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Abstract. We describe a combinatorial condition on a graph which guarantees that all
powers of its vertex cover ideal are componentwise linear. Then motivated by Eagon
and Reiner’s Theorem we study whether all powers of the vertex cover ideal of a Cohen-
Macaulay graph have linear free resolutions. After giving a complete characterization
of Cohen-Macaulay cactus graphs (i.e., connected graphs in which each edge belongs
to at most one cycle) we show that all powers of their vertex cover ideals have linear
resolutions.

Introduction

Let G be a graph on the vertex set V (G) = {x1, . . . , xn} with the edge set E(G), and
let R = K[x1, . . . , xn] be the polynomial ring over a field K. Two monomial ideals are
associated to G, the edge ideal I(G) generated by all monomials xixj with {xi, xj} ∈ E(G),
and the vertex cover ideal J(G) generated by monomials

∏
xi∈C xi for all minimal vertex

covers C of G. We recall that a minimal vertex cover of G is a subset C ⊂ V (G) such
that each edge has at least one vertex in C and no proper subset of C has the same
property. The vertex cover ideal J(G) is the Alexander dual of the edge ideal of G, i.e.
J(G) = I(G)∨ =

⋂
{xi,xj}∈E(G)(xi, xj).

A homogeneous ideal I ⊂ R is called componentwise linear if for each d, the ideal (Id)
generated by all forms of degree d in I has a linear resolution, see [9]. A criteria for an
ideal being componentwise linear is given in [1]. Francisco and Van Tuyl showed that
the vertex cover ideal of a chordal graph is componentwise linear, and recently Herzog,
Hibi and Ohsugi studied the powers of these ideals, and they conjectured that all powers
of the vertex cover ideal of a chordal graph are componentwise linear, see [5, 10]. We
are interested in the following question: Do there exist non-chordal graphs such that all
powers of their vertex cover ideals are componentwise linear? This kind of problem is
studied by Nevo and Peeva for the powers of some edge ideals, see [17, 18].

On the other hand, in general it is hard to prove that a class of ideals has linear
resolutions, and even having an ideal with a linear resolution, does not guarantee to have
the same property for its powers, see [20]. Therefore it is natural to study the problem
for the vertex cover ideals of graphs, and investigate some combinatorial properties of
graphs which are sufficient to have minimal linear resolutions for ideals J(G)k. In this
point of view, bipartite and chordal graphs have been studied in [8, 10]. A graph G is
called (sequentially) Cohen-Macaulay if the quotient ring R/I(G) is (sequentially) Cohen-
Macaulay over every field K. As a consequence of Eagon and Reiner’s Theorem, we have
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that a graph is Cohen-Macaulay if and only if its vertex cover ideal has a linear resolution.
One can raise this question: given an arbitrary Cohen-Macaulay graph, what can be said
about the powers of its vertex cover ideal? Does each power of the vertex cover ideal of
a Cohen-Macaulay graph have a linear resolution? As a consequence of [10, Theorem 3.7]
we know that all powers of the vertex cover ideal of a Cohen-Macaulay chordal graph
have linear resolutions. Also it is shown that all powers of the vertex cover ideal of a
Cohen-Macaulay bipartite graph are componentwise linear, see [8]. In fact in Theorem 2.3
and some results of [14, 15] mentioned in the last part, it is shown that all powers of the
vertex cover ideal a Cohen-Macaulay bipartite graph are weakly polymatroidal ideals and
so they have linear resolutions.

As Herzog, Hibi and Zheng described in [11] classifying Cohen-Macaulay graphs in
general is as hard as classifying all Cohen-Macaulay simplicial complexes. However finding
some combinatorial conditions equivalent to Cohen-Macaulay property in graphs has been
extensively studied by several authors in [4, 7, 11, 22]. The problem is solved for two
well-known families of graphs, chordal and bipartite graphs, and it was shown that in
these graphs the Cohen-Macaulay property is independent of the field K, see [7, 11].

The paper is structured as follows. In § 1 we investigate a combinatorial condition
involving the number of free vertices in the clique complex of G that guarantees that
all powers of J(G) have linear quotients (and hence componentwise linear resolutions),
see Theorem 1.3. In § 2 we study the ideals arising from a cactus graph. We give a
combinatorial characterization of Cohen-Macaulay cactus graphs, see Theorem 2.3, and
as a consequence we see that in cactus graphs the Cohen-Macaulay property is independent
of the field K. Using this characterization in § 3 we show that all powers of the vertex
cover ideal of a Cohen-Macaulay cactus graph are weakly polymatroidal and thus have
linear resolutions, see Theorem 3.3.

