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DIVISORS ON GRAPHS, BINOMIAL AND MONOMIAL IDEALS, AND

CELLULAR RESOLUTIONS

FATEMEH MOHAMMADI AND FARBOD SHOKRIEH

Abstract. We study various binomial and monomial ideals arising in the theory of divisors, ori-
entations, and matroids on graphs. We use ideas from potential theory on graphs and from the
theory of Delaunay decompositions for lattices to describe their minimal polyhedral cellular free
resolutions. We show that the resolutions of all these ideals are closely related and that their Z-
graded Betti tables coincide. As corollaries, we give conceptual proofs of conjectures and questions
posed by Postnikov and Shapiro, by Manjunath and Sturmfels, and by Perkinson, Perlman, and
Wilmes. Various other results related to the theory of chip-firing games on graphs also follow from
our general techniques and results.

1. Introduction

This work is concerned with the development of new connections between the theory of divisors
on graphs, potential theory, the theory of lattices, Delaunay decompositions, and commutative
algebra.

1.1. Divisors on graphs. Let G be a finite graph. Let Div(G) be the free abelian group generated
by V (G). An element of Div(G) is a formal sum of vertices with integer coefficients and is called a
divisor on G.

We denote byM(G) the group of integer-valued functions on the vertices. The Laplacian operator
∆ : M(G) → Div(G) is defined by

∆(f) =
∑

v∈V (G)

∑

{v,w}∈E(G)

(f(v)− f(w))(v) .

The group of principal divisors is defined as the image of the Laplacian operator and is denoted
by Prin(G). Two divisors D1 and D2 are called linearly equivalent if their difference is a principal
divisor. This gives an equivalence relation on the set of divisors. The set of equivalence classes forms
a finitely generated abelian group which is called the Picard group of G. If G is connected, then
the finite (torsion) part of the Picard group has cardinality equal to the number of spanning trees
of G. This group has appeared in the literature under many different names; in theoretical physics
and in probability it was first introduced as the “abelian sandpile group” or “abelian avalanche
group” in the context of self-organized critical phenomena [BTW88,Dha90,Gab93]. In arithmetic
geometry, it appears implicitly in the study of component groups of Néron models of Jacobians
of algebraic curves [Ray70,Lor89]. In algebraic graph theory this group appeared under the name
“Jacobian group” or “Picard group” in the study of flows and cuts in graphs [BdlHN97]. The study
of a certain chip-firing game on graphs led to the definition of this group under the name “critical
group” [Big97,Big99]. We recommend the recent survey article [LP10] for a short but more detailed
overview of the subject.
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The theory of divisors on graphs closely mirrors the theory of divisors on algebraic curves. In
fact, Baker and Norine in [BN07] prove a version of Riemann-Roch theorem in this setting via a
combinatorial argument. It was immediately realized (in [GK08,MZ08]) that this divisor theory
has a natural extension to metric graphs (or abstract tropical curves). This theory, however, has
resisted a more conceptual and cohomological interpretation.

Associated to G there is a canonical ideal which encodes the equivalences of divisors on G. This
ideal is already implicitly defined in Dhar’s seminal paper [Dha90], but it was first introduced in
[CRS02]. Let K be a field and let R = K[x] be the polynomial ring in variables {xv : v ∈ V (G)}.
The canonical binomial ideal is defined as IG := 〈xD1 −xD2 : D1 ∼ D2 both nonnegative divisors〉.
A related monomial ideal, which we denote by M

q
G, is a certain initial ideal of IG which is defined

after fixing a vertex q ∈ V (G) (see §3.2). This ideal, for the case of complete graphs, was extensively
studied in [PS04]. In [MS13], Riemann-Roch theory for graphs is linked to Alexander duality (see
§10.3) for the ideal Mq

G.

1.2. Minimal polyhedral cellular free resolutions. There is a standard way to write down a
complex of graded modules from a cell complex C ([BS98]). Namely, one can label 0-dimensional
cells of C by monomials, and then extend the labeling to arbitrary faces by labeling each face F
with the least common multiple of the monomial labels on the vertices in F . The resulting labeled
cell complex leads to a complex of free graded R-modules

FC =
⊕

∅6=F∈C

R(−mF )

where mF denotes the monomial label of the face F . The differential of F = FC is the homogenized
differential of the cell complex C; if [F ] denotes the generator of R(−mF ) we have

∂([F ]) =
∑

codim(F,F′)=1

F ′⊂F

ε(F,F ′)
mF

mF ′

[F ′]

where ε(F,F ′) ∈ {−1,+1} denotes the incidence function indicating the orientation of F ′ in the
boundary of F (see [Mas91, IX.5] or [BH93, Section 6.2]). Note that the length of (F , ∂) is the
dimension of C.

This construction is so general that the resulting complex is expected not to be exact. It is shown
in [BS98, Proposition 1.2] that the complex (F , ∂) is exact if and only if every subcomplex C≤m (i.e.
the subcomplex of C consisting of all cells whose labels divide the monomial m) is acyclic over K
(i.e. its homology with K coefficients is only in degree 0). In the rare case that we do get an exact
sequence, the pair (F , ∂) is called a cellular free resolution. If the cell complex is polyhedral, (F , ∂)
is called a polyhedral cellular free resolution. If moreover all mF /mF ′ appearing in the differential
maps are non-units in R, then we have a minimal polyhedral cellular free resolution.

1.3. Outline and our results. Our first goal is to give a minimal polyhedral cellular free resolu-
tion for the ideal IG. Quite surprisingly, many ideas from potential theory on graphs, from lattices
and Delaunay decomposition, and from (a generalized version of) the notion of total unimodularity
(developed in §3 and §4) fit together nicely to give a direct and self-contained solution to this
problem. This is worked out in §5. Note that as a result we obtain a whole family (as G varies)
of ideals with minimal polyhedral cellular free resolution. For complete graphs this is the Scarf
complex and for trees this is the Koszul complex.

We then step back and define two more ideals; the graphic Lawrence ideal JG and one of its initial
ideals O

q
G (defined after fixing a vertex), which we call the graphic oriented matroid ideal. These

are special classes of more general ideals studied in [BPS01] and [NPS02]. They are intimately
related to graphic hyperplane arrangements and to Delaunay decomposition of cut lattices reviewed
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in §6. In §7 we take a close look at these ideals, review some general known results, and prove some
new results for our special situation.

Roughly speaking, the ideals JG and O
q
G can be thought of as “orientation” variants of the

“divisor” ideals IG andM
q
G. A powerful technique in the theory of divisors on graphs and chip-firing

games is to relate divisors to orientations. Given an orientation, one can form a divisor by reading
off the associated indegrees or outdegrees (see, e.g., [BLS91, Theorem 2.3], [BN07, Theorem 3.3],
[HP12], [MS14], [ABKS14], and [Moh15]). Our next main result shows that, algebraically, there
is a good justification for the strength of this method. We show that the relation between the
ideals JG and IG (and similarly O

q
G and M

q
G) can be understood via regular sequences. This is the

content of §8.

JG
regular sequence

///o/o/o/o/o/o/o/o

initial ideal
��
�O
�O
�O

IG

initial ideal
��
�O
�O
�O

O
q
G regular sequence

///o/o/o/o/o/o/o/o M
q
G

These regular sequences allow us to compare many algebraic properties and constructions for
the ideals JG and IG (and similarly O

q
G and M

q
G). For example, one immediate corollary is to

obtain a minimal polyhedral cellular free resolution for the ideal IG from a minimal polyhedral
cellular free resolution for the ideal JG. This resolution is essentially equivalent to the one obtained
by our potential theoretic considerations (see Remark 9.6). We also obtain a minimal polyhedral
cellular free resolution for the ideal M

q
G from a minimal polyhedral cellular free resolution for

the ideal Oq
G. It follows that all these resolutions are closely related to Delaunay decompositions

of the lattice of integral coboundaries (which we call the integral cut lattice) and to the graphic
hyperplane arrangement. Moreover, the Z-graded Betti numbers of all these ideals coincide. So
M

q
G and O

q
G are examples of “nice” initial ideals in the sense of [CHT06], meaning that one can

read the Betti numbers of the original ideal from the initial ideal (see [Boo12,Moh12] for other
such examples). Also, we obtain, automatically, an interpretation of the Betti numbers in terms of
the number of faces of various dimensions in the graphic hyperplane arrangement, or equivalently,
the number of orbits of the Delaunay cells of various dimensions in the cut or principal lattice.
These interpretations also imply that Betti numbers can be read from the number of acyclic partial
orientations of G (see Remark 6.3, Example 7.9, and Theorem 9.3). As a corollary, it follows that
the Betti table of all these ideals are independent of the base field K.

For complete graphs, a minimal polyhedral cellular free resolutions for Mq
G and IG was given in

[PS04] and [MS13], respectively. The case of general graphs was left open in both works. Our work
generalizes these constructions to arbitrary graphs, puts their constructions into a larger context,
and resolves several questions and conjectures from these papers. We should mention that minimal
free resolutions and the Betti numbers for both M

q
G and IG were first established in [MS14] and

independently in [MSW15]. The first Betti number for IG was computed in [Man12]. A minimal
cellular resolution for Mq

G was given in [DS14]. The Betti numbers for Mq
G was also computed in

[Hop14].

