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INTRODUCTION

The principle of periodically switching the inputs to a

capacitor was used by Hosenthien (1) in a ring modulator de-

vice patented in I960. The reverse-switched capacitor was

introduced and defined by McKinney (2) in -196ij.. He described

the physical construction of the reverse- switched capacitor and

presented the mathematical description for this device when used

to replace the capacitor in a simple series .resistance-

capacitance network.

The purpose of this investigation is to extend derivations

and procedures developed by McKinney for the series RC case to

more complicated networks. Some detailed examples and counter

examples are presented. A symmetric balanced RC lattice net-

work terminated in a reverse-switched capacitor is used as the

fundamental building block for this investigation. The lattices

are cascaded to determine the effect of increasing complexity on

the system. Finally, the symmetric lattice network terminated

with a reverse-switched capacitor is described by a state space

model and the investigation concluded.

To facilitate calculations all admittances and impedances

are normalized and all initial conditions are assumed to be

zero. This in no way detracts from the generality of the

method.



PREVIOUS WORK

J. A. McKinney's Thesis

J. A. McKinney (5) gave a qualitative description of the

reverse-switched capacitor. A mathematical analysis using Z-

and Zm- transforms was developed to describe the device in

certain simple circuits.

The physical system (see Fig. 1) consisted of an ordinary

capacitor whose leads are attached to a double-pole double-

throw switch. This switch acts as a reversing switch and in

use is controlled by a periodic timing mechanism. For the

purposes of this analysis, the switching time is considered to

be zero.

Using current as a driving source, McKinney found a rela-

tion occurs between this current and the voltage across the

reverse-switched capacitor alone. In. Laplace transform nota-

tion this relationship is

I = Cse - 2CZmi + Ce (1)

where i(t) is the driving current, C is the capacitance of the

reverse-switched capacitor, eft) is the voltage across the

reverse- switched capacitor, and e is the initial condition on

C. This equation is called the node pair voltage equation.

By similar reasoning, McKinney developed a relationship

between the driving voltage and the current through the reverse-

switched capacitor. This relationship is

_ _ 2(1 - zm ) (1 - zm )

e = i/cs - — Zm (i/Cs) + e (2)
s(l + z™)

U
s(l + z

m
)



where e(t) represents the driving voltage and i(t) the current

through the reverse-switched capacitor. This equation is

called the loop current equation.

McKinney reasoned that these equations could be used in

the analysis of networks containing reverse-switched capacitors

The procedure was simply to express the network to be analyzed

in Laplace transform notation. At the point (s) in the equa-

tion.^) where there is a, voltage drop due to a reverse- switched

capacitor, the node pair voltage equation is inserted. The

same procedure is followed for the loop current equation. The

equation(s) obtained can then be manipulated in much the same

way as those used in sampled-data feedback systems.

McKinney demonstrated that this procedure does work for a

simple series RC network, where the resistor is in series with

one reverse-switched capacitor and a voltage generator used as

a source.

THE Z- AND Zm-TRANSPORMS

The Z- and Zm- transforms are used extensively in this

paper and are introduced at this time for completeness. The

Z-transform is described thoroughly by Jury (2) and others, and

is the basis for McKinney' s investigation of the reverse-

switched capacitor. For the work in this investigation, the

Z- and Zm- transforms are defined as

CO

Zf • HL z
n f (n.T) (3)

n=0



4.

o&

Zmf = ^ z
nmf(nm'T)

n=0
(-)

where z = «T sT .

The Z.,_- transform is the ordinary Z-transform where the

sampling interval T it replaced with rnT, the duration of the

sw it chin 5 period. In general, the theorems that apply tc the

ordinary Z-transform s pply also to the Z--transform. One im-

portant sxception to t.his is the case as follows.

For the ordinary Z-transform

Z(f z i) = (Z f) (z i).

For mixed Z- and Zm- transforms

Zx (f zmI) = <Zi?> (Zmg)

and

Zm^ zli) = (zmf) (Zmg)

.

SECTION I

Application of McKinney's Procedure to a
More Complicated Network

The circuit to be considered is a balanced symmetric

re si stance- capacitance lattice network terminated with a reverse-

switched capacitor and with a voltage generator as a source.

The circuit diagram for this network is displayed in Pig. 2.

The symbol ) {
—-will be used to denote a reverse-

switched capacitor. The general block diagram for this c ircuit

is represented in Fig. 3, where
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»
Pig. 1. Reverse-switched capacitor.

v!>
'3

Fig. 2. A balanced symmetric RC lattice
network with source and termination.

T
Pig. 3. Block diagram representation of

network in Pig. 2.



A =
U p

(5)
i s

The equations for this circuit written directly in matrix

Laplace transform notation are

i) ( ; 3 (;;,

By normalizing Rx = R2 = 1 ohm and G1
= C 2

= 1 farad, then

/s + 1 2 \

(6)

A =

r 5

s - 1

2 s

s - 1

s + 1

V"

(7)

1 s - 1

In this network the current through the reverse- switched

capacitor (C3) is I2 ; therefore (using McKinney' s procedure)

in place of i 2 , the node pair voltage equation (1) may be

written.

e
1

= -<e"
2 + (3(C

3
s e 2 - 2 C3 Zm e 2 + C3 e 2 ) (8)

ix = 7^2 + 5(C 3 s e 2 - 2 C3 Zm e 2 + C3 e 2 ) (9)

Normalizing C
3 = 1 farad, letting the initial conditions be

equal to zero, and collecting terms gives

ex - U + s(3)e 2 -20 Zme 2 (10)

i
n = (/ + s6)e 9 - 2 6 Z am e 2 (11)

Dividing equation (10) by ^ + sB and Zm- transforming yields

V ®1

•< + sp

Solving for Zm e 2 gives

) = Zme 2 (l - Z
2(3

in
•< + sp

-) • (12)



el
Zm<

)

-< + sS
zme 2

=

1 " zm("

2p
(13)

)

-c + sp

Solving for ¥g in equation (10) gives

e-L 2(3

+

e l
zm (
——

)

k + sp

\

J
iir

»< + sp ^ + sp

^ " Zm(-

2p
(Ik)

-)

* + sp

Substituting Z^g and e~2 into equation (11) and simplifying

yields

H =
/ + s6

•< + sp

e l
2 Zm ( )

-< + sp

-< + sp
2p

1 - Zm ( )

-< + sp _.

