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DIVISORS ON GRAPHS, CONNECTED FLAGS, AND SYZYGIES

FATEMEH MOHAMMADI AND FARBOD SHOKRIEH

Abstract. We study the binomial and monomial ideals arising from linear equivalence
of divisors on graphs from the point of view of Gröbner theory. We give an explicit
description of a minimal Gröbner bases for each higher syzygy module. In each case the
given minimal Gröbner bases is also a minimal generating set. The Betti numbers of the
binomial ideal and its natural initial ideal coincide and they correspond to the number of
“connected flags” in the graph. In particular the Betti numbers are independent of the
characteristic of the base field. For complete graphs the problem was previously studied
by Postnikov and Shapiro ([27]) and by Manjunath and Sturmfels ([19]). The case of a
general graph was stated as an open problem.

1. Introduction

The theory of divisors on finite graphs can be viewed as a discrete version of the analo-
gous theory on Riemann surfaces. This notion arises in different fields of research including
the study of “abelian sandpiles” ([8, 12]), the study of component groups of Néron models
of Jacobians of algebraic curves ([28, 16]), and the theory of chip-firing games on graphs
([5]). Riemann-Roch theory for finite graphs (and generalizations to tropical curves) is
developed in this setting ([1, 13, 20]).

We are interested in the linear equivalence of divisors on graphs from the point of view
of commutative algebra. Associated to every graph G there is a canonical binomial ideal
IG which encodes the linear equivalences of divisors on G. Let R denote the polynomial
ring with one variable associated to each vertex. For any two effective divisors D1 ∼ D2

one can write a binomial xD1 −xD2 . The ideal IG ⊂ R is generated by all such binomials.
Two effective divisors are linearly equivalent if and only if their associated monomials
are equal in R/IG. This ideal is implicitly defined in Dhar’s seminal statistical physics
paper [8]; R/IG is the “operator algebra” defined there. To our knowledge, this ideal
(more precisely, an affine piece of it) was first introduced in [7] to address computational
questions in chip-firing dynamics using Gröbner bases. From a purely computational point
of view, there are now much more efficient methods available (see, e.g., [2] and references
therein). However, this ideal seems to encode a lot of interesting information about G
and its linear systems. Some of the algebraic properties of IG (and its generalization for
directed graphs) are studied in [26]. Manjunath and Sturmfels [19] relate Riemann-Roch
theory for finite graphs to Alexander duality in commutative algebra using this ideal.

In this paper, we study the syzygies and free resolutions of the ideals IG and in(IG) from
the point of view of Gröbner theory. Here in(IG) denotes the initial ideal with respect to
a natural term order which is defined after distinguishing a vertex q (see Definition 2.4).
When G is a complete graph, the syzygies and Betti numbers of the ideal in(IG) are studied
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by Postnikov and Shapiro [27]. Again for complete graphs, Manjunath and Sturmfels [19]
study the ideal IG and show that the Betti numbers coincide with the Betti numbers of
in(IG). Finding minimal free resolutions for a general graph G was stated as an open
problem in both [27] and [19] (also in [31, 26], where a conjecture is formulated). In
particular, it was not known whether the Betti numbers for a general graph depend on
the characteristic of the base field or not.

We explicitly construct free resolutions for both in(IG) and IG for a general graph G
using Schreyer’s algorithm. We remark that Schreyer’s algorithm “almost never” gives
a minimal free resolution. However in our situation we are able to carefully order our
combinatorial objects to enforce the minimality. As a result we describe, combinatorially,
the minimal Gröbner bases for all higher syzygy modules of IG and in(IG). In each case
the minimal Gröbner bases is also a minimal generating set and the given resolution is
minimal. This is shown by explicitly describing the differential maps in the constructed
resolutions. In particular, the Betti numbers of in(IG) and IG coincide. In other words,
we have a positive answer to [6, Question 1.1] for IG (see [22] and references therein, for
other such examples). For a complete graph the minimal free resolution for in(IG) is nicely
structured by a Scarf complex. The resolution for IG when G is a tree is given by a Koszul
complex since IG is a complete intersection.

The description of the generating sets and the Betti numbers is in terms of the “con-
nected flags” of G. Fix a vertex q ∈ V (G) and an integer k. A connected k-flag of G (based
at q) is a strictly increasing sequence U1 ( U2 ( · · · ( Uk = V (G) such that q ∈ U1 and all
induced subgraphs on vertex sets Ui and Ui+1\Ui are connected. Associated to any con-
nected k-flag one can assign a “partial orientation” on G (Definition 4.3). Two connected
k-flags are considered equivalent if the associated partially oriented graphs coincide. The
Betti numbers correspond to the numbers of connected flags up to this equivalence. We
give a bijective map between the connected flags of G and minimal Gröbner bases for
higher syzygy modules of IG and in(IG). For a complete graph all flags are connected
and all distinct flags are inequivalent. So in this case the Betti numbers are simply the
face numbers of the order complex of the poset of those subsets of V (G) that contain q
(ordered by inclusion). These numbers can be described using classical Stirling numbers
(see Example 7.6). Hence our results directly generalize the analogous results in [27] and
[19].

The paper is structured as follows. In §2 we fix our notation and provide the necessary
background from the theory of divisors on graphs. We also define the ideal IG and the
natural Pic(G)-grading and a term order < on the polynomial ring relevant to our setting.
In §3 we quickly recall some basic notions from commutative algebra. Our main goal
is to fix our notation for Schreyer’s algorithm for computing higher syzygies, which is
slightly different from what appears in the existing literature but is more convenient for
our application. Also, to our knowledge Theorem 3.11, which gives a general sufficient
criterion for an ideal to have the same graded Betti numbers as its initial ideal, has
not appeared in the literature. In §4 we define connected flags and their equivalence
relation. Basic properties of connected flags (up to equivalence) are studied in §4.4. In
§5 we study the free resolution and higher syzygies of our ideals from the point of view
of Gröbner theory, and in §6 we show that the constructed free resolutions are minimal.
As a corollary we give our description of the graded Betti numbers in §7 and we describe
some connections with the theory of reduced divisors.
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Analogous results were obtained simultaneously (and independently) by Manjunath,
Schreyer, and Wilmes in [18] using different techniques. Mania [17] gives an alternate proof
for the expression of the first Betti number (see Remark 7.13(ii)). The constructed minimal
free resolutions in this paper are in fact supported on certain cellular complexes. In [23] we
describe this geometric picture for both IG and in(IG), making precise connections with
Lawrence and oriented matroid ideals of [3, 24]. Dochtermann and Sanyal have recently
(independently) worked out this geometric picture in [9] for the monomial ideal in(IG).
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to Hélène Barcelo and Volkmar Welker for numerous comments and many helpful conver-
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0901487. Part of this work was done while the second author was visiting UC Berkeley,
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helpful suggestions and remarks. We would like to thank Lukas Katthän for pointing out
the reference [15].

2. Definitions and background

2.1. Graphs and divisors. Throughout this paper, a graph means a finite, connected,
unweighted multigraph with no loops. As usual, the set of vertices and edges of a graph
G are denoted by V (G) and E(G). We set n = |V (G)|. A pointed graph (G, q) is a graph
together with a choice of a distinguished vertex q ∈ V (G).

For a subset S ⊆ V (G), we denote by G[S] the induced subgraph of G with the vertex
set S; the edges of G[S] are exactly the edges that appear in G over the set S. We use “S
is connected” and “G[S] is connected” interchangeably.

Let Div(G) be the free abelian group generated by V (G). An element of Div(G) is
written as

∑

v∈V (G) av(v) and is called a divisor on G. The coefficient av in D is also

denoted by D(v). A divisor D is called effective if D(v) ≥ 0 for all v ∈ V (G). The set of
effective divisors is denoted by Div+(G). We write D ≤ E if E −D ∈ Div+(G). For D ∈
Div(G), let deg(D) =

∑

v∈V (G)D(v). For D1,D2 ∈ Div(G), the divisor E = max(D1,D2)

is defined by E(v) = max(D1(v),D2(v)) for v ∈ V (G).

We denote by M(G) the group of integer-valued functions on the vertices. For A ⊆
V (G), χA ∈ M(G) denotes the {0, 1}-valued characteristic function of A. The Laplacian
operator ∆ :M(G)→ Div(G) is defined by

∆(f) =
∑

v∈V (G)

∑

{v,w}∈E(G)

(f(v)− f(w))(v) .

The group of principal divisors is defined as the image of the Laplacian operator and
is denoted by Prin(G). It is easy to check that Prin(G) ⊆ Div0(G), where Div0(G)
denotes the subgroup consisting of divisors of degree zero. The quotient Pic0(G) =
Div0(G)/Prin(G) is a finite group whose cardinality is the number of spanning trees of G
(see, e.g., [2] and references therein). The full Picard group of G is defined as

Pic(G) = Div(G)/Prin(G)

which is isomorphic to Z ⊕ Pic0(G). Since principal divisors have degree zero, the map
deg : Div(G) → Z descends to a well-defined map deg : Pic(G) → Z. Two divisors D1
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and D2 are called linearly equivalent if they become equal in Pic(G). In this case we write
D1 ∼ D2. The linear system |D| of D is defined as the set of effective divisors that are
linearly equivalent to D.

To an ordered pair of disjoint subsets A,B ⊆ V (G) we assign an effective divisor

(2.1) D(A,B) =
∑

v∈A

|{w ∈ B : {v,w} ∈ E(G)}|(v) .

In other words, the support of D(A,B) is a subset of A and for v ∈ A the coefficient of
(v) in D(A,B) is the number of edges between v and B. We define

d(A,B) = deg(D(A,B))

which is the number of edges of G with one end in A and the other end in B. Although
in general D(A,B) 6= D(B,A) we always have d(A,B) = d(B,A).

2.2. Divisors on graphs and the polynomial ring. Let K be a field and let R = K[x]
be the polynomial ring in the n variables {xv : v ∈ V (G)}. Any effective divisor D gives
rise to a monomial

xD :=
∏

v∈V (G)

xD(v)
v .

2.2.1. Gradings. For an abelian group A, the polynomial ring R is said to be A-graded (or
graded by A) if it is endowed with an A-valued degree homomorphism degA : Div(G) →
A. This is equivalent to fixing a semigroup homomorphism degA : Div+(G) → A. Let
degA(x

D) = degA(D). For a ∈ A let Ra denote the K-vector space of homogeneous
polynomials of degree a. If there is no homogeneous polynomial of degree a we let Ra = 0.

There are three natural gradings of R in our setting:

(i) A = Z and degA(x
D) = deg(D). This is the coarse Z-grading of R.

(ii) A = Div(G) and degA(x
D) = D. This is the fine Zn-grading of R.

(iii) A = Pic(G) and degA(x
D) = [D], where [D] denotes the equivalence class of D in

Pic(G).

Gradings (i) and (ii) are, of course, well known. For the grading in (iii) (which is finer
than the grading in (i) and is coarser than the grading in (ii)) we have the following lemma.

Lemma 2.1. Let A = Pic(G) and degA(x
D) = [D] as above. Then R0 = K and, for each

a ∈ Pic(G), the graded piece Ra is finite-dimensional.

We remark that by [21, Theorem 8.6] the two conclusions in this lemma are, in general,
equivalent.

Proof. For each [D] ∈ Pic(G), the graded piece R[D] is spanned (as a K-vector space) by

{xE : E ∈ |D|} which is a finite set. This is because if E ∈ |D|, then, in particular,
deg(E) = deg(D). If D ∼ 0 then deg(D) = 0. So if D is effective we get D = 0. This
means R0 = K. �

Let R =
⊕

a∈Pic(G)Ra and m =
⊕

06=a∈Pic(G)Ra. It follows from Lemma 2.1 that m

is a maximal ideal of R. Consider the map u := deg ◦degA : Div(G) → Z sending D
to deg([D]) = deg(D). It is clear that u takes every nonzero element of Div+(G) to a
strictly positive integer. Equivalently u(r) ≥ 1 for every nonzero monomial. We can
use this observation to prove that Nakayama’s lemma holds for R with respect to the
Pic(G)-grading (see, e.g., [15, Proposition 1.4]).
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Lemma 2.2. Let R and m be as above. Then for every finitely generated Pic(G)-graded
module M such that mM =M we have M = 0.

Proof. Suppose M 6= 0. Write M =
⊕

a∈Pic(G)Ma. For any graded piece Ma let u(Ma)

denote the integer u(ma) for any ma ∈ Ma. Let u(M) = mina∈Pic(G) u(Ma). Since M
is assumed to be finitely generated u(M) > −∞. Since u(r) ≥ 1 for all r ∈ m we have
u(mM) > u(M) and therefore mM 6=M . �

Because of Lemma 2.2 the notions of minimal generating set for (finitely generated)
modules, minimal free resolution, and graded Betti numbers all make sense for the Pic(G)-
grading. Note that we need Lemma 2.2 since Pic(G) is not in general torsion-free, and the
Pic(G)-grading of R is not a “positive multigrading” in the sense of [21, Definition 8.7].

2.2.2. The binomial ideal IG. Associated to every graph G there is a canonical ideal which
encodes the linear equivalences of divisors on G. This ideal is implicitly defined in Dhar’s
seminal paper [8]. The ideal was introduced in [7] to address computational questions in
chip-firing dynamics using Gröbner bases.

Definition 2.3.

IG := 〈xD1 − xD2 : D1 ∼ D2 both effective divisors〉

= spanK{x
D1 − xD2 : D1 ∼ D2 both effective divisors} .

Clearly this ideal is graded (or homogeneous) with respect to the Z and Pic(G) gradings
described in §2.2.1 ((i) and (iii)). It follows that the quotient R/IG is both Z-graded and
Pic(G)-graded as an R-module.

2.2.3. A natural term order. Once we fix a vertex q, there is a family of natural monomial
orders that gives rise to a particularly nice Gröbner bases for IG. This term order was
first introduced in [7].

Fix a pointed graph (G, q). Consider a total ordering of the set of variables {xv : v ∈
V (G)} compatible with the distances of vertices from q in G:

(2.2) dist(w, q) < dist(v, q) ⇒ xw < xv .

Here, the distance between two vertices in a graph is the number of edges in a shortest
path connecting them. The above ordering can be thought of an ordering on vertices
induced by running the breadth-first search algorithm starting at the root vertex q.

Definition 2.4. We denote by < the degree reverse lexicographic ordering on R = K[x]
induced by the total ordering on the variables given in (2.2).

We remark that the choice of the vertex q is implicit in this notation.

Remark 2.5. The “total potential” functional bq(·) from [2] is in the Gröbner cone of <.
In fact it corresponds to the barycenter of this cone (see [23, §3.3 and §3.4]).

Throughout this paper in(IG) denotes the initial ideal of IG with respect to this term
order. Note that in(IG) is denoted by MG in [27].
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3. Commutative algebra: syzygies and Betti numbers

In this section, we quickly recall some basic notions from commutative algebra. Our
main goal is to fix our notation. A secondary goal is to keep the paper self-contained.
Most of the material here is well known and we refer to standard books (e.g. [10, 14]) for
proofs and more details. To our knowledge Theorem 3.11, which gives a general sufficient
criterion for an ideal to have the same Betti numbers as its initial ideal, has not appeared
in the literature.

Let K be any field and let R = K[x] be the polynomial ring in n variables graded by an
abelian group A. The degree map will be denoted by deg. Whenever we talk about notions
like minimal generating sets, minimal free resolutions, or graded Betti numbers, we further
assume that the grading is “nice” in the sense that Nakayama’s lemma holds and these
notions are well defined. In this case we let m denote the corresponding maximal ideal
of R consisting of nonunit elements. Examples of such nice gradings are all the gradings
in §2.2.1 as well as “positive multigradings” in the sense of [21, Definition 8.7] (which
generalizes the Z and Div(G) gradings, but not the Pic(G)-grading).

3.1. Syzygies. Let F−1 be the free R-module generated by a finite set E. Elements of
F−1 will be written as formal sums (with coefficients in R) of symbols [e] (one symbol [e]
for each e ∈ E). Fix a module ordering <0 on F−1 extending the monomial ordering < on
R. Recall that a module ordering on F−1 is a total ordering on the set of “monomials”
xα[e] (for α ∈ Nn and e ∈ E) extending a monomial ordering on R and compatible with
the R-module structure. As usual LM will denote the leading monomial with respect to
the associated ordering on monomials.

LetM be a graded submodule of F−1. Assume that the finite totally ordered set (G,≺)
forms a Gröbner bases for (M,<0) consisting of homogeneous elements. Let F0 be the free
module generated by G. For g ∈G we let the formal symbol [g] denote the corresponding
generator for F0; each element of F0 can be written as a sum of these formal symbols with
coefficients in R.

There is a natural surjective homomorphism

ϕ0 : F0 −→M ⊆ F−1

sending [g] to g for each g ∈ G. Moreover, we force this homomorphism to be graded (or
homogeneous of degree 0) by defining

deg([g]) := deg(g) for all g ∈ G .

By definition the syzygy module of M with respect to G, denoted by syz(G), is the
kernel of this map. Let syz0(G) := M and syz1(G) := syz(G). For i > 1 the higher
syzygy modules are defined as syzi(G) := syz(syzi−1(G)).

Remark 3.1. Since R is a graded ring, if G is a minimal set of homogeneous generators of
M then syz(M) := syz(G) is well defined (i.e. independent of the choice of the generating
set G) up to a graded isomorphism.

