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Abstract. Beklemishev introduced an ordinal notation system for the
Feferman-Schütte ordinal Γ0 based on the autonomous expansion of prov-
ability algebras. In this paper we present the logic BC (for Bracket Cal-
culus). The language of BC extends said ordinal notation system to a
strictly positive modal language. Thus, unlike other provability logics,
BC is based on a purely modal signature that gives rise to an ordinal
notation system instead of modalities indexed by some ordinal given a
priori. Moreover, since the order between these notations can be estab-
lished in terms of derivability within the calculus, the inferences in this
system can be carried out without using any external property of ordi-
nals. The presented logic is proven to be equivalent to RCΓ0 , that is, to
the strictly positive fragment of GLPΓ0 .
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1 Introduction

In view of Gödel’s second incompleteness theorem, we know that the consistency
of any sufficiently powerful formal theory cannot be established using purely ‘fini-
tary’ means. Since then, the field of proof theory, and more specifically of ordinal
analysis, has been successful in measuring the non-finitary assumptions required
to prove consistency assertions via computable ordinals. Among the benefits of
this work is the ability to linearly order natural theories of arithmetic with re-
spect to notions such as their ‘consistency strength’ (e.g., their Π0

1 ordinal) or
their ‘computational strength’ (their Π0

2 ordinal). Nevertheless, the assignment
of these proof-theoretic ordinals to formal theories depends on a choice of a
‘natural’ presentation for such ordinals, with well-known pathological examples
having been presented by Kreisel [24] and Beklemishev [8].3 This raises the ques-
tion of what it means for something to be a natural ordinal notation system, or
even if such a notion is meaningful at all.

3 The Π1
1 ordinal of a theory is another measure of its strength and does not have

such sensitivity to a choice of notation system. However, there are some advantages
to considering Π0

1 ordinals, among others that they give a finer-grained classification
of theories.
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One possible approach to this problem comes from Beklemishev’s ordinal
analysis of Peano arithmetic (PA) and related theories via their provability al-
gebras. Consider the Lindenbaum algebra of the language of arithmetic modulo
provability in a finitary theory U such as primitive recursive arithmetic (PRA)
or the weaker elementary arithmetic (EA). For each natural number n and each
formula ϕ, the n-consistency of ϕ is the statement that all Σn consequences of
U+ϕ are true, formalizable by some arithmetical formula 〈n〉ϕ (where ϕ is iden-
tified with its Gödel number). In particular, 〈0〉ϕ states that ϕ is consistent with
U . An iterated consistency assertion, also called worm, is then an expression of
the form 〈n1〉 . . . 〈nk〉>, where > is some fixed tautology.

The operators 〈n〉 and their duals [n] satisfy Japaridze’s provability logic
GLP [22], a multi-modal extension of the Gödel-Löb provability logic GL [12].
As Beklemishev showed, the set of worms is well-ordered by their consistency
strength <0, where A <0 B if A → 〈0〉B is derivable in GLP. Moreover, this
well-order is of order-type ε0, which characterizes the proof-theoretical strength
of PA. This tells us that proof-theoretic ordinals already appear naturally within
Lindenbaum algebras of arithmetical theories.

Beklemishev also observed that this process can be extended by consider-
ing worms with ordinal entries. Extensions of GLP, denoted GLPΛ, have been
considered in cases where Λ is an ordinal [3,14,18] or even an arbitrary lin-
ear order [6]. Proof-theoretic interpretations for GLPΛ have been developed
by Fernández-Duque and Joosten [17] for the case where Λ is a computable
well-order. Nevertheless, we now find ourselves in a situation where an expres-
sion 〈λ〉ϕ requires a system of notation for the ordinal λ. Fortunately we may
‘borrow’ this notation from finitary worms and represent λ itself as a worm.
Iterating this process we obtain the autonomous worms, whose order types are
exactly the ordinals below the Feferman-Schütte ordinal Γ0. By iterating this
process we obtain a notation system for worms which uses only parentheses,
as ordinals (including natural numbers) can be iteratively represented in this
fashion. Thus the worm 〈0〉> becomes (), 〈1〉> becomes (()), 〈ω〉> becomes
((())), etc.