We also remark that it is possible to directly give a minimal polyhedral cellular free resolution
for the ideal Mq

G by our potential theoretic techniques in §5, but we have chosen to skip the details
of this construction here as all the main ideas appear elsewhere in this writing (see Remark 5.14).
Moreover, an essentially equivalent (see Remark 5.7(ii)) solution for M

q
G has recently (and inde-

pendently) appeared in [DS14], where they leave the solution for IG as an open problem.
3



Our techniques allow us to revisit some of the foundational results on chip-firing games and
related fields. For example, we remark that our potential theoretic interpretation of Gröbner
weights relating IG to M

q
G gives a new proof of the result in [BS13] interpreting q-reduced divisors

as divisors of minimum total potential (see Remark 3.5). A related problem is to describe the whole
Gröbner cone of the initial ideal Mq

G. This was a question of Bernd Sturmfels which we completely
answer in §3.4. We show that the rays of the Gröbner cone associated to M

q
G correspond, in a

precise sense, to Green’s functions.

The equality of the Betti tables of all of our ideals allows one to prove many numerical facts about
one ideal by looking instead at another ideal in this family. We consider a few of such examples in
§10. One example is the computation of multiplicities. Another example of this observation is that
we can reprove some results expressing the h-vectors of IG andM

q
G in terms of the Tutte polynomial.

These results were originally proved by Merino in [ML97] and by Postnikov and Shapiro in [PS04]
using direct combinatorial methods. In our approach, we show that there is a fifth ideal MatG,
directly related to the cographic matroid of G, with the same Betti table. This observation gives a
direct and conceptual proof of the connection with the Tutte polynomial. Furthermore, the Hilbert
function of Mq

G is applied in system reliability theory [Moh15], percolation on trees [MSdCW15]
and signature analysis of networks [MSdCW15b].

2. Notation and background

Throughout, we assume N contains zero. All rings are commutative with 1.

A graph means a finite, connected, unweighted multigraph with no loops. As usual, the set of
vertices and edges of a graph G are denoted by V (G) and E(G). For A ⊆ V (G), we denote by Ac

the complement of A in V (G). We set n = |V (G)| and m = |E(G)|. For a set of vertices S, the
induced subgraph of G with the vertex set S is denoted by G[S].

Let E(G) denote the set of oriented edges of G; for each edge in E(G) there are two edges e and
ē in E(G). So we have |E(G)| = 2m. An element e of E(G) is called an oriented edge, and ē is
called the inverse of e. We have a map

E(G) → V (G)× V (G)

e 7→ (e+, e−)

sending an oriented edge e to its head (or its terminal vertex) e+ and its tail (or its initial vertex)
e−. Note that ē+ = e− and ē− = e+. Given disjoint nonempty subsets A,B of V (G) we define

E(A,B) = {e ∈ E(G) : e+ ∈ A, e− ∈ B} .

An orientation of G is a choice of subset O ⊂ E(G) such that E(G) is the disjoint union of O
and Ō = {ē : e ∈ O}. An orientation is called acyclic if it contains no directed cycle. A partial
orientation of G is a choice of subset P ⊂ E(G) that strictly contains an orientation O of G. For a
partial orientation P, the associated (connected) partition is the partition of G into totally cyclic
subgraphs with edges {e, ē ∈ P}. A partial orientation is called acyclic if the induced orientation
on the graph obtained by contracting all its totally cyclic components is acyclic.

Let O be an orientation of G. A vertex q is called a source for O if q = e− for every e ∈ O which
is incident to q. Let P be a partial orientation of G. Let H be the associated connected component
containing the vertex q. Then q is called a source for P if H corresponds to a source in the graph
obtained by contracting all components of P (see Example 7.9).
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For an abelian group A, we let C0(G,A) denote the set of all A-valued functions on V (G). It is
endowed with the bilinear form

〈f1, f2〉 =
∑

v∈V (G)

f1(v)f2(v) .

Also, C1(G,A) will denote the space of all A-valued functions g on E(G) such that g(ē) = −g(e)
for all e ∈ E(G). After fixing an orientation O ⊂ E(G) we have C1(G,A) = C1

O(G,A)⊕C1
Ō
(G,A),

where C1
O(G,A) denotes the space of all A-valued functions on O. The group C1(G,A) (and

therefore C1
O(G,A)) is endowed with the bilinear form

(1) 〈g1, g2〉 =
∑

e∈O

g1(e)g2(e) =
1

2

∑

e∈E(G)

g1(e)g2(e)

The usual coboundary map d : C0(G,A) → C1(G,A) is defined by

(df)(e) = f(e+)− f(e−) = −(df)(ē) .

After fixing an orientation O ⊂ E(G), we obtain the restricted coboundary map dO : C0(G,A) →
C1
O(G,A).

Let R be a commutative ring with 1. We let C0(G,R) denote the free R-module generated by
V (G). Elements of C0(G,R) are of the form

∑
v∈V (G) av(v) for av ∈ R. It is endowed with a bilinear

form induced by 〈(u), (v)〉 = δv(u) for u, v ∈ V (G). Here δv(u) denotes the usual Kronecker delta
function.

Likewise, we let C1(G,R) denote the free R-module generated by E(G). Elements of C1(G,R)
are of the form

∑
e∈E(G) ae(e) for ae ∈ R. It is endowed with a bilinear form induced by

〈(e), (e′)〉 =





1, if e′ = e

−1, if e′ = ē

0, otherwise

for e, e′ ∈ E(G). The usual boundary map ∂ : C1(G,R) → C0(G,R) is defined by

∂(e) = (e+)− (e−) .

The bilinear forms defined above provide canonical isomorphisms C0(G,R) ∼= C0(G,R) and
C1(G,R) ∼= C1(G,R). Then the maps ∂ and d are adjoint with respect to these bilinear forms. We
let e∗ ∈ C1(G,R) denote the image of (e) ∈ C1(G,R) under this isomorphism, i.e.

e∗ := 〈(e), ·〉 .

The characteristic function of v or χv = δv ∈ C0(G,R) is the image of (v) ∈ C0(G,R) under the
canonical isomorphism.

Let K be a field. Associated to G we define two polynomial rings:

• Let R = K[x] denote the polynomial ring in n variables {xv : v ∈ V (G)}.
• Let S = K[y] denote the polynomial ring in 2m variables {ye : e ∈ E(G)} or {ye, yē : e ∈ O}
(for any orientation O).
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3. Divisors and potential theory on graphs

Following [BN07], we let Div(G) be the free abelian group generated by V (G). Equivalently,
Div(G) = C0(G,Z). An element of Div(G) is written as

∑
v∈V (G) av(v) for av ∈ Z and is called

a divisor on G. The coefficient av in D is denoted by D(v). A divisor D is called effective if
D(v) ≥ 0 for all v ∈ V (G). The set of effective divisors is denoted by Div+(G). We write D ≤ E if
E−D ∈ Div+(G). For D ∈ Div(G), let deg(D) =

∑
v∈V (G)D(v). Given disjoint nonempty subsets

A,B of V (G) one can assign a divisor D(A,B) =
∑

v∈A |{w ∈ B : {v,w} ∈ E(G)}| (v).

We denote by M(G) the group of integer-valued functions on the vertices. Equivalently, M(G) =
C0(G,Z). For A ⊆ V (G), χA ∈ M(G) denotes the {0, 1}-valued characteristic function of A. The
Laplacian operator ∆: M(G) → Div(G) is defined by

∆(f) =
∑

v∈V (G)

∑

{v,w}∈E(G)

(f(v)− f(w))(v) .

Remark 3.1. With the identification M(G) = C0(G,Z) and Div(G) = C0(G,Z) and the canonical
isomorphism C1(G,R) ∼= C1(G,R), the operator ∆ is identified with ∂OdO : C0(G,Z) → C0(G,Z),
where ∂O and dO denote the usual (restricted) boundary and coboundary maps for an arbitrary
orientation O. Somewhat more canonically, ∆ = 1

2∂d. It follows that ∆ is a self-adjoint operator,
which means ∑

v

f(v)∆(g)(v) =
∑

v

g(v)∆(f)(v)

for all f, g ∈ M(G).

The group of principal divisors is defined as the image of the Laplacian operator and is denoted
by Prin(G). It is easy to check that Prin(G) ⊆ Div0(G) where Div0(G) denotes the set consisting
of divisors of degree zero. The quotient Pic0(G) = Div0(G)/Prin(G) is a finite group whose
cardinality is the number of spanning trees of G (see, e.g., [BS13] and references therein). The full
Picard group of G is defined as

Pic(G) = Div(G)/Prin(G)

which is isomorphic to Z⊕Pic0(G). Since Prin(G) ⊆ Div0(G), the map deg: Div(G) → Z descends
to a well-defined map deg : Pic(G) → Z. Two divisors D1 and D2 are called linearly equivalent if
they become equal in Pic(G). In this case we write D1 ∼ D2.