1. componentwise linear vertex cover ideals

A vertex cover C of G is a subset of V (G) which meets every edge of G. A minimal
vertex cover of G is a vertex cover C that there is no subset C ′ ⊂ C such that C ′ is a
vertex cover of G. The vertex cover ideal of G is the Alexander dual of the edge ideal of
G, J(G) = I(G)∨ =

⋂
{xi,xj}∈E(xi, xj). For any monomial ideal I, we denote by G(I) the

minimal set of generators of I, and we denote by degxi
f the exponent of the variable xi in

the monomial f . For two monomials f and g we say f >lex g if and only if the left-most
nonzero entry in the sequence (degx1

f −degx1
g, . . . , degxn

f −degxn
g) is positive. In the

following by >, we mean >lex.
We recall that the monomial ideal I ⊂ R has linear quotients, if there exists a system

of minimal generators f1, f2, . . . , fm of I such that the colon ideal (f1, . . . , fi−1) : fi is
generated by a subset of {x1, . . . , xn} for all i. Ideals with linear quotients were introduced
by Herzog and Takayama in [12]. A class of ideals enjoying the nice property of having
linear quotients is the class of weakly polymatroidal ideals introduced by Hibi and Kokubo
in [13] for ideals generated in the same degree (and later in [15] for ideals not necessarily
generated in one degree).

Definition 1.1. A monomial ideal I ⊂ R is weakly polymatroidal if for any two monomials
f = xa11 · · ·xann and g = xb11 · · ·xbnn in G(I) with a1 = b1, . . . , at−1 = bt−1 and at > bt, there
exists ` > t such that xt(g/x`) ∈ I.
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For each simple graph G, the simplicial complex on V (G) whose faces are the cliques of
G is called the clique complex of G denoted by ∆(G). A vertex v ∈ V (G) is a free vertex
if it belongs just to one clique of G. We denote by degG(u) the number of the adjacent
vertices to u in G. For more background, we refer to [6, 19, 22] for the combinatorial point
of view. We denote by F(∆(G)) the set containing of all facets of ∆(G) with free vertices.
The main result of this section, Theorem 1.3, explains having enough free vertices in a
graph is sufficient to have componentwise linear vertex cover ideals. These graphs are
not necessarily Cohen-Macaulay and they may not have linear resolutions, but they have
componentwise linear vertex cover ideals.

The proof of componentwise linearity of these ideals depends on describing a nice label-
ing on the vertices of their corresponding graphs. Then we fix the natural lexicographic
order on the variables corresponding to the vertices of G. This term order allows us to
check the condition of weakly polymatoidals for our ideals which implies having linear
quotients.

Example 1.2. The vertex cover ideal of the graph P4 on the vertices v1, v2, v3, v4 with
the edges v1v2, v2v3, v3v4 is weakly polymatroidal. We consider a new labeling on the
vertices to have first non-free vertices v2, v3 and then free vertices v1, v4 of P4. Then we
set x1 := v2, x2 := v3, x3 := v1 and x4 := v4. The edges of P4 are x3x1, x1x2, x2x4, and
the vertex cover ideal is J(P4) = (x1x2, x1x4, x2x3). Now an easy computation shows that
J(P4) is weakly polymatroidal.

Theorem 1.3. Let G be a graph with |
⋃

F∈F(∆(G)) F | ≥ |V (G)| − 1. Then all powers of

the vertex cover ideal of G have linear quotients.

Proof. Let F1, . . . , Fm be the facets of ∆(G) with free vertices. We have V (G) = F1∪· · ·∪
Fm or V (G) \ {y} = F1 ∪ · · · ∪ Fm for some y ∈ V (G). In order to prove that J(G)k has
linear quotients, we show J(G)k is weakly polymatroidal with respect to the order

y < ym < · · · < y1 < xn < · · · < x1

on the variables (corresponding to the vertices of G), where y1, . . . , ym are the free vertices
of G and y, x1, . . . , xn are non-free vertices of G.

First we note that given any minimal vertex cover C of G and for any facet Fi ∈
F(∆(G)), there exists a unique vertex ui ∈ Fi such that ui 6∈ C and Fi\{ui} ⊆ C.

Now let f = f1 · · · fk and g = g1 · · · gk be two elements in the minimal generating
set of J(G)k such that degz′ f = degz′ g for any variable z′ > z and degz f > degz g.
Thus there exists t such that z 6∈ supp(gt). Note that z 6= y, otherwise degz′ f = degz′ g
for any variable z′ 6= y and degy f > degy g which implies that g divides f , which is a
contradiction by our assumption that f and g belong to the minimal monomial set of
generators of J(G)k. Then in order to check the condition of weakly polymatroidals we
consider the following cases:

Case 1. z = xj for some j: Let Fi be the facet of ∆(G) containing xj . Since supp(gt) is
a minimal vertex cover of G, we have Fi\{xi} ⊆ supp(gt). Therefore by substituting any
free vertex y` of Fi ∩ supp(gt) with xj we get again a vertex cover of G (not necessarily
minimal). Hence

g′ = g1 · · · gt−1(xjgt/y`)gt+1 · · · gk ∈ J(G)k.