3.2. Gröbner bases for syzygy modules. We now discuss a method to compute a
Gröbner bases for syz(G).
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One can “pull back” the module ordering <0 from F−1 along ϕ0 to get a compatible
module ordering <1 on F0; for f, h ∈ G define

(3.1) xβ [h] <1 x
α[f ]⇔











LM(xβh) <0 LM(xαf)

or

LM(xβh) = LM(xαf) and f ≺ h.

Note that both <0 and <1 extend the same monomial ordering < on R. Also, the
module ordering <1 on F0 depends on both <0 on F−1 and on the totally ordered set
(G,≺).

To simplify the notation we assume the leading coefficients of all elements of G are 1.
Suppose we are given a pair of elements f ≺ h of G such that

LM(f) = xα(f)[e] and LM(h) = xα(h)[e]

for some e ∈ E. Since G is a Gröbner bases, setting γ(f, h) := max(α(f), α(h)) (the
entry-wise maximum), we have the “standard representation”:

(3.2) spoly(f, h) = xγ(f,h)−α(f)f − xγ(f,h)−α(h)h =
∑

g∈G

a(f,h)g g

for some polynomials a
(f,h)
g ∈ R. We set

(3.3) s(f, h) = xγ(f,h)−α(f)[f ]− xγ(f,h)−α(h)[h]−
∑

g∈G

a(f,h)g [g] ∈ F0 .

Since f, h ∈ G are by assumption homogeneous

deg([f ]) = deg(f) = deg(LM(f)) = deg(α(f)) + deg([e]) ,

deg([h]) = deg(h) = deg(LM(h)) = deg(α(h)) + deg([e]) .

It follows that s(f, h) is also homogeneous and its degree is equal to deg(γ(f, h))+deg([e]).
Also, by definition s(f, h) ∈ syz(G). More is true:

Theorem 3.2 (Schreyer [29]). The set

S(G) = {s(f, h) : f, h ∈ G , f ≺ h , LM(f) = xα(f)[e] , LM(h) = xα(h)[e] for some e ∈ E}

forms a homogeneous Gröbner bases for (syz(G), <1).

Both the module ordering <1 and the Gröbner bases S(G) depend on <0 and on (G,≺).

Lemma 3.3. With respect to <1 we have LM(s(f, h)) = xγ(f,h)−α(f)[f ].

Proof. From the “standard representation” (3.2) we know

LM(
∑

g∈G

a(f,h)g g) = LM(xγ(f,h)−α(f)f − xγ(f,h)−α(h)h) <0 LM(xγ(f,h)−α(f)f)

and therefore from (3.1) we obtain

LM(
∑

g∈G

a(f,h)g [g]) <1 x
γ(f,h)−α(f)[f ] .

Moreover we have

LM(xγ(f,h)−α(h)h) = LM(xγ(f,h)−α(f)f) and f ≺ h .

Again (3.1) implies

xγ(f,h)−α(h)[h] <1 x
γ(f,h)−α(f)[f ] . �
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To read the Betti numbers for M one needs to find a minimal generating set for the
syzygy modules. In general the set S(G) is far from being even a minimal Gröbner bases.
One criterion to detect some of the redundant bases elements is given in the following
lemma.

Lemma 3.4. Let S(G) be as in Theorem 3.2. Let f1 ≺ f2 and f1 ≺ f3 and LM(fi) =

xα(fi)[e] for some e ∈ E and 1 ≤ i ≤ 3. If α(f2) ≤ γ(f1, f3) then S(G)\{s(f1, f3)} is
already a Gröbner bases for (syz(G), <1).

Proof. The inequality implies γ(f1, f2)− α(f1) ≤ γ(f1, f3)− α(f1) which means

LM(s(f1, f2)) | LM(s(f1, f3)) . �

Remark 3.5. By repeatedly applying Lemma 3.4 we can find a subset Smin(G) of S(G)
which has the following properties:

(1) Smin(G) forms a Gröbner bases for (syz(G), <1),
(2) there are no pair of elements s(f, h), s(f, g) ∈ Smin(G) such that

LM(s(f, h)) | LM(s(f, g)) .

In other words (see Lemma 3.3) Smin(G) is a minimal Gröbner bases for (syz(G), <1).

3.3. Free resolutions from Gröbner theory. One can use Theorem 3.2 to construct
a graded free resolution of M by induction on the homological degree. We summarize this
procedure in Algorithm 1 which is due to Schreyer [29] (also Spear [30], see, e.g., [10]).

It follows immediately from definitions that the output sequence is exact and that we
obtain a free resolution in this way. We note that the constructed free resolution is in
general not minimal.

Remark 3.6. The map ϕi+1 : Fi+1 → Fi can be described more explicitly. Since u ∈
Gi+1 = Smin(Gi) there are two elements f ≺ h in Gi such that

u = s(f, h) = xγ(f,h)−α(f)[f ]− xγ(f,h)−α(h)[h]−
∑

g∈Gi

a(f,h)g [g] .

In other words

(3.4) ϕi+1([u]) = xγ(f,h)−α(f)[f ]− xγ(f,h)−α(h)[h]−
∑

g∈Gi

a(f,h)g [g] .

Since {[u] : u ∈ Gi+1} is the set of bases elements for Fi+1 and {[g] : g ∈ Gi} is the
set of bases elements for Fi, the set of equalities in (3.4), as u runs through the set Gi,
determines the map ϕi+1 completely. If we fix a labeling for the elements of (Gi+1,≺i+1)
and (Gi,≺i) we can write down the corresponding matrix for ϕi+1 from this data.

Remark 3.7. Although any total ordering ≺i on the sets Gi would work in Algorithm 1, it
follows from Lemma 3.3 and Lemma 3.4 that the “quality of output” very much depends
on the choice of these total orderings; how far the free resolution produced by the algorithm
is from being minimal depends on the choice of the total ordering in a crucial way.
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Input:
Graded polynomial ring R = K[x] ,
Monomial ordering < on R ,
Free R-module F−1 generated by formal symbols {[e]}e∈E ,
Graded R-submodule M of F−1 ,
Module ordering <0 on F−1 extending the monomial ordering < ,
Finite set G forming a homogeneous Gröbner bases for (M,<0) .

Output:

A graded free resolution: · · · → Fi
ϕi−→ Fi−1 → · · · → F0

ϕ0
−→M → 0 .

Initialization:
G0 := G ;
F0 := free R-module generated by formal symbols {[g]}g∈G0 ; Output F0 ;
ϕ0 : F0 →M ⊆ F−1 defined by [g] 7→ g for each g ∈G0 ; Output ϕ0 ;
i = 0 ;

while Fi 6= 0 do

≺i : arbitrary total ordering on Gi ;

<i+1 : module ordering on Fi obtained from <i on Fi−1 (as in (3.1)) ;

Gi+1 := Smin(Gi) ⊂ Fi, a minimal Gröbner bases of (syzi+1(G), <i+1) (as in
Theorem 3.2 and Remark 3.5) ;

Fi+1:= free R-module generated by formal symbols {[u]}u∈Gi+1 ; Output Fi+1 ;

ϕi+1 : Fi+1 → Fi defined by [u] 7→ u for each u ∈ Gi+1 ; Output ϕi+1 ;

i← i+ 1 ;
end

Algorithm 1: Algorithm for computing a free resolution of M (Schreyer’s algorithm)

3.4. Minimal free resolutions and Betti numbers. Let R be a graded ring and M
be a graded R-module. Assume that

F : 0→ · · · → Fi
ϕi
−→ Fi−1 → · · · → F0

ϕ0
−→M → 0

is a minimal graded free resolution (i.e., a graded free resolution such that ϕi+1(Fi+1) ⊆
mFi for all i ≥ 0). The i-th Betti number βi(M) of M is by definition the rank of Fi. The
i-th graded Betti number in degree j ∈ A, denoted by βi,j(M), is the rank of the degree
j part of Fi. It is a consequence of Nakayama’s lemma for graded rings that any finitely
generated graded R-module has minimal free resolution, and that the numbers βi,j(M)
and βi(M) are independent of the choice of the minimal resolution.

If G is a minimal set of homogeneous generators of M then syz(M) := syz(G) is well
defined up to graded isomorphism. Similarly, setting syz0(M) := M , the i-th syzygy
modules syzi(M) := syz(syzi−1(M)) are well defined for all i ≥ 0. In this case the i-th
Betti number βi(M) is also the minimal number of generators of syzi(M) and the graded
Betti number βi,j(M) is the minimal number of generators of the i-th syzygy module
syzi(M) in degree j.
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Theorem 3.8. Suppose that F is a minimal graded free resolution of M . Fix an i ≥ 0.
Let Ei denote a bases for the free module Fi. Then {ϕi(f) : f ∈ Ei} is a minimal system
of homogeneous generators of syzi(M).

For a proof see, for example, [25, Theorem 10.2].

Remark 3.9. It follows from Theorem 3.8 that if for all i ≥ 1 and all u ∈ Gi the coefficients
appearing in the expression (3.4) of ϕi([u]) in terms of {[g] : g ∈ Gi−1} are all nonunit
elements of R (i.e. if they belong to the ideal m), then the resolution is a minimal free
resolution of M . In this case it follows from Theorem 3.8 that the sets Gi are minimal
generating sets of syzi(M) for all i ≥ 0.

3.5. Betti numbers of M and in(M). For a module ordering <0 on F−1 let in(M)
denote the “leading module” (i.e. the module generated by leading monomials) of M with
respect to <0. The following theorem is well known and is a consequence of the fact that
passing to in(M) is a flat deformation (see, e.g., [21, Theorem 8.29]).

Theorem 3.10 (Upper-semicontinuity). βi,j(M) ≤ βi,j(in(M)) for all i ≥ 0 and j ∈ A.

In the setting of Algorithm 1, there is a general sufficient condition for equality to hold.
The following result gives a general criterion guaranteeing that, if it is satisfied, then the
answer of [6, Question 1.1] is positive.

Theorem 3.11. If the output of Algorithm 1 is a minimal graded free resolution then
βi,j(M) = βi,j(in(M)) for all i ≥ 0 and j ∈ A.

Proof. Let G′ = {LM(g) : g ∈ G} ⊂ in(M). Since G forms a minimal Gröbner bases of
(M,<0) the map

π0 : G→ G′ ⊂ in(M) with π0(g) := LM(g) for g ∈ G

is a bijection between G and G′. The proof for i ≥ 0 is by induction on i. We show that
for each i ≥ 0 there is a free module F ′

i with bases elements

[s(πi−1(f), πi−1(h))]

corresponding to bases elements [s(f, h)] of Gi. This extends to a natural bijective map
from Fi to F

′
i . Moreover, this bijection induces maps

πi : Gi → syzi(G
′) with πi(s(f, h)) := s(πi−1(f), πi−1(h)) for f ≺ h in Gi−1

such that

(1) <i is a term order on F ′
i .

(2) LM(πi(s(f, h))) = xθ[πi−1(f)], where LM(s(f, h)) = xθ[f ].
(3) πi(Gi) forms a minimal Gröbner bases of (syzi(G

′), <i).

We have already shown the case i = 0. Now assume that i > 0 and the result holds
for i − 1. Note that by the induction hypothesis πi−1 is injective. This together with (2)
and (3) for i− 1 implies that the elements [s(πi−1(f), πi−1(h))] are pairwise distinct, since
their leading terms are pairwise distinct. Assume that <i−1 is the term order on Fi−1. By
the induction hypothesis we have the total order ≺′

i−1 on the elements πi−1(Gi) such that

(3.5) πi−1(f) ≺
′
i−1 πi−1(h) if and only if f ≺i−1 h .
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Since (2) and (3) hold for i− 1, choosing the total order of (3.5) on the elements πi−1(Gi)
we will get the term order <i on F

′
i by (3.1). To prove (2) for i, let s(f, h) be an element

of Gi with

LM(f) = xα(f)[u] , LM(h) = xα(h)[u] and γ(f, h) = max(α(f), α(h))

for some bases element [u] ∈ Gi−2. Then by the induction hypothesis we have

LM(πi−1(f)) = xα(f)[πi−2(u)] and LM(πi−1(h)) = xα(h)[πi−2(u)] .

Therefore Lemma 3.3 together with induction hypothesis implies

LM(πi(s(f, h))) = LM(s(πi−1(f), πi−1(h))) = xγ(f,h)−α(f)[πi−1(f)]

which is (2). Now it follows that πi is injective; assume that πi(s(f, h)) = πi(s(p, q)).

Therefore LM(s(f, h)) = LM(s(p, q)) = xγ(f,h)−α(f)[πi−1(f)]. Now (2) implies that

LM(s(f, h)) = LM(s(p, q)) = xγ(f,h)−α(f)[f ] ,

which is a contradiction by our assumption on Gi = Smin(Gi−1). The fact that πi is
injective implies that its extension from Fi to F

′
i is a bijective map, as desired.

Now we show that πi(Gi) forms a Gröbner bases for (syzi(G
′), <i). For the sake of con-

tradiction, assume that πi(Gi) does not form a Gröbner bases for (syzi(G
′), <i). Then our

induction hypothesis that πi−1(Gi−1) forms a Gröbner bases for (syzi−1(G
′), <i−1), implies

that there exist elements f and h of Gi−1 such that f ≺i−1 h and LM(s(πi−1(f), πi−1(h)))
is not divisible by the leading monomial of any element of πi(Gi). On the other hand, our
assumption on Gi and the fact that LM(s(πi−1(f), πi−1(h))) = LM(s(f, h)) imply that
there exists an element g in Gi−1 such that f ≺i−1 g and LM(s(f, g)) divides LM(s(f, h)).
By the induction hypothesis πi−1(f) and πi−1(g) belong to syzi−1(G

′). Moreover by (2)
LM(s(πi−1(f), πi−1(g))) = LM(s(f, g)) divides LM(s(πi−1(f), πi−1(h))) which is a contra-
diction. Thus πi(Gi) forms a Gröbner bases for (syzi(G

′), <i).

Note that πi is a graded map of degree zero which preserves the degree of the elements
s(f, h) of Gi. This together with the fact that πi(Gi) forms a minimal Gröbner bases
of (syzi(G

′), <i) implies that βi,j(in(M)) ≤ βi,j(M). Now Theorem 3.10 completes the
proof. �

4. Connected flags on graphs

4.1. Connected flags, partial orientations, and divisors. From now on we fix a
pointed graph (G, q) and we let n = |V (G)|. Consider the poset

C(G, q) := {U ⊆ V (G) : q ∈ U}

ordered by inclusion. The following special chains of this poset arise naturally in our
setting.

Definition 4.1. Fix an integer 1 ≤ k ≤ n. A connected k-flag of (G, q) is a (strictly
increasing) sequence U of subsets of V (G)

U1 ( U2 ( · · · ( Uk = V (G)

such that q ∈ U1 and, for all 1 ≤ i ≤ k − 1, both G[Ui] and G[Ui+1\Ui] are connected.

The set of all connected k-flags of (G, q) will be denoted by Fk(G, q).

Remark 4.2. For a complete graph, Fk(G, q) is simply the order complex of C(G, q), but
in general Fk(G, q) is not a simplicial complex.
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Notation. For convenience, whenever we use index 0 on a vertex set (e.g. U0, V0,W0,
etc.) we mean the empty set.

Definition 4.3. Given U ∈ Fk(G, q) we define:

(a) a “partial orientation” of G by orienting edges from Ui to Ui+1\Ui (for all 1 ≤ i ≤
k − 1) and leaving all other edges unoriented. We denote the resulting partially
oriented graph by G(U).

(b) an effective divisorD(U) ∈ Div(G) given by (see (2.1))D(U) :=
∑k−1

i=1 D(Ui+1\Ui, Ui).

Note that the partial orientation in (a) is always acyclic.

Example 4.4. Let G be the following graph on the vertices v1, v2, . . . , v5. We let v1 be
the distinguished vertex. Then the partial orientation associated to

U : {v1} ⊂ {v1,v2} ⊂ {v1, v2,v3,v4} ⊂ {v1, v2, v3, v4,v5}

is depicted in the following figure. Note that D(U) = (v2) + (v3) + (v4) + 2(v5).

v1

v2 v3

v4 v5

G(U)

v1

v2 v3

v4 v5

G(U)

v1

v2 v3

v4 v5

G

Remark 4.5. It is easy to check thatD(U) =
∑

v∈V (G) (indegG(U)(v))(v), where indegG(U)(v)

denotes the number of oriented edges directed to v in G(U).

4.2. Total ordering on Fk(G, q). We endow each Fk(G, q) with a total ordering ≺k for
all 1 ≤ k ≤ n.

Let � denote the ordering on Cop(G, q) (the opposite poset of C(G, q)) given by reverse
inclusion:

U � V ⇐⇒ U ⊇ V .

Definition 4.6. We fix, once and for all, a total ordering extending �. By a slight abuse
of notation, � will be used to denote this total ordering extension. In particular, ≺ will
denote the associated strict total order.

We consider one of the natural “lexicographic extensions” (more precisely, the reverse
lexicographic extension) of ≺ to the set of connected k-flags.

Definition 4.7. For U 6= V in Fk(G, q) written as

U : U1 ( U2 ( · · · ( Uk = V (G)

V : V1 ( V2 ( · · · ( Vk = V (G)

we say U ≺k V if for the maximum 1 ≤ ℓ ≤ k − 1 with Uℓ 6= Vℓ we have Uℓ ≺ Vℓ.
As usual, we write U �k V if and only if U ≺k V or U = V.