These are Beklemishev’s brackets, which provide a notation system for Γ0

without any reference to an externally given ordinal [3]. However, it has the
drawback that the actual computation of the ordering between different worms
is achieved via a translation into a traditional ordinal notation system. Our goal
is to remove the need for such an intermediate step by providing an autonomous
calculus for determining the ordering relation (and, more generally, the logical
consequence relation) between bracket notations. To this end we present the
bracket calculus; our main result is that our calculus is sound and complete with
respect to the intended embedding into GLPΓ0

.

2 The Reflection Calculus

Japaridze’s logic GLP gained much interest due to Beklemishev’s proof-theoretic
applications [2]; however, from a modal logic point of view, it is not an easy
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system to work with. To this end, in [13,4,5] Beklemishev and Dashkov intro-
duced the system called Reflection Calculus, RC, that axiomatizes the fragment
of GLPω consisting of implications of strictly positive formulas. This system
is much simpler than GLPω but yet expressive enough to maintain its main
proof-theoretic applications. In this paper we will focus exclusively on reflection
calculi, but the interested reader may find more information on the full GLP in
the references provided.

Similar to GLPΛ, the signature of RCΛ contains modalities of the form 〈α 〉
for α ∈ Λ. However, since this system only considers strictly positive formulas,
the signature does not contain negation, disjunction or modalities [α ]. Thus,
the set of formulas in this signature is defined as follows:

Definition 1. Fix an ordinal Λ. By FΛ we denote the set of formulas built-up
by the following grammar:

ϕ := > | p | (ϕ ∧ ψ) | 〈α 〉ϕ for α ∈ Λ.

Next we define a consequence relation over FΛ. For the purposes of this
paper, a deductive calculus is a pair X = (FX,`X) such that FX is some set, the
language of X, and `X ⊆ FX × FX. We write ϕ ∼=X ψ for ϕ `X ψ and ψ `X ϕ.
We will omit the subscript X when this does not lead to confusion, including in
the definition below, where ` denotes `RCΛ .

Definition 2. Given an ordinal Λ, the calculus RCΛ over FΛ is given by the
following set of axioms and rules:

Axioms:

1. ϕ ` ϕ, ϕ ` >;
2. ϕ ∧ ψ ` ϕ, ϕ ∧ ψ ` ψ;
3. 〈α 〉〈α 〉ϕ ` 〈α 〉ϕ;

4. 〈α 〉ϕ ` 〈β 〉ϕ for α > β;
5. 〈α 〉ϕ ∧ 〈β 〉ψ ` 〈α 〉

(
ϕ ∧ 〈β 〉ψ

)
for α > β.

Rules:

1. If ϕ ` ψ and ϕ ` χ, then ϕ ` ψ∧χ;
2. If ϕ ` ψ and ψ ` χ, then ϕ ` χ;

3. If ϕ ` ψ, then 〈α 〉ϕ ` 〈α 〉ψ;

For each RCΛ-formula ϕ, we can define the signature of ϕ as the set of
ordinals occurring in any of its modalities.

Definition 3. For any ϕ ∈ FΛ, we define the signature of ϕ, S(ϕ), as follows:
1. S(>) = S(p) = ∅;
2. S(ϕ ∧ ψ) = S(ϕ) ∪ S(ψ);
3. S(〈α 〉ϕ) = {α} ∪ S(ϕ).

With the help of this last definition we can make the following observation:

Lemma 1. For any ϕ, ψ ∈ FΛ:
1. If S(ψ) 6= ∅ and ϕ ` ψ, then maxS(ϕ) ≥ maxS(ψ);
2. If S(ϕ) = ∅ and ϕ ` ψ, then S(ψ) = ∅.
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Proof. By an easy induction on the length of the derivation of ϕ ` ψ.

The reflection calculus has natural arithmetical [17], Kripke [13,5], algebraic
[11] and topological [7,14,20,21] interpretations for which it is sound and com-
plete, but in this paper we will work exclusively with reflection calculi from a
syntactical perspective. Other variants of the reflection calculus have been pro-
posed, for example working exclusively with worms [1], admitting the transfinite
iteration of modalities [19], or allowing additional conservativity operators [9,10].

3 Worms and the consistency ordering

In this section we review the consistency ordering between worms, along with
some of their basic properties.