Case 2. z = yj for some j: Let Fi be the facet of ∆(G) containing yj . First note that
our assumption on z (that degxi

f = degxi
g and degys f = degys g for all i and all s < j),

implies that the sets

{fm : xi 6∈ supp(fm) for some i, or ys 6∈ supp(fm) for some s < j}
3



and
{gm : xi 6∈ supp(gm) for some i, or ys 6∈ supp(gm) for some s < j}

have the same cardinality. This implies that there exists a free vertex y` ∈ Fi with ` > j
since degyj f > degyj g. Therefore the subset (supp(gt) \ {y`}) ∪ {yj} is again a vertex
cover of G and so

g′ = g1 · · · gt−1(yjgt/y`)gt+1 · · · gk
belongs to J(G)k, as desired. �

In [11] it is shown that a chordal graph G is Cohen-Macaulay if and only if V (G) is the
disjoint union of the facets of ∆(G) with free vertices. Hence

⋃
F∈F(∆(G)) F = V (G). The

following result is an extension of [10, Theorem 2.7]. Applying [15, Corollary 1.4] we have

Corollary 1.4. All powers of the vertex cover ideal of a graph G with the property that
|V (G)|−1 ≤ |

⋃
F∈F(∆(G)) F | have componentwise linear quotients. In particular, they are

componentwise linear.

Recall that the complete graph Kn on {x1, . . . , xn} is a finite graph with {xi, xj} ∈ E(G)
for all 1 ≤ i < j ≤ n. Let G be a graph on the vertex set {x1, . . . , xn, y1, . . . , ym} such
that {xi, xj} ∈ E(G) for all i < j and {yi, yj} 6∈ E(G) for all i < j. Then G is called a
star graph based on Kn. As a consequence of Theorem 1.3 we get [10, Theorem 2.3].

Corollary 1.5. All powers of the vertex cover ideal of a star graph based on Kn are
componentwise linear.

Proof. We have V (G) = F1 ∪ · · · ∪ Fm ∪ Fm+1, where F` = {y`} ∪N(y`) for ` = 1, . . . ,m
and Fm+1 = {xi : N(xi) ⊆ {x1, . . . , xn}}. Note that y` is a free vertex in the facet F` for
` = 1, . . . ,m, and in the case that Fm+1 is nonempty, each vertex in Fm+1 is a free vertex.
Therefore the condition of Theorem 2.3 holds which completes the proof. �

Example 1.6. Let G be the graph depicted in the following picture. The free vertices
have been marked by smaller nodes, and the vertex v is the only vertex which does not
belong to any facet F with a free vertex. Thus by Theorem 1.3 all powers of the vertex
cover ideals of G are componentwise linear.

v

Example 1.7. Let G be the chordal graph drawn below. The graph G is neither a star
graph nor a Cohen-Macaulay graph. But we have |

⋃
F∈F(∆(G)) F | = |V (G)| − 1. We

consider the labeling described in Theorem 1.3. Therefore all powers of the vertex cover
ideals of G are componentwise linear. tx1
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2. Cohen-Macaulay cactus graphs

In this section we give a combinatorial characterization for Cohen-Macaulay edge ideals
among cactus graphs. A connected graph is a cactus graph if each edge belongs to at most
one cycle. Note that the facets of ∆(G) in a cactus graph are 3-cycles and some edges.
Sequentially Cohen-Macaulay cactus graphs are classified in [16, Theorem 2.8].

Theorem 2.1. A cactus graph G is sequentially Cohen-Macaulay if and only if for each
cycle Cm, m 6= 3, 5, one of the following holds:

(i) Cm has a common vertex u with some clique F of G, where F has a free vertex
u′ 6= u;

(ii) Cm has a common vertex u with some cycle C5 such that for u ∈ V (C5) ∩ V (Cm)
and v, w ∈ NC5(u) we have degG(v) = degG(w) = 2.

A sequentially Cohen-Macaulay graph is Cohen-Macaulay if and only if it is unmixed,
(see [19, 22]). Thus in order to classify Cohen-Macaulay cactus graphs we need to deter-
mine unmixed graphs among those sequentially Cohen-Macaulay graphs. First we prove
the following technical lemma on sequentially Cohen-Macaulay cactus graphs. A vertex v
of G is called an adjacent vertex to a cycle Cm if v is adjacent to a vertex u ∈ V (Cm).

Lemma 2.2. Let G be a sequentially Cohen-Macaulay cactus graph. Then one of the
following statements holds:

(a) G has a free vertex;
(b) There is a cycle C5 with no adjacent vertex of degree greater than two.

Proof. The proof is by induction on the number of the vertices of G. If |V (G)| ≤ 5, then
G has a free vertex or G is indeed a 5-cycle. By contrary assume that G is a sequentially
Cohen-Macaulay cactus graph with the smallest number of vertices which does not fulfill
the conditions of theorem. SinceG does not have a free vertex, by Dirac’s TheoremG is not
a chordal graph and so it has a chordless cycle of length greater than three. If there exists
a cycle Cm with m 6= 5, then by Theorem 2.1(ii) there exists a cycle C5 on the vertices
x1, . . . , x5 adjacent to Cm with x1 ∈ V (C5) ∩ V (Cm) and degG(x2) = degG(x5) = 2. By
our (contrary) assumption we have degG(x3) > 2 and degG(x4) > 2.