Lemma 4.8. (Fk(G, q),�k) is a totally ordered set.
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Proof. Let
U : U1 ( U2 ( · · · ( Uk = V (G) ,

V : V1 ( V2 ( · · · ( Vk = V (G) ,

W : W1 (W2 ( · · · (Wk = V (G) .

If U 6= V then there is an index 1 ≤ ℓ ≤ k − 1 with Uℓ 6= Vℓ. Since ≺ is a strict total
ordering we have either Uℓ ≺ Vℓ or Vℓ ≺ Uℓ. It follows from the definition that if U 6= V
then either U ≺k V or V ≺k U (i.e., ≺k is trichotomous). It remains to show that ≺k is
transitive. Assume that U ≺k V and V ≺k W. Let 1 ≤ ℓ1 ≤ k − 1 and 1 ≤ ℓ2 ≤ k − 1 be
such that

Uℓ1 ≺ Vℓ1 and Ui = Vi for ℓ1 < i ≤ k ,

Vℓ2 ≺Wℓ2 and Vi =Wi for ℓ2 < i ≤ k .

There are three cases:
• If ℓ1 = ℓ2 we have Uℓ1 ≺ Vℓ1 ≺Wℓ1 and Ui =Wi for ℓ1 < i ≤ k ,
• If ℓ1 < ℓ2 we have Uℓ2 = Vℓ2 ≺Wℓ2 and Ui =Wi for ℓ2 < i ≤ k ,
• If ℓ1 > ℓ2 we have Uℓ1 ≺ Vℓ1 =Wℓ1 and Ui =Wi for ℓ1 < i ≤ k .
Therefore in any case U ≺k W. �

4.3. Equivalence relation on Fk(G, q). It is easy to find two different connected k-flags
having identical associated partially oriented graphs.

Example 4.9. If the connected k-flag

U : U1 ( · · · ( Ui−1 ( (Ui−1 ∪Ai) ( (Ui−1 ∪Ai ∪Ai+1) ( · · · ( Uk

is such that Ai+1 is disjoint from Ai, and d(Ai+1, Ai) = 0 (i.e., Ai+1 is not connected to
Ai) then

V : U1 ( · · · ( Ui−1 ( (Ui−1 ∪Ai+1) ( (Ui−1 ∪Ai+1 ∪Ai) ( · · · ( Uk

is a different connected k-flag, but G(U) and G(V) coincide.

Example 4.10. Let G be the following graph on the vertices v1, v2, . . . , v5. We fix v1 as
the distinguished vertex. Consider the following connected flags:

• U : {v1} ⊂ {v1,v2} ⊂ {v1, v2,v3} ⊂ {v1, v2, v3,v4,v5}
• V : {v1} ⊂ {v1,v3} ⊂ {v1,v2, v3} ⊂ {v1, v2, v3,v4, v5} .

Then, as we see, their associated graphs coincide.

v1

v2 v3

v4 v5

G(U)

v1

v2 v3

v4 v5

G(V)

This example motivates the following definition.

Definition 4.11. Two k-flags U ,V ∈ Fk(G, q) are called equivalent if the associated par-
tially oriented graphs G(U) and G(V) coincide.
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Remark 4.12.
(i) This equivalence relation is easily seen to be the transitive closure of the equiva-

lences described in Example 4.9.
(ii) When k = 2 each equivalence class contains a unique element.

Notation. The set of all equivalence classes in Fk(G, q) will be denoted by Ek(G, q). The
set Sk(G, q) will denote the set of minimal representatives of the classes in Ek(G, q) with
respect to ≺k.

Example 4.13. Here we list all acyclic (partial) orientations associated to equivalence
classes of connected flags on the 4-cycle graph on the vertices 1, 2, 3, 4. The vertex 1 is
chosen as the distinguished vertex (see Figures 1, 2, 3).

1

4

2 3

1

4

2 3

1

4

2 3

1

4

2 3

1

4

2 3

1

4

2 3

Figure 1. Acyclic orientations corresponding to 2-partitions of C4

1

4

2 3

1

4

2 3

1

4

2 3

1

4

2 3

1

4

2 3

1

4

2 3

1

4

2 3

1

4

2 3

Figure 2. Acyclic orientations corresponding to 3-partitions of C4

4.4. Main properties of Sk(G, q). This section, while elementary, is the most technical
part of the paper. The reader is invited to draw graphs and Venn diagrams to follow the
proofs. The main ingredients needed for our main theorems are Definition 4.16, Propo-
sition 4.18, Proposition 4.20, Corollary 4.21, Lemma 4.24, and Proposition 4.25. Other
results are used to establish these main ingredients.
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1

4

2 3

1

4

2 3

1

4

2 3

Figure 3. Acyclic orientations corresponding to 4-partitions of C4

Lemma 4.14. Let

U : U1 ( U2 ( · · · ( V (G)

be an element of Sk(G, q). Let

W : W1 (W2 ( · · · ( V (G)

be an element of Fk′(G, q).

(a) If k′ = k − 1 and Wi = Ui+1 for 1 ≤ i ≤ k − 1 then W ∈ Sk−1(G, q).

(b) If k′ = k − 1 and W1 = U1 ∪ (U3\U2) and Wi = Ui+1 for 2 ≤ i ≤ k − 1 then
W ∈ Sk−1(G, q).

(c) If k′ = k and W1 ⊆ U1 and Wi = Ui for 2 ≤ i ≤ k then W ∈ Sk(G, q).

Proof. The strategy of the proof is similar for all three parts. Namely in each case, for the
sake of contradiction, we assume that

W ′ : W ′
1 (W ′

2 ( · · · ( V (G)

is another connected flag equivalent to W which precedes W in the total ordering. We
will then find a connected flag U ′ equivalent to U such that U ′ ≺k U .

We first note that in all cases, since G(W) and G(W ′) coincide and q ∈ W1,W
′
1, we

must have W1 =W ′
1. Let ℓ ≥ 2 be such that W ′

ℓ ≺Wℓ and W
′
i =Wi for ℓ < i.

(a) The ordered collection (W ′
j\W

′
j−1)

k−1
j=2 is a permutation of the ordered collection

(Wj\Wj−1)
k−1
j=2 = (Uj\Uj−1)

k
j=3. Also W

′
1\U1 =W1\U1 = U2\U1. It follows that

U ′ : U1 (W ′
1 ⊆W

′
2 ⊆ · · · (W ′

k−2 (W ′
k−1 = V (G)

is a connected k-flag equivalent to U . But then W ′
ℓ ≺ Wℓ and W

′
i = Wi for ℓ < i ≤ k − 1

implies U ′ ≺k U , a contradiction.

(b) The ordered collection (W ′
j\W

′
j−1)

k−1
j=2 is a permutation of the ordered collection

(Wj\Wj−1)
k−1
j=2 = (Uj\Uj−1)j=2,4,5,...,k; here we used W2\W1 = U3\(U1 ∪ (U3\U2)) =

U2\U1. Also W
′
1\U1 =W1\U1 = (U1 ∪ (U3\U2))\U1 = U3\U2. It follows that

U ′ : U1 (W ′
1 ⊆W

′
2 ⊆ · · · (W ′

k−2 (W ′
k−1 = V (G) .

is a connected k-flag equivalent to U . But then W ′
ℓ ≺ Wℓ and W

′
i = Wi for ℓ < i ≤ k − 1

implies U ′ ≺k U , a contradiction.

(c) The ordered collection (W ′
j\W

′
j−1)

k
j=2 is a permutation of the ordered collection

(Wj\Wj−1)
k
j=2. Therefore W2\W1 = W ′

t\W
′
t−1 for some t ≥ 2. Note that if t ≥ 3 then

W ′
t−1 6= Wt−1; for t ≥ 3 we have W2 ⊆ Wt−1 but W2 6⊂ W ′

t−1. In particular we deduce
that max(2, t − 1) ≤ ℓ.

Now let A = U1\W1.
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• For 0 ≤ i ≤ t − 1 the sets A and W ′
i are disjoint. This is because A ⊆ W2\W1 =

W ′
t\W

′
t−1, so A ∩W

′
t−1 = ∅.

• For 2 ≤ i ≤ t − 1 there is no edge between A and W ′
i\W

′
i−1. This is because if

there is an edge connecting u ∈ W ′
i\W

′
i−1 and v ∈ A then there is an oriented edge from

u ∈W ′
i\W

′
i−1 to v ∈W ′

t\W
′
t−1 in G(W ′). But G(W ′) = G(W) and the oriented edge from

u to v cannot appear in G(W) because v ∈W2\W1 and u 6∈W1.
We now define

U ′ : U ′
1 ( U ′

2 ( · · · ( V (G)

by letting

U ′
i =

{

W ′
i ∪A, if 1 ≤ i ≤ t− 1;

W ′
i , if t ≤ i ≤ k.

Note that
• U ′

1 =W ′
1 ∪A = U1. This is because A = U1\W1 and W1 =W ′

1.
• All subgraphs G[U ′

i ] are connected: for 1 ≤ i ≤ t− 1 since W ′
1 ∪A = U1 is connected,

we know that A is connected to W ′
i at least via W ′

1 ⊂W
′
i .

Moreover
• For 2 ≤ i ≤ t− 1 we have U ′

i\U
′
i−1 = (W ′

i ∪A)\(W
′
i−1 ∪A) =W ′

i\W
′
i−1. This follows

from the fact that A is disjoint from W ′
i−1 and W ′

i .
• U ′

t\U
′
t−1 =W ′

t\(W
′
t−1 ∪A) = (W2\W1)\A = (U2\W1)\(U1\W1) = U2\U1.

• For t+ 1 ≤ i ≤ k we have U ′
i\U

′
i−1 =W ′

i\W
′
i−1.

Recall that the ordered collection (W ′
j\W

′
j−1)j is a permutation of the ordered collection

(Wj\Wj−1)j and that Wj\Wj−1 = Uj\Uj−1 for 3 ≤ j ≤ k.

It follows that U ′ ∈ Fk(G, q) and that (U ′
j\U

′
j−1)

k
1 is a permutation of (Uj\Uj−1)

k
1 .

Moreover U ′ is equivalent to U . To see this first observe that the only difference between
G(U) and G(W) is that we orient the edges from U1 to U2\U1 in G(U) and we orient the
edges from W1 to U2\W1 in G(W) (other oriented edges are identical). Similarly, since
there is no edge between A and W ′

i\W
′
i−1 for 2 ≤ i ≤ t − 1, the only difference between

G(U ′) and G(W ′) is that we orient the edges from U ′
1 = U1 to U ′

t\U
′
t−1 = U2\U1 in G(U ′)

and we orient the edges from W ′
1 = W1 to W ′

t\W
′
t−1 = U2\W1 in G(W) (other oriented

edges are identical). Since G(W) and G(W ′) coincide it follows that G(U) and G(U ′)
coincide.

Finally we show that U ′ ≺k U . Recall that ℓ ≥ 2 and ℓ ≥ t− 1.
• If ℓ ≥ t, then U ′

ℓ =W ′
ℓ ≺Wℓ = Uℓ and U

′
i =W ′

i =Wi = Ui for ℓ < i ≤ k.
• If ℓ = t−1, then U ′

ℓ =W ′
ℓ∪A ≺W

′
ℓ ≺Wℓ = Uℓ and U

′
i =W ′

i =Wi = Ui for ℓ < i ≤ k.
Therefore in any case U ′ ≺k U , a contradiction. �

Proposition 4.15. Let

U1 ( U2 ( · · · ( V (G)

V1 ( V2 ( · · · ( V (G)

be two elements of Sk(G, q) such that Ui = Vi for 2 ≤ i ≤ k. Let A = U2\U1, B = V2\V1,
C = U1 ∩ V1, and assume at least one of the following holds:

(i) G[C] is not connected.
(ii) G[A ∪B] is connected.
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Then
W1 (W2 ( · · · ( V (G)

is also an element of Sk(G, q), where Wi = Ui for 2 ≤ i ≤ k and W1 is (the vertex set of)
the connected component of G[C] that contains q.

Proof. It is enough to check that G[W2\W1] is connected. Then the assertion follows by
Lemma 4.14 (c), since W1 ⊂ U1.

Write

(4.1) W2\W1 = A ∪B ∪ (C\W1) ,

and write U1 and V1 as the disjoint unions:

(4.2) U1 = (U1\V1) ∪ (C\W1) ∪W1 and V1 = (V1\U1) ∪ (C\W1) ∪W1 .

(i) Assume that G[C] is not connected, that is, C\W1 6= ∅. Since G[U1] is connected
and there are no edges between C\W1 and W1, it follows from (4.2) that there must be an
edge between each connected component C\W1 and U1\V1. As U1\V1 ⊆ B we conclude
that every connected component of C\W1 has an edge to B. Similarly, every connected
component of C\W1 has an edge to A. Since G[A] and G[B] are both connected it follows
from (4.1) that G[W2\W1] is connected.

(ii) Assume that G[A ∪ B] is connected. We may assume C\W1 = ∅, since otherwise
the result follows from (i) above. But then (4.1) becomes W2\W1 = A ∪ B and therefore
G[W2\W1] is connected. �

Given an element in Sk(G, q) there is a canonical way to obtain two related elements
in Sk−1(G, q). To state this result we first need a definition.

Definition 4.16. Given U ∈ Fk(G, q), the elements U (1),U (2) ∈ Fk−1(G, q) are obtained
from U by removing the first and second elements in the following appropriate sense. Let

U : U1 ( U2 ( · · · ( V (G) .

(a) U (1) will denote
U2 ( U3 ( U4 ( · · · ( V (G) .

(b) U (2) will denote










U1 ( U3 ( U4 ( · · · ( V (G), if G[U3\U1] is connected;

or

(U1 ∪ (U3\U2)) ( U3 ( U4 ( · · · ( V (G), if G[U3\U1] is not connected.

We remark that U (1) and U (2) are essential in the expression of our minimal free reso-
lutions (see (5.3)).

Remark 4.17. For part (b) in Definition 4.16 we note that U3\U1 = (U3\U2)∪(U2\U1) and
by assumption G[U3\U2] and G[U2\U1] are both connected and nonempty. So G[U3\U1]
is connected if and only if there are some edges connecting U3\U2 to U2\U1. Moreover, if
there are no edges connecting U3\U2 to U2\U1 then there must be some edges connecting
U3\U2 to U1. Since G[U3] is connected and U3 = (U3\U2) ∪ (U2\U1) ∪ U1 we get G[U1 ∪
(U3\U2)] is connected.

Proposition 4.18. If U ∈ Sk(G, q) then
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(a) U (1) ∈ Sk−1(G, q).

(b) U (2) ∈ Sk−1(G, q).
(c) U (1) ≺k−1 U

(2).

Proof. Let

U : U1 ( U2 ( · · · ( V (G) .

Part (a) is exactly Lemma 4.14 (a). For part (b), if G[U3\U1] is not connected then the
result follows from Lemma 4.14 (b). If G[U3\U1] is connected the result follows from part
(a) and Lemma 4.14 (c).

For part (c) we first note that if G[U3\U1] is connected U
(1) ≺k−1 U

(2) follows directly

from definitions. If G[U3\U1] is not connected assume that U (2) ≺k−1 U
(1). Then one can

easily see that

U ′ : U1 ( U1 ∪ (U3\U2) ( U3 ( U4 ( · · · ( V (G)

is a connected k-flag equivalent to U with U ′ ≺k U which is a contradiction. �

There is a nice converse to Proposition 4.18 which is our next result.

Proposition 4.19. Assume that U ∈ Fk(G, q) and the following three conditions hold:

(i) U (1) ∈ Sk−1(G, q).

(ii) U (2) ∈ Sk−1(G, q).

(iii) U (1) ≺k−1 U
(2).

Then U ∈ Sk(G, q).

Proof. Let

U : U1 ( U2 ( · · · ( V (G) .

To simplify the notation we let A = U2\U1 and B = U3\U2. For the sake of contradiction,
we assume that

U ′ : U ′
1 ( U ′

2 ( · · · ( V (G)

is another connected flag equivalent to U which precedes U in the total ordering ≺k. We
will then find a connected flag equivalent to U (j) (for j = 1 or 2) preceding it in the total
ordering ≺k−1.

We note that since G(U) and G(U ′) coincide and q ∈ U1 and q ∈ U ′
1, we must have

U1 = U ′
1. Let ℓ ≥ 2 be such that U ′

ℓ ≺ Uℓ and U
′
i = Ui for i > ℓ.

We first show that ℓ > 2. If ℓ = 2, then U ′
1 = U1, U

′
2 = U1 ∪ (U3\U2) and U ′

i = Ui

for all i > 2. If there is at least one edge between A and B, then it is oriented from B
to A in G(U ′). But that edge must be oriented from A to B in G(U) which contradicts
G(U) = G(U ′). If there exists no edge between A and B, then

U (2) : (U1 ∪ (U3\U2)) ( U3 ( U4 ( · · · ( V (G) .

Now our assumption that U (1) ≺k−1 U
(2) implies that U2 ≺ U1 ∪ (U3\U2). Thus U ≺k U

′

which is a contradiction. Thus we must have ℓ > 2.

The ordered collection (U ′
j\U

′
j−1)

k
j=2 is a permutation of the ordered collection (Uj\Uj−1)

k
j=2.