Definition 4. Fix an ordinal Λ. The set of worms in FΛ, WΛ, is recursively
defined as follows: 1. > ∈ WΛ; 2. If A ∈ WΛ and α < Λ, then 〈α 〉A ∈ WΛ.

Similarly, we inductively define for each α ∈ Λ the set of worms W≥αΛ where

all ordinals are at least α: 1. > ∈ W≥αΛ ; 2. If A ∈ W≥αΛ and β ≥ α, then

〈β 〉A ∈W≥αΛ .

Definition 5. Let A = 〈ξ1〉 . . . 〈ξn〉> and B = 〈ζ1〉 . . . 〈ζm〉> be worms. Then,
define AB = 〈ξ1〉 . . . 〈ξn〉〈ζ1〉 . . . 〈ζm〉>. Given an ordinal λ, define λ ↑ A to be
〈λ+ ξ1〉 . . . 〈λ+ ξn〉>.

Often we will want to put an extra ordinal between two worms, and we write
B〈λ〉A for B(〈λ〉A). Next, we define the consistency ordering between worms.

Definition 6. Given an ordinal Λ, we define a relation <0 on WΛ by B <0 A
if and only if A ` 〈0〉B. We also define B ≤0 A if B <0 A or B ∼= A.

The ordering ≤0 has some nice properties. Recall that if A is a set (or class),
a preorder on A is a trasitive, reflexive relation 4 ⊆ A × A. The preorder 4 is
total if, given a, b ∈ A, we always have that a 4 b or b 4 a, and antisymmetric if
whenever a 4 b and b 4 a, it follows that a = b. A total, antisymmetric preorder
is a linear order. We say that 〈A,4〉 is a pre-well-order if 4 is a total preorder
and every non-empty B ⊆ A has a minimal element (i.e., there is m ∈ B such
that m 4 b for all b ∈ B). A well-order is a pre-well-order that is also linear.
Note that pre-well-orders are not the same as well-quasiorders (the latter need
not be total). Pre-well-orders will be convenient to us because, as we will see,
worms are pre-well-ordered but not linearly ordered.

Theorem 1. For any ordinal Λ, the relation ≤0 is a pre-well-order on WΛ.

Note that ≤0 fails to be a linear order merely because it is not antisym-
metric. To get around this, one may instead consider worms modulo provable
equivalence. Alternately, as Beklemishev has done [3], one can choose a canonical
representative for each worm.



A self-contained provability calculus for Γ0 5

Definition 7 (Beklemishev Normal Form). A worm A ∈ W is defined re-
cursively to be in BNF if either

1. A = >, or
2. A := Ak〈α 〉Ak−1〈α 〉 . . . 〈α〉A0 with

– α = minS(A);
– k ≥ 1;
– Ai ∈W≥α+1

Λ , for i ≤ k;
such that Ai ∈ BNF and Ai `RCΓ0

〈α+ 1 〉Ai+1 for each i < k.

This definition essentially mirrors that of Cantor normal forms for ordinals.
The following was proven in [3].

Theorem 2. Given any worm A there is a unique A′ ∈ BNF such that A ∼= A′.

4 Hyperexponential notation for Γ0

Ordinal numbers are canonical representatives of well-orders; we assume some
basic familiarity with them, but a detailed account can be found in a text such
as [23]. In particular, since the set of worms modulo equivalence yields a well-
order, we can use ordinal numbers to measure their order-types. More generally,
if A = 〈A,4〉 is any pre-well-order, for a ∈ A we may define an ordinal o(a) =
supb≺a(o(b) + 1), where by convention sup∅ = 0, representing the order-type
of a; this definition is sound since A is pre-well-ordered. The rank of A is then
defined as supa∈A(o(a) + 1).

The following lemma is useful in characterizing the rank function [15].

Lemma 2. Let 〈A,4〉 be a well-order. Then o : A→ Ord is the unique function
such that

1. x ≺ y implies that o(x) < o(y),
2. if ξ < o(x) then ξ = o(y) for some y ∈ A.

In order to compute the ordinals o(A), let us recall a notation system for Γ0

using hyperexponentials [16]. The class of all ordinals will be denoted Ord, and ω
denotes the first infinite ordinal. Recall that many number-theoretic operations
such as addition, multiplication and exponentiation can be defined on the class
of ordinals by transfinite recursion. The ordinal exponential function ξ 7→ ωξ is
of particular importance for representing ordinal numbers. When working with
order types derived from reflection calculi, it is convenient to work with a slight
variant of this exponential.