(15)

For purposes of calculations choose e-j_ = — . Now substituting
_ s

for e-p *, p, r, and 5 in equation (15) and simplifying

s + 3 2(s - 1)

1 " Zm ( )

3s + 1 3s + 1
i - zm (

3s + 1

Taking the Z-transform and simplifying gives

s - 1
Zm(- ")

s(s + 1)

k
(16)
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1 - 2 e- T/3 - «*(! _ 3e-W3)T
;

3
Zi-•1

1 - ze T/3 _ z
m
(1 _ 3e-U/3)T }

+ 3zm+ l (e
-T/3 „ e

-(m+l/3) T)

+ z
ra+1 (e- T/3 - 3 e-(^

+l/3)T)

11
. z2me-(m/3)T + z

2m+l
e
-(m+l/3)T

3'

(17)
_ 3z2me -(m/3)T + 3z2m+l Q -(m+l/3)T

Equation (17) can be put into a recurrence relation as follows

A (n) A( n_!)e-
T /3 + A (n _m) (l - 3 e-

(m/3)T
)

" A (n _m. 1
)(e-T/3 . 3 e-(-

+l/3)T) + 3A (n. 2m) e" ^3)T

- 3A (n _ 2in. 1)
e-(^l/3)T + ^ (l8)

where

{«»} = (l, -e-
T/3, 0, ..., -(- - 39

-'-/3)T)
,

3 (e-
T/3 .^(»+l/3)T), o, ...,

(m/3)T -(m+l/3)T .
• r •

11 ._

- — e

3

- The digital computer program for equation (l8) is displayed

in Appendix A. Some results of this solution with m = 10 and

T = .1+ are given in Table 1. The data from Table 1 are plotted

in Pig. l±.



Discussion of Results

Results from Table 1 indicate that the output (current)

takes the form of an ultimately periodic function as predicted

by McKInney. However, further investigation has demonstrated

that as the sampling time (T) becomes smaller, the time necessary

for the output (current) to become periodic is increased and for

values of T less than about .3 second, with m held constant at

10, the output current becomes unstable. The data for the com-

puter solution with m = 10 and T = .2 second are plotted in

Fig. 5 and displays the instability of the output current for

this value of sampling time.

Further Investigation Using McKinney's Procedure

The investigation was carried further using, first, two

symmetric RC lattices cascaded, and, then, three lattices cas-

caded. In each case the cascaded lattices were terminated in

a reverse-switched capacitor and driven by a unit step input

(l/s). The computer results obtained from each case displayed

the same type of output as was evidenced in the single lattice

case presented. That is, for relatively long sampling times

(T) the output would become ultimately periodic, but as the

sampling time was reduced the output would become unstable.

No significant improvement in output stability was experienced

as more sections of the lattices were cascaded. The computer

program used for the solution of the two-lattice cascaded case



10

is given in Appendix B.

Verification of Results by a Physical Model

At this point in the investigation, the need for physical

verification of the calculated results became apparent. Intui-

tion did not indicate that the device under investigation

should become unstable when a unit step of voltage was applied

at the input.

A physical model of the balanced symmetric RC lattice net-

work was constructed by the author. The device was terminated

in a reverse-switched capacitor. The reverse-switched capaci-

tor was operated by an electromechanical switch. This device

was wired into an analog computer program and its behavior in-

vestigated at various conditions of inputs and switching times.

In all cases the device behaved in a stable manner and exhibited

a tendency to ultimate periodicity, thus indicating that the

calculated output was not properly describing the actual output

of the device.

Conclusion of Section I

The conclusion gathered from this investigation was that

the procedure for analyzing a network containing a reverse-

switched capacitor as outlined by McKinney does not hold in

general for networks more complicated than a simple series



TABLE 1, SYMMETRIC LATTICE WITh

»

REVERSE SWITCHED CAPACITOR

T. = .4 M = 10 EO =

N I (N) N I (N) N I (N)

1.000JOO 50 .666667 100 • 666666
1 0.000000 51 1.706241 101 1.178589
2 0.000000 52 1.493257 102 1.031470
3 0.000000 53 1.306859 103 .902715
4 0.000000 54 1.143728 104 .790032
5 0.000000 55 1.000961 105 .691416
6 0.000000 56 .876014 106 .605109
7 O.COOGCO 57 .766665 107 .529575
8 0.000000 58 .670965 108 .463470
9 0.000000 59 .587211 109 .405617

10 . 666667 60 .666668 110 .666669
11 2.333795 61 .984516 111 1.401782
12 2.042476 62 .861622 112 1.226803
13 1.787520 63 .754069 113 1.073665
14 1*564390 64 .659941 114 •939644
15 1.369113 65 .577563 115 .822352
16 1.198211 66 .505468 116 .719701
17 1.048642 67 .442372 117 .629863
18 .917744 68 .387152 118 .551240
19 .803185 69 .338825 119 .482431
20 • 666667 70 .666667 120 .666669
21 .488250 71 1.555250 121 1.225283
22 .427304 72 1.361114 122 1.072335
23 .373965 73 1.191211 123 .938480
24 .327284 74 1.042516 124 .821333
25 .286430 75 .912383 125 .728809
26 .250676 76 .793493 126 .629083
27 •2193T5 77 .698821 127 .550557
28 •1919^9 78 .611589 128 .481833
29 .16S033 79 .535247 129 .421687
30 .666667 80 .666669 130 .666669
3i 1.947691 81 1.103920 131 1.364857
32 1.734568 82 .966121 132 1.194487
33 1.491793 83 .845524 133 1.045384
4 8 05577 84 .739980 134 .914892

35 1.142607 85 .647611 135 .800690
36 .999979 86 ,566772 136 .700743
37 .875155 87 .496024 137 .613272
38 .765^13 88 .434107 138 .536721
39 .670306 89 .379919 139 .469723
40 .666668 90 .666668 140 .666667
41 .793579 91 1.460829 141 1.254484
42 .694519 92 1.278479 142 1.097891
43 .607824 93 1.118891 143 .960846
44 .531952 94 .979224 144 .849074
45 .465550 95 .856991 145 .735940
46 .437437 96 .750016 146 .644075
47 .356578 97 .656394 147 .563678
48 .312067 98 .574459 148 .493316
49 .273113 99 .502752 149 .431737





cd

E
•H
Eh

13

O O
J-

o
CO

O
CM

T-
o

-"vo

.J

-3-

C\J

03

C
•H
+3

-P
ca

H
u
«
T3 •\

03 o
A H
O
+3 II

•H
3 S

i ^
a P
cd CJ •

03 ftT3
in a G
CD •H o
> o
CD a a;

u CD

•p
eg

c CO CM
•H
P

•

© H II

3 C
•H 3E-
-P

£ "C

ca p a
Id •d' CD

CO :>

fc

CD M
>

c
•P S
C -P
CO CD

k C
(h~
o

"LA

W
•H

o o O
1 l 1

ft
I



14

resistance-capacitance circuit.