Then A = U ′
t\U

′
t−1 and B = U ′

s\U
′
s−1 for some t, s ≥ 2. Note that if t ≥ 3 then

U ′
t−1 6= Ut−1; for t ≥ 3 we have U2 ⊆ Ut−1 but U2 6⊂ U ′

t−1 (since A 6⊂ U ′
t−1). On the

other hand, if s ≥ 4 then U ′
s−1 6= Us−1; for s ≥ 4 we have U3 ⊆ Us−1 but U3 6⊂ U

′
s−1 (since

B 6⊂ U ′
s−1). In particular we deduce that ℓ ≥ max(s− 1, t− 1).
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We first show that U (1) ∈ Sk−1(G, q) implies t > s. Since all edges connecting A and
V (G)\U2 are oriented from A to V (G)\U2 in G(U), and G(U) = G(U ′) we conclude that
there is no edge between A and U ′

t−1\U
′
1 if t > 2. Now we define

W : W1 (W2 ( · · · (Wk−1 = V (G)

by letting

Wi =

{

U ′
i ∪A, if 1 ≤ i ≤ t− 1;

U ′
i+1, if t ≤ i ≤ k − 1.

Note that
• W1 = U ′

1 ∪A = U2. This is because A = U2\U1 and U1 = U ′
1.

• The subgraphs G[Wi] are all connected; for 1 ≤ i ≤ t − 1 since U ′
1 ∪ A = U2 is

connected, we know that A is connected to U ′
i at least via U

′
1 ⊂ U

′
i .

Moreover
• For 2 ≤ i ≤ t − 1 we have Wi\Wi−1 = (U ′

i ∪ A)\(U
′
i−1 ∪ A) = U ′

i\U
′
i−1. This follows

from the fact that A is disjoint from U ′
i−1 and U ′

i .
• Wt\Wt−1 = U ′

t+1\(U
′
t−1 ∪A) = U ′

t+1\U
′
t .

• For t+ 1 ≤ i ≤ k − 1 we have Wi\Wi−1 = U ′
i+1\U

′
i .

This implies that the ordered collection (Wi\Wi−1)
k−1
1 is a permutation of the ordered

collection U2 ∪ (U ′
j\U

′
j−1)j∈{2,··· ,k}\{t} which is a permutation of ordered collection U2 ∪

(Uj\Uj−1)
k
j=3 of U (1). We show that W is equivalent to U (1): first note that the only

difference between G(U) and G(U (1)) is that we orient the edges from U1 to U2\U1 in

G(U) but we keep these edges unoriented in G(U (1)) (other oriented edges are identical).
If t = 2 then U ′

2 = U2 and all oriented edges from A to V (G)\U2 in G(U (1)) are also in
G(W). Other edges are identical, since G(U) and G(U ′) coincide. If t > 2 then there is
no edge between A and U ′

c\U
′
1 for 2 ≤ c ≤ t − 1. Therefore the only difference between

G(U ′) and G(W) is that we orient the edges from U ′
1 = U1 to U ′

t\U
′
t−1 = U2\U1 in G(U ′)

and we keep these edges unoriented in G(W). Other edges are identical, since G(U) and
G(U ′) coincide. Thus it follows that G(U (1)) and G(W) coincide.

Note that the ith element in U (1) is Ui+1 for all i. If ℓ > t − 1, then Wℓ−1 = U ′
ℓ ≺ Uℓ

and Wi = Ui+1 for i > ℓ. Thus W ≺k−1 U
(1) which is a contradiction by our assumption

that U (1) belongs to Sk−1(G, q). Therefore we have ℓ = t−1. This also implies that t > s.

Now we consider two cases:
• If G[U3\U1] is connected we have

U (2) : U1 ( U3 ( U4 ( · · · ( V (G) .

In this case U (2) ∈ Sk−1(G, q) implies that U3\U1 = (U3\U2) ∪ (U2\U1) = A ∪ B is
connected. So there is at least one edge between A and B. This edge must have opposite
orientations in G(U) and G(U ′), which is a contradiction because G(U) = G(U ′).

• If G[U3\U1] is not connected we have

U (2) : (U1 ∪ (U3\U2)) ( U3 ( U4 ( · · · ( V (G) .

In this case we need to do more work. We define

W ′ : W ′
1 (W ′

2 ( · · · (W ′
k−1 = V (G)
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by letting

W ′
i =

{

U ′
i ∪B, if 1 ≤ i ≤ s− 1;

U ′
i+1, if s ≤ i ≤ k − 1.

Note that

• W ′
1 = U ′

1 ∪B = U1 ∪ (U3\U2). This is because B = U3\U2 and U1 = U ′
1.

• The subgraphs G[W ′
i ] are all connected; for 1 ≤ i ≤ s−1 since U ′

1∪B is connected

(by our assumption that U (2) belongs to Sk−1(G, q)), we know that B is connected
to U ′

i at least via U
′
1 ⊂ U

′
i .

Moreover

• For 2 ≤ i ≤ s − 1 we have W ′
i\W

′
i−1 = (U ′

i ∪ B)\(U ′
i−1 ∪ B) = U ′

i\U
′
i−1. This

follows from the fact that B is disjoint from U ′
i−1 and U ′

i .
• W ′

s\W
′
s−1 = U ′

s+1\(U
′
s−1 ∪B) = U ′

s+1\U
′
s.

• For s+ 1 ≤ i ≤ k − 1 we have W ′
i\W

′
i−1 = U ′

i+1\U
′
i .

This implies that the ordered collection (W ′
i\W

′
i−1)

k−1
1 is a permutation of the ordered

collection (U1∪B)∪(U ′
j\U

′
j−1)j∈{2,··· ,k}\{s} which is a permutation of the ordered collection

for U (2). Now we check that W ′ is equivalent to U (2): the only difference between G(U)
and G(U (2)) is that we orient the edges from U1 to U3\U2 in G(U) but we keep these edges
unoriented in G(U (2)) (other oriented edges are identical). Similarly, since there is no edge
between B and U ′

c\U
′
2 for 2 ≤ c ≤ s− 1, the only difference between G(U ′) and G(W ′) is

that we orient edges from U ′
1 = U1 to U ′

s\U
′
s−1 = U3\U2 in G(U ′) and we keep these edges

unoriented in G(W ′) (other oriented edges are identical). Since G(U) and G(U ′) coincide

it follows that G(U (2)) and G(W ′) coincide.

Now our assumption that U ′
ℓ ≺ Uℓ and ℓ > s − 1 implies that U ′

ℓ = W ′
ℓ−1 ≺ Uℓ and

W ′
i = Ui+1 for i > ℓ − 1. Note that the ith element in U (2) is Ui+1 for i > 1. Thus

W ′ ≺k−1 U
(2) which is a contradiction. �

Proposition 4.20. Let X1,X2, Y1, Y2 be four nonempty subsets of V (G) such that:

(1) G[X1], G[X2], G[Y1], and G[Y2] are connected.
(2) X1 ∩X2 = ∅ and Y1 ∩ Y2 = ∅,
(3) X1 ∪X2 = Y1 ∪ Y2,
(4) X2 ∩ Y2 6= ∅.

Then D(X1,X2) ≤ D(Y1, Y2) implies X1 = Y1 and X2 = Y2.

Proof. First we show that we must have Y2 ⊆ X2. Assume that Y2 6⊆ X2. Then for any
v ∈ X1\Y1 we have D(X1,X2)(v) ≤ D(Y1, Y2)(v) = 0 because D(Y1, Y2) is supported on
Y1. Therefore there is no edge between X1 ∩ Y2 (i.e. the subset X1\Y1 ⊆ X1) and X2 ∩ Y2
(a subset of X2). Note that Y2 = (X1∩Y2)∪ (X2∩Y2). Since X2∩Y2 6= ∅, the assumption
X1\Y1 6= ∅ results in G[Y2] being disconnected which is a contradiction.

So we may assume Y2 ⊆ X2. Then for any v ∈ X1 ⊆ Y1 the set of all edges connecting v
to a vertex in X2 contains the set of all edges connecting v to a vertex in Y2. Therefore we
have D(Y1, Y2)(v) ≤ D(X1,X2)(v). Comparing this with the inequality in the assumption
we get D(Y1, Y2)(v) = D(X1,X2)(v) for all v ∈ X1. This means that there cannot be any
edge connecting X1 to X2\Y2. Since Y1 = X1 ∪ (X2\Y2), if X2\Y2 6= ∅ then G[Y1] would
be disconnected. So we must have Y2 = X2 and so Y1 = X1. �
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Corollary 4.21. Let

U : U1 ( U2 ( · · · ( V (G)

V : V1 ( V2 ( · · · ( V (G)

be two elements of Sk(G, q). If for some 2 ≤ i ≤ k

Ui = Vi and D(Ui\Ui−1, Ui−1) ≤ D(Vi\Vi−1, Vi−1)

then Ui−1 = Vi−1.

Proof. Let X1 = Ui\Ui−1, X2 = Ui−1, Y1 = Vi\Vi−1, and Y2 = Vi−1 in Proposition 4.20.
Note that X2 ∩ Y2 6= ∅ because q ∈ U1 ⊆ Ui−1 and similarly q ∈ V1 ⊆ Vi−1. �

Definition 4.22. Write W,V ∈ Sk(G, q) as

W : W1 (W2 ( · · · (Wk = V (G) ,

V : V1 ( V2 ( · · · ( Vk = V (G) .

Assume that Wi = Vi for i ≥ 2. We define an effective divisor

K(W,V) := max(D(W2\W1,W1),D(V2\V1, V1)) ,

where max denotes the entry-wise maximum.

We remark that the notion K(W,V) is essential in the study of our ideals and modules
using Gröbner theory (see proofs of Theorem 5.1 and Theorem 5.3).

The following lemma gives an alternate formula for computing K(W,V) which is some-
times more convenient.

Lemma 4.23. For W,V ∈ Sk(G, q) as in Definition 4.22, we have the following alternate
formula:

K(W,V) = max(D(W2\(W1 ∪ V1),W1),D(W2\(W1 ∪ V1), V1))

+D(V1\W1,W1) +D(W1\V1, V1) .

Proof. Let

K = max(D(W2\W1,W1),D(V2\V1, V1)) ,

K′ = max(D(W2\(W1∪V1),W1),D(W2\(W1∪V1), V1))+D(V1\W1,W1)+D(W1\V1, V1) .

Note that W2 is the disjoint union of sets W1 ∩ V1, W1\V1, V1\W1, and W2\(W1 ∪ V1).
• If v ∈W1 ∩ V1 then K(v) = K′(v) = 0.
• If v ∈W1\V1 then K(v) = K′(v) = D(W1\V1, V1)(v).
• If v ∈ V1\W1 then K(v) = K′(v) = D(V1\W1,W1)(v).
• If v ∈W2\(W1 ∪ V1) then

K(v) = K′(v) = max(D(W2\(W1 ∪ V1),W1),D(W2\(W1 ∪ V1), V1))(v) .

�

Lemma 4.24. For U ∈ Sk(G, q) of the form

U : U1 ( U2 ( · · · ( Uk = V (G)

we have

K(U (1),U (2)) = D(U2\U1, U1) +D(U3\U2, U2) .
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Proof. From Definition 4.16, Remark 4.17, and Definition 4.22 we need to compute max(α, β)
where

α = D(U3\U2, U2) and β =











D(U3\U1, U1), if G[U3\U1] is connected;

or

D(U2\U1, U1), if G[U3\U1] is not connected.

Since D(U3\U1, U1) = D(U3\U2, U1) +D(U2\U1, U1) and D(U2\U1, U1) ≥ D(U3\U2, U2),
it follows that in either case

max(α, β) = D(U2\U1, U1) +D(U3\U2, U2) .

�

We end this section by the following result which uses (and generalizes) many results
of this section. This result plays a crucial role in the proof of Theorem 5.3.

Proposition 4.25. Fix W ∈ Sk(G, q) and define

NW = {V ∈ Sk(G, q) : V
(1) =W(1) and W ≺k V} .

For any V ∈ NW there exists a W ′ ∈ NW such that

(i) K(W,W ′) ≤ K(W,V),
(ii) U (1) =W and U (2) =W ′ for some U ∈ Sk+1(G, q).

Proof. Fix V ∈ NW . Consider the following subset of Div(G) containing K(W,V):

Q = {K(W,V ′) : V ′ ∈ NW and K(W,V ′) ≤ K(W,V)} .

This is a nonempty finite set of effective divisors, so it has some minimal elements with
respect to the partial ordering ≤ on Div(G). Choose the largest (with respect to the total
ordering ≺k) element W ′ ∈ NW such that K(W,W ′) is a minimal element of Q. Write

W : W1 (W2 ( · · · (Wk = V (G)

W ′ : W ′
1 (W2 ( · · · (Wk = V (G) ,

and to simplify the notation let A = W2\W1, B = W2\W
′
1, and C = W1 ∩ W

′
1. Let

X be (the vertex set of) the connected component of G[C] containing q, and define the
(auxiliary) k-flag (i.e. increasing sequence of subsets with no connectivity assumption)

X : X (W2 (W3 ( · · · (Wk = V (G) .

Claim. If X ∈ Sk(G, q) then W
′
1 (W1.

Assume that X ∈ Sk(G, q). Since W ≺k W
′ we have W1 6=W ′

1 and therefore X (W1.
It follows that W ≺k X and X ∈ NW . We also have X ⊆W ′

1 and W ′ �k X .
We will show that

K(W,X ) ≤ K(W,W ′) .

Once this is shown, the claim is proved; if K(W,X ) < K(W,W ′) then K(W,W ′) is not
minimal which is a contradiction. If K(W,X ) = K(W,W ′) then X also realizes a minimal
divisor and W ′ �k X . This contradicts the definition of W ′ unless W ′ = X , which means
X =W ′

1 and hence W ′
1 (W1.
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By the formula in Lemma 4.23 we obtain

K(W,X ) = max(D(W2\(W1 ∪X),W1),D(W2\(W1 ∪X),X))

+D(X\W1,W1) +D(W1\X,X)

= max(D(W2\W1,W1),D(W2\W1,X)) +D(W1\X,X)

= D(W2\W1,W1) +D(W1\X,X)

= D(W2\(W1 ∪W
′
1),W1) +D(W ′

1\W1,W1) +D(W1\X,X) .

Compare this with

K(W,W ′) = max(D(W2\(W1 ∪W
′
1),W1),D(W2\(W1 ∪W

′
1),W

′
1))

+D(W ′
1\W1,W1) +D(W1\W

′
1,W

′
1) .

Since there is no edge between C\X and X we have

D(W1\X,X) = D(W1\C,X) = D(W1\W
′
1,X) ≤ D(W1\W

′
1,W

′
1) .

We get K(W,X ) ≤ K(W,W ′), and the claim is proved.

We now define

U : C (W1 (W2 ( · · · (Wk = V (G) .

By definition U (1) = W. We will show that U ∈ Sk+1(G, q) and U (2) = W ′. Since
W ′ ∈ NW implies W ≺k W

′, by Proposition 4.19 it suffices to prove U ∈ Fk+1(G, q) and

U (2) =W ′. Recall from Proposition 4.15 that if G[C] is not connected then we have X ∈
Sk(G, q). By Claim above, we then must have C = W1 ∩W

′
1 = W ′

1 which is connected.
Therefore, we assume that G[C] is connected. Therefore to show U ∈ Fk+1(G, q) we only
need to check that G[W1\C] is connected; all other connectivities are guaranteed by the
assumption that W ∈ Sk(G, q).

We need to consider two cases:

• If G[A ∪ B] is not connected: First we note that since G[A] and G[B] are both
connected, if A∩B 6= ∅ then A would be connected to B via A∩B, contradicting the fact
that G[A∪B] is not connected. So we must have A∩B = ∅ or equivalently W2 =W1∪W

′
1.

Now

W1\C =W1\W
′
1 =W2\W

′
1

which is connected since W ′ ∈ Sk(G, q).

Now W ′ = U (2) by noticing that

W ′
1 = (W1 ∩W

′
1) ∪ (W2\W1) = U1 ∪ (U3\U2) .

• If G[A ∪ B] is connected: Proposition 4.15 implies that X ∈ Sk(G, q). Now by the
claim above, we then must have C =W1 ∩W

′
1 =W ′

1 and so

U : W ′
1 (W1 (W2 ( · · · (Wk = V (G) .

Thus U (2) =W ′ by definition.

If G[W1\W
′
1] is not connected, let Y 6= ∅ be the vertex set of one of the connected

components of G[W1\W
′
1], and consider the flag

Y : W ′
1 ∪ Y (W2 (W3 ( · · · (Wk = V (G) .

Then Y ∈ Fk(G, q) because
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• G[W ′
1 ∪ Y ] is connected: W1 is connected and is the disjoint union W ′

1 ∪ Y ∪
W1\(W

′
1 ∪ Y ). Since there are no edges between Y and W1\(W

′
1 ∪ Y ), there must

be some edges connecting Y to W ′
1.

• G[W2\(W
′
1 ∪ Y )] is connected: W2\W

′
1 is connected and is the disjoint union

(W2\W1)∪Y ∪(W1\(W ′
1∪Y )). Since there are no edges between Y andW1\(W ′

1∪
Y ), there must be some edges connecting W2\W1 to W1\(W

′
1 ∪Y ). So (W2\W1)∪

(W1\(W
′
1 ∪ Y )) =W2\(W

′
1 ∪ Y ) is connected.