Definition 8 (Exponential function). The exponential function is the nor-
mal function e : Ord→ Ord given by ξ 7→ −1 + ωξ.

The function e is an example of a normal function, i.e. f : Ord→ Ord which
is strictly increasing and continuous, in the sense that if λ is a limit then f(λ) =
supξ<λ f(ξ). When f : X → X, it is natural and often useful to ask whether f
has fixed points, i.e., solutions to the equation x = f(x). In particular, normal
functions have many fixed points:



6 D. Fernández-Duque and E. Hermo-Reyes

Proposition 1. Every normal function on Ord has arbitrarily large fixed points.

The first ordinal α such that α = ωα is the limit of the ω-sequence
(ω, ωω, ωω

ω

, . . .), and is usually denoted ε0. Every ξ < ε0 can be written in
terms of 0 using only addition and the function ω 7→ ωξ via its Cantor normal
form. The hyperexponential function is then a natural transfinite iteration of the
ordinal exponential which remains normal after each iteration.

Definition 9 (Hyperexponential functions). The hyperexponential func-
tions (eζ)ζ∈Ord are the unique family of normal functions that satisfy

1. e1 = e,
2. eα+β = eα ◦ eβ for all α and β, and
3. if (fξ)ξ∈Ord is a family of functions satisfying 1 and 2, then for all α, β ∈ Ord,

eαβ ≤ fαβ.

Fernández-Duque and Joosten proved that the hyperexponentials are well-
defined [16]. If α > 0 then eαβ is always additively indecomposable in the sense
that ξ, ζ < eαβ implies that ξ + ζ < eαβ; note that zero is additively indecom-
posable according to our definition. In [15] it is also shown that the function
ξ 7→ eξ1 is itself a normal function, hence it has a least non-zero fixed point: this
fixed point is the Feferman-Schütte ordinal, Γ0. Just like ordinals below ε0 may
be written using 0, addition, and ω-exponentiation, every ordinal below Γ0 may
be written in terms of 0, 1, addition and the function (ξ, ζ) 7→ eξζ.

Theorem 3. Let A,B be worms and α be an ordinal. Then,

1. o(>) = 0,
2. o(B〈 0 〉A) = o(A) + 1 + o(B), and
3. o(α ↑ A) = eαo(A).

Remark 1. We will not discuss notation systems based on the Veblen hierar-
chy (φξ)ξ∈Ord, but a fairly simple translation from one notation to the other is
given in [16]. Beklemishev [3] gives an explicit computation of o in terms of the
standard Veblen functions.

Finally we mention a useful property of o proven in [15], where maxA is the
greatest ordinal appearing in A.

Lemma 3. Let A 6= > be a worm and µ an ordinal. Then,

1. if µ ≤ maxA, then o(〈µ〉>) ≤ o(A), and
2. if maxA < µ, then o(A) < o(〈µ〉>).

5 Beklemishev’s bracket notation system for Γ0

Before we introduce the full bracket calculus, let us review Beklemishev’s nota-
tion system from [3].
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Definition 10. By W() we denote the smallest set such that: 1. > ∈W(); 2. if
a, b ∈W(), then (a)b ∈W().

By convention we shall write ()a, for a ∈W() to the denote (>)a ∈W().

We can define a translation ∗ : W() → W in such a way that an element
a ∈W() will denote the ordinal o(a∗):

1. >∗ = >
2.

(
(a)b

)∗
= 〈 o(a∗) 〉b∗.

Therefore, we can also define o∗ : W() → Γ0 as o∗(a) = o(a∗).
Next we make some observations about how the ordinals represented by

worms in W() can be bounded in terms of the maximum number of nested
brackets occurring in them. With this purpose, we introduce the following two
definitions.

Definition 11. For a ∈W(), we define the nesting of a, N(a), as the maximum
number of nested brackets. That is:

1. N(>) = 0;
2. N((a)b) = max

(
N(a) + 1, N(b)

)
.

Definition 12. We recursively define the function h : N→ Γ0 as follows:

1. h(0) = 0;
2. h(n+ 1) = eh(n)1.