The investigation in the next section will attempt to

develop new procedures and techniques for this analysis.

SECTION II

The Reverse-switched Capacitor in
a Parallel RC Circuit

All previous work in Z-transform analysis of the reverse-

switched capacitor in a network has involved series circuits

and voltage driving sources with the behavior of the input cur-

rent the point of interest. Investigation of a reverse-switched

capacitor in a parallel resistance-capacitance network with a

current driving source now appears useful. The associated in-

put voltage will be investigated.

The circuit to be considered is the parallel RC circuit

displayed in Pig. 6. This network is driven by a current source

(i) and the capacitor (C) is a reverse-switched capacitor.

x *

t

tR^ e

Fig. 6. Parallel RC circuit.
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Applica-tior l of the Kirchhoff current law yields the cir--'-

cult equation

i = Re + Ce • (19)

R and C are normalized to 1, yielding
•

i = e + e , (20)

The finite- time Laplace transform (Pn -transform) will be

used in. this development and is defined by

/-(n+l)mT

Pnf =
J

f(t)e -st dt .

/nmT
(21)

Summing the Pn" transform from to &o yields the ordinary

Laplace transform

OS-

n=0
P f = f (22)

Furthermore

Z
n=0

Pnf = sf - fp (23)

•

where f is used to denote df/dt and fQ is 1:he initial condition.

The symbol Pn will be used when the P -transform is ap-

plied to a reverse-switched capacitor.

Summing the

n=0

transform yields

A —
Pnf = f (24)

and

n=0

•

Pnf = sf - 2zmf + f Q . (25)

The Pn
- and tn-ibrans forms have been developed thoroughly
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by McKinney (5). Note that Pnf and P nf when summed from to

°° both equal the ordinary Laplace transform of f . FLf holds

only for conditions across a resistive element and not across

a voltage generator.

Transforming equation (20) by Pn and ^ yields

P„i = P„e + P^e (26)nJ

OS

n~ * rr

o£>

(27)
n=0 n=0 n=0

Substituting equations (22) and (25) into (27) yields the

equation

i = e - se - 2Zm e" + eQ .

Letting eQ = and Zm- transforming equation .(28) yields

Zm (I/l + s)

Zme = '

1 - Zm (2/1 + s)

Substituting equation (29) into (28) and solving for e gives

I 2 T Zm (T/a) \

(28)

(29)

e =

(1 + s) (1 + s) / 2

1 " Zm( )

(30)-.

1 + s /

Letting i = l/s and Z-transforming yields

ze
Ze =

2(im - z e
m -mT

(1-z) (l-ze- T ) (l+zme-mT ) (l-zm ) (l-zme"T )

After expanding, equation (31) becomes

(3D

m+1, -T _ -mT -(m+l)T_ z(l-e-T ) + z
ln
(2e _mT-2) + z

1'^x
(H-e"

i
-3e

Ze =

1+z ( l+e _T ) +z 2
e
_T+zrn

( e"mT -l) +zm+1 ( l+e-T-e-mT -e- (m+1 ) T
)

+ z 2m+l( e -mT _ Q
-(m+l)Tj

+ zm+2 (e-( m+l)T- e -T)- z 2me -mT+z2m+l( e -mT+e -(m+l)T )

_ z2m+2 e
-(m+l)T

(32)
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The recurrence relation for equation (32) msly b e writt<an as

V (n)
'-V (n-1)(B1) - V( n_ 2 )(B2) - V( n.m )

(B3) - V( n .m .-1) (Bh.)

- V( n_m_ 2 )(B5) - V( n_2m)(B6) - V( n .•2m- 1)(B7)

/

- V( n_ 2m-2)(B8) - X( n ) (33)

where

(
X (n)) = [o, (Al), 0, 0, ..., (A2), (A3),

0, (Al|.), 0, ...
1 .

0, 0, ..., t

The coefficients of powers of z in equation (33) are defined

from equa'fcion (32) and are

Al = 1 - e"T

A2 a 2e"mT - 2

A3 = 1 + e
-T . 3e -mT + e -(m+l)T

Ai|. = e -mT _ e -(m+l)T

Bl = 1 + e"T

B2 = e^

B3 = e"raT - 1

Bk = 1 + e
- T - e-mT - e -(m+l)T

B5 = e -(m+l)T _ e -T

B6 = e -mT

B7 = e -mT + e -(m+l)T

B8 = e -(m+l)T

Discussion of Results

The ciomputer program used for the solut ion of equa tion (33)

is in Appe ndix C. The solution of this recurrence re la tion

shows that the input voltage to this circuit is periodic in
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nature as would be expected from previous work. The next

section will extend this type of analysis to a more compli-

cated network.

SECTION III

A State Space Approach

The state-variable approach to network analysis has been

thoroughly reviewed by Kuh and Rohrer (l^.) . This section is

devoted to an exploitation of state-variable analysis in terms

of the symmetric balanced resistance-capacitance network dis-

played in Pig. 7.

Pig. 7. Symmetric RC network.

In the network of Pig. 7, the voltages across the capaci-

tors C lf C 2 , and C3 are chosen as the state variables and are

denoted as vlt v2 , and V3, respectively. Application of the

Kirchhoff current law to obtain the capacitor current yield

the right-hand side of the equations of dynamic equilibrium:

C^dv-L/dt) = C lVl = i s
- (ILU2)

(3k)
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V2 - V2
C 2 (dv2/dt) = C 2v2 = i s - ( ) (3$)

R2

vi - V3
C3(dv3/dt) = C3V3 =

( ) - C 2v2
R2

V-, - Vo Vo - Vs
= <-= ~) + (

— -) - i
s (36)

R2 RX

The input voltage vL in Pig. 7 can be related to the

state variables by Ohm's law as

vL = vx + v2 - v
3 . (37)

Equations developed are almost in standard state equation form,

x = Ax + Bu (38)

and

y = Cx + Du (39)

where x(t) represents the state vector, u(t) the input vector,

and y(t) the output vector. Therefore we choose

vl

x =
\
v2 /

• (ij.0)

for the state vector,

u = :(i
s
(t)) (^1)

for the input vector, and

y = (vL (t)) ([,2)

for the output vector.