Let G′ be the contraction of the vertices of Cm in G. Since G is a cactus graph, G′ is
again a cactus graph with fewer vertices. Next we show that G′ is sequentially Cohen-
Macaulay. Any cycle Cm in G′ with m 6= 3, 5, is indeed a cycle in G. Therefore there
exists a cycle C5 adjacent to Cm with desired property as Theorem 2.1(ii), since G has no
free vertex. Note that the contraction of Cm does not remove any vertex of C5 and this
process does not decrease the degree of any vertex in V (G) \ V (Cm). Hence G′ has no
free vertex. Moreover, contraction does not change the degrees of the vertices of degree
two in the induced subgraph on the vertices V (G) \ V (Cm). Therefore the condition (ii)
of Theorem 2.1 holds for each cycle Cm in G′. So G′ has a 5-cycle which is also in G, with
the property desired in (b), a contradiction.

In the case that there exists no Cm with m 6= 5, we have a cycle C5 in G, since G is
not chordal. We consider G′ as the contraction of the vertices of C5 in G. Then the same
argument completes the proof. �

Theorem 2.3. For a cactus graph G, let F1, . . . , Fm be the facets of ∆(G) with some free
vertices and G1, . . . , Gn be the 5-cycles of the induced subgraph on the vertices V (G) \
V (F1 ∪ · · · ∪ Fm) with no adjacent vertex of degree greater than two in G, and L1, . . . , Lt
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be the edges in the induced subgraph on the vertices

V (G) \ V (F1 ∪ · · · ∪ Fm ∪G1 ∪ · · · ∪Gn)

such that each Li belongs to some 4-cycle in G. Then the following statements are equiv-
alent:

(a) G is Cohen-Macaulay;
(b) V (G) is the disjoint union of the vertices of F1, . . . , Fm, G1, . . . , Gn, L1, . . . , Lt.

In order to formulate the main result of this section we first fix our notation.

Notation. With the hypothesis of Theorem 2.3 (with no loss of generality) we assume that
Fi = {xi1, . . . , xiki}, where xibi , . . . , xiki = ui are the free vertices of Fi for all i. Consider
a labeling on the vertices of the 5-cycle Gj as yj1, yj2, . . . , yj5 such that the degrees of
yj3, yj4, yj5 are two for all j. Assume that zi1, zi2 are the vertices of Li for all i.

Example 2.4. Let G be the cactus graph depicted in the following figure. The labeling
given on the vertices of G is of the form which we described above. Note that each minimal
vertex cover C of G is of the form

C = {x1i, x1j , x2k, yr, ys, yt, zm}
for some 1 ≤ i ≤ j ≤ 3, 1 ≤ k ≤ 2, 1 ≤ r ≤ s ≤ t ≤ 5 and m = 1 or 2. Note that
acccording to Theorem 2.3 this graph is Cohen-Macaualy.
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Before giving the proof of the theorem we need the following technical lemma (in which
we use the similar notation as Theorem 2.3).

Lemma 2.5. Let G be a Cohen-Macaulay cactus graph and

B = V (G) \ V (F1 ∪ · · · ∪ Fm ∪G1 ∪ · · · ∪Gn ∪ L1 ∪ · · · ∪ Lt).

Then G|B, the induced subgraph G on B is a Cohen-Macaulay cactus graph.

Proof. The induced subgraph G|B is again a cactus graph. First we show that G|B is
sequentially Cohen-Macaulay. By Theorem 2.1 it is enough to show that each cycle Cm

in G|B with m 6= 3, 5 has some adjacent free vertex or some adjacent 5-cycle fulfilling the
condition (ii) of Theorem 2.1. Each cycle Cm in G|B with m 6= 3, 5 is indeed a cycle in G.
Therefore it has an adjacent free vertex v or an adjacent 5-cycle C as (ii). If v ∈ Fi for
some i, then the vertex of Cm adjacent to v is not in G′ and so Cm is not a cycle in G′, a
contradiction. Let V (C) = {x1, . . . , x5}, x1 ∈ V (C) ∩ V (Cm) and deg(x2) = deg(x5) = 2.
Since Cm is a cycle in G|B and x1 ∈ V (G|B), we have C 6= Gj for all j. Moreover the
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vertices x2 and x5 are in V (G|B), since deg(x2) = deg(x5) = 2. If x3 is not in V (G|B),
then x2 is a vertex of degree one adjacent to Cm. If x4 is not in V (G|B), then x5 is a
vertex of degree one adjacent to Cm, as desired. Therefore one of the statements (i) or
(ii) of Theorem 2.1 holds for Cm and so G|B is sequentially Cohen-Macaulay.

