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Abstract. This paper presents axiomatic as well as constructive de�-
nitions of intuitionistic fuzzy bi-implicators based on intuitionistic fuzzy
t-norms and their intuitionistic fuzzy residual implicators. The inter-
relationship among di¤erent proposed classes is presented along with
a detailed study of the properties of one of these intuitionistic fuzzy
bi-implicators called the intuitionistic fuzzy ��bi-implicator operator
constructed using Lukasiewicz intuitionistic fuzzy t-norm and its R-
implicator.
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1. Introduction

The intuitionistic fuzzy sets (IFS�s) and interval valued fuzzy sets (IVFS�s)
appeared independently as appropriate generalizations of fuzzy sets (FS�s).
The interval valued fuzzy sets re�ected the ambiguous situations unanswered
by fuzzy sets in the form of closed interval membership function [�1; �2] such
that �1; �2 2 [0; 1] and �1 � �2. The intuitionistic fuzzy sets however, are
equipped with a nonmembership degree � along with the membership degree
� such that �; � 2 [0; 1] and � + � � 1. Though the equivalence of these
two approaches has been addressed in [11], but each of these generalizations
have given rise to an extensive literature covering multiple aspects of their
applications and the possible extensions of fuzzy logical operators and set
theoretical concepts [2, 3, 5, 9, 10, 11, 12, 13]. Moreover, the vague set (VS)
which was proposed by Gau [15], as another extension of fuzzy set, was later
proved in [7] to be an intuitionistic fuzzy set.
In fuzzy literature, a bi-implicator operator has been closely linked to the

concepts such as fuzzy similarity [16], fuzzy equality [19], T-equivalence [17]
and restricted equivalence functions [8]. Unlike their fuzzy counterpart the
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intuitionistic fuzzy bi-implicator operators have not been much worked upon
[18].
In this paper we aim to convey to our reader, a comprehensive picture

of some new generalized classes of intuitionistic fuzzy bi-implicators having
axiomatic or constructive de�nitions along with their mutual relationship.
Such a study is expected to lay a groundwork for the development of new
intuitionistic fuzzy logic or algebra having di¤erent intuitionistic fuzzy bi-
implicators as basic connective operators. Furthermore, we have studied
the properties and characteristics of one of the newly de�ned constructive
bi-implicator called intuitionistic fuzzy ��bi-implicator by utilizing the in-
tuitionistic fuzzy Lukasiewicz implicator along with intuitionistic fuzzyMin
t-norm [9] in its de�nition.
Also, taking into consideration the close relation between IFS�s and the

other generalized fuzzy sets such as IVFS�s and the VS�s, we are in a position
to claim that, all the results on intuitionistic fuzzy set theory and logic
produced in this work can be easily modi�ed and adapted to the extended
frame works of any of the mentioned higher order fuzzy sets.
The work presented here is organized as follows:
Section 1 will present basic de�nitions and concepts of intuitionistic fuzzy

set theory and logic. In Section 2 we have presented an axiomatic de�n-
ition of intuitionistic fuzzy bi-implicator operators which can be regarded
as intuitionistic fuzzy generalization of Fodor-Roubens fuzzy bi-implicator
presented in [14]. Furthermore, we have proposed several new constructive
approaches for de�ning an intuitionistic fuzzy bi-implicator using intuition-
istic fuzzy t-norms and their residual implicators. We have studied their
interrelationships along with their relation with the class of intuitionistic
fuzzy bi-implicator having axiomatic de�nition. Moreover, in Section 3, we
have utilized the Lukasiewicz intuitionistic implicator along with the intu-
itionistic fuzzy t-norm Min [9] to investigate the di¤erent aspects of one of
the newly de�ned intuitionistic fuzzy bi-implicator called �� bi-implicator.
De�nition 1.1 [1] An intuitionistic fuzzy set (IFS ) on a universe X is
an object of the form A = f(x; �A(x); �A(x)) j x 2 Xg, where the functions
�A(x) and �A(x) 2 [0; 1] de�ne respectively the degree of membership and
the degree of non membership of x in the set A; while �A and �A satisfy
(8x 2 X)(�A(x)+ �A(x) � 1): The class of all intuitionistic fuzzy sets on X
is denoted by IFS(X). A fuzzy set in X is then just an intuitionistic fuzzy
set for which �A(x) + �A(x) = 1 holds for every x 2 X. The class of all
fuzzy sets in X is denoted by F (X).
For an intuitionistic fuzzy set A = f(�A(x); �A(x)) j x 2 Xg ; we de�ne

the complement of A in X as Ac = f(�A(x); �A(x)) j x 2 Xg ; the Support
of A in X as a subset of X given by Supp(A) = fx 2 X : �A(x) 6= 0 or
�A(x) 6= 1g, the Kernel of A in X as Ker(A) = fx 2 X : �A(x) = 1 and
�A(x) = 0g, the universe of discourse f1X = f(x; 1; 0) j x 2 Xg and the empty
set by f0X = f(x; 0; 1) j x 2 Xg. As far as the extension of inclusion of IFS
is concerned it is de�ned as: For all A;B 2 IFS(X);