This leads to the following set of A, B, C, and D

matrices

:
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A =

B =

C =

ik3\

(w

ikS)

D= (o) (1*6)

If we consider the specific element values to be normaliz-

ed to R-^ = R
2 =1 ohm and C 1

= C 2
= Co = 1 farad, the input-

output state relation assumes the form,

(ii-7)

and

vL (lj.8)

This specific network description will be employed in the

subsequent development of the reverse-switched capacitor analy-

sis in this section. Note that capacitor Co in Pig. 7 is a

reverse-switched capacitor and C
]_

and C 2 are normal unswitched

capacitors.
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If we consider all initial conditions in the network ele-

ments to be zero, we can rewrite equation (Ij_7) in. Laplace

transform notation as

/ sv

(i}-9)

To obtain the proper action of the reverse- switched

capacitor in the network, premultiply both sides of equation

(ij.7) by the diagonal operator matrix

wnere

Pn

o pn

£.

(50)

w

Z Pn v = v
n=0

r
n=0

n=0

CO

Pn V = sv

Pn V = V

Z Pn v = s"

n=0
2Zmv + vo

obtaining
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Pn v
l

pn v2

n v3

^» Pn

l /

Vl

- p n w v 2U rn -aty \
v3

n\

n

*V
w (5D

/^Taking the Pn- and Pn- transforms and letting the initial con-

ditions be equal to zero yields

^i /-i + v
3

sv
3

- 2Zmv3

-V2 + vo

v^ + v
2

- 2vo

+

/i

VT

Simplifying this gives

-1

-1

(s+2-2Zm )

Solving equation (53) for v, yields

2(s + l)Zmv3 - T s (s - 1)
Vo =r
3

s(s + 3)

Now take the Zm- transform of equation {$l\)

zmv3 ~ Zm
2(s+l)

s(s+3)

and solving for Zmv3 gives

i s (s - 1)

zmv3 Jm
is(s-D

s(s+3)

-Zm

zmv3
=

s(s + 3)

1 - Zm

2(s + 1)

s(s + 3)

(52)

iS3)

C5W

(5$)

(56)
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From equation (53),

Vi =

and

v2 =

v
3

+ i
s

S + 1

v3 + is

(57)

(58)
s + 1

The output voltage to be investigated from equation (1^.8) is

Substituting equations (54) , (57), and (58) into equation (59)

gives

VL
=

(-2s 2 - 2s + k)Zmv3 + (s 2 + s + 2)i s
(60)

s(s + 3) (s + 2)

Substituting equation (56) for Z^Vo into equation (60) yields

i a (s-l)

s^ + s + 2 2(s-l)
VL

= is +
s(s+3)(s+2) s(s+3)

Jm
s(s+3)

1-Zm

'2(8+1)

s(s+3).

. (61)

Again, for ease of calculation, let t
fl

be l/s in equation (6l

and Z-transforming gives

/ 3- 1

s 2 + s .+ 2 \ /2(s-l)
ZvL = Z (

—
I
+ Z

J
rr:

U 2 (s+3:

/2(s+l),s
2 (s+3) (s+2)/ \s(s+3)

s(s+3)

Executing the Z- transform and performing a large amount of

algebra, equation (62) becomes

.
(62'



2k

(PI) z+(F2) z
2
+(F3) z

3
+(Flj.) z

[}-+(P5) z*- (F6) z
IT1+(F7) z

rc: X

ZvL = —
1-(D1) z+(D2) z 2 - (D3) z3 +(Dl^) z^- (D£) z^+(D6) z

6+(D7) z
m

+ (F8)zm+2+(F9)zra+3+(FlO)zm+^+(Fll)zrn+^+(F12)z
2i:n

-(D8)zm+l+(D9)zra+2 -(D10)zm+3+(Dll)zm
"r^-(D12)zm+^

+ (F13)z2m+1+(Fll0z 2m+2+(Fl5)z 2ra+3+(Fi6)z 2r^
+ (D13) zm+6+(Dli^) z 2m-(Dl5) z 2m+1+(Dl6) z2m+2 - (D17) z

2'"^3

+ (F17)z2m+^+(Fl8)z3m+1+(Fi9) 3
'

rn+2+(F20)z 3l71+3

+ (Dl8)z 2m+^-(D19)z 2m+^+(D20)z 2m+6+(D2I)z 3ra-(D22)z 3
'

:rl
"ri

+ (F21)z3m+4+(F22)z3m+^

+ (D23) z3m+2_( D 2[j.) z3m+3+(D25) z
3in+i^- (D26) z 3^5

+ (D27)z3m+6

The coefficients of the powers of z in equation (63)

defined as follows:

El = e -3mT

E2 = e" 2?

E3 = e"3T

El; = e~&

Al = k ' Ij-(El) - 3raT

A2 = ij. - 4(E1) - 3mT(El)

A3 = (El) - k

A^ = 1 - ij.(El)

A5 = 3 (El)

A6 = 3T - 1 + 9(E2) - 8(E3)

A7 = l+17(E3)-17(E2)-3T(E2)-3T(E3)-(Ei4.)

A8 = 3T(Eij.) + (E^)-9(S3)+8(E2)

63:
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A9 = (E3) + (S2)

A10 = (Elj.)+2(E3)'+2(E2)+1

All = 2(Ei|) + (E3) + (E2)

A12 = 1+(S3)

Bl = 6(A1)

B2 = 2(A1) (A13)-8(A1).