Since W ′
1 ∪ Y ⊆ W1 by comparing Y and W and using Lemma 4.14(c) we get Y ∈

Sk(G, q). We also note that W ≺k Y. Consequently Y ∈ NW .
However K(W,Y) < K(W,W ′) which contradicts the definition of W ′. To see this

compare

K(W,X ) = D(W2\W1,W1) +D(W1\(W
′
1 ∪ Y ),W ′

1 ∪ Y )

= D(W2\(W1 ∪W
′
1),W1)

+D(W ′
1\W1,W1) +D(W1\(W

′
1 ∪ Y ),W ′

1 ∪ Y )

with
K(W,W ′) = max(D(W2\(W1 ∪W

′
1),W1),D(W2\(W1 ∪W

′
1),W

′
1))

+D(W ′
1\W1,W1) +D(W1\W

′
1,W

′
1) .

Here we have

D(W1\(W
′
1 ∪ Y ),W ′

1 ∪ Y ) = D(W1\(W
′
1 ∪ Y ),W ′

1)

< D(W1\(W
′
1 ∪ Y ),W ′

1) +D(Y,W ′
1)

= D(W1\W
′
1,W

′
1) .

The first equality is because there are no edges betweenW1\(W
′
1∪Y ) and Y . The strict

inequality is because we have shown above that there are edges connecting Y to W ′
1.

Therefore G[W1\W
′
1] is connected, and U ∈ Fk+1(G, q) which is what we wanted. �

5. Syzygies and free resolutions for IG and in(IG)

LetK be a field and let R = K[x] be the polynomial ring in n variables {xv : v ∈ V (G)}.
Recall from §2.2.1 that K[x] has a natural A-grading, where A can be replaced by Z,
Div(G), or Pic(G). Recall that for A = Z and A = Pic(G) the ideal IG is graded.

Let the monomial ordering < on R be as in Definition 2.4. Recall that this order-
ing depends on the choice of the fixed vertex q. The following theorem is essentially in
[7, Theorem 14]. Here we state and prove the theorem in a language that suggests a
generalization.

Theorem 5.1. Fix a pointed graph (G, q) and let A = Z or A = Pic(G). A minimal
A-homogeneous Gröbner bases of (IG, <) is

G(G, q) = {xD(U2\U1,U1) − xD(U1,U2\U1) : U1 ( U2 = V (G) is in S2(G, q)} .

Moreover LM(xD(U2\U1,U1) − xD(U1,U2\U1)) = xD(U2\U1,U1).

Proof. To simplify the notation for a subset A ⊆ V (G) we use Ā = V (G)\A. Since q ∈ U1

it follows from the definition of < that xD(U1,Ū1) < xD(Ū1,U1).
We first prove

G′(G, q) = {xD(U2\U1,U1) − xD(U1,U2\U1) : U1 ( U2 = V (G), q ∈ U1}
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forms a Gröbner bases of IG. We will call a sequence of subsets U1 ( U2 = V (G) with
q ∈ U1 a 2-flag of (G, q). Note that for a 2-flag there is no connectivity assumption on
G[U1] or on G[U2\U1].

As usual, we use Buchberger’s criterion. Let f = xD(Ū ,U) − xD(U,Ū) and g = xD(V̄ ,V ) −
xD(V,V̄ ) be two elements of G′(G, q). Define the effective divisor D′ ∈ Div(G) by

D′ = max(D(Ū , U),D(V̄ , V )) = K(U ,V) .

In the language of chip-firing games, D′ is the minimal divisor that allows one to “fire”
either the set Ū or the set V̄ and still have an effective divisor as outcome, that is,

D′ −∆(χŪ ) ≥ 0 and D′ −∆(χV̄ ) ≥ 0 .

Buchberger’s s-polynomial is

spoly(f, g) = xD′−D(Ū ,U)f − xD′−D(V̄ ,V )g = xD1 − xD2 ,

where D1 = D′ −D(V̄ , V ) +D(V, V̄ ) = D′ −∆(χV̄ ) is the effective divisor obtained from
D′ by firing the set V̄ . Similarly D2 = D′ − D(Ū , U) + D(U, Ū) = D′ − ∆(χŪ ) is the
effective divisor obtained from D′ by firing the set Ū . It follows from this interpretation
that

(5.1) D1 −∆(χŪ\V̄ ) = D2 −∆(χV̄ \Ū ) = D′ −∆(χŪ∪V̄ ) ≥ 0 .

The reason is the net effect of firing first the set V̄ and then the set Ū\V̄ is the same as
firing the set Ū ∪ V̄ ; chips going along edges connecting V̄ and Ū\V̄ cancel each other.

Without loss of generality we assume that LM(spoly(f, g)) = xD1 . It follows from (5.1)

that we can reduce it by h1 = xD(Ū\V̄ ,U∪V̄ ) − xD(U∪V̄ ,Ū\V̄ ) ∈ G′(G, q) associated to the
2-flag (U ∪ V̄ ) ( V (G), and get:

spoly(f, g)− xD1−D(Ū\V̄ ,U∪V̄ )h1 = xD1−∆(χŪ\V̄ ) − xD2

= xD′−∆(χŪ∪V̄ ) − xD′−∆(χŪ ) .

The leading monomial is now xD′−∆(χŪ ). Again, it follows from (5.1) that we can reduce

this by h2 = xD(V̄ \Ū ,Ū∪V ) − xD(Ū∪V,V̄ \Ū) ∈ G′(G, q) associated to the 2-flag (Ū ∪ V ) (

V (G), and get:

spoly(f, g)− xD1−D(Ū\V̄ ,U∪V̄ )h1 − xD2−D(V̄ \Ū ,Ū∪V )h2 = xD′−∆(χŪ∪V̄ ) − xD′−∆(χŪ∪V̄ )

= 0

completing the proof that G′(G, q) is a Gröbner basis.

Finally we show that if we only consider the flags in S2(G, q) then we get a minimal
Gröbner bases. We show this by successively removing the binomials which are not coming
from connected 2-flags. There are two steps:
• If U1 ( V (G) is a 2-flag which is not in S2(G, q) then there exists another 2-flag

V1 ( V (G) such that xD(V̄1,V1) | xD(Ū1,U1).

• If U1 is not connected let V1 be the connected component of U1 containing q; then
V̄1 is the union of Ū1 and U1\V1 (i.e. other connected components of U1). There
is no edge between V1 and other connected components of U1 so for v ∈ U1\V1
we have 0 = D(V̄1, V1)(v) ≤ D(Ū1, U1)(v). Since Ū1 ⊆ V̄1, for v ∈ Ū1 we have
D(V̄1, V1)(v) ≤ D(Ū1, U1)(v).
• If Ū1 is not connected let V1 be the complement of any connected component of
Ū1. In this case D(V̄1, V1)(v) = D(Ū1, U1)(v) for all v ∈ V̄1.
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• If U1 ( V (G) is in S2(G, q) then its binomial cannot be removed. Otherwise, there

exists a different 2-flag V1 ( V (G) in S2(G, q) such that xD(V̄1,V1) | xD(Ū1,U1) which is a
contradiction by Corollary 4.21.

Homogeneity with respect to the Z and Pic(G) gradings is obvious. �

Remark 5.2. It is easy to check with examples (e.g. a path) that G(G, q) is generally not
the reduced Gröbner bases for (IG, <).

Theorem 5.1 can be rephrased as having a bijection between S2(G, q) and G(G, q). The
following theorem gives a generalization of this fact.

Theorem 5.3. Fix a pointed graph (G, q) and let A = Z or A = Pic(G). For each k ≥ 0
there exists a natural injection

ψk : Sk+2(G, q) →֒ syzk(G(G, q))

such that

(i) For some module ordering <k, the set Gk(G, q) := Image(ψk) forms a minimal
A-homogeneous Gröbner bases of (syzk(G(G, q)), <k),

(ii) For U ∈ Sk+2(G, q) of the form U1 ( U2 ( · · · ( V (G) we have

(5.2) LM(ψk(U)) = xD(U2\U1,U1)[ψk−1(U
(1))] .

Proof. For consistency in the notation we define syz−1(G(G, q)) = {0} and the map

ψ−1 : S1(G, q) →֒ {0}

sends the canonical connected 1-flag V (G) to 0.

The proof is by induction on k ≥ 0.

Base case. For k = 0 the result is proved in Theorem 5.1. Here G0(G, q) = G(G, q)
and <0 is <, and

ψ0 : S2(G, q) →֒ syz0(G(G, q)) = IG

(U1 ( U2) 7→ (xD(U2\U1,U1) − xD(U1,U2\U1))[0] ,

and LM(ψk(U)) = xD(U2\U1,U1)[0].

Induction hypothesis. Now let k > 0 and assume that there exists a bijection

ψk−1 : Sk+1(G, q)→ Gk−1(G, q) ⊆ syzk−1(G(G, q))

such that Gk−1(G, q) forms a minimal homogeneous Gröbner bases of syzk−1(G(G, q))
with respect to <k−1, and (5.2) holds for the leading monomials.

Via the bijection ψk−1, the set Gk−1(G, q) inherits a total ordering ≺′
k−1 from the total

ordering ≺k+1 on Sk+1(G, q), that is

f ≺′
k−1 h in Gk−1(G, q) ⇔ ψ−1

k−1(f) ≺k+1 ψ
−1
k−1(h) in Sk+1(G, q).

Inductive step. Given U ∈ Sk+2(G, q) let U (1) and U (2) be as defined in Defini-
tion 4.16. We define

(5.3) ψk : Sk+2(G, q)→ syzk(G(G, q))

U 7→ s(ψk−1(U
(1)), ψk−1(U

(2))) .
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In the following U ,V ∈ Sk+2(G, q) are of the form

U1 ( U2 ( · · · ( V (G)

V1 ( V2 ( · · · ( V (G) .

The result follows from a series of claims.

Claim 1. ψk is a well-defined.

By Proposition 4.18

U (1) ∈ Sk+1(G, q), U (2) ∈ Sk+1(G, q), U (1) ≺k+1 U
(2) .

So by the induction hypothesis

ψk−1(U
(1)), ψk−1(U

(2)) ∈ Gk−1(G, q)

and by the definition of the total ordering on Gk−1(G, q) we have

ψk−1(U
(1)) ≺′

k−1 ψk−1(U
(2)) .

Let U (1,1) := (U (1))(1) and U (2,1) := (U (2))(1). It is apparent from Definition 4.16 that

U (1,1) = U (2,1).

By the induction hypothesis and (5.2), LM(ψk−1(U
(1))) and LM(ψk−1(U

(2))) are both

multiples of the same free bases element [ψk−2(U
(1,1))] = [ψk−2((U

(2,1))]. It follows that

s(ψk−1(U
(1)), ψk−1(U

(2))) ∈ S(Gk−1(G, q)) ⊂ syzk(G(G, q))

is well-defined (see Theorem 3.2).

Claim 2. Gk(G, q) := Image(ψk) consists of homogeneous elements.

Since ψk−1(U
(1)) and ψk−1(U

(2)) are homogeneous by the induction hypothesis, it follows
that s(ψk−1(U

(1)), ψk−1(U
(2))) is also homogeneous.

Claim 3. LM(ψk(U)) = xD(U2\U1,U1)[ψk−1(U
(1))] .

From Lemma 3.3 it suffices to show that D(U2\U1, U1) = max(α, β) − α where

LM(ψk−1(U
(1))) = xα[ψk−2(U

(1,1))] , LM(ψk−1(U
(2))) = xβ [ψk−2(U

(2,1))] .

But this is precisely Lemma 4.24.

Claim 4. ψk is injective.

If U ,V ∈ Sk+2(G, q) are such that ψk(U) = ψk(V) then their leading monomials should
be equal:

xD(U2\U1,U1)[ψk−1(U
(1))] = xD(V2\V1,V1)[ψk−1(V

(1))] .

Therefore ψk−1(U
(1)) = ψk−1(V

(1)) and D(U2\U1, U1) = D(V2\V1, V1). By the induction

hypothesis ψk−1 is injective which implies U (1) = V(1) and D(U2\U1, U1) = D(V2\V1, V1).
It follows from Corollary 4.21 that U1 = V1 and U = V.

Our last claim below will finish the inductive step.

Claim 5. Image(ψk) forms a minimal homogeneous Gröbner bases of syzk(G(G, q)) with
respect to <k obtained from <k−1 according to (3.1).

We have already shown in the proof of Claim 1 that Image(ψk) ⊆ S(Gk−1(G, q)). By
Theorem 3.2 and Remark 3.5 it remains to show that

(I) 0 6∈ Image(ψk).
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(II) For any element s(f, h) ∈ S(Gk−1(G, q)) there exists an element g ∈ Image(ψk)
such that LM(g) | LM(s(f, h)).

(III) For any two elements g, g′ ∈ Image(ψk), if LM(g) | LM(g′) then g = g′.

(I) follows immediately from Claim 3 above.
Proof of (II). By the induction hypothesis f = ψk−1(W) and h = ψk−1(V) for two

W ≺k+1 V in Sk+1(G, q) such that W(1) = V(1). We need to find U ∈ Sk+2(G, q) such
that

LM(s(U (1),U (2))) | LM(s(ψk−1(W), ψk−1(V))) .

We use Proposition 4.25. From the previous paragraph it follows

V ∈ NW = {X ∈ Sk+1(G, q) : W
(1) = X (1) and W ≺k+1 X} .

Hence there exists a W ′ ∈ NW such that K(W,W ′) ≤ K(W,V), and U (1) = W and

U (2) =W ′ for some U ∈ Sk+1(G, q).
By (5.2) and Lemma 4.24 (or Claim 3 above) we have

LM(ψk(U)) = xK(W ,W ′)−α[ψk−1(W)] ,

LM(s(ψk−1(W), ψk−1(V))) = xK(W ,V)−α[ψk−1(W)] ,

where α = D(U3\U2, U2). Therefore

LM(ψk(U)) | LM(s(ψk−1(W), ψk−1(V))) .

Proof of (III). We need to show that for any U ,V ∈ Sk+2(G, q) with U (1) = V(1), if
LM(ψk(U) | LM(ψk(V)) then U = V.

From (5.2) LM(ψk(U) | LM(ψk(V)) is equivalent to D(U2\U1, U1) ≤ D(V2\V1, V1). This
together with U (1) = V(1) implies U = V by Corollary 4.21. �

Remark 5.4. In Theorem 5.3 if we replace G(G, q) with

{xD(U2\U1,U1) : U1 ( U2 = V (G) is in S2(G, q)} ,

(i.e. the initial terms of the Gröbner bases constructed in Theorem 5.1) and replace ψ0

with

S2(G, q) →֒ in(IG)

(U1 ( U2) 7→ xD(U2\U1,U1)[0] ,

then the exact same statement and proof are correct for the case of in(IG). As a corollary
the exact same recipe gives a free resolution for in(IG) as well.

6. Minimality of the resolution of IG and in(IG)

In Theorem 5.3 and Remark 5.4 we constructed free resolutions for the ideals IG and
in(IG). In this section we take a close look at (5.3) to show that the constructed resolutions
are indeed minimal. Note that the basis elements of the free module Fk correspond to
elements of Sk+2(G, q). We show that for any U ∈ Sk+2(G, q) the corresponding basis
element [ψk(U)] maps to a combination of basis elements [ψk−1(V)], where each V is
obtained from U by merging (§6.2) appropriate connected parts. Moreover, the coefficients
appearing in this combination are all non-units and, therefore, the constructed resolution
is minimal (Theorem 6.17).
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6.1. Contraction map. To understand merging, we first need to study contraction maps.

Definition 6.1. Assume that U ∈ Sk(G, q). Let G/U be the graph obtained from G by
contracting the unoriented edges of G(U) and let φ : G → G/U be the contraction map.
More precisely, G/U is the graph on the vertices u1, . . . , uk corresponding to the collection

(Ui\Ui−1)
k
i=1, i.e. ui = φ(Ui\Ui−1). For any edge between Ui\Ui−1 and Uj\Uj−1 there is

an edge between ui and uj.

Example 6.2. Let G be the graph in Example 4.4. For

U : {v1} ⊂ {v1,v2} ⊂ {v1, v2,v3,v4} ⊂ {v1, v2, v3, v4,v5}

the graph G/U depicted in the following figure in which u1 = v1, u2 = v2, the vertex u3
corresponds to U3\U2 = {v3, v4}, and u4 corresponds to U4\U3 = {v5}.

u1

u2 u3

u4

G/U

Remark 6.3. The contraction map φ : G→ G/U induces the map

φ∗ : Div(G)→ Div(G/U ) with φ∗(
∑

v∈V (G)

av(v)) =
∑

v∈V (G)

av(φ(v)) .

If the indices i and j are given, we obtain two divisors

D′(ui, uj) ∈ Div(G/U ) and D(Ui\Ui−1, Uj\Uj−1) ∈ Div(G)

which are related by the map φ∗ (see (2.1)). Here we use the notation D′(·, ·) for divisors
on G/U and D(·, ·) for divisors on G.

In particular, an ordering on the vertices of G/U gives an ordering on the collection of

subsets (Ui\Ui−1)
k
i=1 of V (G). By Definition 4.3 we get a divisor D′ on G/U and a divisor

D on G, and φ∗(D) = D′.