A � B if and only if (8x 2 X)(�A(x) � �B(x) and �A(x) � �B(x)).
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De�nition 1.2 [9] The set L� =
�
(x1; x2) 2 [0; 1]2 j x1 + x2 � 1

	
is a com-

plete and bounded lattice (L�;�L�) equipped with order �L� ; which is de-
�ned as: (x1; x2) �L� (y1; y2) if and only if x1 � y1 and x2 � y2. The
elements 1L� = (1; 0) and 0L� = (0; 1) are the greatest and the smallest
elements of the lattice L� respectively. An IFS A on X can be equiv-
alently de�ned as a mapping A : X �! L� such that for any x 2 X,
A(x) = (�A(x); �A(x)) = (a1; a2) 2 L�.
De�nition 1.3 [9] An intuitionistic fuzzy t-norm is an increasing, commu-
tative, associative (L�)2 �! L� mapping �T satisfying �T (1L� ; x) = x for all
x 2 L�: For instance, for all x = (x1; x2); y = (y1; y2) 2 L� the greatest
t-norm with respect to ordering �L� is �TM (x; y) = x ^ y =
(min(x1; y1);max(x2; y2)) which is an extension of Min t-norm on [0; 1] to
L�. Moreover, �TP (x; y) = (x1y1; x2 + y2 � x2y2) is an extension of product
t-norm and �TL(x; y) = (max(0; x1+ y1� 1);min(1; x2+1� y1; y2+1� x1))
is one of the extensions of Lukasiewicz t-norm on [0; 1] to L�: The t-norm
�TM has the property that if z �L� x and z �L� y then z �L� �TM (x; y) for
all x; y; z 2 L�.
De�nition 1.4 [9] An intuitionistic fuzzy t-conorm is an increasing, com-
mutative, associative (L�)2 �! L� mapping �S satisfying �S(0L� ; x) = x
for all x 2 L�: For instance, for all x = (x1; x2); y = (y1; y2) 2 L� the
smallest t-conorm with respect to ordering �L� is �SM (x; y) = x _ y =
(max(x1; y1);min(x2; y2)) which is an extension of Max t-conorm on [0; 1] to
L�. Moreover, �SP (x; y) = (x1+y1�x1y1; x2y2) is an extension of probabilis-
tic sum and, �SL(x; y) = (min(1; x1+1� y2; y1+1�x2);max(0; x2+ y2�1))
is an extension of Lukasiewicz conorm to L�: It must be noted that �SM , �SP
and �SL conorms are the duals of intuitionistic fuzzy t-norms �TM , �TP and
�TL respectively. It is interesting to note that for all x; y 2 L�; �SL(x; 1L�) =
�SL(1L� ; y) = 1L� .
Theorem 1.5 [12] Let �T be an intuitionistic fuzzy t-norm. If sup

z2Z
�T (x; z) =

�T (x; sup
z2Z
z); for all non-empty subsets Z of L�; then �T is intuitionistic fuzzy

left continuous t-norm.
De�nition 1.6 [9] A negator on L� is a decreasing L� �! L� mapping �N
that satis�es �N(0L�) = 1L� and �N(1L�) = 0L� : If �N( �N(x)) = x; 8x 2 L�; �N
is called an involutive negator. The mapping �Ns de�ned as: �Ns(x1; x2) =
(x2; x1) 8(x1; x2) 2 L� will be called the standard negator. An involutive
negator on L� can always be related to an involutive negator on [0; 1].
De�nition 1.7 [9] An intuitionistic fuzzy implicator is an (L�)2 �! L�mapping
�I satisfying �I(0L� ; 0L�) = 1L� ; �I(0L� ; 1L�) = 1L� ; �I(1L� ; 0L�) = 0L� ; �I(1L� ; 1L�) =
1L� . Moreover, we require �I to be decreasing in its �rst and increasing in
its second component.
De�nition 1.8 [9] The intuitionistic fuzzy implicator �I is said to satisfy the
left ordering property (LOP), if x �L� y; then �I(x; y) = 1L� for all x; y 2 L�.
De�nition 1.9 [9] Let �S be a t-conorm and �N a negator on L�: The S-
implicator generated by �S and �N is the mapping �I �S; �N : (L

�)2 �! L� de�ned
as, for all x; y 2 L�

�I �S; �N (x; y) =
�S( �N(x); y): (1)
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De�nition 1.10 [9] Let �T be a t-norm on L�: The R-implicator generated
by �T is the mapping �I �T de�ned as, for all x; y 2 L� :

�I �T (x; y) = supf 2 L
� j �T (x; ) �L� yg. (2)

Remark 1.11 [9] If we take �S = �SL and �N = �Ns in (1), then, �I �SL; �Ns(x; y) =
(min(1; y1 + 1 � x1; x2 + 1 � y2);max(0; x1 + y2 � 1)) is an extension of
Lukasiewicz implicator on [0; 1] to L� and is an S-implicator on L�. Also
this extension can be obtained by taking �T = �TL in (2) which makes it
an R-implicator extension on L�: Thus we have �I �SL; �Ns(x; y) =

�I �TL(x; y) =

(min(1; y1 + 1� x1; x2 + 1� y2);max(0; x1 + y2 � 1)). It is a contrapositive
intuitionistic fuzzy extension of Lukasiewicz implicator to L�.