3.1. Divisors and potential theory. For p, q ∈ V (G) let the Green’s function jq(p, ·) denote the
unique (Q-valued) solution to the Laplace equation ∆f = (p)− (q) satisfying f(q) = 0. If we think
of graph G as an electrical network (in which each edge is a resistor having unit resistance) then
jq(p, v) denotes the electric potential at v if one unit of current enters the network at p and exits
at q, with q grounded (i.e., zero potential). It is easy to check that jq(p, q) = 0, jq(p, v) = jq(v, p),
and 0 ≤ jq(p, v) ≤ jq(p, p) (see [CR93,BF06]). [BS13, Construction 3.1] explains how to compute
these functions using basic linear algebra. For all f ∈ M(G) we have

(2)

∑

v

jq(p, v)∆(f)(v) =
∑

v

f(v)∆(jq(p, ·))(v) = f(p)− f(q) .

There exists a positive definite, symmetric bilinear form

〈· , ·〉en : Div0(G)×Div0(G) → Q

〈D1,D2〉en =
∑

u,v∈V (G)

D1(u)jq(u, v)D2(v)

6



which is a canonical (i.e. independent of the choice of q) pairing on Div0(G) (see [Sho10,BS13]).
It is called the energy pairing on Div0(G).

Let 1 denote the all-1’s divisor. For D ∈ Div(G) and q ∈ V (G), following [BS13], the total
potential functional is defined as

bq(D) = 〈1− n(q),D − deg(D)(q)〉en =
∑

v

∑

p

jq(p, v)D(v) .

3.2. Divisors and commutative algebra. Any effective divisor D gives rise to a monomial

xD :=
∏

v∈V (G)

xD(v)
v ∈ R .

Associated to every graph G there is a canonical ideal in R which encodes the linear equivalences
of divisors on G:

IG := 〈xD1 − xD2 : D1 ∼ D2 both effective divisors〉

= spanK{xD1 − xD2 : D1 ∼ D2 both effective divisors}

which was first introduced in [CRS02]. This ideal is graded by both Pic(G) and Z.

Remark 3.2. It is shown in [MS14] that, although Pic(G) has torsion elements, it provides a “nice”
grading in the sense that Nakayama’s lemma holds with respect to this grading and the concept of
Pic(G)-graded minimal free resolution makes sense in this context.

Once we fix a vertex q, there is a natural term order that gives rise to a particularly nice Gröbner
basis for IG. This term order was also introduced in [CRS02]. Consider a total ordering of the set
of variables {xv : v ∈ V (G)} compatible with the distances of vertices from q in G:

(3) dist(w, q) < dist(v, q) ⇒ xw < xv .

Here, the distance between two vertices in a graph is the number of edges in a shortest path
connecting them. This ordering can be thought of as an ordering on the vertices induced by
running the breadth-first search (BFS) algorithm starting at the root vertex q. The term order <q

will denote the graded reverse lexicographic ordering (grevlex) on R induced by the total ordering
on the variables given in (3).

The initial ideal Mq
G := in<q(IG) for (IG, <q) is canonically defined (up to the choice of the

distinguished vertex q). This ideal is extensively studied in [PS04], where it is denoted by MG.
This ideal is naturally equipped with Div(G) (fine) and Z (coarse) gradings.

One of the main results of [CRS02] is the following theorem – see also [MS14, Section 5] where
this result is reproved and generalized to higher syzygy modules.

Theorem 3.3. A Gröbner basis of (IG, <q) is
{
xD(Ac,A) − xD(A,Ac) : A ( V (G), q ∈ A

}
.

Moreover,

(i) LM(xD(Ac,A) − xD(A,Ac)) = xD(Ac,A).
(ii) It suffices to consider only those subsets A of V (G) such that both G[A] and G[Ac] are

connected. In this case we obtain a minimal Gröbner basis of (IG, <q).

As we will see, the minimal Gröbner basis described in part (ii) is also a minimal generating set
(see also [MS14]).

7



3.3. Potential theory and Gröbner weight functionals for IG. Let ϑ ∈ C0(G,R) and think
of it as a linear functional ϑ : Div(G) → R. For f =

∑
cix

Di ∈ R the ϑ-degree of f , denoted by
degϑ(f), is the maximum value of ϑ(Di). The ϑ-initial form of f is the sum of all terms cix

Di such
that ϑ(Di) is maximum. For an ideal I ⊂ R, the ϑ-initial ideal inϑ(I) is the ideal generated by all
ϑ-initial forms.

Fix a term order < for R. The functional ϑ is said to represent < for I if inϑ(I) = in<(I). It
is known that for any term order < and any ideal I, there is a non-negative and integer-valued
functional representing < for I ([Stu96, Proposition 1.11]).

In our situation there is a nice and direct interaction between Gröbner theory and potential
theory.

Lemma 3.4. bq : Div(G) → Q is a non-negative rational-valued functional representing <q for IG.

The proof is a straightforward variation of the discussion in § 3.4, and is left for the reader.

Remark 3.5. q-reduced divisors (or G-parking functions with respect to q) can be defined as the
normal forms of R/IG with respect to the Gröbner basis described in Theorem 3.3. It easily
follows from Lemma 3.4 that a q-reduced divisor is precisely the unique (in each equivalence class)
minimizer of the bq functional. See [BS13] for a precise statement and a different proof of this fact.

Definition 3.6. We let ϑq denote the non-negative, integral functional associated to bq (i.e. ob-
tained from bq by clearing the denominators). Clearly, ϑq will also represent <q for IG.

3.4. Gröbner cone of M
q
G. It is possible to give a more precise statement than Lemma 3.4. We

show that the rays of the Gröbner cone associated to M
q
G, in a precise sense, correspond to Green’s

functions.
The weight functional η ∈ C0(G,R) defined by η(D) =

∑
v∈V (G) η(v)(v) is in the Gröbner cone

if and only if for any set B 6= ∅ with q 6∈ B we have

(4) η(∆(χB)) =
∑

v∈V (G)

η(v)∆(χB)(v) =
∑

v∈V (G)

χB(v)∆(η)(v) > 0 .

In particular, for each vertex p 6= q, setting B = {p} we must have:

(5) γp := ∆(η)(p) > 0 .

This condition is also sufficient because for all B 6= ∅ with q 6∈ B we have

η(∆(χB)) =
∑

v∈V (G)

χB(v)γv =
∑

v∈B

γv .

It follows that η ∈ M(G) is a solution to ∆(η) = γ for the degree zero divisor γ :=
∑

p∈V (G) γp(p).

From the definition of the Green’s function jq(p, v), and the fact that the Laplacian operator has
a 1-dimensional zero-eigenspace generated by the all-1 function 1, we obtain:

(6) η =
∑

p∈V (G)

γpjq(p, ·) + k · 1

for some constant k ∈ R. We summarize these observations in the following theorem.

Theorem 3.7. The weight functional η ∈ C0(G,R) represents <q for IG if and only if there exist
k ∈ R and real numbers γp > 0 (for p ∈ V (G)) such that

η =
∑

p∈V (G)

γpjq(p, ·) + k · 1 .

8



In other words η, up to constant functions, is in the interior of the cone generated by the vectors
(jq(p, v))v∈V (G) for various p ∈ V (G). Note that these vectors are independent because the matrix
(jq(p, v))p,v∈V (G)\{q} is invertible (see [BS13, Construction 3.1]). The question of describing this
Gröbner cone was asked by Bernd Sturmfels.

4. Lattices, Delaunay decompositions, total unimodularity, and infinite

arrangements

4.1. Lattices and Delaunay decompositions. Let Λ be a free Z-module (abelian group), en-
dowed with a positive definite symmetric bilinear pairing β : Λ × Λ → Z. The pair (Λ, β) (or just
Λ, when β is understood) is called a free bilinear form space over Z or, more concisely, an abstract
Z-lattice.

Let (Λ, β) be an abstract Z-lattice. We let ΛR := Λ⊗R. The bilinear pairing β naturally extends
to a bilinear pairing βR on ΛR by βR(a⊗ u, b⊗ v) = ab β(u,v).

The dual Z-module Λ∨ := HomZ(Λ,Z) is contained (via extension of scalars) in the dual real
vector space Λ∨

R := HomZ(Λ,R) = HomR(ΛR,R) = Λ∨ ⊗ R. The non-degeneracy of β is the
statement that the homomorphism

Ψ: Λ → Λ∨

v 7→ β(v, ·)

is injective. Clearly every positive definite bilinear pairing is automatically non-degenerate. There-
fore the natural extension ΨR : ΛR → Λ∨

R is also injective (e.g., because R is a flat R-module). Since
these vector spaces have the same dimension, it follows that ΨR is indeed an isomorphism. In other
words, in the language of bilinear forms, βR is a perfect pairing1 on ΛR. So, in this situation, any
ϕ ∈ Λ∨

R is of the form ϕ(·) = βR(a, ·) for some a ∈ ΛR.

Let d : ΛR × ΛR → R be any distance function on ΛR. The Delaunay decomposition of ΛR with
respect to the lattice Λ and the distance function d (not necessarily induced by the bilinear form)
is defined as the collection of cells

Ap = conv.hull{s ∈ Λ : d(p, s) is minimal}

as p varies in ΛR. It is a classical fact (essentially due to Voronoi and Delaunay) that the collection
of Delaunay cells {Ap} gives a locally finite, cellular decomposition (face to face tiling) of ΛR which
is invariant under the action of Λ (see, e.g., [CS99]).