Note that limn→∞ h(n) = Γ0. In the following proposition we can find upper
and lower bounds for any ordinal o∗(a), with a ∈W(), according to the nesting
of a.

Proposition 2. For a ∈W(), if N(a) = n, then h(n) ≤ o∗(a) < h(n+ 1).

Proof. By induction on n. If n = 0 then we must have a = >, hence h(0) = 0 =
o∗(a) < 1 = h(1).

For n = n′ + 1, we have that a = (a0) . . . (am) for some m ∈ ω. Moreover,

1. N(ai) ≤ n′ for i, 0 ≤ i ≤ m;
2. there is aJ such that N(aJ) = n′.

Thus by the I.H. we get that a∗ = 〈α0〉 . . . 〈αk〉> such that:

1. For each i, αi < h(n′ + 1);
2. there is αJ ≥ h(n′).

By Lemma 3,
o(〈h(n′)〉>) ≤ o(a∗) < o(〈h(n′ + 1)〉>);

but by Theorem 3 o(〈h(n′)〉>) = eh(n
′)1 = h(n), while o(〈h(n′+1)〉>) = eh(n)1 =

h(n+ 1), as needed.

As a consequence of this last proposition, we get the following corollaries.

Corollary 1. For a ∈W(), if N(a) = n, then a∗ ∈Wh(n).

Corollary 2. For a, b ∈W(), o∗(a) ≥ o∗(b) ⇒ N(a) ≥ N(b).

Proof. We reason by contrapositive applying Proposition 2.
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6 The Bracket Calculus

In this section we introduce the Bracket Calculus, denoted BC. This system is
analogous to RCΓ0 and, as we will see later, both systems can be shown to be
equivalent under a natural translation of BC-formulas into RCΓ0 -formulas.

The main feature of BC is that it is based on a signature that uses purely
modal notations instead of modalities indexed by ordinals. Moreover, since the
order between these notations can be established in terms of derivability within
the calculus, the inferences in this system can be carried out without using
any external property of ordinals. In this sense, we say that BC provides an
autonomous provability calculus.

The set of BC-formulas, F(), is defined by extending W() to a strictly positive
signature.

Definition 13. By F() we denote the set of formulas built-up by the following
grammar:

ϕ := > | p | ϕ ∧ ψ | (a)ϕ for a ∈W().

Similarly to RC, BC is based on sequents, i.e. expressions of the form ϕ ` ψ,
where ϕ, ψ ∈ F(). In addition to this, we will also use a� b, for a, b ∈ W(), to
denote that either a ` () b or a ` b are derivable. Analogously, we will use a� b
to denote that the sequent a ` ()b is derivable.

Definition 14. BC is given by the following set of axioms and rules:

Axioms: 1. ϕ ` ϕ, ϕ ` >; 2. ϕ ∧ ψ ` ϕ, ϕ ∧ ψ ` ψ;
Rules:

1. If ϕ ` ψ and ϕ ` χ, then ϕ ` ψ ∧ χ;
2. If ϕ ` ψ and ψ ` χ, then ϕ ` χ;
3. If ϕ ` ψ and a� b, then (a)ϕ ` (b)ψ and (a) (b)ϕ ` (b)ψ;
4. If a� b, then (a)ϕ ∧ (b)ψ ` (a)

(
ϕ ∧ (b)ψ

)
.

7 Translation and preservability

In this section we introduce a way of interpreting BC-formulas as RCΓ0 -formulas,
and prove that under this translation, both systems can derive exactly the same
sequents.

Definition 15. We define a translation τ between F() and FΓ0
, τ : F() → FΓ0

,
as follows:

1. >τ = >;
2. pτ = p;

3. (ϕ ∧ ψ)τ = (ϕτ ∧ ψτ );
4. ((a)ϕ)τ = 〈 o∗(a) 〉ϕτ .

Note that for a ∈ W(), a
τ = a∗. From this and a routine induction, the

following can readily be verified.
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Lemma 4. Given ϕ ∈ F() and α ∈ S(ϕτ ), there is a subformula a ∈ W() of ϕ
such that α = o∗(a).

The following lemma establishes the preservability of BC with respect to
RCΓ0 , under τ .

Lemma 5. For any ϕ, ψ ∈ F(): ϕ `BC ψ =⇒ ϕτ `RCΓ0
ψτ .