2. Intuitionistic Fuzzy Bi-Implicators

In this section, we shall �rstly present an axiomatic de�nition of an intu-
itionistic fuzzy bi-implicator and then will relate it to di¤erent new classes
of intuitionistic fuzzy bi-implicators having constructive approaches.
De�nition 2.1 An intuitionistic fuzzy bi-implicator is an (L�)2 �! L�mapping
IBI satisfying for all w; x; y; z 2 L� :
(b1). IBI(x; y) = IBI(y; x);
(b2). IBI(0L� ; 1L�) = 0L� ;
(b3). IBI(x; x) = 1L� ;
(b4). If w �L� x �L� y �L� z; then IBI(w; z) �L� IBI(x; y):
Example 2.2 Let for all w; x; y; z 2 L� such that w = (w1; w2); x =
(x1; x2); y = (y1; y2) and z = (z1; z2): Then the operator de�ned as:

IBI(x; y) =

�
1L� if x = y

(min(1� x2; 1� y2);max(x2; y2)) if x 6= y

�
is an intuitionistic fuzzy bi-implicator.
Indeed we will show that IBI(x; y) satis�es the four axioms of De�nition
2.1:
(b1). IBI(x; y) = IBI(y; x): Straightforward.
(b2). IBI(0L� ; 1L�) = IBI((0; 1); (1; 0)) = (min(1 � 1; 1 � 0);max(1; 0)) =
(0; 1) = 0L� .
(b3). IBI(x; x) = 1L� , by its de�nition.
(b4). Let w �L� x �L� y �L� z: This
implies w1 � x1 � y1 � z1 and w2 � x2 � y2 � z2
implies 1� w2 � 1� x2 � 1� y2 � 1� z2
implies IBI(w; z) = (min(1� w2; 1� z2);max(w2; z2)) = (1� w2; w2)
impliesmin(1�w2; 1�z2) � min(1�y2; 1�x2) andmax(w2; z2) � max(y2; x2)
implies (min(1�w2; 1�z2);max(w2; z2)) �L� (min(1�y2; 1�x2);max(y2; x2))
and hence IBI(w; z) �L� IBI(x; y):
Remark 2.3 If we take w = x in axiom (b4) of de�nition 2.1 then axiom
(b4) can be equivalently replaced by axiom (b�4) provided IBI satis�es (b1):
(b�4). If x �L� y �L� z; then IBI(x; z) �L� IBI(x; y) and IBI(x; z) �L�
IBI(y; z):
Proof
(i). (b4) =) (b�4)
Indeed putting w = x in (b4) implies
IBI(x; z) �L� IBI(x; y) i.e. IBI(x; :) is decreasing for all x 2 L�:
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From x �L� y �L� z �L� z it follows with (b4)
IBI(x; z) �L� IBI(y; z) i.e. IBI(:; z) is increasing for all z 2 L�:
(ii). (b�4) =) (b4)
Suppose w �L� x �L� y �L� z:
From IBI(w; :) being decreasing and x �L� z we get:

IBI(w; z) �L� IBI(w; x): (3)

From IBI(:; x) being increasing and w �L� y we get:
IBI(w; x) �L� IBI(y; x): (4)

From (3) and (4) we get: IBI(w; z) �L� IBI(y; x) and hence if IBI satis�es
(b1) : IBI(w; z) �L� IBI(x; y):
De�nition 2.4 Let �T be a left continuous intuitionistic fuzzy t-norm and
�I �T be the corresponding intuitionistic fuzzy R-implicator. Then the intu-
itionistic fuzzy ��bi-implicator is the (L�)2 �! L� mapping IBI� de�ned
as:

IBI�(x; y) = �T (�I �T (x; y);
�I �T (y; x)).

De�nition 2.5 Let �T
0
be an intuitionistic fuzzy t-norm, �T a left continuous

intuitionistic fuzzy t-norm and �I �T be the corresponding intuitionistic fuzzy
R-implicator. Then the intuitionistic fuzzy ��bi-implicator is the (L�)2 �!
L� mapping IBI� de�ned as:

IBI�(x; y) = �T
0
(�I �T (x; y);

�I �T (y; x)).

De�nition 2.6 Let �T
0
be an intuitionistic fuzzy t-norm, �T a left continuous

intuitionistic fuzzy t-norm, �I �T be the corresponding intuitionistic fuzzy R-
implicator and �S

0
be an intuitionistic fuzzy conorm. Then the intuitionistic

fuzzy �T
0 �S

0�bi-implicator is the (L�)2 �! L� mapping IBI �T 0 �S0 de�ned as:

IBI �T 0 �S0 (x; y) =
�I �T (
�S
0
(x; y); �T

0
(x; y)).

Proposition 2.7 Let �T be a left continuous intuitionistic fuzzy t-norm and
�I �T be the corresponding intuitionistic fuzzy R-implicator then it holds:

x �L� y =) �TM (�I �T (x; y);
�I �T (y; x)) =

�I �T (
�SM (x; y); �TM (x; y)).

Proof Suppose x �L� y. Then we obtain
�I �T (x; y) = 1L� ;

�TM (x; y) = x and �SM (x; y) = y:
Hence, �TM (�I �T (x; y); �I �T (y; x)) = �TM (1L� ; �I �T (y; x))

= �I �T (y; x) =
�I �T (
�SM (x; y); �TM (x; y)).