4.2. Total unimodularity. Consider a (not necessarily minimal) finite set {ϕi}i∈I of generators
for the free Z-module Λ∨. Extension of scalars gives an inclusion Λ∨ →֒ Λ∨

R. Clearly, for any subset
J ⊆ I such that {ϕi}i∈J generates Λ∨ as a Z-module, we have {ϕi}i∈J spans Λ∨

R as a real vector
space (here we have identified ϕi ⊗ 1 with ϕi). The converse is, of course, not true in general.

Definition 4.1. Let (Λ, β) be an abstract Z-lattice. A finite set {ϕi}i∈I of generators for Λ∨ is
called totally unimodular if for any subset J ⊆ I such that the collection {ϕi}i∈J spans Λ∨

R as a
real vector space, the collection {ϕi}i∈J generates Λ∨ as a Z-module.

Example 4.2. Let Λ = Z2, generated by e1 and e2, endowed with the obvious bilinear pairing
induced by 〈ei, ej〉 = δi(j). Let e

∗
i ∈ (Z2)∨ denote the dual basis element e∗i (ej) = δi(j). Then

• {e∗1, e
∗
2, e

∗
1 + e∗2} generates Λ∨ and is totally unimodular.

1A perfect pairing is sometimes called a unimodular pairing in the literature. We will avoid this terminology to
avoid confusion.
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• {e∗1, e
∗
2, e

∗
1 + 2e∗2} generates Λ∨ but is not totally unimodular.

The subcollection {e∗1, e
∗
1 + 2e∗2} spans (R2)∨ as a real vector space, but it does not

generate (Z2)∨. For example, e∗2 will not be in the Z-module it generates.

Example 4.3. The primary examples of total unimodularity and the most well-known examples
arise from totally unimodular matrices or, more generally, weakly unimodular matrices. An r ×m
(r ≤ m) integer matrix A = (aij) is called weakly unimodular if every r × r square submatrix of
A has determinant in the set {−1, 0, 1}. If every square submatrix of A has determinant in the
set {−1, 0, 1}, then A is called a totally unimodular matrix. Any totally unimodular matrix is
weakly unimodular. A weakly unimodular matrix which contains the identity matrix of size r is
automatically totally unimodular.

Let A be a weakly unimodular matrix. Let Λ denote the row space Image(AT ) →֒ Zm with the
bilinear pairing induced by the natural bilinear pairing on Zm. For 1 ≤ j ≤ m let ϕj ∈ Λ∨ denote
the restriction of e∗j ∈ (Zm)∨ to Λ. Concretely, if we denote the i-th row (1 ≤ i ≤ r) of A by vi,

then each ϕj is defined by ϕj(vi) = aij. By Cramer’s rule, the collection {ϕ1, . . . , ϕm} is totally
unimodular precisely because A is weakly unimodular.

4.3. Infinite hyperplane arrangements. Consider a finite collection {ϕi}i∈I ⊂ Λ∨
R spanning Λ∨

R

as a vector space over R. For each p ∈ ΛR we denote by Cp the polyhedron in ΛR defined by

Cp = {s ∈ ΛR : ⌊ϕi(p)⌋ ≤ ϕi(s) ≤ ⌈ϕi(p)⌉ for all i ∈ I} .

As usual, ⌊x⌋ denotes the largest integer n ≤ x, and ⌈x⌉ denotes the smallest integer n ≥ x. Clearly
Cs = Cp for all s ∈ rel. int(Cp). We denote by H(ΛR, {ϕi}i∈I) the collection of all polyhedra Cp

for p ∈ ΛR.

The following result is well known for the case of totally unimodular matrices (Example 4.3)
(see, e.g., [OS79,ER94]). It can be proved similar to [OS79, Corollary 3.2].

Theorem 4.4. Fix a finite collection {ϕi}i∈I ⊂ Λ∨
R which spans Λ∨

R as a vector space over R.

(i) H(ΛR, {ϕi}i∈I) is a polyhedral cell decomposition of ΛR by bounded convex polyhedra. This
cell decomposition is invariant under the translation by

{s ∈ ΛR : ϕi(s) ∈ Z for all i ∈ I}

which is contained in the set of 0-dimensional polyhedra in H(ΛR, {ϕi}i∈I).
(ii) If, further, {ϕi}i∈I ⊂ Λ∨ and it generates Λ∨, then H(ΛR, {ϕi}i∈I) is invariant under the

translation action by elements of Λ which is contained in the set of 0-dimensional polyhedra
in H(ΛR, {ϕi}i∈I).

(iii) If, further, {ϕi}i∈I is totally unimodular, then Λ coincides with the set of 0-dimensional
polyhedra in H(ΛR, {ϕi}i∈I). Moreover, H(ΛR, {ϕi}i∈I) coincides with the Delaunay de-
composition of ΛR with respect to the lattice Λ and the metric induced by

(7) ‖p‖2 =
∑

i∈I

|ϕi(p)|
2 .

Remark 4.5.
(i) Under the total unimodularity assumption, by Theorem 4.4(iii), we obtain a finite polyhe-

dral cell decomposition of the quotient torus ΛR/Λ. This cell decomposition is essential in
the study of our binomial ideals.

(ii) If the totally unimodular collection is coming from a weakly unimodular matrix as in Ex-
ample 4.3, then the norm in (7) coincides with the standard norm induced by the bilinear
form βR. This is because the ϕj ’s are precisely the restriction of the e∗j ’s to ΛR.
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5. Potential theory and the cellular free resolution of IG

Here we use potential theory and the energy pairing to give a self-contained and direct solution
to the problem of finding a minimal polyhedral cellular free resolution of the ideal IG.

5.1. Principal lattice with the energy pairing. Recall the Z-module Prin(G) is defined as
the image of the Laplacian operator ∆: M(G) → Div(G). We have introduced two different
canonical bilinear forms on this group. One is the bilinear form induced from the bilinear form on
C0(G,Z) = Div(G) defined in §2. The bilinear form that is most relevant in this section is the one
induced from the energy pairing defined in §3.1.

Definition 5.1. By a principal lattice we will mean the pair (Prin(G), 〈·, ·〉en) where

〈·, ·〉en : Prin(G)× Prin(G) → Z

is the restriction of the energy pairing to Prin(G) ⊆ Div0(G).

Remark 5.2. It is easy to see (using (2)) that if D ∈ Prin(G) then for all E ∈ Div0(G) we have
〈E,D〉en ∈ Z and therefore

(i) The restriction of the energy pairing to Prin(G) is Z-valued.
(ii) The energy pairing descends to a well-defined pairing on Pic0(G), which is shown to be

non-degenerate in [Sho10].

The principal lattice is an abstract Z-lattice in the sense of §4.1. Its ambient vector space
Prin(G)R = Prin(G)⊗ R coincides with Div0R(G) = Div0(G) ⊗ R ⊂ C1(G,R).

Our next goal is to find a nice collection of functionals for this lattice. For each e ∈ E(G) we
define the functional ζe ∈ Div0R(G)

∨ by

ζe(·) = 〈∂(e), ·〉en .

The following lemma follows from an easy computation.

Lemma 5.3.

(i) Any D ∈ Div0R(G) is of the form D = ∆(f) for some f ∈ C1(G,R).
(ii) For D = ∆(f) ∈ Div0R(G) we have ζe(D) = (df)(e).

Proposition 5.4.

(i) {ζe}e∈E(G) ⊂ Prin(G)∨.
(ii) {ζe}e∈E(G) generates Prin(G)∨.
(iii) {ζe}e∈E(G) is totally unimodular for the principal lattice.

Proof. (i) Let D = ∆(f) for f ∈ M(G). By Lemma 5.3(ii) ζe(D) = (df)(e) which is an integer
because f is integer-valued.

(ii) Let ζ be an arbitrary element of Prin(G)∨. We need to show that ζ =
∑

e∈E(G) aeζe for some

integers ae. Since ζ ∈ Div0R(G)
∨ and 〈·, ·〉en is positive definite (and therefore non-degenerate), we

must have ζ(·) = 〈a, ·〉en for some a ∈ Div0R(G) (see §4.1). For all p ∈ V (G)\{q} we have (see (2))

(8) 〈a,∆(χp)〉en = a(p) .

Since ζ ∈ Prin(G)∨ we must have a(p) = 〈a,∆(χp)〉en ∈ Z for all p ∈ V (G)\{q}. Since a(q) =

−
∑

p 6=q a(p) we obtain a ∈ Div0(G). Let

(9) a =
∑

p∈V (G)

a(p)(p) =
∑

p 6=q

a(p)((p)− (q)) .

11



Since G is connected, for each p 6= q there is a directed path from q to p consisting of some oriented

edges {e(i)}1≤i≤ℓ such that e
(1)
− = q, e

(ℓ)
+ = p, and e

(i)
+ = e

(i+1)
− for 1 ≤ i ≤ ℓ− 1. We may write

(p)− (q) =

ℓ∑

i=1

(e
(i)
+ − e

(i)
− ) =

ℓ∑

i=1

∂(e(i)) .

Substituting this in (9), we conclude that a =
∑

e∈E(G) ae∂(e) for some integers ae. Therefore

ζ =
∑

e∈E(G) aeζe as we want.

(iii) Assume J ⊆ E(G) is such that the collection {ζe}e∈J spans Div0R(G)
∨ as a real vector space.

