MEDICAL DEVICE APPLICATIONS OF SILICON AND SILICON NITRIDE INTEGRATED PHOTONICS

Roel Baets

SPIE Optics and Optoelectronics, Prague, April 2019

WHAT IS SILICON PHOTONICS?

The implementation of high density photonic integrated circuits by means of CMOS process technology in a CMOS fab

Pictures, courtesy of imec

WHY SILICON PHOTONICS

- High index contrast \Rightarrow very compact PICs
- CMOS technology ⇒ nm-precision, high yield, existing fabs, low cost in volume
- High performance passive devices
- High bitrate Ge photodetectors
- High bitrate modulators

unec

GHENT

UNIVERSITY

- Wafer-level automated testing
- Hierarchical set of design tools
- Light source integration (hybrid/monolithic?)
- Integration with electronics (hybrid/monolithic?)

THE PAST 5-10 YEARS: STUNNING INDUSTRIAL DEVELOPMENT IN SILICON PHOTONICS FOR TELECOM AND DATACOM

- active optical cables (eg PSM4: 4x28 Gb/s on parallel fibers)
- WDM transceivers (eg 4 WDM channels x 25 Gb/s on single fiber) •
- coherent receiver (eg 100 Gb/s PM-QPSK) •
- fiber-to-the-home bidirectional transceiver (eg 12 x 2.5 Gb/s) •
- monolithic receiver (eg 16x20Gb/s) •

SILICON PHOTONICS: EXTENDING THE WAVELENGTH RANGE

WITHOUT LEAVING THE CMOS FAB

MEDICINE AND LIFE SCIENCE

Enormous challenges:

- Ageing society
- Keep ever more performant health care affordable for society
- More focus on preventive medicine

Technology can help:

- Low-cost personal, bed-side and point-of-care medical devices
- Minimally invasive devices (cathetered approaches, implants, electronic pills)
- Rapid diagnostics (immuno-assays based on disposable use-once chips)

ASSETS OF SILICON PHOTONICS FOR MEDICINE AND LIFE SCIENCE

Low cost (even in moderate volume)

Very compact devices

Can address needs from visible to mid IR

Mature supply chain

MAIN APPLICATIONS OF SILICON PHOTONICS IN MEDICINE

Low cost matters

IIII GHENT

UNIVERSITY

unec

THREE APPLICATION CASES

Continuous glucose monitoring

Cardiovascular monitoring

In-vitro diagnostics

DIABETES IS THE 21ST CENTURY HEALTH CHALLENGE

GHENT

UNIVERSITY

unec

http://www.idf.org/diabetesatlas/update-2014

11

CONTINUOUS GLUCOSE MONITORING (CGM) HAS PROVEN TO IMPROVE GLYCEMIC CONTROL OF DIABETES PATIENTS

CGM systems show positive health impact *

- lower average blood glucose levels
- decrease of hypoglycemic frequency

 $\widehat{\blacksquare}$

GHENT

UNIVERSITY

unec

^{*} Liebl A, Henrichs HR, Heinemann L, et al. Continuous glucose monitoring: evidence and consensus statement for clinical use. J Diabetes Sci Technol . 2013;7:500-519

12

GLUCOSE ABSORPTION SPECTROSCOPY

GHENT

UNIVERSITY

unec

For glucose sensing in humans (3-15 mM): Largest change in transmission is 0.5 % Required sensitivity : 0.02%

PROOF-OF-CONCEPT DEMO OF GLUCOSE SENSING IN THE LAB

GLUCOSE ABSORPTION SPECTROSCOPY: PROOF-OF-CONCEPT

Use measured spectrum of 36 mM solution as the basic vector

CGM ENABLED BY SILICON PHOTONICS

THREE APPLICATION CASES

Continuous glucose monitoring

In-vitro diagnostics

CARDIOVASCULAR DISEASES

GHENT

UNIVERSITY

umec

Cardiovascular disease: The biggest killer in the world, responsible for **30%** of deaths (WHO, 2011)

CARDIOVASCULAR DISEASE (CVD)

Arteriosclerosis: stiffening of arterial walls

Atherosclerosis: deposition of plaque on the inner arterial walls (which can lead to stiffening)

Stenosis: abnormal narrowing in a blood vessel

Heart Dyssynchrony: left and right part of the heart are not triggered synchronously

A <u>map of the skin displacement</u> above arteries can help for early diagnosis of these pathologies.

- Method: laser Doppler vibrometry
- Technology: silicon photonics
- Use: by general practitioner

1ec

GHEN[®]

 Normal Artery
 Damaged Artery

Artery

PULSE WAVE VELOCITY (PWV): MARKER FOR ARTERIAL STIFFNESS

 $\widehat{\blacksquare}$

GHEN[®]

Pulse Wave Velocity: speed by which the pressure wave caused by a heart beat travels in the arteries

 $PWV = \frac{pulse\ travel\ distance}{pulse\ travel\ time}$

Larger PWV -> Higher arterial stiffness -> Higher risk of cardiovascular events

APPROACH: MEASURE LOCAL COMMON-CAROTID PWV

Method used: measure skin movement by Laser Doppler Vibrometry (LDV)

WORKING PRINCIPLE OF LDV

GHENT

UNIVERSITY

unec

The displacement $\Delta d(t)$ can be retrieved by measuring $\theta(t)$, based on the relation

$$\theta(t) = \frac{2\pi}{\lambda_0} \cdot 2\Delta d(t) + \text{const.}$$

WORKING PRINCIPLE OF LDV: HOMODYNE DETECTION

mm

С

PHOTONIC INTEGRATED CIRCUITS (PICS)

- PICs fabricated through Europractice MPWservice
- iSiPP50G SOI process at imec
- Laser diode is mounted on a Micro-Optic Bench (MOB) which is attached to the PIC

HYBRID LASER INTEGRATION: MICRO-OPTIC BENCH APPROACH

PACKAGING OF THE 6-BEAM LDV

THE EXTERNAL VIEW OF THE MULTI-BEAM LDVS

CLINICAL TRIALS AT INSERM, PARIS

GHENT UNIVERSITY

CAROTID-FEMORAL (CF) PWV MEASUREMENT

Sensor	cf-PWV
CARDIS LDV	5.88 ± 0.30 m/s
Commercial cf- PWV meter (Sphygmocor)	5.96 ± 0.40 m/s

The cf-PWV measured by the CARDIS LDV is very similar to that measured by a commercial PWV meter.