Proposition 2.8 Let �T
0
be an intuitionistic fuzzy t-norm, �T a left contin-

uous intuitionistic fuzzy t-norm and �I �T be the corresponding intuitionistic
fuzzy R-implicator, then the intuitionistic fuzzy ��bi-implicator IBI� sat-
is�es the following properties for all x; y 2 L�:
(b
0
1). IBI�(x; y) = 1L� if x = y (re�exivity);

(b
0
2). IBI�(x; y) = IBI�(y; x) (symmetry);

(b
0
3). IBI�(x; y) = �T

0
(�I �T (x; y);

�I �T (y; x)) =
�TM (�I �T (x; y);

�I �T (y; x)) provided
either x �L� y or y �L� x;
(b
0
4). IBI�(x; y) = �I �T (

�SM (x; y); �TM (x; y)) provided x �L� y.
Proof
(b
0
1). IBI�(x; x) = �T

0
(�I �T (x; x);

�I �T (x; x)) =
�T
0
(1L� ; 1L�)) = 1L� .
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(b
0
2). IBI�(x; y) = �T

0
(�I �T (x; y);

�I �T (y; x)) =
�T
0
(�I �T (y; x);

�I �T (x; y)) = IBI�(y; x).
(b
0
3). From x �L� y we get �I �T (x; y) = 1L�

and hence IBI�(x; y) = �T
0
(�I �T (x; y);

�I �T (y; x)) =
�T
0
(1L� ; �I �T (y; x))

= �I �T (y; x) =
�TM (�I �T (y; x); 1L�) =

�TM (1L� ; �I �T (y; x)) =
�TM (�I �T (x; y);

�I �T (y; x)).
(b
0
4). Let x �L� y.

Then IBI�(x; y) = �TM (�I �T (x; y);
�I �T (y; x)) =

�I �T (
�SM (x; y); �TM (x; y)) (By

Proposition 2.7).
Proposition 2.9 An intuitionistic fuzzy bi-implicator IBI is an intuition-
istic fuzzy ��bi-implicator if and only if it is an intuitionistic fuzzy ��bi-
implicator.
Proof By taking �T

0
= �T in the de�nition of intuitionistic fuzzy ��bi-

implicator we can get an intuitionistic fuzzy ��bi-implicator. Conversely,
we need to show that a ��bi-implicator is an intuitionistic fuzzy ��bi-
implicator. Let IBI� be an intuitionistic fuzzy ��bi-implicator. Then we
show that it satis�es all the axioms of Proposition 2.7 to become a ��bi-
implicator.
(b
0
1). IBI�(x; x) = �T (�I �T (x; x);

�I �T (x; x)) =
�T (1L� ; 1L�)) = 1L�by (LOP) and

De�nition 1.4.
(b
0
2). IBI�(x; y) = �T (�I �T (x; y);

�I �T (y; x))

= �T (�I �T (y; x);
�I �T (x; y)) = IBI�(y; x).

(b
0
3). Suppose x �L� y we get �I �T (x; y) = 1L�

and hence IBI�(x; y) = �T (�I �T (x; y);
�I �T (y; x)) =

�T (1L� ; �I �T (y; x))

= �I �T (y; x) =
�TM (�I �T (y; x); 1L�) =

�TM (1L� ; �I �T (y; x))

= �TM (�I �T (x; y);
�I �T (y; x)).

(b
0
4). Suppose x �L� y:

Then it follows: IBI�(x; y) = �TM (�I �T (x; y);
�I �T (y; x))

= �I �T (
�SM (x; y); �TM (x; y)) (by Proposition 2.7).

Proposition 2.10 An intuitionistic fuzzy ��bi-implicator satis�es the ax-
ioms of De�nition 2.1.
Proof Let �T be a left continuous intuitionistic fuzzy t-norm and �I �T be its
intuitionistic fuzzy R-implicator and IBI� be the intuitionistic fuzzy ��
bi-implicator based on �T and �I �T . Then we only have to prove that an
intuitionistic fuzzy �� bi-implicator satis�es the axioms (b2) and (b4), as
(b1) = (b

0
2) and (b3) = (b

0
1) have already been proved in Proposition 2.9.

(b2). IBI�(0L� ; 1L�) = �T (�I �T (0L� ; 1L�);
�I �T (1L� ; 0L�)) =

�T (1L� ; 0L�) = 0L� .
(b4). Suppose w �L� x �L� y �L� z: Then we obtain:
IBI�(w; z) = �TM (�I �T (w; z);

�I �T (z; w)) by (b
0
3)

implies IBI�(w; z) = �TM (1L� ; �I �T (z; w)) =
�I �T (z; w)

implies IBI�(w; z) = �I �T (z; w) �L� �I �T (y; w) �L� �I �T (y; x) as y �L� z and
w �L� x
implies IBI�(w; z) �L� �I �T (y; x) = �TM (1L� ; �I �T (y; x)) =

�TM (�I �T (x; y);
�I �T (y; x))

implies IBI�(w; z) �L� IBI�(x; y).
Proposition 2.11 An intuitionistic fuzzy �T

0 �S
0�bi-implicator satis�es the

properties (b1) and (b2) but may fail to satisfy the properties (b3) and (b4).
Proof Let �T

0
be an intuitionistic fuzzy t-norm, �T a left continuous intuition-

istic fuzzy t-norm, �I �T be its intuitionistic fuzzy R-implicator and �S
0
be an
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intuitionistic fuzzy conorm. Let IBI �T 0 �S0 be the intuitionistic fuzzy
�T
0 �S