B3 = 6(A2)

Bl+ = 8(A2)-2(A2) (A13)

' B5 = 3(A12)

B6 = 3(A13)

B7 = (A3) (A12)

B8 = (A3)(A13)

B9- = (A^)(A12)

BIO = (A^)(A13)

Bll = U5) (A12)

B12 = (A5)(A13)

PI = (A6)/9

P2 = (3(A7)-(B5)(A6))/27

F3 = ((B6)(A6)-(A7)(B^)+3(A8))/27

Flj. = (U7)(B6)-(A8)(B5))/27

P5 - ((A8)(36))/27

P6 = (Bl)/27

P7 = ((A6) (A3)-(B2)+(A9) (Bl))/27

P8 = ((A7) (A3)-(A6) (B7)-(A10) (B1)+(A9) (B2))/27

P9 = ((A6) (B8)-(A7) (B7.) + (A8) (A3)-(A10) (B2) + (A11) (Bl))/27

FIO =
( (A7) (B8)-(A8) (37)-(A1Li) (B1)+(A11) (B2) )/27

Fll = ((A8)(B8)4(B2)(Ali))/27
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PI2 = B3)/27

P13 = ;(A6)(A4)-(Bij.)-(B3)(A9))/27

Piij. = (A7)(A^)-(A6)(B9)-(A9)(Blj.)-(A10)(33))/27

Pl5 = (A6) (B10)-(A7) (B9)+(A8) (Ak)-(Bk) (A1G)-(B3) (AIl))/27

Pl6 = (A7) (B10)-(A8) (B9)-(Ail) (Bl|)-(Alk) (33) )/27

PI? = (A8) (BIO) -(Blj.) (Alii.) J/27

Pl8 = (A6)(A5))/27

• P19 =
( (A7)(A5)-(A6)(Bll))/27

P20 =
. (A6)(B12)-(A7)(Bll) + (A8)(A5))/27

P21 = ( (A7) (B12)-(A8) (Bll))/27

P22 = (A8)(312))/27

Dl = ( 3(A9)+(B5))/3

D2 = ( (B6)+(B£) (A9)+3(A10))/3

D3 = 1 (A9) (B6)+(A10) (B5)+3(A11) )/3

DJ+ = « (A10) (B6) + (A11) (B5)+3(Alij.) )/3

D5 = ( (aii)(b6)+(ai^)(b5))/3

D6 = ( (All^)(B6))/3

D7 = ( A3)/3

D8 = ( (37)+(A9)(A3))/3

D9 = ( (B8)+(A9)(B7)+(A10) (A3))/3

D10 = ( (A9) (B8)+(A10) (B7)+(A11) (A3) )/3

Dll = ( (A10) (38) + (All) (B7) + (Alii.) (A3) )/3

D12 a ( (All)(B8)+(Al4)(B7))/3

313 =
( (Alij.)(B8))/3

DII4. = (AW/3

D15 = ( (B9) + (A9)(Ai^))/3

Dl6 = ( (B10) + (A9) (B9) + (A10) (Al|) )/3
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D17 = ((A9) (B10) + (A10) (B9)+Ull) (Aij.) ) /3

Dl8 = ((A10) (B10)+(A11) (B9)+(Alk) (Ak) )/3

D19 = ((All) (B10)+(Alk) (B9>))/3

D20 = ((Alk) (B10))/3

D21 = u$)/i

D22 = ((311)+(A9) (A5))/3

D23 = ((B12)+(A9)(Bll)+(A10)(A5))/3

D2k = ((A9) (B12) + (A10) (B11) + (A11) (A5))/3

D25 = ((A10) (B12) + (A11) (Bll) + (Alii.) (A5))/3

D26 = ((All) (B12)+(Alk) (Bll))/3

D27 = ((Alk)(B12))/3

Equation. (63) can be put into a recurrence relation as

follows:

R (n) - R(n-1)(D1) - R( n_2)(D2) + R( n _ 3 )
(D3) - R( n _h ) (Dk)

+ R( n_5)(D^) - R( n_6)(D6) - Rn_m)(D7) + R(n-m-l) W)
- R(n-m-2)(D9) + Rn _m _ 3 )(D10) - R( n_m_^) (Dll)

+ R (n-m-5) (D12
) " R (n-m-6)(D13) - R( n.2m )

(Dlij.)

+ R (n-2m-l)(Dl5) - R( n-2m-2) (Dl6) + R( n_ 2m-3) (D17)

- R (n-2m-k)( Dl 8 ) + R( n-2ra-5)( D1 9) ~ R(n-2m-6) (B20)

" R (n-3ir.)( D21 )
+ R (n-3n-D (D22

) " R (n-3m-2) (»23)

+ R (n-3m-3) (D21+) " R (n-3m-k)(D2>) + R( n-3m-S)1
(D26)

" R (n-3m-6)(D27) + X( n) (6k)

where

(
X (n)] " {0, (PI), CM)", (PJ)., (Fk), (F£), 0, ..., (F6),

(P7), (P8); (F9), (F10), (Fll), 0, . .., (F12),

(F13), (Fll*.), (Fl£), (Fl6), (F17), 0, 0, ...]
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Discussion of Results

The computer program for the solution of equation (oif)

is displayed in Appendix D. Some results from this program

with m = 10 snd T = .1 second are given in Table 2. No

attempt is made to present a plot of the data in Table 2

because of the obvious instability of the solution.

The output displays an ultimate periodicity for fairly

large sampling times T. Decreasing the sampling time in-

creases the time for the output to become periodic, and

further decrease will cause the output to become unstable.

Again the calculated solution does not exhibit the actual

operation of the circuit being analyzed.

The analysis in this section made use of the Z-transform

techniques and procedures that were used successfully in

Section II for the analysis of a parallel RC network. This

section serves as an example that the procedures developed in

Section II do not hold in general for the analysis of more

complicated networks. A different approach and new techniques

are needed to accomplish this generalization.