Now we show that G|B is unmixed. The set

M1 = {y11, y12, y13, . . . , yn1, yn2, yn3, z11, . . . , zt1} ∪ V (F1 \ {u1} ∪ · · · ∪ Fm \ {um})

is a minimal vertex cover of the induced subgraph on V (G) \ B. For any minimal vertex
cover X of G|B,

M = X ∪M1

is a vertex cover of G, since {ui, b}, {yj4, b} and {yj5, b} are not in E(G) for all i, j, and
all b ∈ B. Moreover, all neighbors of zi2 are already in M1. Let M ′ ⊆ M be a minimal
vertex cover of G. Assume that the 4-cycle consisting Li has the vertices zi1, zi2, zi3, zi4,
where zi3, zi4 ∈ V (F1 ∪ · · · ∪Fm ∪G1 ∪ · · · ∪Gn) for each i. If zi3 ∈ V (F`), then zi3 ∈M ′,
since u` and zi3 are adjacent. If zi` ∈ V (G`), then zi` ∈ M ′, since one of the vertices
y`4, y`5 which are not in M are adjacent to zi3. Hence zi3 ∈M ′. Similarly zi4 ∈M . Since
{zi1, zi2} ∈ E(G) and zi1 6∈ M1 we have zi2 ∈ X. Hence M ′ = M which implies that G|B
is unmixed. �

Now we are ready to state the proof of the theorem.

Proof of Theorem 2.3. (a)⇒ (b): The proof is by induction on the number of the vertices
of G. Let

B = V (G) \ V (F1 ∪ · · · ∪ Fm ∪G1 ∪ · · · ∪Gn ∪ L1 ∪ · · · ∪ Lt).

By contrary assume that B 6= ∅. The induced subgraph G|B is again a Cohen-Macaulay
cactus graph by Lemma 2.5. So by induction hypothesis

B = V (H1 ∪ · · · ∪Hs ∪K1 ∪ · · · ∪Kr ∪ P1 ∪ · · · ∪ Ph)

where H1, . . . ,Hs are the facets of ∆(G|B) with some free vertices, and K1, . . . ,Kr are the
5-cycles of the induced subgraph on the vertices B \ V (H1 ∪ · · · ∪ Hs) with no adjacent
vertex of degree greater than two in G, and P1, . . . , Ph are the edges belonging to some
4-cycle in G|B. Let vi be a free vertex of Hi in G|B. For each 5-cycle Kj with vertices
yj1, yj2, . . . , yj5 assume that the degrees of yj3, yj4, yj5 are two in G|B and zi1, zi2 are the
vertices of Pi for all i. Then

M2 = {y1,1, y1,2, y1,3, . . . , yr,1, yr,2, yr,3, z1,1, . . . , zh,1} ∪ V (H1 \ {v1} ∪ · · · ∪Hs \ {vs})

is a minimal vertex cover of G|B of size |B| − s− 2r − h. Since

Z = M1 ∪M2

is a minimal vertex cover of G and G is unmixed, each minimal vertex cover of G consists
of n− (m+ s+ 2k + 2r + t+ h) vertices.

Let Y be a minimal vertex cover of G. If Fi ⊂ Y , then Y \{ui} is a vertex cover of G for
each free vertex ui ∈ Fi. Therefore |Y ∩V (Fi)| = |Fi|−1 for all minimal vertex covers Y of
G and for all i. Since Y is a minimal vertex cover of G, |Y ∩V (Gj)| = 3. Otherwise there
exists a vertex of degree two in Gj such that its neighbors are all in Y , a contradiction
(by the minimality assumption on Y ). Assume that the 4-cycle corresponding to Li has
the vertices zi1, . . . , zi4, where zi1, zi2 ∈ Li. Since at least one of the vertices zi3, zi4 is in
Y , we have |Y ∩ V (Li)| = 1.
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Moreover, |Y ∩ V (Hi)| ≥ |Hi| − 1, |Y ∩ V (Kj)| ≥ 3 and |Y ∩ V (P`)| ≥ 1 for all i, j, `.
Since |Y ∩ B| = |B| − s − 2r − h, we have |Y ∩ V (Hi)| = |Hi| − 1, |Y ∩ V (Kj)| = 3 and
|Y ∩ V (P`)| = 1 for all i, j, `.

Now we show that V (Fi) ∩ V (Fj) = ∅ for all i, j. By contradiction assume that w ∈
V (Fi1) ∩ · · · ∩ V (Fi`). Let vij ∈ V (Fij ) \ Y be a free vertex for j = 1, . . . , `. Then
(Y ∪ {vi1 , . . . , vi`}) \ {w} is a minimal vertex cover of G consisting of |Y |+ `− 1 vertices,
a contradiction.

Now, we claim that r = 0. By contrary assume that K1 is a 5-cycle with the vertices
y1, . . . , y5 belonging to B\V (H1∪· · ·∪Hs). Therefore, K1 has a pair of adjacent vertices of
degree greater than two in G such that at least one of them has some neighbor in V (G)\B
or in V (H1 ∪ · · · ∪Hs). Assume that y2, y3 are some vertices of degree greater than two
in G. Consider a ∈ NG(y2) and b ∈ NG(y3), where a ∈ (V (G) \ B) ∪ V (H1 ∪ · · · ∪ Hs)
and b 6= y2, y5. Since G is a cactus graph, a 6= b and they are not adjacent. Also
{y1, a}, {y1, b} are not in E(G). Therefore, there exists a minimal vertex cover X of G
with X ⊂ V (G) \ {a, b, y1}. Therefore {y2, y3, y4, y5} ⊂ X which is a contradiction by our
observation that |K1 ∩X| = 3. Hence we have r = 0.