0�bi-
implicator based on �T , �I �T and �S

0
. Then we show that IBI �T 0 �S0 satis�es the

properties (b1) and (b2) but may fail to satisfy the properties (b3) and (b4).
For all x; y 2 L�
(b1). IBI �T 0 �S0 (x; y) =

�I �T (
�S
0
(x; y); �T

0
(x; y)) = �I �T (

�S
0
(y; x); �T

0
(y; x))

= IBI �T 0 �S0 (y; x).
(b2). IBI �T 0 �S0 (0L� ; 1L�) =

�I �T (
�S
0
(0L� ; 1L�); �T

0
(0L� ; 1L�)) = �I �T (1L� ; 0L�) =

0L� .
In order to show that IBI �T 0 �S0 fails to satisfy (b3) and (b4) we shall present
the following counter examples:
Let x = (0:7; 0:1) 2 L�: Then by De�nitions (1.4),(1.5) and Remark 1.12
we have �SP (x; x) = (0:91; 0:01) and �TL(x; x) = (0:4; 0:2); which implies that
IBI �TL �SP (x; x) =

�I �TM (
�SP (x; x); �TL(x; x)) = (0:4; 0:2) 6= 1L� .

Hence IBI �T 0 �S0 fails to satisfy (b3):
Let w = (0:2; 0:7); x = (0:3; 0:4); y = (0:5; 0:3); z = (0:8; 0:1) 2 L�: Then
�SL(w; z) = (1; 0); �TP (w; z) = (0:16; 0:73) and �SL(x; y) = (0:8; 0); �TP (x; y) =
(0:15; 0:58); which implies that IBI �TP �SL(w; z) =

�I �TM (
�SL(w; z); �TP (w; z)) =

(0:16; 0:73) and IBI �TP �SL(x; y) =
�I �TM (

�SL(x; y); �TP (x; y)) = (0:15; 0:58).
Clearly, we see that IBI �TP �SL(w; z) �L� IBI �TP �SL(x; y) as 0:16 > 0:15 and
0:58 < 0:73.
Hence, IBI �TP �SL fails to satisfy the property (b4).
Remark 2.12 It must be noted that if we restrict ourself to the choice of all
those x; y 2 L� such that either x �L� y or y �L� x and �T to be a left contin-
uous intuitionistic fuzzy t-norm and �I �T be the corresponding intuitionistic
fuzzy R-implicator then, the class of all intuitionistic fuzzy ��bi-implicators
and the class of all intuitionistic fuzzy ��bi-implicators satis�es (b04). Thus
they become the subclasses of the class of all intuitionistic fuzzy �T

0 �S
0�bi-

implicators.

3. Lukasiewicz Intuitionistic Fuzzy Bi-implicator

Next, we shall study in detail the properties of intuitionistic fuzzy �� bi-
implicator by specifying intuitionistic fuzzy t-norms �T

0
= �TM and �T = �TL

with an R-implicator �I = �I �TL respectively in its de�nition. For simplicity
in results we drop the index � in notation IBI� and from here onward we
will use IBI for such an intuitionistic fuzzy �� bi-implicator. Thus, for all
A;B 2 IFS(X) and x 2 X we have:

IBI(A;B)(x) = �TM (�I �TL(A(x); B(x));
�I �TL(B(x); A(x)))

= (min(1; b1 � a1 + 1; a2 � b2 + 1; a1 � b1 + 1; b2 � a2 + 1);
max(0; a1 + b2 � 1; b1 + a2 � 1))

where A(x) = (a1; a2) = (�A(x); �A(x)), B(x) = (b1; b2) = (�B(x); �B(x)) 2
L�.
Proposition 3.1 For all A;B 2 IFS(X);
(a). IBI�(A;B)(x) = 1L� if and only if A(x) = B(x);
(b). IBI�(A;B) = f1X if and only if A = B;
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(c). IBI�(A;B)(x) = 0L� if and only if x 2 Ker(A) \ (Supp(B))cor x 2
Ker(B) \ (Supp(A))c;
(d). IBI�(A;B) = f0X implies Ker(A) \ (Supp(B))c 6= � or Ker(B) \
(Supp(A))c 6= �:
Proof Let A;B 2 IFS(X);
(a). IBI�(A;B)(x) = 1L� for any x 2 X;
if and only if �TM (�I �TL(A(x); B(x));

�I �TL(B(x); A(x))) = 1L�

if and only if (min(1; b1�a1+1; a2�b2+1; a1�b1+1; b2�a2+1);max(0; a1+
b2 � 1; b1 + a2 � 1)) = 1L�
if and only if min(1; b1� a1+1; a2� b2+1; a1� b1+1; b2� a2+1) = 1 and
max(0; a1 + b2 � 1; b1 + a2 � 1) = 0
if and only if b1� a1+1 � 1; a2� b2+1 � 1, a1� b1+1 � 1; b2� a2+1 � 1
and a1 + b2 � 1 � 0; b1 + a2 � 1 � 0
if and only if b1 � a1; a2 � b2 and a1 � b1; b2 � a2
if and only if a1 = b1 and a2 = b2
if and only if A(x) = B(x).
(b). IBI�(A;B) = f1X
if and only if IBI�(A;B)(x) = 1L� for all x 2 X
if and only if A(x) = B(x) for all x 2 X
if and only if A = B.
(c). IBI�(A;B)(x) = 0L� for any x 2 X;
if and only if �TM (�I �TL(A(x); B(x));