Remark 6.4. We also have the map φ∗ : Fs(G/U , u1) → Fs(G, q) induced by sending each
vertex of G/U to its preimage under φ. The map φ and the total ordering � on Cop(G, q)
(as in Definition 4.6) give a total ordering �′ on Cop(G/U , u1). The ordering �′ induces
a strict total ordering ≺′

ℓ on Fℓ(G/U , u1) compatible with the total ordering on connected

flags on (G, q); that is, X ≺′
ℓ Y if and only if φ∗(X ) ≺ℓ φ

∗(Y). Therefore, we get a map

(6.1) φ∗ : Ss(G/U , u1)→ Ss(G, q) .

This gives a one-to-one correspondence between the elements V ′ ∈ Ss(G/U , u1) and
the elements V ∈ Ss(G, q). Under this correspondence, for any ui ∈ V ′

j \V
′
j−1 we have

Ui\Ui−1 ⊆ Vj\Vj−1 and thus Vj =
⋃

ui∈V ′
j
(Ui\Ui−1). For any element V in the image of

φ∗ the preimage V ′ is obtained by V ′
j = {ui : ui = φ(Ui\Ui−1) and Ui\Ui−1 ⊆ Vj}. In

particular, U itself is in the image of φ∗.
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The following example explains the notation introduced in the above remarks.

Example 6.5. In Example 6.2 the ordering u1, u2, u3, u4 on V (G/U ) induces the ordering

U1\U0, U2\U1, U3\U2, U4\U3 on the collection (Ui\Ui−1)
4
i=1 of V (G) which corresponds

to U . Also corresponding to the ordering u1, u2, u3, u4 on V (G/U ) we get the divisor

D′ = (u2) + 2(u3) + 2(u4) on G/U , where φ∗(D
′) = D(U).

We consider

V ′ : {u1} ⊂ {u1,u3} ⊂ {u1,u2, u3,u4}

in S3(G/U , u1). Then φ
∗(V ′) = V, where

V : {v1} ⊂ {v1,v3, v4} ⊂ {v1,v2, v3, v4,v5} .

More precisely, V1 = U1\U0, V2 = (U1\U0) ∪ (U3\U2), and V3 = (U2\U1) ∪ (U4\U3).

6.2. Mergeable parts. Given U ∈ Sk(G, q) of the form

U1 ( U2 ( · · · ( Uk = V (G)

it is sometimes more convenient to work with the connected partition given by Aℓ :=
Uℓ\Uℓ−1 (for 1 ≤ ℓ ≤ k).

Recall for any U ∈ Sk(G, q) we get a partial orientation of G which we denoted by G(U)
in Definition 4.3. This partial orientation is acyclic with unique source on the underlying
partition graph G/U (Definition 6.1). This means that the underlying partition graph does
not contain any directed cycle and it has a unique source on the vertex corresponding to
A1. More generally, we say a partial orientation is acyclic if the associated oriented
partition graph (obtained by contracting all unoriented edges) is acyclic. Equivalently, a
partial orientation is acyclic if replacing every undirected edge with two antiparallel edges
yields an acyclic directed graph. Recall that associated to each partial orientation we get
a divisor as in Remark 4.5.

Definition 6.6. Let U ∈ Sk(G, q) and Aℓ := Uℓ\Uℓ−1 (for 1 ≤ ℓ ≤ k) as before. We set
o0(U) := G(U). For j > 0 the partial orientation oj(U) is defined inductively as follows:
we obtain oj(U) from oj−1(U) by reversing the orientation of the edges between Aj and
V (G)\Aj in oj−1(U).

Note that, when all oriented edges are directed away from Aj , reversing the orientation
of the edges between Aj and V (G)\Aj in oj−1(U) is equivalent to performing a chip-firing
move, in which all vertices in Aj borrow chips from their neighbors in V (G)\Aj . Note
that oj(U) is well-defined since all edges are directed away from Aj in oj−1(U).

Definition 6.7. Let c(U) denote the set consisting of all partial orientations oj(U) of G.

Example 6.8. Let G be the 4-cycle on the vertices 1, 2, 3, 4 such that 1 is the distinguished
vertex. Let U be the connected flag U : {1} ⊂ {1, 2} ⊂ {1, 2, 3} ⊂ {1, 2, 3, 4}. Then in the
following we depict the graph corresponding to oj(U) for all j (see Definition 6.6). Note
that o4(U) = G(U).

For disjoint subsets A,B ⊂ V (G) let E(A,B) denote the set of edges between A and B.
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o3(U)
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o2(U)
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o1(U)
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4

G(U)

2 3

Definition 6.9. Let U ∈ Sk(G, q) and Aℓ := Uℓ\Uℓ−1 (for 1 ≤ ℓ ≤ k) as before, and
assume that there are some edges connecting Ai and Aj , that is, E(Ai, Aj) 6= ∅.

(i) We say Ai is mergeable with Aj in G(U) if all edges in E(Ai, Aj) are oriented
from Ai to Aj and the partial orientation obtained from G(U) by removing the
orientations on E(Ai, Aj) is acyclic.

Note that in this case i < j. We let Merge(U ;Ai, Aj) ∈ Sk−1(G, q) denote the
corresponding unique connected (k − 1)-flag whose connected parts are Aℓ (for
ℓ 6= i, j) and Ai ∪Aj .

(ii) We say Ai is mergeable with Aj in oj(U) where i > j > 0, if the partial orientation
obtained by removing the orientations on E(Ai, Aj) in oj(U) results in an acyclic
partial orientation. Note that E(Ai, Aj) are oriented from Ai to Aj in oj(U).

Let Merge(oj(U);Ai, Aj) ∈ Sk−1(G, q) denote the connected partition of G
whose connected parts are Aℓ (for ℓ 6= i, j) and Ai ∪ Aj , together with the
acyclic (partial) orientation obtained from oj(U) by removing the orientations on
E(Ai, Aj). As usual one obtains an associated divisor by reading the indegrees in
this new partial orientation. This gives a maximal reduced divisor (see §7.1) on the
associated graph of partitions via the map φ (see Remark 6.3). This maximal re-
duced divisor gives a total ordering on the vertices of the graph of partitions (e.g.,
by performing Dhar’s algorithm – see §7.1 and [2]). Consider the induced partial
orientation of G obtained in this way, and let Merge(c(U);Ai, Aj) ∈ Sk−1(G, q)
denote the associated connected flag.

Definition 6.10. For U ∈ Sk(G, q) we associate two subsets of Sk−1(G, q) as follows:

(i) I(U) := {W : W = Merge(U ;Ai, Aj), for Ai, Aj mergeable in G(U)}.
(ii) B(U) := {W : W = Merge(c(U);Ai, Aj), for Ai, Aj mergeable in oj(U) or G(U)}.

It immediately follows from the definitions that I(U) ⊆ B(U). As we will see soon,
B(U) is related to the differential maps in our resolution of the binomial ideal IG and
I(U) is related to the differential maps in our resolution of the monomial ideal in(IG).

Example 6.11. Let G be of the 4-cycle on the vertices 1, 2, 3, 4 in which we fix 1 be the
distinguished vertex. Let U be the connected flag U : {1} ⊂ {1, 2} ⊂ {1, 2, 3} ⊂ {1, 2, 3, 4}.
Here we list the elements of I(U).

Example 6.12. Returning to Example 6.8, i.e., for U : {1} ⊂ {1, 2} ⊂ {1, 2, 3} ⊂
{1, 2, 3, 4}, we list the acyclic orientations Merge(c(U);Ai, Aj) corresponding to the ele-
ments ofB(U)\I(U) which have been obtained from connected partitions Merge(oj(U);Ai, Aj).

Lemma 6.13. Let U ∈ Sk(G, q) and assume that E(Ai, Aj) 6= ∅.
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(a) Assume that Merge(U ;Ai, Aj) ∈ I(U). Then there exists Bi ⊇ Ai such that

Merge(U (1);Bi, Aj) ∈ I(U (1)) or Merge(U (2);Bi, Aj) ∈ I(U (2)) .

(b) Assume that Merge(oj(U);Ai, Aj) ∈ B(U)\I(U) for j > 0. Then

– Merge(oj−1(U
(1));Ai, Aj) ∈B(U (1)), or

– there exist W ∈ I(U), Bi ⊇ Ai and Bj ⊇ Aj such that

Merge(o1(W);Bi, Bj) ∈ B(W) .

Proof. (a) Since A1 is a source in the partial orientation and cannot appear in any directed
cycle we have the following:

(i) if Ai 6= A1, A2 then Merge(U (1);Ai, Aj) ∈ I(U (1)).

(ii) if Ai = A1 then Merge(U (1);A1 ∪A2, Aj) ∈ I(U (1)).
(iii) if Ai = A2

– if E(A2, A3) = ∅ then Merge(U (2);A2, Aj) ∈ I(U (2)).

– if E(A2, A3) 6= ∅ then Merge(U (2);A2 ∪A3, Aj) ∈ I(U (2)).
32



In other words, in each case, we can find a Bi ⊇ Ai such that Merge(U (1);Bi, Aj) ∈

I(U (1)) or Merge(U (2);Bi, Aj) ∈ I(U (2)).

(b) Assume that Merge(oj(U);Ai, Aj) ∈ B(U)\I(U). First assume that G/U is a star
graph, i.e., for each pair ℓ1, ℓ2 > 1 of indices E(Aℓ1 , Aℓ2) = ∅. Then Aj = A1 and Aℓ is
mergeable with Aj in G(U) for all ℓ > 1. In particular, A2 is mergeable with A1 ∪ A3 in

U (2) and Ai is mergeable with A1 ∪A2 in U (1) for i > 2 which is what we want.

Now we assume that E(Aℓ1 , Aℓ2) 6= ∅ for some ℓ1, ℓ2. Then we define

r := min{p : E(Ap, Aℓ) 6= ∅ have the same orientations in G(U) and oj(U) for some ℓ}

and

s := min{ℓ : E(Ar, Aℓ) 6= ∅ have the same orientations in G(U) and oj(U)} .

Note that our assumption on E(Aℓ1 , Aℓ2) shows that these sets are nonempty. We also
have Aj 6= Ar since the outdegree of each vertex of Aj in oj(U) is zero, but there are
some edges going out from Ar to As. We set W = Merge(U ;Ar, As). In the following we
consider all possible cases to show that W ∈ I(U) with the desired properties:

(i) Ai 6= A1: then the edges between A1 and A2 are oriented from A1 to A2 in oj(U)
and G(U). We first reverse the orientation of the edges between A1 ∪ A2 and

V (G)\(A1 ∪A2). If Aj = A2 then Ai is mergeable with A1 ∪A2 in o1(U
(1)) and so

Merge(o1(U
(1));A1 ∪ A2, Ai) ∈ B(U (1)). Assume that Aj 6= A2. Then we let the

vertices of A3 borrow from their neighbors in V (G)\A3 in order to get o2(U
(1))

which differs with o3(U) just by merging the parts A1 and A2. We continue the
same process of chip firing on the parts of A4, . . . , Aj step-by-step in order to

get oj−1(U
(1)) which can be obtained from oj(U) just by merging the parts A1

and A2. This shows that Ai is mergeable with Aj in oj−1(U
(1)) as well, and so

Merge(oj−1(U
(1));Ai, Aj) ∈B(U (1)).

(ii) Ai = A1: then the same argument as case (i) shows the following cases can happen:
– if Aj 6= Ar, As then Merge(o1(W);A1, Aj) ∈ B(W).
– if Aj = Ar or Aj = As then Merge(c(W);A1, Ar ∪As) ∈ B(W). �

There is a nice converse to Lemma 6.13(a). Our next result shows that the mergeable

parts of U can be obtained from mergeable parts of the canonical flags U (1) and U (2).

Lemma 6.14. There exists a one-to-one correspondence between elements I(U (1))∪I(U (2))
and elements of I(U).

Proof. Let U ∈ Sk(G, q). Corresponding to each pair of mergeable parts in G(U (1))
or G(U (2)) we will find a unique pair of mergeable parts in G(U). Assume that W ∈
I(U (1)) ∪ I(U (2)). Then we consider the following cases:

• W ∈ I(U (1)): Since A1 is a source in the partial orientation and cannot appear in any
directed cycle we have the following:

(i) if Merge(U (1);Ai, Aj) ∈ I(U (1)) then Ai is mergeable with Aj in G(U).

(ii) if Merge(U (1);A1 ∪A2, Ai) ∈ I(U (1)) then
– Merge(U ;A2, Ai) ∈ I(U) if E(A2, Ai) 6= ∅.
– Merge(U ;A1, Ai) ∈ I(U) if E(A2, Ai) = ∅.

• W ∈ I(U (2)): First of all note that Merge(U (2);A1, A2) ∈ I(U). Then we have the
following cases:
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(i) if Merge(U (2);Ai, Aj) ∈ I(U (2)) then Merge(U ;Ai, Aj) ∈ I(U).

(ii) if Merge(U (2);A2 ∪A3, Ai) ∈ I(U (2)) then
– Merge(U ;A3, Ai) ∈ I(U) if E(A3, Ai) 6= ∅.
– Merge(U ;A2, Ai) ∈ I(U) if E(A3, Ai) = ∅.

(iii) if Merge(U (2);A1 ∪A3, Ai) ∈ I(U (2)) then
– Merge(U ;A3, Ai) ∈ I(U) if E(A3, Ai) 6= ∅.
– Merge(U ;A1, Ai) ∈ I(U) if E(A3, Ai) = ∅.

In Lemma 6.13(a) we have already shown that each element Merge(U ;Ai, Aj) of I(U)

corresponds to an element of I(U (1)) ∪ I(U (2)). �

6.3. Incidence function. Signs of the summands in the image of the basis elements
under differential maps can be read from incidence functions as follows.

Assume U ∈ Sk(G, q) for 3 ≤ k ≤ n. For W ∈ B(U) we want to define an incidence
value ǫ(U ,W) ∈ {−1,+1}. For this we look at two set of natural permutations on parts
of U and on parts of W. Let W = Merge(c(U);Ai, Aj).

• Let δ(U) = (A1, A2, · · · , Ak) and δ(W) = (Aℓ1 , Aℓ2 , · · · , Ai∪Aj, · · · , Aℓk−1
) denote

the permutations corresponding to the fixed ordering of parts (as fixed by the choice
of minimal representatives of the classes in Ek(G, q) with respect to ≺k).
• Let α(U) = (Ai, Aj , As1 , · · · , Ask−2

) be an arbitrary permutation which fixes Ai

and Aj at the beginning and is arbitrary otherwise. Correspondingly, we define
α(W) = (Ai ∪Aj , As1 , · · · , Ask−2

) compatible with α(U).

Definition 6.15. We define

(i) ǫ(U ,W) = sgn(δ(U), α(U)) sgn(δ(W), α(W)), where sgn(·, ·) denote the standard
sign function for permutations.

(ii) θ(U ,W) = D(Aj, Ai).

The definition of ǫ(U ,W) is easily seen to be independent of the choice of α(U), because
if α(U) is replaced with α′(U) = (Ai, Aj , At1 , · · · , Atk−2

) then

sgn(α′(U), α(U)) = sgn(α′(W), α(W)) = sgn((At1 , · · · , Atk−1
), (As1 , · · · , Ask−2

))

and ǫ(U ,W) is multiplied by sgn(α′(U), α(U))2 = 1. It is easy to see that θ(U ,W) is also
well-defined, and is independent of the choice acyclic orientation on c(U) where Ai and Aj

are mergeable.

Proposition 6.16. Fix 3 ≤ k ≤ n and let U ∈ Sk(G, q). For any W ∈ B(U) and
X ∈B(W) there exists a unique W ′ ∈ B(U) such that X ∈B(W ′) and

ǫ(U ,W)ǫ(W,X ) = −ǫ(U ,W ′)ǫ(W ′,X )

θ(U ,W) + θ(W,X ) = θ(U ,W ′) + θ(W ′,X ) .

Moreover, if W ∈ I(U) and X ∈ I(W) we have W ′ ∈ I(U) and X ∈ I(W ′).
In particular we have

∑

W∈B(U)
X∈B(W)

ǫ(U ,W)ǫ(W,X )xθ(U ,W)xθ(W ,X )[ψ(X )] = 0

and
∑

W∈I(U)
X∈I(W)

ǫ(U ,W)ǫ(W,X )xθ(U ,W)xθ(W ,X )[ψ(X )] = 0 .
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Proof. Let the connected parts of U beAℓ for 1 ≤ ℓ ≤ k. Assume thatW = Merge(c(U);Ai, Aj)
and X = Merge(c(W);Br , Bs). Since connected parts Br and Bs of W are among Aℓ (for
ℓ 6= i, j) and Ai ∪Aj , we need to consider three cases.

• Br = Ar, Bs = As: In this case Ar and As are mergeable in c(U) and we let
W ′ = Merge(c(U);Ar , As). Then clearly X = Merge(c(W ′);Ai, Aj). It follows that

θ(U ,W) + θ(W,X ) = θ(U ,W ′) + θ(W ′,X ) = D(Aj , Ai) +D(As, Ar) .

There is a uniqueW ′ 6=W with this property because there are only two ways to merge
Ai with Aj and Ar with As . Let

α(U) = (Ai, Aj , Ar, As, · · · ) , α′(U) = (Ar, As, Ai, Aj , · · · ),

α(W) = (Ai ∪Aj , Ar, As, · · · ) , α′(W ′) = (Ar ∪As, Ai, Aj , · · · ),

β(W) = (Ar, As, Ai ∪Aj , · · · ) , β′(W ′) = (Ai, Aj , Ar ∪As, · · · ),

β(X ) = (Ar ∪As, Ai ∪Aj, · · · ) , β′(X ) = (Ai ∪Aj , Ar ∪As, · · · ).