By induction hypothesis we have V (Hi)∩V (Hj) = ∅ for all i, j. Since H1 is a non-facet
of ∆(G) or a facet with no free vertex, (for each free vertex δ of H1 in ∆(G|B), there is
a ∈ V (G) \B with {δ, a} ∈ E(G)). Let δ1, . . . , δ` be the free vertices of H1 and v1, . . . , vd
be the non-free vertices of H1. Set A = {a1, . . . , a`, b1, . . . , bd}, where al ∈ V (G) \B is an
adjacent vertex to δ` (for each `) and bi ∈ B \H1 is an adjacent vertex to vi. Since G is
a cactus graph, each pair of the vertices in A are non-adjacent. So there exists a minimal
vertex cover X of G with X ⊆ V (G) \A. In this case H1 ⊆ X which is a contradiction by
the fact that |X ∩H1| = |H1| − 1. Therefore s = 0 which implies that B = ∅, since two
vertices of P1 should be in V (H1 ∪ · · · ∪Hs) ∪ V (K1 ∪ · · · ∪Kr) which is empty.

Next we show that for all i, j, we have

V (Gi) ∩ V (Gj) = ∅.(2.1)

By contrary assume that V (Gi)∩V (Gj) 6= ∅ for some i, j. Since G is a cactus graph, we
have |V (Gi)∩ V (Gj)| = 1, say V (Gi)∩ V (Gj) = {y}, as depicted in the following picture.
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Let A = {i : y ∈ V (Gi)} and V (Gi) = {y, yi2, yi3, yi4, yi5} for each i ∈ A. Since
deg(y) > 2, we can assume that deg(yi3) = deg(yi4) = deg(yi5) = 2 for all i ∈ A.

Since V (G) = V (F1 ∪ · · · ∪ Fm ∪ G1 ∪ · · · ∪ Gn ∪ L1 ∪ · · · ∪ Lt), for each vertex v ∈
NG(y)\(∪j∈AGj) there exists some i such that v belongs to Fi or the 4-cycle corresponding
to Li. Let

B = {v : v ∈ NG(y) ∩ V (F1 ∪ · · · ∪ Fm ∪ L1 ∪ · · · ∪ Lt)}.
Assume that Fi1 , . . . , Fi` are all facets with some common vertex with NG(y). Let vij be
a free vertex of Fij for j = 1, . . . , `. Assume that y belongs to the 4-cycles L′j1 , . . . , L

′
js

,
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where L′j` is the 4-cycle containing the edge Lj` . Then B contains some non-free vertices

of Fi1 , . . . , Fi` and also the neighbors of y in L′j1 , . . . , L
′
js

. Consider the subset

C = {vi1 , . . . , vi` , zj1 , . . . , zjs},

where for all `, zj` is a vertex of L′j` which is not adjacent to y.
Since G is a cactus graph, no vertex of C is adjacent to Gj for j ∈ A. Note that each

vertex zj` is of degree two and so it is not adjacent to any vertex of C. Also vij is not
adjacent to any vertex of C, since vij is a free vertex. Therefore, each pair of the vertices in
C are not adjacent and so there exists a minimal vertex cover X of the induced subgraph
on the vertices V (G) \ (∪i∈AV (Gi)) such that

X ⊂ V (G) \ (C ∪ (∪i∈AV (Gi))) .

Then all non-free vertices of Fi1 , . . . , Fi` and the neighbors of y in L′j1 , . . . , L
′
js

should be
in X which implies that B ⊂ X. Let

Y1 = X ∪ {y} ∪ (∪i∈A{yi1, yi3}) and Y2 = X ∪ (∪i∈A{yi1, yi3, yi4}).

Since yi4 and yi5 are non-adjacent vertices of degree two, and zj` is just adjacent to some
neighbors of u belonging to X, Y1 is a minimal vertex cover of G. We have NG(u) =
B ∪ (∪i∈A{yi3, yi4}) which implies that Y2 is a minimal vertex cover of G. But Y1 and Y2

have the same size if and only if k = 1, a contradiction.

(b) ⇒ (a): Let that X ⊂ V (G) be a minimal vertex cover of G. Then we have |X ∩
V (Fi)| = |Fi| − 1 and |X ∩ V (Gj)| = 3 for all i, j. Let L′i be the 4-cycle on the vertices
zi1, zi2, zi3, zi4, where zi1 and zi2 are of degree two. Since {zi3, zi4} ∈ E(G), at least one
of these vertices belongs to X. Assume that zi3 ∈ X. Since N(zi2) = {zi1, zi3} and X is a
minimal vertex cover, we can not have both zi1, zi2 in X which implies that |X ∩Li| = 1.
Therefore |X| = n − 2k −m − t for each vertex cover X of G and so G is unmixed. Let
Cm be a cycle in G with m 6= 3, 5. Then Cm has a common vertex v with some Fi or
Gj , since V (G) is the disjoint union of the vertices of F1, . . . , Fm, G1, . . . , Gn, L1, . . . , Lt.
If v ∈ V (Fi) for some i, then (i) holds in Theorem 2.1. If v ∈ V (Gj), then the vertices of
Gj adjacent to v are of degree two, since Gj has no adjacent vertex of degree greater than
two in G which implies (ii) in Theorem 2.1. �

Example 2.6. Let G be the graph depicted in the following picture. Then G\{v} and
G\({v}∪N(v)) are both cactus graphs which are Cohen-Macaulay by Theorem 2.3. Thus
G is sequentially Cohen-Macaulay (see, e.g., [21, Lemma 2.4]). One can easily check that
G is also unmixed and hence Cohen-Macaulay.

v
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3. vertex cover ideal of a Cohen-Macaulay cactus graph

The vertex cover ideals of Cohen-Macaulay graphs are studied for bipartite graphs and
chordal graphs, see [8, 10, 5, 14]. In all cases there are some combinatorial properties of
G which guarantee being Cohen-Macaulay. Moreover all powers of the vertex cover ideal
of G are weakly polymatroidal with respect to the natural lexicographical ordering on the
variables associated to the vertices of G. More precisely, J(G)k is weakly polymatroidal
for each k when G is of one of the following types:

(1) Cohen-Macaulay bipartite graph (see [8] and [15, Theorem 2.2]);
(2) Cohen-Macaulay chordal graph (see [10, Theorem 2.7] and [14, Theorem 1.7]).

As a consequence of Eagon and Reiner’s Theorem from [2], we have that a graph is
Cohen-Macaulay if and only if its vertex cover ideal has a linear resolution. By the above
consideration we expect that all powers of the vertex cover ideal of a Cohen-Macaulay
graph have the same property, i.e. they have linear resolutions. We will choose an order
on the vertices of a Cohen-Macaulay graph such that under this ordering J(G)k admits
weakly polymatroidal condition for each k. Thus we pose the following question.

Question 3.1. Do all powers of the vertex cover ideal of a Cohen-Macaulay graph have
linear resolutions?

In this section we study the above question for cactus graphs, and we show that in the
case of cactus graphs the answer is yes. Indeed using the combinatorial characterization
of Cohen-Macaulay cactus graph given in the previous section we show that all powers of
the vertex cover ideals of these graphs have linear quotients.

Example 3.2. Returning to Example 2.4, before stating the main theorem of this sec-
tion, we overview why the ideal J(G)2 is weakly polymatroidal. First we consider the
lexicographical ordering induced by the total ordering

x11 > x12 > x13 > x21 > x22 > y1 > y2 > y3 > y4 > y5 > z1 > z2

on the variables (corresponding to the vertices of G). Consider the monomials

f = x2
11x

2
12x

2
21y

2
1y

2
2y

2
3z

2
1 and g = x2

11x
2
12x

2
21y1y2y

2
3y4y5z1z2

of J(G)2 with f >lex g. As we see, the variable y1 is the greatest variable which has
the higher exponent in f than g. Then we decompose g as g = g1g2 in which g1 =
x11x12x21y3y4y5z2 and g2 = x11x12x21y1y2y3z1. Then the fact that supp(g2) is a minimal
vertex cover of G together with y1 6∈ supp(g2) implies that NG(y1) = {y4, y5} is a subset
of supp(g2). Since y2 and y2 are adjacent we have |{y2, y3} ∩ C| ≥ 1. On the other hand
{y4, y5} ⊆ supp(g2) implies that only one of the vertices y2 or y3 belongs to C (since C
is a minimal vertex cover of G). As we see y3 ∈ C. Then g′2 = y1g2/y5 is again in J(G).
Thus g′ = g1g

′
2 belongs to J(G)2 which fulfills the condition of weakly polymatroidal.

Theorem 3.3. All powers of the vertex cover ideal of a Cohen-Macaulay cactus graph are
weakly polymatroidal. In particular they have linear resolutions.

Proof. Let V (G) be the disjoint union of F1, . . . , Fm, G1, . . . , Gn, L1, . . . , Lt (with the same
notation of Theorem 2.3). Consider the lexicographical ordering induced by the following
total ordering on the variables (corresponding to the vertices of G):

x11 > · · · > x1k1 > · · · > xm1 > · · · > xmkm > y11 > · · · > y15 >

· · · > yn1 > · · · > yn5 > z11 > z12 > · · · > zt1 > zt2
10



where Fi = {xi1, . . . , xiki} and xibi , . . . , xiki are the free vertices of Fi for all i, and
yj1, yj4, yj2, yj3, yj5 are the vertices of Gj such that the vertices yj3, yj4, yj5 are of de-
gree two for all j, and zi1, zi2 are the vertices of Li of degree two for all i. First note that
given any minimal vertex cover C of G and for any facet Fi ∈ F(∆(G)), there exists a
unique vertex xij ∈ Fi such that xij 6∈ C and Fi\{xij} ⊆ C. More precisely, each minimal
vertex cover of G has exactly ki − 1 vertices of each Fi, three vertices of each Gj and one
vertex of each Li.

Now, let f = f1 · · · fk and g = g1 · · · gk be two elements in the minimal generating set
of J(G)k such that degz′ f = degz′ g for any variable z′ > z and degz f > degz g. Let gj
be a monomial such that z 6∈ supp(gj). Then we consider the following cases. In each case
we will find g′j >lex gj and

g = g1 · · · gj−1g
′
jgj+1 · · · gk

has desired properties (of weakly polymatroidal ideals) in J(G)k. Hence J(G)k is a weakly
polymatroidal ideal.