We need to show that {ζe}e∈J also generates Prin(G)∨ as a Z-module. Let ζ ∈ Prin(G)∨. Then
ζ =

∑
e∈J beζe for some be ∈ R because {ζe}e∈J spans Div0R(G)

∨. In other words

ζ(·) = 〈b, ·〉en with b =
∑

e∈J

be∂(e)

for some be ∈ R. We need to show that be ∈ Z for all e ∈ J . A computation similar to (8) shows that
we have b ∈ Div0(G). It is a well-known classical fact (due to Poincaré) that the incidence matrix
of G is totally unimodular (see, e.g., [Big93, Proposition 5.3] and §6.2). So

∑
e∈J be∂(e) ∈ Div0(G)

will automatically imply that all be’s must be integers. �

Remark 5.5. It also follows from the proof of Proposition 5.4(ii) that

(i) Prin(G)∨ ∼= Div0(G) and a canonical isomorphism is furnished by the energy pairing.

(ii) C1(G,Z)
∂
−→ C0(G,Z)

deg
−−→ Z → 0 is an exact sequence. This statement, when Z is replaced

with R is classical (see, e.g., [Big97, Proposition 12.1 and Proposition 28.1]).

We are now ready to apply the results in §4.3 to this setting.

Theorem 5.6. Let H(Div0R(G), {ζe}e∈E(G)) = {Ca} be the collection of all polyhedra

(10) Ca = {b ∈ Div0R(G) : ⌊ζe(a)⌋ ≤ ζe(b) ≤ ⌈ζe(a)⌉ for all e ∈ E(G)} .

as a varies in Div0R(G). Then

(i) {Ca} is a polyhedral cell decomposition of Div0R(G) by bounded convex polyhedra.
(ii) The cell decomposition {Ca} is invariant under the translation by the lattice Prin(G).
(iii) The set of 0-dimensional cells in {Ca} coincides with Prin(G).
(iv) {Ca} is the same as the Delaunay cell decomposition of Div0R(G) with respect to the lattice

Prin(G) and the metric induced by the norm

(11) ‖p‖ =
√

〈p,p〉en =
√

E(p) .

(v) {Ca} descends to a finite polyhedral cell decomposition of Div0R(G)/Prin(G).

Proof. This result follows from Proposition 5.4, Theorem 4.4, and Remark 4.5(i). We only need to
show that the norm defined in (11) is compatible with the one considered in (7). By Lemma 5.3(i)
any p ∈ Div0R(G) is of the form ∆(f) for some f ∈ C1(G,R). By (2), Lemma 5.3(ii), and Remark 3.1
we have

E(p) = 〈∆(f),∆(f)〉en =
∑

v∈V (G)

f(u)∆(f)(u)

=
1

2

∑

v∈V (G)

f(u)(∂df)(u) =
1

2

∑

e∈E(G)

(df)(e)(df)(e)

=
1

2

∑

e∈E(G)

|ζe(p)|
2 .
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So the norm defined in (11) is proportional to the norm defined in (7) and they induce the same
Delaunay cell decomposition. �

The Delaunay cell decomposition {Ca} of Theorem 5.6 will be denoted by Del(Prin(G)). The
induced finite cell decomposition of Div0R(G)/Prin(G) will be denoted by Del(Prin(G))/Prin(G).

Remark 5.7.
(i) Since ζē = −ζe for all e ∈ E(G) we could alternatively define Ca in (10) as

{b ∈ Div0R(G) : ζe(b) ≤ ⌈ζe(a)⌉ for all e ∈ E(G)} .

It follows that open cells in this cell complex correspond precisely to equivalence classes of
points, where a ∼ b if and only if ⌈ζe(a)⌉ = ⌈ζe(b)⌉ for all e ∈ E(G).

(ii) By Lemma 5.3(ii) the local picture at the origin is the image of the graphic arrangement
defined in §6.1 under the map ∆.

(iii) The cell complexes Del(Prin(G)) and Del(Prin(G))/Prin(G) are related to the cell com-
plexes Del(L(G)) and Del(L(G))/L(G) (defined in §6.2) by the (restricted) boundary map
(see Remark 5.13 and Remark 9.6). The finite cell complex Del(L(G))/L(G) and the fi-
nite cell complex Del(Prin(G))/Prin(G) have the same f -vector (i.e. the same number of
i-dimensional faces for all i).

The following lemma will be used in the proof of Theorem 5.10.

Lemma 5.8. Fix a divisor E ∈ Div(G). The subcomplex of Del(Prin(G)) on the lattice points
P (E) = {D ∈ Prin(G) : D ≤ E} is a polyhedral subdivision of a contractible space.

Proof. P (E) is precisely the set of lattice points inside the closed convex polytope Q(E) = {a ∈
Div0R(G) : a ≤ E}. The subcomplex of Del(Prin(G)) consisting of cells on the lattice points P (E)
consists of all Delaunay cells on these lattice points. Recall Del(Prin(G)) is a tiling of the ambient
space. Therefore this subcomplex forms a space which is homotopy equivalent to the polytope
Q(E) itself, and therefore is contractible. �

5.2. Labeling Del(Prin(G)) and the minimal free resolution of IG. Let T = K[x,x−1] denote
the Laurent polynomial ring in variables {xv : v ∈ V (G)}. Clearly T is a module over R. Consider
the R-submodule UG ⊂ T generated by Laurent monomials {xD : D ∈ Prin(G)}. This Laurent
monomial module UG may be thought of as the “universal cover” of IG and many question about
IG can be reduced to questions about UG. For example, the free resolutions of UG and IG are
closely related. See [BS98] for an extensive study of this relation. Since the only effective divisor
in Prin(G) is the all-0 divisor, the results of [BS98] apply to our situation.

Consider the cell decomposition Del(Prin(G)). By Theorem 5.6 the set of 0-dimensional cells in
Del(Prin(G)) is precisely Prin(G). We will label each 0-cell D ∈ Prin(G) by the Laurent monomials
xD. As usual, we let the label of any other cell to be the least common multiple of the labels of its
vertices. This labeled cell complex leads to a complex of free Div(G)-graded R-modules

FG := FDel(Prin(G)) =
⊕

∅6=F∈Del(Prin(G))

R(−mF )

where mF denotes the monomial label of the face F . Let [F ] denote the generator of R(−mF ).
The differential of FG is the homogenized differential (boundary) operator of the cell complex
Del(Prin(G)):

(12) ∂([F ]) =
∑

codim(F,F′)=1

F ′⊂F

ε(F,F ′)
mF

mF ′

[F ′]
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where ε(F,F ′) ∈ {−1,+1} denotes the incidence function indicating the orientation of F ′ in the
boundary of F .

Lemma 5.9.

(i) Let a ∈ Div0R(G). Then a(v) =
∑

e+=v ζe(a).

(ii) Let F = Ca be a cell in Del(Prin(G)) corresponding to a point a ∈ Div0R(G) (i.e. a ∈
rel. int(F )). Then mF = xE where E ∈ Div(G) is defined by

(13) E(v) =
∑

e+=v

⌈ζe(a)⌉ .

(iii) For distinct faces F ′ ( F of Del(Prin(G)) we have mF 6= mF ′.

Proof. (i) By Lemma 5.3(i) we may write a = ∆(f) for some f ∈ C1(G,R). By definition we
have ∆(f) =

∑
v

∑
e+=v(f(e+)− f(e−))(v). Therefore, it follows from Lemma 5.3(ii) that a(v) =∑

e+=v ζe(a).

(ii) follows from (i) and the fact that open cells in Del(Prin(G)) correspond precisely to equiva-
lence classes of points, where a ∼ b if and only if ⌈ζe(a)⌉ = ⌈ζe(b)⌉ for all e ∈ E(G) (Remark 5.7(ii)).

(iii) Let F = Ca for a ∈ rel. int(F ) and F ′ = Ca′ for a′ ∈ rel. int(F ′). Since a′ is in F as well, it
satisfies ζe(a

′) ≤ ⌈ζe(a)⌉ for all e ∈ E(G). Therefore we have ⌈ζe(a
′)⌉ ≤ ⌈ζe(a)⌉. But since F

′ 6= F
there must exist some e such that ζe(a

′) ∈ Z but ζe(a) 6∈ Z and therefore ⌈ζe(a
′)⌉ < ⌈ζe(a)⌉. The

result now follows from part (ii) because for this edge, by (13), the exponent of xe+ in mF ′ must
be strictly less than the exponent of xe+ in mF . �

Theorem 5.10. The complex (FG, ∂) is a minimal Div(G)-graded free resolution of the module
UG over R.

Proof. We need to show two things:

(i) (FG, ∂) is exact, i.e. (FG, ∂) is a cellular free resolution of UG.
(ii) For distinct faces F ′ ( F of Del(Prin(G)) with codim(F,F ′) = 1 we have mF 6= mF ′ , i.e.

no unit of R appears in differential maps and the resolution (FG, ∂) is minimal.

By [BS98, Proposition 1.2], we know (i) is equivalent to

(i’) For each E ∈ Div(G), the subcomplex of Del(Prin(G)) on the lattice points {D ∈ Prin(G) :

D ≤ E} is acyclic over the field K, i.e. its reduced homology H̃i with K coefficients vanishes
for all i ≥ 0.