From Definition 6.15 we know

ǫ(U ,W)ǫ(W,X ) = sgn(δ(U), α(U)) sgn(δ(W), α(W)) sgn(δ(W), β(W)) sgn(δ(X ), β(X ))

ǫ(U ,W ′)ǫ(W ′,X ) = sgn(δ(U), α′(U)) sgn(δ(W ′), α′(W ′)) sgn(δ(W ′), β′(W ′)) sgn(δ(X ), β′(X )).

The result follows from

sgn(δ(W), α(W)) sgn(δ(W), β(W)) = sgn(α(W), β(W)) = 1,

sgn(δ(W ′), α′(W ′)) sgn(δ(W ′), β′(W ′)) = sgn(α′(W ′), β′(W ′)) = 1,

sgn(δ(U), α(U)) sgn(δ(U), α′(U)) = sgn(α(U), α′(U)) = 1,

sgn(δ(X ), β(X )) sgn(δ(X ), β′(X )) = sgn(β(X )), β′(X )) = −1.

• Br = Ar, Bs = Ai ∪Aj: There are two cases:

(1) E(Ar, Ai) 6= ∅ in which case we let W ′ = Merge(c(U);Ar , Ai), and we have X =
Merge(c(W ′);Ar ∪Ai, Aj),

(2) E(Ar, Ai) = ∅ in which case we must have E(Ar, Aj) 6= ∅ and we let W ′ =
Merge(c(U);Ar , Aj). We then have X = Merge(c(W ′);Ai, Ar ∪Aj).

In each case it follows that

θ(U ,W) + θ(W,X ) = θ(U ,W ′) + θ(W ′,X ) = D(Aj , Ai) +D(Ai, Ar) +D(Aj , Ar) .

There is a unique W ′ 6= W with this property because there are only two ways to merge
Ai, Aj and Ar.

We now verify the equality for the incidence function ǫ in case (1). Let

α(U) = (Ai, Aj , Ar, · · · ) , α′(U) = (Ar, Ai, Aj , · · · ),

α(W) = (Ai ∪Aj, Ar, · · · ) , α′(W ′) = (Ar ∪Ai, Aj , · · · ),

β(W) = (Ar, Ai ∪Aj , · · · ) , β′(W ′) = α′(W ′),

β(X ) = (Ar ∪Ai ∪Aj , · · · ) , β′(X ) = β(X ).

From Definition 6.15 we know

ǫ(U ,W)ǫ(W,X ) = sgn(δ(U), α(U)) sgn(δ(W), α(W)) sgn(δ(W), β(W)) sgn(δ(X ), β(X )),

ǫ(U ,W ′)ǫ(W ′,X ) = sgn(δ(U), α′(U)) sgn(δ(W ′), α′(W ′)) sgn(δ(W ′), β′(W ′)) sgn(δ(X ), β′(X )).

The result follows from

sgn(δ(W), α(W)) sgn(δ(W), β(W)) = sgn(α(W), β(W)) = −1,
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sgn(δ(W ′), α′(W ′)) sgn(δ(W ′), β′(W ′)) = sgn(α′(W ′), β′(W ′)) = 1,

sgn(δ(U), α(U)) sgn(δ(U), α′(U)) = sgn(α(U), α′(U)) = 1,

sgn(δ(X ), β(X )) sgn(δ(X ), β′(X )) = sgn(β(X )), β′(X )) = 1.

For case (2) this verification is completely analogous. Let

α(U) = (Ai, Aj , Ar, · · · ) , α′(U) = (Ar, Aj , Ai, · · · ),

α(W) = (Ai ∪Aj, Ar, · · · ) , α′(W ′) = (Ar ∪Aj, Ai, · · · ),

β(W) = (Ar, Ai ∪Aj , · · · ) , β′(W ′) = (Ai, Ar ∪Aj , · · · ),

β(X ) = (Ar ∪Ai ∪Aj , · · · ) , β′(X ) = β(X ).

From Definition 6.15 we know

ǫ(U ,W)ǫ(W,X ) = sgn(δ(U), α(U)) sgn(δ(W), α(W)) sgn(δ(W), β(W)) sgn(δ(X ), β(X )),

ǫ(U ,W ′)ǫ(W ′,X ) = sgn(δ(U), α′(U)) sgn(δ(W ′), α′(W ′)) sgn(δ(W ′), β′(W ′)) sgn(δ(X ), β′(X )).

The result follows from

sgn(δ(W), α(W)) sgn(δ(W), β(W)) = sgn(α(W), β(W)) = −1,

sgn(δ(W ′), α′(W ′)) sgn(δ(W ′), β′(W ′)) = sgn(α′(W ′), β′(W ′)) = −1,

sgn(δ(U), α(U)) sgn(δ(U), α′(U)) = sgn(α(U), α′(U)) = −1,

sgn(δ(X ), β(X )) sgn(δ(X ), β′(X )) = sgn(β(X )), β′(X )) = 1.

• Bs = Ar, Br = Ai∪Aj: This case is proved precisely as the previous case by permuting
the indices.

In all cases if W ∈ I(U) and X ∈ I(W) the constructed W ′ is in I(U). �

6.4. Differential maps and minimality of the free resolutions. We are now ready
to use (5.3) and induction to give a precise description of the differential maps constructed
in Theorem 5.3 (respectively, Remark 5.4) for IG (respectively, in(IG)). The minimality
of the constructed resolutions follows from this explicit description, as no units appear in
the described differential maps. To simplify the notation we use ψ instead of ψk for all k
(as defined in Theorem 5.3 and Remark 5.4).

Theorem 6.17. Let k ≥ 0 and U ∈ Sk+2(G, q).
For IG the differential maps given by (5.3) are of the form

ϕk([ψ(U)]) =
∑

W∈B(U)

ǫ(U ,W)xθ(U ,W)[ψ(W)] .

In particular, the set ψ(Sk+2(G, q)) minimally generates syzk(G(G, q)).

Remark 6.18. For in(IG) the differential maps given by (5.3) and the initial condition
described in Remark 5.4 are of the form

ϕk([ψ(U)]) =
∑

W∈I(U)

ǫ(U ,W)xθ(U ,W)[ψ(W)] .

The proof is completely analogous to the binomial case, and is skipped here. We will
not use this description when we discuss the Betti numbers because we instead appeal to
Theorem 3.11.
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Proof. For U ∈ Sk+2(G, q), from (5.3), we need to show that

(6.2) s([ψ(U (1))], [ψ(U (2))]) =
∑

W∈B(U)

ǫ(U ,W)xθ(U ,W)[ψ(W)] .

Note that this would prove the minimality of the resolution because W is a connected
flag and therefore θ(U ,W) 6= 0.

The proof is by induction on the number of vertices of the graph. The result is obvious
for a graph with 2 vertices. Suppose the result holds for graphs with less than n vertices,
and consider the graph G with n vertices. We need to show that all maps ϕk (for 0 ≤ k ≤
n− 2) are of the form (6.2). Fix a U ∈ Sk+2(G, q). We consider two cases:

• 0 ≤ k < n− 2. We consider the graph G/U on the vertex set {u1, u2, . . . , uk+2}. This
graph has fewer than n vertices because k+2 < n. Let U ′ ∈ Sk+2(G/U , u1) be the inverse
image of U under the map φ∗ as described in Remark 6.4. By the induction hypothesis
we have

(6.3) ψ(U ′) =
∑

W ′∈B(U ′)

ǫ(U ′,W ′)xθ(U ′,W ′)[ψ(W ′)] .

For eachW ′, letW be the inverse image under the map φ∗. Then θ(U ,W) and θ(U ′,W ′)
are related by the map φ∗ of Remark 6.3, and there is a one-to-one correspondence between
elements of B(U ′) and elements of B(U). We claim that

(6.4) ψ(U) =
∑

W∈B(U)

ǫ(U ,W)xθ(U ,W)[ψ(W)] ,

where c(W) = c(W ′). To see this, we need to show that

(6.5)
∑

W∈B(U)

ǫ(U ,W)xθ(U ,W)ψ(W) = 0 .

First note that (6.3) is equivalent to

(6.6)
∑

W ′∈B(U ′)

ǫ(U ′,W ′)xθ(U ′,W ′)ψ(W ′) = 0 .

We again use the induction hypothesis for ψ(X ′) to write

(6.7)
∑

W′∈B(U′)

X′∈B(W′)

ǫ(U ′,W ′)ǫ(W ′,X ′)xθ(U ′,W ′)xθ(W ′,X ′)[ψ(X ′)] = 0 .

Equation (6.7) implies that corresponding to each term xθ(U ′,W ′
1)xθ(W ′

1,X
′
1)[ψ(X ′

1)] there

exists a term xθ(U ′,W ′
2)xθ(W ′

2,X
′
2)[ψ(X ′

2)] with opposite sign, with which it cancels. Therefore

(6.8) E′ := θ(U ′,W ′
1) + θ(W ′

1,X
′
1) = θ(U ′,W ′

2) + θ(W ′
2,X

′
2) and [ψ(X ′

1)] = [ψ(X ′
2)] .

Since ψ is injective (Theorem 5.3) we get X ′
1 = X

′
2. By the induction hypothesis we know

θ(U ′,W ′
1) = D′(ui, uj)

θ(W ′
1,X

′
1) =











D′(ur, us) or

D′({ui, uj}, ur) or

D′(ur, {ui, uj})

for some distinct i, j, r, s (depending on what parts of W ′ are merged to get X ′
1 = X

′
2).
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Since E′ can be written as a sum of D′(ua, ub)’s, once we recognize all a’s and b’s appear-
ing in the sum, we can use Remark 6.3 and lift E′ to some E as a sum ofD(Ua\Ua−1, Ub\Ub−1)’s.
Then the same cancellations as in (6.6) occur in the left-hand side of (6.5) and we get
zero.

• If W ′
1 = W ′

2, then θ(U
′,W ′

1) = θ(U ′,W ′
2) and it follows from (6.8) that θ(W ′

1,X
′
1) =

θ(W ′
2,X

′
2). By looking at D′(ui, uj) we can recognize ui. By looking at the unique part in

W ′
1 = W ′

2 that contains two elements, we recognize uj . By looking at the vertices where
θ(W ′

1,X
′
1) = θ(W ′

2,X
′
2) is nonzero we can recognize ur since X ′

1 = X
′
2.

• If W ′
1 6=W

′
2, then we consider the following cases:

(1) θ(W ′
1,X

′
1) = D′(ur, us): we have E′ = D′(ui, uj) + D′(ur, us). The places where

E′ is nonzero determine {ui, ur}. By looking at the two parts in X ′
1 = X ′

2 which
contain precisely two vertices, we can distinguish {{ui, uj}, {ur, us}}.

(2) θ(W ′
1,X

′
1) = D′({ui, uj}, ur): we have E′ = D′(ui, uj) + D′(ui, ur) + D′(uj , ur).

Since we know X ′
1 = X

′
2 we know {ui, uj , ur}.

– if ui and ur are not adjacent: then ur is the vertex where E′ is zero. The
vertex u such that E′(u) is equal to the number of edges between u and
{ui, uj, ur}\u is ui. The other vertex where E′ is nonzero is uj.

– if uj and ur are not adjacent: then ui is the unique vertex where E′ is nonzero.
We do not need to distinguish between uj and ur because E′ is of the form
E′ = D′(ui, uj) +D′(ui, ur).

(3) θ(W ′
1,X

′
1) = D′(ur, {ui, uj}): we have E′ = D′(ui, uj) + D′(ur, ui) + D′(ur, uj).

Since we know X ′
1 = X

′
2 we know {ui, uj , ur}. This case reduces to (2) by permuting

the indices.

Therefore (6.5) holds. Note that U (1) and U ′(1) (respectively, U (2) and U ′(2)) are related
by the map φ∗ (6.1). On the other hand by Remark 6.4 for each ℓ the total ordering ≺ℓ

corresponding to G and the total ordering ≺′
ℓ corresponding to G/U (and so the term

orderings <ℓ and ℓ′) are compatible. Hence it follows from the discussion above and
Remark 6.4 that (6.5) is precisely coming from the s-polynomial computation.

• k = n− 2. Let Ui\Ui−1 = {vi} and for simplicity, xvi = xi. By Theorem 5.3 ψ(U) =
s(ψ(U (1)), ψ(U (2))). We directly apply the division algorithm to describe s(ψ(U (1)), ψ(U (2))).

From the proof of Lemma 4.24 the coefficient of [ψ(U (1))] is xθ(U ,U(1)) = xD(v2,v1) and

the coefficient of [ψ(U (2))] is xθ(U ,U(2)), where

θ(U ,U (2)) =

{

D(v3, v2), if v2 and v3 are adjacent;

D(v3, v1), if v2 and v3 are not adjacent.

Now assume that

M := LM(spoly(ψ(U (1)), ψ(U (2)))) .

Since Image(ψ) forms a minimal Gröbner bases of (syzn−3(G(G, q)), <n−3) there exists
an element V ∈ Sn−1(G, q) such that LM(ψ(V)) divides M . We know from (5.2) that

LM(ψ(V)) = xD(V2\V1,V1)[ψ(V(1))]. Hence

M = xθ(U ,V)+D(V2\V1,V1)[ψ(V(1))] for some θ(U ,V) ≥ 0 .
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In the first step of the division algorithm we obtain

xθ(U ,U(1))ψ(U (1))− xθ(U ,U(2))ψ(U (2)) + ǫ(U ,V)xθ(U ,V)ψ(V) .

The division algorithm proceeds by finding the leading monomial of the above expression
and continuing similarly. To show (6.2) we show that in each step V belongs to B(U) and
θ(U ,V) is of the form D(v, v′) for some vertices v and v′ (and that all such terms appear).

This is clearly correct for V = U (1) and V = U (2) as discussed above. Assume we are in
ith step. Recursively we may assume the leading monomial of the existing expression is a
monomial of xD(vi,vj)[ψ(W)].

Since W ∈ Sn−1(G, q) we can use the result of the previous case for k = n− 3 < n− 2
to write

ψ(W) =
∑

X∈B(W)

ǫ(W,X )xθ(W ,X )[ψ(X )] ,

where θ(W,X ) = D(Wr\Wr−1,Ws\Ws−1) for some r, s.

Now let M be the term xD(vi,vj)xθ(W ,X )[ψ(X )] which is divisible by

LM(ψ(V)) = xD(V2\V1,V1)[ψ(V(1))] .

Set E′ := D(vi, vj) + θ(W,X ) = D(vi, vj) + D(Wr\Wr−1,Ws\Ws−1). Let {v, v′} be
the unique part of V which contains two vertices. It is enough to show that E′ =
D(V2\V1, V1) + D(v, v′) and V ∈ B(U). Depending on which parts of W are merged
to get X we have the following cases:

Case 1. θ(W,X ) = D(vr, vs): note that {vr, vs} and {vi, vj} are two disjoint parts
of X . Since V2 has at least two elements we have V2 = {vi, vj} or V2 = {vr, vs}. Now
by noting that v1 ∈ V2 we can recognize V2. With no loss of generality assume that
V2 = {vi, vj}. Then we must have vj = v1; since xD(V2\V1,V1) divides xE′

. Therefore

E′−D(V2\V1, V1) = D(vr, vs). Note that X = V(1) implies that {vr, vs} is the unique part
of V containing two vertices and so D(vr, vs) = θ(U ,V).

Case 2. θ(W,X ) = D(vr, {vi, vj}): the ordered collection of (Xi\Xi−1)
n−2
i=1 is a permu-

tation of the sets {vt}t6=i,j,r and {vi, vj , vr}, since W is obtained from U by merging vi, vj
and X is obtained from W by merging vr, {vi, vj} where vr appears before {vi, vj} in W.
So we have V2 = {vi, vj , vr} and v1 ∈ V2. Therefore the following cases may occur:

• V1 = {vi, vj}: then D(V2\V1, V1) = D(vr, {vi, vj}) and E′ − D(V2\V1, V1) =
D(vi, vj). Therefore θ(U ,V) = D(vi, vj).
• V1 = {vj , vr}: then D(V2\V1, V1) = D(vi, {vj , vr}) and vj is adjacent to vr. On the
other hand, since LM(ψ(V)) divides M we should have no edge between vi and vr.
Therefore E′ −D(V2\V1, V1) = D(vr, vj) which is equal to θ(U ,V).
• V1 = {vj}: then D(V2\V1, V1) = D({vi, vr}, vj) and vi is adjacent to vr. Therefore
θ(U ,V) = D(vr, vi).
• vj ∈ V2\V1 and vi ∈ V1: the fact that vi and vj are adjacent implies that xj divides
M which is impossible since θ(U ,W)(vj) = 0.
• V1 = {vr} = {v1}: then D(V2\V1, V1) = D({vj , vi}, vr) and two vertices vi and vr
are adjacent. The number of edges between vi and vr is less than the number of
edges between vi and vj. On the other hand, since LM(ψ(V)) dividesM we should
have no edge between vj and vr.