SUMMARY

This report compiles the results of an investigation into

the Z-transform method of analysis of networks containing

reverse-switched capacitors. Work by McKinney in this area

resulted in a Z-transform description for the reverse-switched
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TABLE 2. SYMMETRIC LATTICE WITH REVERSE SWITCHED CAPACITOR

T = .1 M = 10 EO =

N I (N) N I (N) N I (N)

0.000 33 2.987E+08 66 2.749E+13
1 8.245E-02 34 5.140E+08 67 2.373E+18
2-2.685E-02 35-7.274E+08 68-8.808E+18
3-3.569E-01 36-2.698E+09 69-1.734E+19
4-2.012E-01 37 4.740E+08 70 1.949E+19
5 1.249 38 1.116E+10 71 8.649E+19
6 1.925 39 8.125E+09 72 4.667E+16
7-3.240 40-3.711E+10 73-3.441E+20
8-1.056E+01 41-6.562E+10 74-3.089E+20
9 3.415 42 8.880E+10 75 1.092E+21

10 4.492E+01 43 3.408E+11 76 2.209E+21
11 2.675E+C1 44-4.763E+10 77-2.364E+21
12-1.554E+02 45-1.399E+12 78-1.091E+22
13-2.463E+02 46-1.065E+12 79-3.806E+20
14 3.971E+02 47 4.610E+12 80 4.306E+22
15 1.336E+0". 48 8.373E+12 81 4.014E+22
16-3.824E+0^ 49-1.083E+13 82-1.353E+23
17-5.659E+03 50-4.303E+13 83-2.811E+23
18-3.556E+03 51 4.484E+12 84 2.862E+23
19 1.933E+C4 52 1.752E+14 85 1.375E+24
20 3.149E+04 53 1.394E+14 86 9.489E+22
21-4.865E+04 54-5.722E+14 87-5.387E+24
22-1.689E+05 55-1.068E+15 88-5.210E+24
23 4.200E+04 56 1.319E+15 89 1.676E+25
24 7.098E+05 57 5.432E+15 90 3.577E+25
25 4.696E+05 58-3.747E+14 91-3.460E+25
26-2.403E+ r>6 59-2.195E+16 92-1.734E+26
27-4.024E+06 60-1.820E+16 93-1.783E+25
28 5.952E+06 61 7.101E+16 94 6.738E+26
29 2.135E+07 62 1.361E+17 95 6.754E+26
30-4.527E+06 63-1.604E+17 96-2.075E+27
31-8.902E+07 64-6.855E+17 97-4.549E+2 7
32-6.184E+07 65 2.336E+16 98 4.176E+27

•
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capacitor and a procedure for network analysis. He demonstrated

that this procedure could successfully be used in the analysis

of a simple series RC circuit. The author of this previous

work predicted that this procedure could be applied directly

to more complicated networks.

Section I of this report is devoted to using McKinney's

procedure to analyze a balanced symmetric RC lattice network

terminated with a reverse-switched capacitor and driven with a

unit step voltage source. The solution to the calculations for

this analysis produced an unstable output current for all rea-

sonable values of sampling intervals. This result led the

writer to construct a physical model of the network and its

reverse-switched capacitor termination. Subsequent study of

the network model on the analog computer revealed that output

instability did not exist for any value of sampling time.

Therefore the results of Section I serve as a counter example

of the analysis procedure previously developed. The statement

can be made that McKinney's procedure does not. hold in general

for analysis of networks more complicated than simple series

RC circuits.

In Section II of this report the finite time Laplace

transform (Pn- transform) is introduced, and this method of

analysis is applied to the analysis of a simple parallel RC

network using a current generator as the driving source. This

calculation procedure proved to be a correct analysis of the

network. The solution to the calculations exhibited a

periodic output voltage as was expected.
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Section III of this report is an. attempt to use the ?n
-

transform analysis of Section II for the analysis of a balanced

symmetric RC lattice network driven by a current generator.

The state variable approach to network analysis is used in

Section III. Results of the analysis displays an unstable

output voltage associated with a unit step current driving

source. This result, of course, is not physically possible.

The direct extension of the Pn-transform method of analysis

to a more complicated network was not realized.

The attempt by this author to extend the Z-transform

method of analysis to complicated networks containing reverse-

switched capacitors has, as a whole, been unsuccessful. How-

ever, considerable insight into the problem has been obtained

and because of successful application of the method to simple

cases, the extension still appears feasible. Further research

in this area is recommended.
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APPENDIX A

C C SYMME TRIC LATTICE WITH REVERSE SWITCHED CAPACITOR WJH
C SAMPLING TIME T, SWITCHING TIME MT* NO INITIAL CONDITIONS

DIMENSION X(622)» AJ622), NT(622)
1 READ, T,M,NPTS
PUNCH Si T» H

5 FCRMAT( ,//,2X,3HT = F8.6, 2X, 3HM =,15/)
AM = M
PUNCH 2

2 FORMAT (//3(2X»1HN,5X,4HI(N> ,5X)//)
C N-(2M+2) IS EQUIVALENT TO REAL TIME N=0

El=ExP<-T/3.)
El=EyP(-T/3.

)

E2 = E).P(-AM*T/3.)
E3=EXP (-<AM+l.)*T/3.)
NPTS=NPTS/3*3
LAST = 2*M+1+NPTS
DO 10 1=1, LAST

10 X( I )=0

X(2*M+2)=1
X(2#M+3)=-El
X(3*M+2)=-l./3.+3.*E2
X(3»M+3)=3.*E1-3.*E3
X<4*M+2)=-ll./3.*E2
X(4*M+3)=E3
H =2*M+1
I2=2*M+2
DO 20 1=1, II

20 A(I)=0
DC 30 N=I2, LAST
N1=N-M
N2=N1-M
A(N)=A(N-1)*E1+A(N1)*(1.-3.*E2)-A(N1-1)*(E1-3.*E3)
A(N)=A(N)+A(N2)*3.*E2-3.*A(N2-1)*E3+X(N)

30 NT(N)=N-I2
I3=NPTS/3
14=12+13-1
DC 50 1=12, 14
J=I+I3
K= J+I3

50 PUNCH 40, NT(I), A(I), NT(J), A(J), NT(K), A(K)
40 FCRMAT ( 3 ( 14 ,2X ,F10. 7 ,3X )

)

GO TO 1

END



36

APPENDIX B

C

C

CASCADE
SAMPLIN
DIMENSI
READ, T

PUNCH 5

FORMAT
CM=M
A= .105
B=1.894
PUNCH 2

FORMAT
N-I3M+3
E1=EXP
E2= EXP
E3= EXP

10

20

WITH REVERSED SWITCHED
SWITCHING TIME MT» NO INITIAL
R(433)» NT(433)

E4 =

E5 =

E6=
E7 =

E8 =

E9 =

ElOa
Ell =

E12 =

E13 =

E14 =

E15 =

D= 1

EXP
EXP
EXP
EXP
EXP
EXP
EX
EX
EX
EX
EX
EX
14

D LATTICE
G TIME Tf
CN X(433)
» M» NPTS
» T» M
(//,2X,3HT= F8.4,2X,3HM= 15/)