Proof. By induction on the length of the derivation. We can easily check that
the set of axioms of BC is preserved under τ . Likewise, the cases for a derivation
ending on Rules 1 or 2 are straightforward. Thus, we only check Rules 3 and 4.

Regarding Rule 3, we need to prove that if a � b then both sequents
〈o∗(a)〉ϕτ ` 〈o∗(b)〉ψτ and 〈o∗(a)〉〈o∗(b)〉ϕτ ` 〈o∗(b)〉ψτ are derivable in RCΓ0 .
We can make the following observations by applying the I.H.:

1. Since a � b, we have that either aτ ` 〈0〉bτ or aτ ` bτ are derivable in RCΓ0 .
Therefore, o(aτ ) ≥ o(bτ ). Since o∗(a) = o(a∗) = o(aτ ) and the same equality
holds for b, we have that o∗(a) ≥ o∗(b).

2. We also have that ϕτ `RCΓ0
ψτ and thus, by Rule 3 of RCΓ0 we obtain that

〈o∗(a)〉ϕτ ` 〈o∗(a)〉ψτ and 〈o∗(a)〉〈o∗(b)〉ϕτ ` 〈o∗(a)〉〈o∗(b)〉ψτ are derivable
in RCΓ0 .

On the one hand, by these two facts together with Axiom 4 we obtain that
〈o∗(a)〉ϕτ `RCΓ0

〈o∗(b)〉ψτ . On the other hand, we can combine Axioms 4 and
3 to get that 〈o∗(a)〉〈o∗(b)〉ϕτ `RCΓ0

〈o∗(b)〉ψτ .
We follow an analogous reasoning in the case of Rule 4. By the I.H. we

have that aτ `RCΓ0
〈0〉bτ . Therefore o∗(a) > o∗(b) and by Axiom 5, 〈o∗(a)〉ϕ ∧

〈o∗(b)〉ψ `RCΓ0
〈o∗(a)〉

(
ϕ ∧ 〈o∗(b)〉ψ

)
.

With the following definition we fix a way of translating FΓ0 -formulas into
formulas in F(). However, since different words in W() might denote the same
ordinal, we need a normal form theorem for W().

Definition 16. We define NF ⊂ W() to be the smallest set of W()-words such
that > ∈ NF and for any (a)b ∈ W(), if a, b ∈ NF and

(
(a)b

)∗ ∈ BNF, then
(a)b ∈ NF.

Every element of W() has a unique normal form, as shown by L. Beklemishev
in [3].

Theorem 4 (Beklemishev). For each α ∈ Γ0 we can associate a unique aα ∈
NF such that o∗(aα) = α.

Proposition 3 (Beklemishev). The ordering
(
NF, <0

)
is a well-ordering of

order type Γ0.

Now we are ready to translate FΓ0
-formulas into F()-formulas.

Definition 17. We define a translation ι between FΓ0
and F(), ι : FΓ0

→ F(),
as follows:
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1. >ι = >;
2. pι = p;

3. (ϕ ∧ ψ)ι = (ϕι ∧ ψι);
4. (〈α〉ϕ)ι = (aα)ϕ

ι.

The following remark follows immediately from the definitions of τ and ι.

Remark 2. For any ϕ ∈ FΓ0
, (ϕι)τ = ϕ. In particular, if A ∈ WΓ0

is a worm
then Aι is a worm and o∗(Aι) = o((Aι)∗) = o((Aι)τ ) = o(A).

With the next definition, we extend the nesting N(a) of a∈W() to F()-
formulas.

Definition 18. For ϕ ∈ F(), we define the nesting of ϕ, Nt(ϕ), as the maximum
number of nested brackets. That is:

1. Nt(>) = Nt(p) = N(>);
2. Nt(ϕ ∧ ψ) = max

(
Nt(ϕ), Nt(ψ)

)
;

3. Nt((a)ϕ) = max
(
N((a)), Nt(ϕ)

)
= max

(
N(a) + 1, Nt(ϕ)

)
.

The upcoming remark collects a useful observation concerning the nesting
Nt(ϕ) of a formula ϕ and its subformulas. This fact can be verified by an easy
induction.