(i’) follows from Lemma 5.8 and (ii) follows from Lemma 5.9(iii). �

From Theorem 5.10 and [BS98, Corollary 3.7] we immediately obtain the following theorem.

Theorem 5.11. The quotient cell complex Del(Prin(G))/Prin(G) supports a Pic(G)-graded mini-
mal free resolution for IG.

Example 5.12. Consider the graph K3 with a fixed orientation as in Figure 1.
The lattice Prin(G) is two dimensional and is depicted in Figure 2. This lattice “lives in”

C0(G,R) = span{(u1), (u2), (u3)} ∼= R3. In the picture c1 = ∆(χu1) = 2(u1) − (u2) − (u3),
c2 = ∆(χu2) = −(u1) + 2(u2)− (u3), and c3 = ∆(χu3) = −(u1)− (u2) + 2(u3).

The cell decomposition Del(Prin(G)) is the Delaunay decomposition of Div0R(G) with respect to
the principal lattice and the energy distance (Theorem 5.6(iv)) which coincides with the infinite
hyperplane arrangement (10). The quotient cell complex Del(Prin(G))/Prin(G) of the torus has
one 0-cell {v} (orbit of the origin), three 1-cells {e, e′, e′′} (orbits of green, red, and black edges),
and two 2-cells {f, f ′} (orbits of upward and downward triangles).
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u1

u3 u2
e1

e3 e2

Figure 1. Graph K3 and a fixed orientation O

ζe1 = 0

ζe2 = 0

ζe3 = 0

ζe1 = 1

ζe2 = 1

ζe3 = 1

c1

c2

c3 0

Figure 2. The lattice (Prin(G), 〈·, ·〉en) and the associated cellular decomposition
of the ambient space Div0R(G)

In Figure 3 we have chosen a fundamental domain for the lattice, and have labeled all cells of this
fundamental domain according to the recipe described in the beginning of §5.2 or, equivalently, in
Lemma 5.9(ii). For simplicity we have used xi instead of xui

. The labeled cell complex in Figure 3
is enough to completely describe a minimal free resolution for both IG and UG. Concretely, the
minimal resolution of IG is as follows:

0 → R(−mf )⊕R(−mf ′)
∂2−→ R(−me)⊕R(−me′)⊕R(−me′′)

∂1−→ R(−mv) .

As usual, assume [F ] denotes the generator of R(−mF ). Let

me = x21 , me′ = x1x2 , me′′ = x22 ,

mf = x21x2 , mf ′ = x1x
2
2 .

The homogenized differential operator (see (12)) (∂1, ∂2) of the cell complex is described as follows:

∂1([e]) =
x21
1
[v]−

x21
x2
1

x2x3

[v] = (x21 − x2x3)[v] ,

∂1([e
′]) =

x1x2
x1x2

x2
3

[v]−
x1x2
1

[v] = (x23 − x1x2)[v] ,
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∂1([e
′′]) =

x22
x2
2

x1x3

[v]−
x22
1
[v] = (x1x3 − x22)[v] ,

∂2([f ]) =
x21x2
x21

[e]−
x21x2
x2
1x2

x3

[e′′] +
x21x2
x1x2

[e′] = x2[e]− x3[e
′′] + x1[e

′] ,

∂2([f
′]) =

x1x
2
2

x1x
2
2

x3

[e]−
x1x

2
2

x22
[e′′] +

x1x
2
2

x1x2
[e′] = x3[e]− x1[e

′′] + x2[e
′] .

Clearly IG is the image of ∂1 after identifying [v] with 1 ∈ R (see Theorem 3.3). Note that, since
the labeling is compatible with the action of the lattice, any other fundamental domain would give
rise to the exact same description of the differential maps.

x2
2

x1x3

x2
1

x2x3

x1x2

x2
3

1

x21

x22

x1x2

x2
1x2

x3

x1x
2
2

x3

x21x2

x1x
2
2

Figure 3. A choice of fundamental domain with labels

Remark 5.13. It follows from the computation

〈∆(f),∆(g)〉en =
∑

v∈V (G)

f(u)∆(g)(u) =
∑

v∈V (G)

f(u)(∂OdOg)(u)

=
∑

e∈E(G)

(dOf)(e)(dOg)(e)

that there is an isometry between the principal lattice (Prin(G), 〈·, ·〉en) and the cut lattice (lattice
of integral cocyles) (L(G), 〈·, ·〉) defined in §6.2. It is natural to ask whether there are other ideals
defined directly in terms of the cut lattice and, if so, whether there are nice relations between these
ideals. These questions will be answered in this work (see §9, especially Remark 9.6).

Remark 5.14. It is possible to give a polyhedral cellular free resolution of the ideal Mq
G using

the local picture at the origin of Del(Prin(G)) (or, alternatively, using the graphic hyperplane
arrangement – see Remark 5.7(ii)) and study its Gröbner relation with IG, similar to what we will
do for Oq

G in relation to JG in §7. Instead, we will show (in §9) that one could alternatively relate
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IG to JG and M
q
G to O

q
G via a regular sequence. As a corollary, this gives an alternate way to

describe polyhedral cellular free resolutions of all these ideals and to compare their Betti numbers.

Remark 5.15. The minimal free resolution of Mq
G is a Koszul complex when G is a tree because

M
q
G is generated by the variables {xv : v 6= q} (see Theorem 3.3). When G is a complete graph,

the minimal free resolution of Mq
G is given by a Scarf complex (see, e.g., [PS04, Corollary 6.9]).

6. Graphs, arrangements, and integral cuts

6.1. Graphic arrangements and connected partitions. Following [GZ83], we define the graphic
hyperplane arrangement as follows. An important feature that we want to emphasize in this section
is that this arrangement naturally “lives in” the Euclidean space C0(G,R), i.e. the vector space of
all real-valued functions on V (G) endowed with the bilinear form

〈f1, f2〉 =
∑

v∈V (G)

f1(v)f2(v) .

Recall that C1(G,R) denotes the vector space of real-valued functions on E(G) and d : C0(G,R) →
C1(G,R) denotes the usual coboundary map.

For each edge e ∈ E(G), let He ⊂ C0(G,R) denote the hyperplane

He = {f ∈ C0(G,R) : (df)(e) = 0} .

Note that Hē = He. Consider the arrangement

H′
G = {He : e ∈ E(G)}

in C0(G,R). Since G is connected, we know
⋂

e∈E(G)He is the 1-dimensional space of constant

functions on V (G), which is the same as the kernel of d. We define the graphic arrangement
corresponding to G, denoted by HG, to be the restriction of H′

G to the hyperplane

(14) (Ker(d))⊥ = {f ∈ C0(G,R) :
∑

v∈V (G)

f(v) = 0} .

The intersection poset of HG (i.e. the collection of nonempty intersections of hyperplanes He

ordered by reverse inclusion) is naturally isomorphic to the poset of connected partitions of G (i.e.
partitions of V (G) whose blocks induce connected subgraphs). See, e.g., [GZ83, p.112].

It is well-known that there is a one-to-one correspondence between acyclic orientations of G and
the regions of HG (see, e.g., [GZ83, Lemma 7.1 and Lemma 7.2]). Given any function f ∈ C0(G,R)
one can label each vertex v with the real number f(v). In this way we obtain an acyclic partial
orientation of G by directing v to u if f(u) < f(v). Recall this means we have an acyclic orientation
on the graph G/f obtained by contracting all unoriented edges (i.e. all edges {u, v} with f(u) =
f(v)).

We are mainly interested in acyclic orientations of G with a unique source at q ∈ V (G). For this
purpose, we fix a real number c > 0 and define

Hq,c = {f ∈ C0(G,R) : f(q) = −c} .

The restriction of the arrangement HG to Hq,c will be denoted by Hq,c
G . We denote the bounded

complex (i.e. the polyhedral complex consisting of bounded cells) of Hq,c
G by Bq,c

G .

Remark 6.1.
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(i) By (14), the restriction of HG to Hq,c coincides with the restriction of HG to

(Hq,c)′ = {f ∈ C0(G,R) :
∑

v 6=q

f(v) = c} .

(ii) We will see in §7.5 (e.g. Lemma 7.6(ii)) that it is most natural (although not necessary) to
choose 0 < c < 1.

The following lemma relates regions of Bq,c
G to acyclic orientations with unique source at q (see

also [GZ83, Theorem 7.3]).

Lemma 6.2. Each f ∈ Bq,c
G gives an acyclic partial orientation of G with a unique source at q. In

particular f(v) ≥ f(q) for any edge {v, q} ∈ E(G).

Proof. Since we are considering the orientation on G/f we may assume f(u) 6= f(v) for any
{u, v} ∈ E(G). Since any acyclic orientation of G has at least one source vertex2, it suffices to
show that no vertex v 6= q can be a source in the orientation corresponding to f .

Let w be a vertex such that f(w) is maximum (i.e. f(w) ≥ f(v) for all v ∈ V (G)). To obtain a
contradiction, assume s 6= q is a source and therefore f(v) > f(s) for all {v, s} ∈ V (G).