(//3(2X»1HN,5X,4HI (N) ,5X)// )

) IS EQUIVALENT TO REAL TIME N=0
(-A*T)
t-B*T)
<-2.*T)
t-A*CM*T)
(-B*CM*T)
(-(CM+1. >*A*T)
(-(CM+1. )*B*T)
(-{ A+B*CM)*T

)

(-(6+A*CM)*T)

CAPACITOR WJH
CONDITIO

(Rl)
NS

-(A*CM+2. )*T

)

-(B*CM+2.)*T

)

-2.*CM*T)
-(B+2.*CM)*T)
-(A+2.*CM)*T)
-(CM+1 . )*2.*T

)

F = 1.26
NPTS= N

LAST= 3

DO 10 I

X( I )=

X(3*M+3
X(3*M+4
X(3*M+5
X(4*M+3
X(4*M+4
X(4*M+5
X(5*M+3
X(5*M+4
X(5*M+5
X(6*M+3
X ( 6*M+4
X(6*M+5
11= 3*M
12= 3*M
DO 20 I

R(I )=

DO 30 N

Nl= N-M

PTS/3*3
*M+2+NPTS
=1» LAST

)
=

)
=

) = (

) = (

)
=

)
=

)
=

+ 2

+ 3

= 1»

2.6
-( .

(.0
.38
2.5
(.5
(2.
(1.
(.3
(2.
(El
( .2

93
507*E1
96*E3)
8*E4+.
28*E1-
99*E3-
066*E4
347*E6
31#E10
282*E1
4-3.53
54*E15

+2.434*E2)

078*E5)
3.7 2 8*E2-2.468*E6-3.76*E7+3.10 7*E8+4.046*E9)
• 588*E10+.730*EU)
-.176*E5-.057*E12)
-3.44*E9-.694*E8-3.774*E13+1.44*E14+2.455*E7)
-.176*E11+.355*E15)
2)

5*E13)
)

II

=12, LAST
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N2 = Nl-M
N3= N2-M

R1=P(N-1)*(E1+E2)-R(N-2)*E3+R<N1)*( 1 .-D*E4+. 88*E5

)

R1-R(N1-1 )*(E1-D*E6+.8 8*E8+E2-D*E9+.88*E7)
R1+R(N1-2)*(E3-D*E10+.88*E11)
R1+R(N2)*(D*E4-.88*E5+F*E3)
R1-R(N2-1)*(D*E6-.88*E8+F*E14+D*E9-.88*E7+.254*E13)
R1+R(N2-2)*(D*E10-.8 8*E11+F*E15)
R1-R(N3)*(F*E12)-R(N3-1 ) * ( F*E14+F*E13

)

R1-(R(N3-2)*.254*E15)+ X(N)
N-I2

Rl =

Rl =

Rl =

Rl =

Rl =

Rl =

R(N) =

30 NT(N)=
13= NPTS/3
14 = I2+I3-1
DC 50 I=I2» 14
J= I+I3
K=J+I3

50 PUNCH 40, NT( I ) R( I )

,

40 FORMAT (3( 14, 1PE10.3,
GO TO 1

END

NT( J) ,

3X) )

R( J) » NT(K) , R(K)
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APPENDIX C

C C RC CIRCUIT WITH REvERSE-SWl TCHED CAPACITOR wJH
C SAMPLING TIME T. SWITCHING TIME MT» NO INITIAL CONDITIONS

DIMENSION X(623)» A(623)» NT(623)
1 READ* T» M
PUNCH 5» T» M

5 FORMAT (//,2X,3HT=F8.6,2X*3HM=I5/)
CM = M
PUNCH 2

2 FORMAT <//3<2X,lHN,5X,4HI (N) ,5X)//)
C N-(2M+3) IS EQUIVELENT TO REAL TIME N=0

E1=EXP(-T)
E2=EXP(-CM*T)
E3=EXP(-(CM+2. )*T)
A1=(1.-E1)
A2=(2.*E2-2.

)

A3=(1.+E1-3.*E2+E3)
A4=(E2~E3)
B1=1.+E1
B2 = E1
B3=E2-1.
84=1.+E1-E2-E3
B5=E3-E1
B6 = E2
B7=E2+E3
B8 = E3
NPTS=NPTS/3*3
LAST=2*M+2+NPTS
DO 10 1=1, LAST

10 X( I )=0
.''' X(2*M+3)=0

X(2*M+4)«A1
X(3*M+3)=A2
X(3*M+4)=A3
X(4*M+4)«A4
Il*2»M+2
I2=2*M+3
DO 20 1=1, II

20 R( I )=0
DO 30 N=I2, LAST
N1=N-M
N2=N1-M
R1=-R(N-1)*B1-R(N-2)*B2-R(N1)*B3-R(N1-1)*B4
R(N)=R1-R(N1-2)*B5+R(N2)*B6-R(N2-1)*B7+R(N2-2)*B8+X(N)

30 NT(N)=N-I2
I3=NPTS/3
14=12+13-1
DC 50 1=12,14
J=I+I3
K=J+I3

50 PUNCH 40,NTCI),R(I),NT(J),R{J),NT(K),R(K)
40 FORMAT ( 3 ( 14, 2X ,F10. 7 ,3X)

)

GO TO 1

END
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APPENDIX D

C C SYMMETRIC LATTICE WITH REVERSED SWITCHED CAPACITOR wJH
C SAMPLING TIME T» SWITCHING TIME MT» NO INITIAL CONDITIONS

DIMENSION X(300)* R(300)» NT (300)
1 READ , T» M, NPTS
PUNCH 5> T» M

5 FORMAT <//,2X,3HT= F8.4,2X,3HM= 15/)
CM = M
E1=EXP (-3.*CM*T)
E2=EXP t-2.*T)
E3=EXP (-3.*T)
E4=EXP (-5.*T)
Al = 4.-4.*El-3.*CM*T
A2= 4.-4.*El-3.*CM*T*El
A3= El-4.
A4= l.-4.*El
A5= 3.*E1
A6= ^3.*T-1. +9.*E2-8.*E3
A7= 1. !-17.*E3-17.*E2-3.*T*E2-3.*T*E3-E4
A8= 3.*T*E4+E4-9.*E3+8.*E2
A9= E3+E2
A10= E4+2.*E3+2.*E2+1.
All= 2.*E4+E3+E2
A12= 1.+E3
A13= E3
A 14= E4
PUNCH 2