39



Now we will show that this case cannot happen. First we note that M is equal
to the term xD(v1,vi)xθ(W ′,X )[ψ(X )] for some W ′ ∈ B(U) since M is a term corre-
sponding to a summand of an element which was added in the previous steps of
the division algorithm. This term is obtained by merging the parts {v1} and {vi},
i.e., removing the orientations on the edges between v1 and vi. Thus {v1, vi} is the
unique part of W ′ which contains two vertices. This implies that xθ(U ,W ′)[ψ(W ′)]
has not been added in the previous steps of the division algorithm. Otherwise this
term has been canceled with its corresponding dual term coming from Proposi-
tion 6.16. On the other hand M ′ = xθ(U ,W ′) LM([ψ(W ′)]) is not among the previ-
ous terms added in the division algorithm till this step (since otherwiseM ′ could be
the leading term). Note that W ′

1 = {v1, vi}. Now assume that W ′
2\W

′
1 = {vs}. If

v1 and vs are adjacent then the dual element of M ′ coming from Proposition 6.16,
is obtained by merging the parts {v1} and {vs} (in order to get W ′′ ∈ A(U))
and then merging the parts {vi} and {v1, vs} in W ′′. Note that by Lemma 6.13

we know that {v1} and {vs} are mergeable in G(U (1)) or G(U (2)) which implies

that xθ(U ,W ′′)[ψ(W ′′)] has been already added in the previous steps of the division
algorithm. However the term M ′ of this element has not been canceled with its
dual term which is a summand of xθ(U ,W ′)[ψ(W ′)] which is a contradiction since
M ′ >revlex M .

Case 3. θ(W,X ) = D({vi, vj}, vr): we have E′ = D(vi, vj) +D(vi, vr) +D(vj, vr). This
case reduces to (2) by changing the indices.

As we see in all cases we add the term xθ(U ,V)ψ(V) to the s-polynomial which has the
desired properties.

By Proposition 6.16 corresponding to each summand xθ(U ,W)xθ(W ,X )[ψ(X )] whereW ∈
B(U) and X ∈ B(W) there exists a uniqueW ′ ∈ B(U) such that X ∈ B(W ′) and so there

exists a unique element xθ(U ,W ′)xθ(W ′,X )[ψ(X )] with different sign. On the other hand, by
Lemma 6.14 all terms coming from elements of I(U) are appearing in s(ψ(U (1)), ψ(U (2))).
By Lemma 6.13(b) corresponding to each element Merge(oj(U); {vi}, {vj}) of B(U) there
exists a W ∈ I(U) with a mergeable edge corresponding to E(vi, vj). Our previous ar-
gument implies that the term associated to W has been already added in the division
algorithm. Therefore all terms corresponding to elements of B(U) are added in the divi-
sion algorithm as well, which completes the proof. �

Corollary 6.19. The Betti numbers of the ideals IG and in(IG) are independent of the
characteristic of the base field K.

Remark 6.20. Note that in the proof of Theorem 5.3 we actually construct a free resolution
for IG according to Algorithm 1. Once we know that this resolution is minimal it follows
that Gk(G, q) := Image(ψk) indeed forms a minimal generating set of syzk(G(G, q)) by
Remark 3.9. Then Theorem 3.11 implies that the same statement is true for in(IG) as
well.

Remark 6.21. As described in §1, the constructed minimal free resolutions are in fact
supported on a cellular complex. In [23] we describe this geometric picture in detail.

The following example sums up all our notions by giving the explicit minimal free
resolution for our running example, the 4-cycle graph.
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Example 6.22. Returning to Example 6.8, (and Examples 6.11, 6.12) by Theorems 5.3
and 6.20 we have that

ϕ2([ψ(U)]) = x2[ψ(Merge(U ; 1, 2))] − x3[ψ(Merge(U ; 1, 3))] + x4[ψ(Merge(U ; 3, 4))]

− x4[ψ(Merge(U ; 2, 4))] + x1[ψ(Merge(c(U); 2, 1))] − x1[ψ(Merge(c(U); 3, 1))]

− x2[ψ(Merge(c(U); 4, 2))] + x3[ψ(Merge(c(U); 4, 3))] .

Moreover for the ideal IC4 the minimal free resolution R/IC4 is

0→ R(−4)3
ϕ2
−→ R(−3)8

ϕ1
−→ R(−2)6

ϕ0
−→ R .

The matrix for the first differential map is

ϕ0 :
(

x3x4 − x1x2 x2x4 − x1x3 x2x3 − x
2
1 x24 − x2x3 x23 − x1x4 x22 − x1x4

)

in which the columns correspond to the generators of IC4 listed in the same order x3x4 −
x1x2, x2x4 − x1x3, . . . , x

2
2 − x1x4.

The second differential map is presented by the matrix

ϕ1 :

















−x4 0 x2 0 −x3 0 0 −x1
0 −x4 0 x3 0 −x2 −x1 0
0 0 −x4 −x4 0 0 −x3 −x2
x3 x2 0 0 −x1 −x1 0 0
−x2 0 0 −x1 x4 0 x2 0
0 −x3 −x1 0 0 x4 0 x3

















where the columns of the above matrix correspond to the bases elements associated to
connected flags

Merge(U ; 1, 2),Merge(U ; 1, 3),Merge(U ; 3, 4),Merge(U ; 2, 4)

listed in Example 6.11 and the connected flags

Merge(c(U); 2, 1),Merge(c(U); 3, 1),Merge(c(U); 4, 2),Merge(c(U); 4, 3)

listed in Example 6.12.
The last differential map is presented by the matrix

ϕ2 :

























x2 0 −x1
−x3 −x3 0
x4 0 0
−x4 0 0
x1 x2 0
−x1 0 x3
−x2 −x4 x2
x3 x3 −x4

























in which the first column corresponds to

U : {1} ⊂ {1, 2} ⊂ {1, 2, 3} ⊂ {1, 2, 3, 4},

the second and third columns correspond to

U2 : {1} ⊂ {1, 2} ⊂ {1, 2, 4} ⊂ {1, 2, 3, 4} and U3 : {1} ⊂ {1, 3} ⊂ {1, 3, 4} ⊂ {1, 2, 3, 4}.

Their corresponding acyclic orientations are listed in Figure 3.
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7. Betti numbers

Let A = Z or A = Pic(G). We let βi and βi,j denote βi(R/IG) and βi,j(R/IG) respectively
(for i ≥ 0 and j ∈ A). Note that by Remark 6.20 one might replace IG with in(IG).

Proposition 7.1. For all i ≥ 0, βi = |Si+1(G, q)| = |Ei+1(G, q)| .

Proof. The assertion follows by Theorem 5.3, Remark 5.4, and Theorem 6.17 and the fact
that βi(R/ in(IG)) = βi−1(in(IG)). �

Remark 7.2. It follows from Proposition 7.1 that |Si+1(G, q)| is independent of q. It is a
nice combinatorial exercise to show this directly.

Recall from §2.2.1 that for D ∈ Div(G) we define

degA(D) = degA(x
D) =











deg(D), if A = Z;

D, if A = Div(G);

[D], if A = Pic(G).

Definition 7.3. For k ≥ 1 and j ∈ A define

Sk,j(G, q) = {U ∈ Sk(G, q) : degA(D(U)) = j}

where D(U) is defined in Definition 4.3.

We now strengthen Proposition 7.1 as follows.

Proposition 7.4. For A = Z or A = Pic(G)

βi,j = |Si+1,j(G, q)|

for all i ≥ 0 and j ∈ A.

Proof. By Theorem 5.3, Theorem 6.17, and Remark 3.9 the set ψi(Si+2(G, q)) minimally
generates the module syzi(in(IG)) for each i ≥ 0, and we have

βi,j = βi−1,j(IG) = |{ψi−1(U) : deg(ψi−1(U)) = j for U ∈ Si+1,j(G, q)}| .

We first note that for U ∈ Si+1,j(G, q) we have

D(U) =
i+1
∑

ℓ=1

D(Uℓ\Uℓ−1, Uℓ−1) , xD(U) =

i+1
∏

ℓ=1

xD(Uℓ\Uℓ−1,Uℓ−1)

and

(7.1) degA(D(U)) = degA(x
D(U)) =

k
∑

i=1

degA(x
D(Ui\Ui−1,Ui−1)) .

We need to show that deg(ψi−1(U)) = degA(D(U)). The proof is by induction on i ≥ 0.
For i = 0 there is nothing to prove. Since ψi−1(U) is homogeneous, by (5.2) and (7.1) we
obtain

degA(ψi−1(U)) = degA(LM(ψi−1(U)))

= deg(xD(U2\U1,U1)[ψk−1(U
(1))])

= degA(x
D(U2\U1,U1)) + degA(ψk−1(U

(1)))

= degA(x
D(U2\U1,U1)) + degA(D(U (1)))

= degA(D(U)) .

�
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Example 7.5. It follows from above descriptions that for the Z-grading of R, βi,j can
take nonzero values only if 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m where n = |V (G)| and
m = |E(G)|. Clearly β0 = 1. Moreover βn−1 = βn−1,m which is equal to the number
of acyclic orientations of G with unique source at q (see also Lemma 7.12). Since both
R/IG and R/ in(IG) are Cohen-Macaulay (see, e.g., [23, Section 11.1]), it follows that the
Castelnuovo-Mumford regularity of both R/IG and R/ in(IG) is equal to g = m − n + 1
(see, e.g., [11, page 69]).

Example 7.6. Let G = Kn be the complete graph on n vertices. Let {A1, A2, · · · , Ak}
be any k-partition of V (G) with q ∈ A1. Then corresponding to each permutation δ =
(i1, i2, . . . , ik−1) of (2, 3, . . . , n) the strictly increasing k-flag

Uδ : U1 ( U2 ( · · · ( Uk = V (G)

is an element ofSk(G, q) where Uj = A1∪Ai1∪· · ·∪Aij−1 for each j. Therefore |Sk(G, q)| =
(k − 1)!S(n, k) where S(n, k) denotes the Stirling number of the second kind (i.e. the
number of ways to partition a set of n elements into k nonempty subsets). In other words
βi = i!S(n, i+1). See http://oeis.org/A028246 for other interpretations of these numbers.

Example 7.7. Let G be a tree on n vertices. Let U ∈ Sk(G, q). For each i > 1 the
part Ui\Ui−1 is connected by exactly one edge to only one part Uj\Uj−1 with j < i;
otherwise we get a cycle in the graph. Therefore each element U ∈ Sk(G, q) is determined
by the k − 1 edges (of n − 1 edges of G) between the partitions (Ui\Ui−1)’s of U and

|Sk(G, q)| =
(

n−1
k−1

)

. The fact that each edge contributes 1 to the degree of ψ(U) means

that βi = βi,i =
(n−1

i

)

.

Example 7.8. Let G = Cn be the cycle on n vertices. For simplicity of notation let
V (G) = [n]. Then we will show, by induction on n, that for k ≥ 2

|Sk(Cn, q)| = (k − 1)×

(

n

k

)

.

One can easily check the formula for k = 2 and k = 3. So we may assume that k ≥ 4. Let
1 ≤ i1 < i2 < · · · < ik ≤ n. Then we consider the parts

A1 := {ik, ik+1, . . . , n}∪{1, . . . , i1−1} and At+1 := {it, it+1, . . . , it+1−1} for 1 ≤ t ≤ k−1

of the graph. Then there are three types of elements U of Sk(G, q) such that (Ui\Ui−1)
k
i=2

is a permutation of A2, . . . , Ak:

(1) U1 = A1 and Ui = Ui−1 ∪Ai for each 1 < i ≤ k.
(2) U1 = A1 and Ui = Ui−1 ∪Ak−i+2 for each 1 < i ≤ k.
(3) U1 = A1, U2\U1 = A2, U3\U2 = Ak: Then the number of k-connected flags of Cn

with this partition set is equal to the number of (k − 3)-connected flags of Ck−2

on the vertex set u1, u2, . . . , uk−2 where q = uk−3 is associated to A1 ∪ A2 ∪ Ak

and ui is associated to the part Ai for each 3 ≤ i ≤ k − 1. This number equals to
(k − 3)×

(k−3
k−3

)

by the induction hypothesis.

(4) U1 = A1, U2\U1 = Ak, U3\U2 = A2: Similar to the previous case the number of

k-connected flags of Cn with this partition set is equal to (k − 3)×
(

k−3
k−3

)

.

Now note that since A2 and Ak are not adjacent just one of the two elements

U : A1 ( A1 ∪A2 ( A1 ∪A2 ∪Ak ( U4 ( · · · ( Uk

and
U ′ : A1 ( A1 ∪Ak ( A1 ∪A2 ∪Ak ( U4 ( · · · ( Uk
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will be in Sk(G, q). This implies that |Sk(G, q)| = (1+ 1+ (k− 3))×
(n
k

)

= (k− 1)×
(n
k

)

.

We get βi = βi,i+1 = i
( n
i+1

)

for i ≥ 1.

For example for G = C5 we have

β0 = 1, β1 = 10, β2 = 20, β3 = 15, β4 = 4 .

Example 7.9. It follows from Proposition 7.4 that adding or removing parallel edges
will not change βi, since this process does not add/remove any element to/from the set
Si+1(G, q). However, the graded Betti numbers βi,j do change by adding or removing
parallel edges. For example, consider the theta graph G with two vertices u and v con-
nected by m edges. Then S2(G,u) has the unique element {v} ( {u, v} which implies
that β1 = β1,m = 1.

7.1. Relation to maximal reduced divisors. Recall the definition of reduced divisors.

Definition 7.10. Let (Γ, v0) be a pointed graph. A divisorD ∈ Div(Γ) is called v0-reduced
if it satisfies the following two conditions:

(i) D(v) ≥ 0 for all v ∈ V (Γ)\{v0}.
(ii) For every nonempty subset A ⊆ V (Γ)\{v0}, there exists a vertex v ∈ A such that

D(v) < outdegA(v).

These divisors arise precisely from the normal forms with respect to the Gröbner bases
given in Theorem 5.1. There is a well-known algorithm due to Dhar for checking whether
a given divisor is reduced (see, e.g., [2] and references therein).

Recall from Definition 6.1 that given U ∈ Sk(G, q) we obtain a graph G/U from G by
contracting all the unoriented edges of G(U). The contraction map φ : G→ G/U induces
the map

φ∗ : Div(G)→ Div(G/U ) with φ∗(
∑

v∈V (G)

av(v)) =
∑

v∈V (G)

av(φ(v)).

Assume U1 is the part of U containing q and let q′ = φ(U1) ∈ V (G/U ).

Lemma 7.11. φ∗(D(U)) = E + 1, where E is a maximal q′-reduced divisor and 1 is the
all-one divisor.

Proof. This follows from the well-known fact that Dhar’s algorithm gives a one-to-one
correspondence between acyclic orientations with unique source at v0 and maximal v0-
reduced divisors; given such an acyclic orientation the corresponding v0-reduced divisor is
∑

v∈V (Γ) (indeg(v)− 1)(v) (see, e.g., [4]). The result now follows from Remark 4.5. �

Since different acyclic orientations with unique source at q′ give rise to inequivalent q′-
reduced divisors we deduce that if U ,V ∈ Sk(G, q) and the graphs G/U and G/V coincide,
then φ∗(D(U))−1 and φ∗(D(V))−1 are two inequivalent maximal reduced divisors. These
observations lead to the following formula for Betti numbers which, in an equivalent form,
was conjectured in [26] for IG:

βi =
∑

G/U

|{D : D is a maximal v0-reduced divisor on G/U}|

=
∑

G/U

|{acyclic orientations of G/U with unique source at v0}|
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where the sum is over all distinct contracted graphs G/U as U varies in Si+1(G, q), and v0
is an arbitrary vertex of G/U .

Here is another connection with reduced divisors. Hochster’s formula for computing
the Betti numbers topologically (see, e.g., [21, Theorem 9.2]), when applied to IG and
the “nice” grading by Pic(G), says that for each j ∈ Pic(G) the graded Betti number
βi,j(R/IG) is the dimension of the ith reduced homology of the simplicial complex

∆j = {supp(E) : 0 ≤ E ≤ D′ ∈ | j |}

where | j | denotes the linear system of j ∈ Pic(G). One can use this to give an alternate
proof for the highest graded Betti numbers. The following is a simplification of the proof
of [26, Theorem 7.7] (see also Example 7.5).

Lemma 7.12. For j ∈ Pic(G), we have βn−1,j(R/IG) = 1 if and only if

j ∼ E + 1

where E is a maximal q-reduced divisor.

Proof. βn−1,j(R/IG) = 1 if and only if ∆j is homotopy equivalent to an (n − 1)-sphere.
This is equivalent to the following two conditions.

(1) | j− 1 | = ∅,
(2) | j− 1+ (v) | 6= ∅ for any v ∈ V (G).

Let E be the unique q-reduced divisor equivalent to j−1. Then (1) is equivalent to saying
E(q) ≤ −1. But (2) for v = q would require E(q) = −1, and for v 6= q would require that
E be a maximal q-reduced divisor. This is because for all maximal reduced divisors the
values of vertices v 6= q add up to the same number g = |E(G)| − |V (G)| + 1. �

Remark 7.13.
(i) By Remark 6.20 one can use Proposition 7.4 to read all dimensions of the reduced

homologies of ∆j. Although we now know all the Betti numbers, giving an explicit
bijection between connected flags and the bases of the reduced homologies of ∆j

is an intriguing problem.
(ii) In a recent work, Mania [17] studies the number of connected components of ∆j.

This gives an alternate proof that β1 = |S2(G, q)|.
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