COMMON-CAROTID (CC) PWV MEASUREMENT RESULTS

MEASURED CC-PWV VALUES

IIII GHENT

UNIVERSITY

umec

33

THREE APPLICATION CASES

Continuous glucose monitoring

Cardiovascular monitoring

In-vitro diagnostics by on-chip Raman

THE RAMAN SPECTRUM IS A FINGERPRINT OF A MOLECULE'S VIBRATION

THE RAMAN SPECTRUM IS A FINGERPRINT OF A MOLECULE'S VIBRATION

TOWARDS A FULL INTEGRATED SIN PLATFORM FOR ON-CHIP RAMAN

PAST: a € 100.000, 1 m³ microscope

WAVEGUIDE-ENHANCED RAMAN SPECTROSCOPY

- Large étendue from particle cloud:
 ⇒ Resolution sensitivity size compromise for the spectrometer
- In a confocal microscope:

 $\widehat{\blacksquare}$

GHENT

UNIVERSITY

mec

 Cloud couples to single waveguide mode: smallest possible étendue!
 ⇒ Optimal performance of spectrometer

$$\frac{P_{coll}}{P_{pump}} = \int \eta_0 \rho \sigma_{scat}$$
$$\eta_0 = \frac{1}{n(\vec{r})k_v} \left(\frac{\pi n_g \lambda_0}{\varepsilon_0}\right)^2 \left(\frac{\iint_{Clad}}{\iint_{\infty} \varepsilon(\vec{r}) \left|\vec{e}_m(\vec{r})\right|^2 d\vec{r}}}{\iint_{\infty} \varepsilon(\vec{r}) \left|\vec{e}_m(\vec{r})\right|^2 d\vec{r}}\right)^2$$

High index contrast matters

IIII GHENT

UNIVERSITY

ເຫາຍc

A. Dhakal *et al.*, ACS. Photonics. 3, 2141-2149 (2016)
Z. Wang *et al.*, Opt. Letters. 41, 4146-4149 (2016)
C. Evans et al., ACS Photonics 3, 1662-1669 (2016)

RAMAN SPECTRUM OF IPA ON SILICON-NITRIDE WAVEGUIDE

<u>∭</u> GHENT

UNIVERSITY

unec

RAMAN SPECTROSCOPY OF RHODAMINE MONOLAYERS

 Si_3N_4 waveguides were silanized, reacted with amine-reactive NHS-Rhodamine and rinsed to get a monolayer of Rhodamine on the waveguide surface.

>10⁴ more collection efficiency than with Raman microscope.

DNA HYBRIDIZATION KINETICS

<u>∭</u> GHENT

UNIVERSITY

unec

1. Waveguides functionalized with single strand DNA (here of a cancer-relevant gene K-Ras)

2. Real-time monitoring of the binding of complementary DNA, labeled with Cy3

A. Dhakal ea, ACS Photonics, 2016

USING METAL SLOT WAVEGUIDES TO ENHANCE THE RAMAN SCATTERING

ALL DUV FABRICATED HYBRID PHOTONICS PLASMONICS WAVEGUIDE:

GHENT UNIVERSITY

44

ALL DUV FABRICATED HYBRID PHOTONICS PLASMONICS WAVEGUIDE

STRONG ENHANCEMENT:

VARIABILITY OF ENHANCEMENT: 5%

A. Raza et al, CLEO2018

LESSONS LEARNED

In life science signals are typically noisy or weak relative to background

Need for smart signal analysis

CONCLUSIONS

Silicon photonics has the potential of serving many medical applications, in particular for point-of-care, in-the-body devices and in-vitro diagnostics

Key assets: compact size and volume; low cost

Proof-of-concept demonstrated for:

Continuous Glucose Monitoring

absorption spectroscopy on a silicon chip

• Pulse Wave Velocity (PWV) measurement

multi-beam Laser Doppler Vibrometry enabled by a silicon chip

• Selective detection of medically relevant molecules

Raman spectroscopy on a chip

ACKNOWLEDGEMENTS

Funding

Collaborations

Video

Louise Marais and colleagues, Inserm

Photonics Research Group of Ghent University – imec

24th April - 26th April 2019 Ghent University, Belgium

21st EUROPEAN CONFERENCE ON INTEGRATED OPTICS

4th ePIXfab Silicon Photonics Summer School ^{ePIXfab} Scuola Superiore Sant'Anna Pisa, ITALY

DATE :1st to 5th July, 2019

KEY FEATURES

- Geared towards industrial and academic participants
- Fundamentals to the latest developments in silicon photonics
- Emerging applications of silicon photonics.
- Interact with top-notch experts in the field of silicon photonics

MORE INFO:

e-mail: <u>info@ePIXfab.eu</u> web: <u>http://epixfab.eu/upcoming-trainings/spss19</u>

About ePIXfab: ePIXfab is the European Silicon Photonics Alliance, with a mission to promote silicon photonics science, technology, and application through fabless model.