2 FORMAT (//3<2X>1HN»5X.4HI(N> »5X>//>
C N-(3M+6) IS EQUIVALENT TO REAL TIME N=0

Bl= 6.*A1
32= 2.*A1*A13-8.*A1
B3= 6o*A2
B4= 8.*A2-2«*A2*A13
B5= 3.*A12
B6= 3.*A13
B7= A3*A12
B8= A3*A13
B9= A4*A12
B10= A4*A13
Bll= A5*A12
B12= A5*A13
Fl= (3.*A6)/27.
F2= (3.*A7-B5*A6)/27.
F3=(B6*A6-A7*B5+3.*A8)/27.
F4= CA7*B6-A8*B5)/27.
F5= (A8*36)/27.
F6= Bl/27.
F7=(A6*A3-B2+A9*Bl)/27.
F8=<A7*A3-A6*B7-A10*Bl+A9*B2)/27.
F9=(A6*38-A7*B7+A8*A3--A10*B2+All*Bl)/27.
F10=(A7*B8-A8*B7-A14*Bl+All*B2>/27.
FiI=(A8*B8+B2*A14)/27.
F12= B3/27.
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F13=(A >*A4-B4-B3*A9)/27.
F14=(A7*A4-A6*B9-A9*B4-A10*B3)/27.
F15=(A6*B10-A7*B9+A8*A4-B4*A10-B3*A11 )/27,

F16=(A7*B10-A8*B9-All*B4-A14*B3)/27.
F17=(A8*B10-B4*A14)/27.
F18=(A6*A5)/27.
F19=(A7*A5-A6*B11 )/27.
F20=(A6*B12-A7*Bll+A8*A5)/27.
F21=(A7*B12-A8*Bll>/27.
F22=(A8*B12)/27.
Dl=(3.*A9+B5)/3.
D2=(B.i+B5*A9 +3.*A10)/3.
D3=(A9*B6+A10*B5-r3.*All )/3.
D4=(A10*B6+All*B5+3.*A14)/3.
D5=(All*B6+A14*B5)/3.
D6=(A14*B6)/3.
D7= A3/3.
D8=(B7+A9*A3)/3.
D9=(B8+A9*B7+A10*A3) /3.
D10=(A9*B8+A10*B7+All*A3)/3.
Dll=(A10*B8+All*B7+A14*A3)/3.
D12=(All*B8+A14*B7)/3.
D13=(A14*B8)/3.
D14= A4/3.
D15=(B9+A9*A4)/3.
D16=(B10+A9*B9+A10*A4)/3.
D17=(A9*B10+A10*B9+All*A4)/3.
D18=(A10*B10+All*B9+A14*A4)/3.
D19=(All*B10+A14*B9)/3.
D20=(A14*B10)/3.
D21= A5/3.
D22=(Bll+A9*A5)/3.

D23=(B12+A9*Bll+A10*A5)/3.
D24=(A9*B12+A10*Bll+All*A5)/3.
D25=(A10*B12+All*Bll+A14*A5)/3.
D26=(A11*B12+A14*B11 )/3.
D27=(A14*B12)/3.
NPTS=NPTS/3*3
LAST = 3 W+6+NPTS
DC 10 1=1, LAST

10 XII )=0
X(3*M+7)=0
X(3*M+8)= Fl
X(3*M+3)= F2
X(3*M+10)= F3
X(3*M+11)= F4
X(3*M+12)= F5
X(4*M+7)= -F6
X(4*M+8)= F7
X(4*K*9)= F8
X(4*M+10)= F9
X(4*M+11)= F10
X(4*M+12)= Fll
X(5*M+7)= F12
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X(5*M+8)= F13
X(5*M+9)= F14
X(5*M+10)= F15
X(5*M+11)= F16
X(5*M+12)= F17
X(6*M+8)= F18
X(6*M+9)= F19
X(6*M+10)= F20
X(6*M+11)= F21
X(6*M+12)= F22
Il=3*M+6
I2=3*M+7
DC 20 1=1, II

20 R( I )=0

DC 30 N=I2, LAST
Nl= N-M
N2= Nl-M
N3= N2-M
R1=R(N-1)*D1-R(N-2)*D2+R(N-3)*D3-R(N-4)*D4+R(N-5)*D5
R1=R1-R(N-6)*D6-R(N1)*D7+R(N1-1)*D8-R(N1-2)*D9+R(N1-3)*D10
R1=R1-R(N1-4)*D11+R(N1-5)*D12-R(N1-6)*D13-R(N2)*D14
R1=R1+R(N2-1)*D15-R(N2-2)*D16+R(N2-3)*D17-R(N2-4)*D18
R1=R1+R(N2-5)*D19-R(N2-6)*D20-R(N3)*D21+R(N3-1)*D22
R1=R1-R(N3-2)*D23+R(N3-3)*D24-R(N3-4)*D25+R(N3-5)*D26
R(N)=Rl-R(N3-6)*32 7+X(N)

30 NT(N)=N-I2
I3=NPTS/3
14=12+13-1
DC 50 1=12,14
J=I+I3
K=J+I3

50 PUNCH 40,NT( I) >R( I ) ,NT(J),R(J) ,NT(K),R(K)
40 FCRMAT (3(14, 1PE10.3,3X))

GC TC 1

END
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The Z-transform method of analyzing an RC network contain-

ing reverse-switched capacitors has been developed. This

method of analysis gives recurrence relations which adapt

easily to digital computer solutions and effects easy and

straightforward solutions to problems involving the reverse-

switched capacitor in a series RC network.

This paper investigates the application of the Z-transform

method of analysis to more complicated networks. The basic

network used in this investigation is the balanced symmetric

RC lattice network terminated in a. reverse-switched capacitor.

The unsuccessful application of the previously developed

Z-transform procedures to such a network shows that a direct

extension of the method is not possible.

The finite time Laplace transform is introduced and its

use is demonstrated in the solution of a parallel RC circuit

containing a reverse-switched capacitor. Extension of this

method to a more complicated network using state variable

techniques of network analysis proved to be unsuccessful.

The attempt in this report to generalize the Z-transform

method of analysis has been unsuccessful. However, consider-

able insight into the problem has been .developed and provides

a basis for further research.