Remark 3. For any ϕ ∈ F() with ϕ 6= p, there is a subformula a ∈W() of ϕ such
that Nt(ϕ) = Nt(a). Moreover, if Nt(ϕ) ≥ 1, there is a subformula a ∈W() of ϕ
such that Nt(ϕ) = Nt(a) + 1.

The following lemma relates the derivability in RCΓ0 under τ , and the nest-
ing of formulas in F().

Lemma 6. For any ϕ, ψ ∈ F():

ϕτ `RCΓ0
ψτ =⇒ Nt(ϕ) ≥ Nt(ψ).

Proof. Suppose that ϕτ `RCΓ0
ψτ . If S(ψτ ) = ∅ then it is easy to check that

Nt(ψ) = 0 and there is nothing to prove, so assume otherwise. Then, by Lemma
1.1, maxS(ϕτ ) ≥ maxS(ψτ ). Using Lemma 4, let a ∈ W() be a subformula of
ϕ such that o∗(a) = maxS(ϕτ ). Moreover, since S(ψτ ) = ∅, then Nt(ψ) ≥ 1.
Therefore, with the help of Remark 3 we can consider b ∈W(), a subformula of
ψ such that Nt(ψ) = N(b) + 1. If we had N(a) < N(b) then it would follow from
Corollary 2 that o∗(a) < o∗(b), contradicting maxS(ϕτ ) ≥ maxS(ϕτ ). Thus
N(a) ≥ N(b) and Nt(ϕ) ≥ N(a) + 1 ≥ Nt(ψ), as needed.

With the following theorem we conclude the proof of the preservability be-
tween BC and RCΓ0 .

Theorem 5. For any ϕ, ψ ∈ F():

ϕτ `RCΓ0
ψτ ⇐⇒ ϕ `BC ψ.
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Proof. The right-to-left direction is given by Lemma 5, so we focus on the
other. Proceed by induction on Nt(ϕ). For the base case, assume Nt(ϕ) = 0
and ϕτ `RCΓ0

ψτ . By a subsidiary induction on the length of the derivation
of ϕτ `RCΓ0

ψτ , we set to prove ϕ `BC ψ. If the derivation has length one it
suffices to check RCΓ0-Axioms 1 and 2, which is immediate. If it has length
greater than one it must end in a rule. The case for RCΓ0-Rule 1 follows by the
I.H.. For RCΓ0 -Rule 2, we have that there is χ ∈ FΓ0

such that ϕτ `RCΓ0
χ

and χ `RCΓ0
ψτ . By Remark 2 and Lemma 6, we get that ϕτ `RCΓ0

(χι)τ and
(χι)τ `RCΓ0

ψτ with Nt(χι) = 0. Thus, by the subsidiary I.H., ϕ `BC χι and
χι `BC ψ and by BC-Rule 2, ϕ `BC ψ.

For the inductive step, let Nt(ϕ) = n+ 1. We proceed by a subsidiary induc-
tion on the length of the derivation. If ϕτ `RCΓ0

ψτ is obtained by means of
RCΓ0-Axioms 1 and 2, then clearly ϕ `BC ψ. If ϕτ `RCΓ0

ψτ is an instance of
RCΓ0-Axiom 3, then we have that ϕτ := 〈 o∗(a) 〉〈 o∗(b) 〉χτ and ψτ := 〈 o∗(c) 〉χτ
for some χ ∈ F() and a, b, c ∈W() such that o∗(a) = o∗(b) = o∗(c). Hence, there
are A, B, C ∈W such that a∗ = A, b∗ = B and c∗ = C, and so A `RCΓ0

B and
B `RCΓ0

C. Since Nt(w) < n + 1 for w ∈ {a, b, c}, by the main I.H. we have
that a `BC b and b `BC c. Thus, we have the following BC-derivation:

χ ` χ b ` c
(Rule 3)

(b)χ ` (c)χ a ` b
(Rule 3)

(a)(b)χ ` (b)(c)χ
χ ` χ b ` c

(Rule 3)
(b)(c)χ ` (c)χ

(Rule 2)
(a)(b)χ ` (c)χ

If ϕτ `RCΓ0
ψτ is obtained by using RCΓ0-Axiom 4, then ϕτ := 〈 o∗(a) 〉χτ

and ψτ := 〈 o∗(b) 〉χτ . for some χ ∈ F() and a, b,∈ W() with o∗(a) > o∗(b).
Therefore, there are A, B ∈WΓ0

such that A `RCΓ0
〈 0 〉B, a∗ = A and b∗ = B.