Recall that χv denotes the characteristic function of v ∈ V (G). It is straightforward to check
that

ft = f + t(χw − χs) ∈ C0(G,R)

also belongs to the same cell as f for any t ≥ 0. However, not all ft for t ≥ 0 can be contained in
the bounded complex because they constitute a ray in C0(G,R) emanating from f . �

Remark 6.3. It follows (see also [GZ83, Corollary 7.3]) that the number of i-dimensional cells in
Bq,c
G is equal to the number of acyclic partial orientations of G with (i+2) (connected) components

having a unique source at q. For an example, see Example 7.9.

6.2. Lattice of integral cuts and graphic infinite arrangements. Fix an arbitrary orientation
O ⊂ E(G). Consider the restricted coboundary map dO : C0(G,Z) → C1

O(G,Z) and the usual
bilinear form on C1

O(G,Z) defined by

(15) 〈g1, g2〉 =
∑

e∈O

g1(e)g2(e) .

The lattice of integral cuts (with respect to the orientation O) is by definition the group of integral
coboundaries Image(dO) inside C

1
O(G,Z) with its bilinear form induced from (15). It is denoted by

L(G,O). When the orientation is clear we simply denote it by L(G).

Remark 6.4. Consider the (unrestricted) coboundary map

d : C0(G,Z) → C1(G,Z) ∼= C1
O(G,Z) ⊕ C1

Ō(G,Z) .

Its image Λ = Image(d) is isomorphic to the lattice {(a,−a) : a ∈ L(G,O)}. The choice of the
orientation O gives a splitting of C1(G,Z) and of Λ.

We may identify C0(G,Z) with ZV (G) and C1
O(G,Z) with ZO. If we also fix a labeling on the

vertices and edges of the graph, then dO is represented by the matrix BT , where B is the n ×m
vertex-edge incidence matrix of G. In this case, the lattice of integral cuts L(G) is Image(BT ) →֒
Zm. It is a well-known classical fact (due to Poincaré) that the matrix B is totally unimodular
in the sense of Example 4.3 (see, e.g., [Big93, Proposition 5.3]). Therefore Theorem 4.4(iii) and
Remark 4.5 apply to this situation. The Delaunay cell decomposition corresponding to the lattice

2It is an elementary fact that any acyclic orientation of G has at least one source and one sink.
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L(G) will be denoted by Del(L(G)). It follows from the total unimodularity that every element
with minimal nonempty support in L(G) is an integral multiple of a bonds (i.e. minimal edge-cuts,
or, equivalently, edge-cuts connecting two connected subgraphs) (see, e.g., [Tut71, §1 and §5])

7. Graphic oriented matroid ideal and Lawrence ideal

We next study some natural ideals associated to the cell complexes introduced in §6. See [BPS01]
and [NPS02] for a more general study of such constructions.

7.1. Graphic oriented matroid ideal. An oriented hyperplane arrangement is a real hyperplane
arrangement along with a choice of a “positive side” for each hyperplane. Equivalently, one may fix
a set of linear forms vanishing on hyperplanes to fix the “orientation”. For any oriented hyperplane
arrangement one can define (see [NPS02]) the associated oriented matroid ideal: let {hj} be m
nonzero linear forms defining the hyperplane arrangement A with hyperplanes Hj = {p ∈ V :
hj(p) = cj} in a real affine space V . The oriented matroid ideal associated to A is the ideal in 2m
variables of the form:

OA = 〈m(p) : p ∈ V 〉 ⊂ K[w, z]

where for each p ∈ V

m(p) =
∏

hi(p)>ci

wi

∏

hi(p)<ci

zi .

Note that any two points in the relative interior of a cell will give rise to the same monomial.

Consider the hyperplane arrangement Hq,c
G (defined in §6.1) which is contained in a codimension

2 affine subspace of C0(G,R). Fixing an orientation O of the graph G will fix the linear forms
(df)(e) = f(e+) − f(e−) for e ∈ O and gives an orientation to the hyperplane arrangement Hq,c

G .
The oriented matroid ideal associated to this oriented hyperplane arrangement Hq,c

G will be denoted
by O

q
G (instead of OHq,c

G
) and will be called the graphic oriented matroid ideal associated to G and

q. It follows from the discussion in §6.1 that this ideal is independent of the choice of the real
number c > 0. In this situation, we may consider the variables w as {ye : e ∈ O} and the variables
z as {yē : e ∈ O} and then O

q
G ⊂ S.

7.2. Graphic Lawrence ideal. For any embedded integral lattice L →֒ Zm one can define (see
[Stu96, Chapter 7]) a binomial ideal JL in 2m variables, called the Lawrence ideal of L, by the
following formula:

JL = 〈wa+za
−

−wa−za
+
: a+, a− ∈ Nm, a = a+ − a− ∈ L〉 ⊂ K[w, z] .

When the lattice L is unimodular, the Lawrence ideal JL is called unimodular ([BPS01]).

For simplicity, the unimodular Lawrence ideal associated to the unimodular lattice of integral
cuts L(G) will be denoted by JG (instead of JL(G)) and will be called the graphic Lawrence ideal
of G. Again, we may consider the variables w as {ye : e ∈ O} and the variables z as {yē : e ∈ O}
and then JG ⊂ S.

7.3. Labeling Bq,c
G and the minimal free resolution of O

q
G. The bounded polyhedral cell

complex Bq,c
G (defined in §6.1) supports a minimal free resolution for the ideal Oq

G. To see this, we
need to label the vertices of Bq,c

G appropriately: each vertex f ∈ Bq,c
G is labeled by the monomial

(16) m(f) =
∏

e∈E(G)
(df)(e)>0

ye .
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Remark 7.1. Fixing an orientation O will result in the factorization of m(f) as

m(f) =
∏

e∈O

f(e+)−f(e−)>0

ye
∏

e∈O

f(e−)−f(e+)>0

yē .

In this way, we obtain a labeling of all cells by the least common multiple construction. It is
easily seen that the label of any cell will be m(f) (as in (16)) for any point f in the relative interior
of that cell.

The following result is an application of [NPS02, Theorem 1.3(b)] for the hyperplane arrangement
Hq

G.

Theorem 7.2. The labeled polyhedral cell complex Bq,c
G gives a C1(G,Z)-graded minimal free reso-

lution for O
q
G. In particular, Oq

G is minimally generated by the monomials m(f), as f ranges over
the vertices of Bq,c

G .

The fact that there is no unit in the corresponding differential maps is immediate from the
description of the labelings. All subcomplexes (Bq,c

G )≤m are in fact contractible, by a result of
Björner and Ziegler ([BLVS+99, Theorem 4.5.7]). See [NPS02] for more details, and Example 7.9
and Figure 8 for an example.

7.4. Labeling Del(L(G)) and the minimal free resolution of JG. Fix an arbitrary orientation
O ⊂ E(G) of G and consider the lattice of integral cuts L(G) as in §6.2. As we have already dis-
cussed, it comes equipped with a canonical polyhedral cell decomposition of the ambient real vector
space L(G)R = L(G)⊗R = Image(dO : C0(G,R) → C1

O(G,R)). This polyhedral cell decomposition,
denoted by Del(L(G)), can be thought of as an infinite hyperplane arrangement (Theorem 4.4(iii)),
or more naturally, as the Delaunay decomposition of the ambient space with respect to the lattice
L(G) and the metric induced by its natural pairing (15) (See Remark 4.5(ii)). We make this a
labelled cell complex by assigning the label

(17) b(a) =
∏

e∈E(G)

ya(e)e

to each vertex a ∈ L(G) →֒ C1(G,R).

Remark 7.3. Fixing an orientation O will result in the factorization of this Laurent monomial as

b(a) =
∏

e∈O

ya(e)e

∏

e∈Ō

y−a(e)
e =

∏

e∈O

ya(e)e /
∏

e∈O

y
a(e)
ē

for a ∈ L(G).

As usual, we extend the labeling to all faces by the least common multiple rule. The associated
complex of free C1(G,Z)-graded S-modules (see §1.2) is not S-finite. By [BPS01, Theorem 3.1]
this complex is a minimal cellular free resolution of the (Laurent) monomial module generated
by the labels of the lattice points in L(G). This Laurent monomial module can be thought of
as the “universal cover” of JG; the Delaunay cell complex is invariant under the translation by
L(G) (Theorem 4.4 and Remark 4.5), and the labeling is also compatible with this action. So
we obtain a well defined finite cell complex on the quotient torus L(G)R/L(G), which we denote
by Del(L(G))/L(G). The following theorem is an application of [BPS01, Theorem 3.5] (or [BS98,
Theorem 3.2]) to our setting.

Theorem 7.4. The quotient cell complex Del(L(G))/L(G) supports a (C1(G,Z)/Λ)-graded mini-
mal free resolution for JG.

Here Λ is the image of the (unrestricted) coboundary map d : C0(G,Z) → C1(G,Z) (see Re-
mark 6.4).
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7.5. Gröbner relation between JG and O
q
G. Recall that the hyperplane arrangement Hq,c

G is
naturally sitting inside C0(G,R), and the Delaunay decomposition Del(L(G)) is an infinite hy-
perplane arrangement naturally sitting inside C1

O(G,R). The obvious map between these ambient
spaces is the (restricted) coboundary map dO : C0(G,R) → C1

O(G,R). As we will see, this map
relates the corresponding hyperplane arrangements and cell complexes, and this relation translates
into precise algebraic relations between JG and O

q
G.

