reactor

EXPERIMENTAL INVESTIGATION

Estimated average rate coefficient Estimated activation energy 
( kJ mol-1)

kTave,1 6.3 10-10 ± 0.5 10-10 m6
L mol-2 s-1 Ea,1 78.1 ± 7.2

kTave,2 2.1 104 ± 0.6 104 mol kgcat
-1 s-1 Ea,2 49.9 ± 4.9

kTave,3 7.0 10-2 ± 1.3 10-2 mol kgcat
-1 s-1 Ea,3 47.5 ± 7.9

kTave,4 3.9 10-1 ± 0.7 10-1 mol kgcat
-1 s-1 Ea,4 59.9 ± 9.9

kTave,5 5.0 101 ± 0.7 101 mol kgcat
-1 s-1 Ea,5 8.8 ± 2.5

kTave,6 8.9 10-4 ± 1.2 10-4 m3
L mol-1 s-1 Ea,6 1.6 ± 0.3

kTave,7 2.8 10-3 ± 0.2 10-3 s-1 Ea,7 141.7 ± 13.0

Estimated average adsorption equilibrium 
coefficient (m3

L mol-1)
Estimated adsorption 
enthalpy ( kJ mol-1)

KTave,C6 5.7 10-5 ± 1.0 10-5 -ΔHads,C6 -30.3 ± 9.1
KTave,C4 6.7 10-2 ± 0.6 10-2 -ΔHads,C4 -13.7 ± 1.9
KTave,C2 7.0 10-3 ± 0.3 10-3 -ΔHads,C2 -26.0 ± 4.6
KTave,H2 1.1 ± 0.3 -ΔHads,H2 -2.9 ± 0.3

higher temperatures favor retro-aldol cleavage and thus DMAE and TMEDA formation
Ea,4 significantly lower than typical retro-aldol ~ 140 kJ mol-1

 retro-aldol below 400K

too high temperatures result in almost exclusively degradation products

selectivity tuning between DMAE and TMEDA not possible by varying the temperature

T = 398 K nglucose
0 = 0.4 mol

ptot = 7.5 MPa

T = 383 K

ptot = 6.0 MPa

nglucose
0 = 0.2 mol
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r1 = k1aDMA
2 aglucose − k−1aDMAahemiC6 εV

r2 = k2θ◊,hemiC6 − k−2θ◊,imC6
+aH2O Wcat

r3 = k3θ◊,imC6
+ − k−3θ◊,enamC6 Wcat

r4 = k4θ◊,imC6
+Wcat

r5 = k5θ◊,enamC6θ∗,H
2 Wcat

r6 = (k6aDMAaenamC2

r7 = k7aglucoseεV

− k−6aDMAaC4H9NO)εV

narrow range of operating conditions possible, given the complex
chemistry, resulting in an unstrained dataset of 7 experiments and
36 data points

renewable and safe production route for DMAE and TMEDA without excessive degradation
activation energy for retro-aldol (Ea,4) is significantly reduced by the presence of a nitrogen atom retro-aldol occurs at temperatures below 400 K
statistically significant kinetic model manages to simulate and explain experimentally observed trends
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