Since o∗(a) ≥ o∗(()b), by Lemma 1, Nt(()b) ≤ Nt(a) and since ϕτ := 〈 o∗(a) 〉χτ ,
we have that Nt(a) < Nt(ϕ). Thus, by the main I.H. a `BC ()b and by BC-Rule
3, (a)χ `BC (b)χ. If ϕτ `RCΓ0

ψτ is an instance of RCΓ0-Axiom 5, then we

have that ϕτ := 〈 o∗(a) 〉χτ0 ∧ 〈 o∗(b) 〉χτ1 and ψτ := 〈 o∗(a) 〉
(
χτ0 ∧ 〈 o∗(b) 〉χτ1

)
,

for some χ0, χ1 ∈ F() and a, b ∈ W() with o∗(a) > o∗(b). Therefore, there are
A, B ∈ WΓ0

such that a∗ = A, b∗ = B and A `RCΓ0
〈 0 〉B. By Lemma 1

together with the main I.H. we obtain that a `BC ()b and by applying BC-
Rule 4, (a)χ0 ∧ (b)χ1 ` (a)

(
χ0 ∧ (b)χ1

)
. Regarding rules, RCΓ0 -Rule 1 is

immediate and RCΓ0 -Rule 3 follows an analogous reasoning to that of Axiom 4.
This way, we only check RCΓ0-Rule 2. Assume ϕτ `RCΓ0

ψτ is obtained by an
application of RCΓ0-Rule 2. Then, there is χ ∈ FΓ0

such that ϕτ `RCΓ0
χ and

χ `RCΓ0
ψτ . By Remark 2 together with Lemma 6 we obtain that ϕτ `RCΓ0

(χι)τ and (χι)τ `RCΓ0
ψτ with Nt(χ) ≤ n+ 1. By the subsidiary I.H. ϕ `BC χι

and χι `BC ψ and hence, by BC-Rule 2, ϕ `BC ψ.

With this we obtain our main result: an autonomous calculus for representing
ordinals below Γ0.

Theorem 6. For a, b ∈ NF define a C b if and only if a `BC ()b. Then, C is a
strict linear order of order-type Γ0.
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Proof. By Theorem 5, a C b if and only if aτ `RCΓ0
〈 0 〉bτ if and only if o∗(a) <

o∗(b). Moreover if ξ < o∗(a) then by item 2 of Lemma 2 there is some B <0 a
τ

such that ξ = o(B), hence in view of Remark 2, ξ = o∗(Bι). Thus by Lemma
2, o∗ is the order-type function on NF. That the range of o∗ is Γ0 follows from
Proposition 2 which tells us that o∗(a) < h(N(a) + 1) < Γ0 for all a ∈ W(),
while if we define recursively a0 = > and an+1 = (an), Theorem 3 and an easy
induction readily yield Γ0 = limn→∞ h(n) = limn→∞ o∗(an).

8 Concluding remarks

Beklemishev’s ‘brackets’ provided an autonomous notation system for Γ0 based
on worms, but did not provide a method for comparing different worms without
first translating into a more traditional notation system. Our calculus BC shows
that this is not necessary, and indeed all derivations may be carried out entirely
within the brackets notation. To the best of our knowledge, this yields the first
ordinal notation system presented as a purely modal deductive system.

Our analysis is purely syntactical and leaves room for a semantical treatment
of BC. As before one may first map BC into RCΓ0 and then use the Kripke
semantics presented in [5,13], but we leave the question of whether it is possible
to define natural semantics that work only with BC expressions and do not
directly reference ordinals.

Moreover, [15] suggests variants of the brackets notation for representing the
Bachmann-Howard ordinal and beyond. Sound and complete calculi for these
systems remain to be found.
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Hájek, P., Valdés-Villanueva, L., Westerst̊ahl, D. (eds.) Logic, Methodology and
Philosophy of Science, Proceedings of the Twelfth International Congress, pp. 65–
78. Kings College Publications (2005)

4. Beklemishev, L.D.: Calibrating provability logic. In: Bolander, T., Braüner, T.,
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