Case 1. z = xi` for some i, `: In each minimal vertex cover C of G exactly one vertex
of Fi is missed. Therefore ` 6= ki (otherwise we will have degz(f) = degz(g)). Since
` 6= ki the subset (supp(gj) \ {xiki}) ∪ {xi`} is again a minimal vertex cover of G and
g′j = xi`gj/xiki ∈ J(G).

Case 2. z = yi1 for some i: Since supp(gj) is a minimal vertex cover of G and
yi4, yi5 ∈ NG(yi1), we have yi4, yi5 ∈ supp(gj). On the other hand |V (Gi) ∩ supp(gj)| = 3.
Hence yi2 or yi3 belongs to supp(gj). If yi2 ∈ supp(gj), then we set g′j = gjyi1/yi4. Since

NG(yi4) = {yi1, yi2} ⊆ supp(g′j), we deduce that supp(g′j) is a minimal vertex cover of G.

If yi3 ∈ supp(gj), then g′j = gjyi1/yi5 has desired property, since NG(yi5) = {yi1, yi3} ⊆
supp(g′j) which implies that supp(g′j) is a minimal vertex cover of G.

Case 3. z = yi2 for some i: Since supp(gj) is a minimal vertex cover of G, we have
yi3, yi4 ∈ supp(gj). Also yi1 or yi5 belongs to supp(gj). If yi1 ∈ supp(gj), then we set
g′j = gjyi2/yi4. Then supp(g′j) is a minimal vertex cover of G, since NG(yi4) = {yi1, yi2} ⊆
supp(g′j). If yi5 ∈ supp(gj), then set g′j = gjyi2/yi3. Since NG(yi3) = {yi2, yi5} ⊆ supp(g′j),

supp(g′j) is a minimal vertex cover of G.

Case 4. z = yi3 for some i: Each minimal vertex cover C contains one of the subsets

{yi1, yi2, yi5}, {yi2, yi4, yi5}, {yi1, yi2, yi3}, {yi1, yi3, yi4}, {yi3, yi4, yi5}.
Since degyi1 f = degyi1 g and degyi2 f = degyi2 g we have

|{f` : {yi1, yi3, yi4} ⊂ supp(f`)}| = |{g` : {yi1, yi3, yi4} ⊂ supp(g`)}| .
and also

|{f` : {yi2, yi4, yi5} ⊂ supp(f`)}| = |{g` : {yi2, yi4, yi5} ⊂ supp(g`)}| .
So there exists some gj with {yi1, yi2, yi5} ⊆ supp(gj). Now we set g′j = gjyi3/yi5.

Case 5. z = yi4 or yi5 for some i: Since degyi1 f = degyi1 g, degyi2 f = degyi2 g and
degyi3 f = degyi31 g, the number of the components f` having {yi1, yi3, yi4} are equal to
the number of the components g` having {yi1, yi3, yi4}. Similarly the number of the com-
ponents f` and g` which have {yi2, yi4, yi5}, and the number of the components f` and g`
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which have {yi1, yi2, yi3} are equal. So the degree of the variables yi4, yi5 are equal in f
and g, a contradiction.

Case 6. z = zi1 or zi2 for some i: Assume that the zi3 and zi4 be the other vertices in
the 4-cycle corresponding to Li. Since zi3, zi4 ∈ V (F1 ∪ · · · ∪Fm ∪G1 ∪ · · · ∪Gk), we have
zi3, zi4 >lex zi1 >lex zi2. In every vertex cover C of G exactly one of the vertices zi1, zi2
appears. Moreover C contains one of the subsets

{zi1, zi3}, {zi2, zi4}, {zi1, zi3, zi4}, {zi2, zi3, zi4}.
Since f and g have the same degrees in the variables zi3 and zi4, the number of f` with
{zi1, zi3} ⊂ supp(f`) is equal to the number of g` with {zi1, zi3} ⊂ supp(g`). Also the
number of f` with {zi2, zi4} ⊂ supp(f`) is equal to the number of g` with {zi2, zi4} ⊂
supp(g`). First assume that z = zi2. These two facts imply that the number of the g`
with {zi1, zi3, zi4} ⊆ supp(g`) is greater than the number of f` with this property and so
degzi1(g) > degzi1(f), a contradiction. So we have z = zi1 and the number of the gl’s with
{zi2, zi3, zi4} ⊆ supp(g`) is greater than the number of f` with this property. Now for some
gj with {zi2, zi3, zi4} ⊆ supp(gj), set g′j = gjzi1/zi2. Since NG(zi2) = {zi1, zi3} ⊂ supp(gj)

we have supp(g′j) is a vertex cover of G. �

Example 3.4. The cactus graph given in Example 2.4 is Cohen-Macaulay by Theorem 3.3.
With respect to the term order given in the proof of Theorem 2.3 we have that J(G)k is
weakly polymatroidal ideals for each k.
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