�I �TL(B(x); A(x))) = 0L�

if and only if (min(1; b1�a1+1; a2�b2+1; a1�b1+1; b2�a2+1);max(0; a1+
b2 � 1; b1 + a2 � 1)) = 0L�
if and only if min(1; b1� a1+1; a2� b2+1; a1� b1+1; b2� a2+1) = 0 and
max(0; a1 + b2 � 1; b1 + a2 � 1) = 1
if and only if either {b1�a1+1 = 0 and max(0; a1+ b2�1; b1+a2�1) = 1g
or {a2 � b2 + 1 = 0 and max(0; a1 + b2 � 1; b1 + a2 � 1) = 1g
or {a1 � b1 + 1 = 0 and max(0; a1 + b2 � 1; b1 + a2 � 1) = 1g
or {b2 � a2 + 1 = 0 and max(0; a1 + b2 � 1; b1 + a2 � 1) = 1g:
Next, we discuss all these cases one by one such that they have a mutual
relation of "or" between them.
Case 1: If b1 � a1 + 1 = 0 then we have b1 = 0, a1 = 1, a2 = 0 and b2 � 1:
However, the condition max(0; a1+b2�1; b1+a2�1) = 1 will enforce b2 = 1:
Thus, we have (a1; a2) = (1; 0) and (b1; b2) = (0; 1) and hence x 2 Ker(A)\
(Supp(B))c:
Case 2: If a2 � b2 + 1 = 0 then we get a2 = 0, b2 = 1, b1 = 0 and a1 � 1:
However, the condition max(0; a1+b2�1; b1+a2�1) = 1 will enforce a1 = 1:
Thus, we have (a1; a2) = (1; 0) and (b1; b2) = (0; 1) and hence x 2 Ker(A)\
(Supp(B))c:
Case 3: If a1 � b1 + 1 = 0 then we have a1 = 0, b1 = 1, b2 = 0 and a2 � 1:
Likewise, to above two cases the condition max(0; a1+b2�1; b1+a2�1) = 1
will enforce a2 = 1:
Thus, we have (a1; a2) = (0; 1) and (b1; b2) = (1; 0) and hence x 2 Ker(B)\
(Supp(A))c:
Case 4: If we choose b2 � a2 + 1 = 0 then we get b2 = 0, a2 = 1, a1 = 0
and b1 � 1: The condition max(0; a1 + b2 � 1; b1 + a2 � 1) = 1 will enforces
b1 = 1:
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Thus, we have (a1; a2) = (0; 1) and (b1; b2) = (1; 0) and hence x 2 Ker(B)\
(Supp(A))c:
Thus, all of these situations lead to the result:
IBI�(A;B)(x) = 0L� implies x 2 Ker(A) \ (Supp(B))cor x 2 Ker(B) \
(Supp(A))c:
Conversely,
let x 2 Ker(A) \ (Supp(B))c
implies that x 2 Ker(A) and x 2 (Supp(B))c
implies that (a1; a2) = (1; 0) and x 2 (Supp(B))c:
Now, x 2 Supp(B), (b1 6= 0 or b2 6= 1) and hence x 2 (Supp(B))c , (b1 =
0 and b2 = 1), (b1; b2) = (0; 1)
implies that [(a1; a2) = (1; 0) and (b1; b2) = (0; 1)]
implies that min(1; b1 � a1 + 1; a2 � b2 + 1; a1 � b1 + 1; b2 � a2 + 1) = 0 and
max(0; a1 + b2 � 1; b1 + a2 � 1) = 1
implies that(min(1; b1�a1+1; a2�b2+1; a1�b1+1; b2�a2+1); max(0; a1+
b2 � 1; b1 + a2 � 1)) = (0; 1)
implies that IBI�(A;B)(x) = 0L� :
Similarly, for x 2 Ker(B) \ (Supp(A))c we get IBI�(A;B)(x) = 0L� :
Thus, x 2 Ker(A)\(Supp(B))cor x 2 Ker(B)\(Supp(A))c implies IBI�(A;B)(x) =
0L� :
(d). IBI�(A;B) = f0X
implies that IBI�(A;B)(x) = 0L� for all x 2 X
implies that either [x 2 Ker(A)\(Supp(B))c] or [x 2 Ker(B)\(Supp(A))c]
for all x 2 X
implies that Ker(A) \ (Supp(B))c 6= � or Ker(B) \ (Supp(A))c 6= �.
Proposition 3.2 For all A;B 2 IFS(X);
IBI�(A;B) = IBI�(B;A):

Proof The result holds due to commutativity of �TM :
Corollary 3.3 For A 2 IFS(X);
(a). IBI�(A;Ac)(x) = 1L� if and only if A(x) = (a1; a2) such that a1 = a2;
(b). IBI�(A;Ac) = f1X if and only if A(x) = (a1; a2) such that a = a2 for
all x 2 X;
(c). IBI�(A;Ac)(x) = 0L� if and only if either A(x) = 1L� or A(x) = 0L� ;
(d). IBI�(A;Ac) = f0X if and only if A = f1X or A = f0X :
Proof Follows directly from Proposition 3.1 by taking B = Ac:
Proposition 3.4 For A;B 2 IFS(X)
IBI(A;B) = IBI(Bc; Ac):
Proof The result holds due to contrapositivity of the Lukasiewicz intuition-
istic fuzzy implicator �I �TL used in De�nition 2.5.
Proposition 3.5 For any A;B;C 2 IFS(X) such that A � B � C we
have:

(a). IBI�(A;C) �
�
IBI�(A;B)
IBI�(B;C)

�
i.e., the �rst partial mapping IBI�(�; B)

of IBI� is increasing and the second partial mapping IBI�(A; �) is decreas-
ing;
(b). IBI�(A;C) � �TM (IBI�(A;B); IBI�(B;C)):
Proof Let A;B;C 2 IFS(X) such that A � B � C.
(a). A(x) �L� B(x) �L� C(x) for all x 2 X
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implies that a1 � b1 � c1 and a2 � b2 � c2:
Now as, [a1 � b1 and a2 � b2 and a1 + a2 � 1]
implies that1 � b1 � a1 + 1 and a2 � b2 + 1 � 1
implies that min(1; b1 � a1 + 1; a2 � b2 + 1) = 1 and max(0; a1 + b2 � 1) = 0
implies that �I �TL(A(x); B(x)) = (min(1; b1 � a1 +1; a2 � b2 +1);max(0; a1 +
b2 � 1)) = (1; 0) = 1L�
implies that IBI�(A;B)(x) = �TM (�I �TL(A(x); B(x));

�I �TL(B(x); A(x)))

= �I �TL(B(x); A(x)) = (min(1; a1 � b1 + 1; b2 � a2 + 1);max(0; b1 + a2 � 1)):
Similarly, we have IBI�(B;C)(x) = (min(1; b1�c1+1; c2�b2+1);max(0; c1+
b2 � 1)) and IBI�(A;C)(x) = (min(1; a1 � c1 + 1; c2 � a2 + 1);max(0; c1 +
a2 � 1)):
Now as, [a1 � b1 + 1 � a1 � c1 + 1 and b2 � a2 + 1 � c2 � a2 + 1 also
c1 + a2 � 1 � b1 + a2 � 1]
implies that [min(1; a1� c1+1; c2� a2+1) � min(1; a1� b1+1; b2� a2+1)
and max(0; c1 + a2 � 1) � max(0; b1 + a2 � 1)]
implies that (min(1; a1 � c1 + 1; c2 � a2 + 1);max(0; c1 + a2 � 1))
�L� (min(1; a1 � b1 + 1; b2 � a2 + 1);max(0; b1 + a2 � 1))
implies that IBI�(A;C)(x) �L� IBI�(A;B)(x) for all x 2 X
implies that IBI�(A;C) � IBI�(A;B):
Moreover, [a1�c1+1 � b1�c1+1, c2�a2+1 � c2�b2+1 and c1+a2�1 �
c1 + b2 � 1]
implies that min(1; a1 � c1 +1; c2 � a2 +1) � min(1; b1 � c1 +1; c2 � b2 +1)
and max(0; c1 + a2 � 1) � max(0; c1 + b2 � 1)
implies that (min(1; a1 � c1 + 1; c2 � a2 + 1);max(0; c1 + a2 � 1))
�L� (min(1; b1 � c1 + 1; c2 � b2 + 1);max(0; c1 + b2 � 1))
implies that IBI�(A;C)(x) �L� IBI�(B;C)(x) for all x 2 X
implies that IBI�(A;C) � IBI�(B;C).
(b). A(x) �L� B(x) �L� C(x) for all x 2 X
implies that a1 � b1 � c1 and a2 � b2 � c2
implies that �I �TL(A(x); B(x)) = 1L� ,

�I �TL(A(x); C(x)) = 1L�and
�I �TL(B(x); C(x)) =

1L�
implies that IBI�(A;B)(x) = (min(1; a1 � b1 + 1; b2 � a2 + 1);max(0; b1 +
a2�1)), IBI�(B;C)(x) = (min(1; b1�c1+1; c2�b2+1);max(0; c1+b2�1))
and IBI�(A;C)(x) = (min(1; a1 � c1 + 1; c2 � a2 + 1);max(0; c1 + a2 � 1)):
Now [a1�b1+1 � a1�c1+1, b2�a2+1 � c2�a2+1; b1�c1+1 � a1�c1+1,
c2�b2+1 � c2�a2+1 and c1+b2�1 � c1+a2�1, b1+a2�1 � c1+a2�1]
implies that min(1; a1�c1+1; c2�a2+1) � min(1; b2�a2+1; a1�b1+1; b1�
c1 +1; c2 � b2+1) and max(0; c1+ a2 � 1) � max(0; c1+ b2 � 1; b1 + a2 � 1)
implies that min(1; a1�c1+1; c2�a2+1) � min(min(1; b2�a2+1; a1�b1+
1);min(1; b1�c1+1; c2� b2+1)) and max(0; c1+a2�1) � max(max(0; c1+
b2 � 1);max(0; b1 + a2 � 1))
implies that (min(1; a1 � c1 + 1; c2 � a2 + 1);max(0; c1 + a2 � 1))
�L� (min(min(1; b2�a2+1; a1�b1+1);min(1; b1�c1+1; c2�b2+1));max(max(0; c1+
b2 � 1);max(0; b1 + a2 � 1)))
implies that IBI�(A;C)(x) �L� �TM (IBI�(A;B)(x); IBI�(B;C)(x)) for all
x 2 X
implies that IBI�(A;C) � �TM (IBI�(A;B); IBI�(B;C)).
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De�nition 3.6 For any A;B 2 IFS(X); A is said to be point wise com-
parable with B if for all x 2 X either A(x) �L� B(x) or B(x) �L� A(x):
Moreover, it may be noted that:
1. A is point wise comparable to A for all A 2 IFS(X);
2. If A is pointwise comparable with B then B is pointwise comparable to
A;
3. If A is pointwise comparable to B and B is point wise comparable to C
then A is comparable to C:
Proposition 3.7 For any A;B 2 IFS(X); such that A and B are pointwise
comparable:
(a). IBI�(A; �TM (A;B)) = IBI�(B; �SM (A;B));
(b). IBI�(A; �SM (A;B)) = IBI�(B; �TM (A;B)):
Proof
(a). Let A;B 2 IFS(X); such that A and B are pointwise comparable.
Then for all x 2 X; either A(x) �L� B(x) or B(x) �L� A(x)
implies that either �TM (A(x); B(x)) = A(x) and �SM (A(x); B(x)) = B(x)
or �TM (A(x); B(x)) = B(x) and �SM (A(x); B(x)) = A(x)
implies that IBI�(A(x); �TM (A(x); B(x))) = IBI�(A(x); A(x)) = 1L�
and IBI�(B(x); �SM (A(x); B(x))) = IBI�(B(x); B(x)) = 1L�
or IBI�(A(x); �TM (A(x); B(x))) = IBI�(A(x); B(x))
and IBI�(B(x); �SM (A(x); B(x))) = IBI�(B(x); A(x)) = IBI�(A(x); B(x))
implies that IBI�(A; �TM (A;B))(x) = IBI�(B; �SM (A;B))(x)
implies that IBI�(A; �TM (A;B)) = IBI�(B; �SM (A;B)).
(b). The proof can be constructed in a similar way as part (a).
Proposition 3.8 For any A;B 2 IFS(X); such that A and B are pointwise
comparable, the following intuitionistic fuzzy sets are equal:
(a). IBI�(A;B);
(b). �TM (IBI�( �TM (A;B); A); IBI�(A; �SM (A;B)));
(c). �TM (IBI�( �TM (A;B); B); IBI�(B; �SM (A;B)));
(d). IBI�( �TM (A;B); �SM (A;B));
(e). �TM (IBI�(A; �SM (A;B)); IBI�(B; �SM (A;B)));
(f). �TM (IBI�(A; �TM (A;B)); IBI�(B; �TM (A;B))):
Proof Let A;B 2 IFS(X); such that A and B are pointwise comparable.
Then, for all x 2 X; either A(x) �L� B(x) or B(x) �L� A(x)
implies that for any x 2 X; either �TM (A;B)(x) = A(x) and �SM (A;B) =
B(x)
or �TM (A;B)(x) = B(x) and �SM (A;B) = A(x).
For simplicity of proofs we consider the cases of all those x 2 X for which
A(x) �L� B(x)
i.e., �TM (A;B)(x) = A(x) and �SM (A;B) = B(x) then,
(b)=(a). �TM (IBI�( �TM (A(x); B(x)); A(x)); IBI�(A(x); �SM (A(x); B(x))))
= �TM (IBI�(A(x); A(x)); IBI�(A(x); B(x))))

= �TM (1L� ; IBI�(A;B)(x)) = IBI�(A;B)(x).
(c)=(a). �TM (IBI�( �TM (A(x); B(x)); B(x)); IBI�(B(x); �SM (A(x); B(x))))
= �TM (IBI�(A(x); B(x)); IBI�(B(x); B(x)))

= �TM (IBI�(A;B)(x); 1L�) = IBI�(A;B)(x).
(d)=(a). IBI�( �TM (A;B); �SM (A;B))(x)
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= IBI�(A(x); B(x)) = IBI�(A;B)(x).
(e)=(a). �TM (IBI�(A; �SM (A;B)); IBI�(B; �SM (A;B)))(x)
= �TM (IBI�(A(x); B(x)); 1L�) = IBI�(A;B)(x).
(f)=(a). �TM (IBI�(A; �TM (A;B)); IBI�(B; �TM (A;B)))(x)
= �TM (IBI�(A(x); A(x)); IBI�(B(x); A(x)))

= �TM (1L� ; IBI�(B(x); A(x)))
= IBI�(B(x); A(x)) = IBI�(A(x); B(x)) = IBI�(A;B)(x) (because of the
symmetry of IBI�).
The above results also hold for all those x 2 X; for which B(x) �L� A(x).
Conclusion
In this research a detailed study of intuitionistic fuzzy bi-implicators was

presented. Several new classes of intuitionistic fuzzy bi-implicators were
introduced. The inter-relationship of these classes was also studied. More-
over, the properties of one of the introduced classes called ��bi-implicators
were developed by employing the intuitionistic fuzzy Lukasiewicz implicator
along with intuitionistic fuzzy Min t-norm in its de�nition. Such a knowl-
edge not only provides a better understanding about the structural details
of the particular class but also signi�es the role of a bi-implicator in de�ning
any similarity relation between two intuitionistic fuzzy sets.
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