First note that Ker(d) = Ker(dO) is the 1-dimensional space of constant functions on V (G), and
we have

L(G)R = Image(dO) ∼= C0(G,R)/Ker(d) ∼= C0(G,R) ∩ (Ker(d))⊥ .

Let e ∈ E(G). Under the induced isomorphism dO : C0(G,R)∩(Ker(d))⊥
∼
−→ L(G)R, the hyperplane

He|(Ker(d))⊥ = {f ∈ C0(G,R) : (df)(e) = 0} ∩ (Ker(d))⊥

is mapped to the hyperplane

Ge = {a ∈ L(G)R : ϕe(a) = 0} ,

where ϕe is the restriction of the functional e = e∗∗ ∈ C1(G,Z) to L(G)R. By Example 4.3,
Proposition 4.4(iii), and Remark 4.5(ii), the hyperplanes Ge are precisely the hyperplanes passing
through the origin in Del(L(G)).

Recall from §6.1 that the hyperplane arrangement Hq,c
G has another hyperplane defined by

(18) (Hq,c)′|(Ker(d))⊥ = {f ∈ C0(G,R) :
∑

v 6=q

f(v) = c} ∩ (Ker(d))⊥ .

The real vector space L(G)R is spanned by {dO(χv) : v 6= q}. Under the induced isomorphism

dO : C0(G,R) ∩ (Ker(dO))
⊥ ∼
−→ L(G)R, the hyperplane (18) is mapped to the affine hyperplane

Gq,c = {a ∈ C1(G,R) : a =
∑

v 6=q

f(v)dO(χv) with
∑

v 6=q

f(v) = c} .

This is a hyperplane passing through all points {c · dO(χv) : v 6= q}.

We denote the restriction of the arrangement {Ge}e∈E(G) to the affine hyperplane Gq,c by Gq,c
G . It

follows that Gq,c
G , upto a linear transformation, coincides with the arrangement Hq,c

G , and therefore
its bounded complex, which we denote by Aq,c

G , may be identified with Bq,c
G .

Next we show that these geometric considerations nicely relate the labeling of Bq,c
G by monomials

(described in §7.3) with the natural labeling of Aq,c
G induced by Del(L(G)) (described in §7.4). For

this purpose, we will see that it is most natural to assume 0 < c < 1. With this assumption, if the
hyperplane Gq,c intersects a Delaunay cell C, then C must contain the origin. By the least common
multiple labeling rule, this means that all such cells C have monomial labels in S.

To concretely describe these induced monomial labels, it suffices to find the labels of the vertices
in Gq,c

G induced from the labels of the rays in the central hyperplane arrangement {Ge : e ∈ E(G)}.
These rays correspond to bonds dO(χB) for B ⊂ V (G) (see §6.2). Such a ray intersects Gq,c if and
only if for some real number t > 0 we have

tdO(χB) =
∑

v 6=q

f(v)dO(χv) ,

or equivalently

dO(tχB −
∑

v 6=q

f(v)χv) = 0 .
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Since the kernel of dO consists of constant functions we must have

(19) t
∑

v∈B

χv −
∑

v 6=q

f(v)χv = k
∑

v

χv

for some constant k ∈ R.

We claim that q 6∈ B. Indeed, if q ∈ B, then evaluating (19) at q we obtain k = t and therefore

t
∑

v∈Bc

χv = −
∑

v 6=q

f(v)χv .

This implies that f(v) = −t < 0 for v ∈ Bc and f(v) = 0 for v ∈ B\{q}. But this is impossible
because

∑
v 6=q f(v) = c by assumption.

Since q 6∈ B, by evaluating (19) at q we obtain k = 0 and therefore

t
∑

v∈B

χv =
∑

v 6=q

f(v)χv ,

which implies that f(v) = t for v ∈ B and f(v) = 0 for v ∈ Bc\{q}. Since
∑

v 6=q f(v) = c, we must

have t = c
|B| . Conversely, for any nonempty subset B ⊂ V (G)\{q}, the ray corresponding to the

simple cut dO(χB) intersects G
q,c at the point c

|B|dO(χB). If we fix 0 < c < 1, then we always have

0 < c
|B| < 1 which means that the point of intersection belongs to a cell in Del(L(G)) containing

the origin. We summarize these observations in the following proposition.

Proposition 7.5. Let ∅ 6= B ⊂ V (G). The ray corresponding to the bond dO(χB) intersects Gq,c

if and only if q 6∈ B. If 0 < c < 1, then the point of intersection belongs to a cell in Del(L(G))
containing the origin.

The vertices of Aq,c
G are the points of intersections with these rays. For each vertex of Aq,c

G we
may assign the label corresponding to the 1-dimensional cell of Del(L(G)) containing that vertex.
If we assume 0 < c < 1, this is a (non-Laurent) monomial label that coincides with the labeling
rule for Bq,c

G described in §7.3. From this point of view, it is straightforward to describe these labels
combinatorially.

Lemma 7.6. For any A ( V (G) with q ∈ A the following holds.

(i) The label of the point dO(χAc) in the labeled complex Del(L(G)) is

b(dO(χAc)) =

∏
e∈E(Ac,A) ye∏
e∈E(A,Ac) ye

.

(ii) For 0 < c < 1, the induced label on the vertex Aq,c
G corresponding to the bond dO(χAc) is

∏

e∈E(Ac,A)

ye .

Proof. (i) By (17) we have

b(dO(χAc)) =
∏

e∈E(G)

yd(χAc)(e)
e

=
∏

e∈E(G)

yχAc(e+)−χAc (e−)
e

=

∏
e∈E(Ac,A) ye∏
e∈E(A,Ac) ye

.
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(ii) The label of the origin is b(0) = 1. Therefore, by the least common multiple construction,
the label of the 1-dimensional cell {0, dO(χAc)} in Del(L(G)) is

∏
e∈E(Ac,A) ye. The result now

follows from Proposition 7.5. �

Since the labeled complex Aq,c
G (for 0 < c < 1) coincides with the labeled complex Bq,c

G , we might
as well think of the ideal Oq

G as constructed from Aq,c
G . The advantage of this point of view is

a precise Gröbner relation between O
q
G and JG coming from the described relation of Aq,c

G and
Del(L(G)).

Lemma 7.7. Intersection of cells in Del(L(G)) with the hyperplane Gq,c induces a bijection between
(i+ 1)-dimensional cells of Del(L(G))/L(G) and i-dimensional cells of Aq,c

G for all 0 ≤ i ≤ n− 2.

Proof. It suffices to only consider cells in Del(L(G)) containing the origin; all other cells in Del(L(G))
can be obtained by translating such cells by L(G). The primitive (or indecomposable) elements of
L(G) correspond to bonds (see §6.2). Therefore the vertex set of any cell in Del(L(G)) containing the
origin is of the form {0} ∪P for some P ⊂ {dO(χB) : ∅ 6= B ⊂ V (G)}. Since dO(χBc) = −dO(χB),
it suffices to restrict our attention to the case where P ⊂ {dO(χB) : ∅ 6= B ⊂ V (G), q 6∈ B}. By
Proposition 7.5, these are precisely those cells that have nonempty intersection with Gq,c. �

Proposition 7.8.

(i) A generating set for the ideal JG is




∏

e∈E(Ac,A)

ye −
∏

e∈E(A,Ac)

ye : A ( V (G), q ∈ A



 .

If we consider only those subsets A of V (G) such that both G[A] and G[Ac] are connected,
then we have a minimal generating set for JG.

(ii) The minimal generating set in part (i) is also a Gröbner basis with respect to any term
order (i.e. is a universal Gröbner basis).

(iii) A minimal generating set for the ideal Oq
G is





∏

e∈E(Ac,A)

ye : A ( V (G), q ∈ A,G[A] and G[Ac] are connected



 .

(iv) O
q
G is the initial ideal of JG with respect to any term order ≺q with the property that

∏

e∈E(A,Ac)

ye ≺q

∏

e∈E(Ac,A)

ye

for every A ( V (G) with q ∈ A such that both G[A] and G[Ac] are connected.

Proof. (i) It follows from the discussion in §1.2, Theorem 7.4 and [BS98, proof of Theorem 3.2] that
a minimal generating set for JG is given by binomials

mF

mF ′

−
mF

m0

,

where F is in a fundamental set of representatives of 1-cells in Del(L(G)) connecting 0 to F =
dO(χAc) for A ( V (G) and q ∈ A.

By Lemma 7.6(i), we have

mF ′ = b(dO(χAc)) =

∏
e∈E(Ac,A) ye∏
e∈E(A,Ac) ye

, m0 = 1,
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mF = lcm(mF ′ ,m0) =
∏

e∈E(Ac,A)

ye

and therefore
mF

mF ′

−
mF

m0

=
∏

e∈E(A,Ac)

ye −
∏

e∈E(Ac,A)

ye .

The rest of part (i) is immediate.

(ii) follows from the general fact that in any Lawrence ideal, a minimal binomial generating set is
a Gröbner basis with respect to any term order ([Stu96, Theorem 7.1]). In our concrete situation,
one can also easily verify (as in the proof of Theorem 3.3 given in [MS14, Theorem 5.1]) that the
S-polynomial of the two binomials corresponding to the cuts (A,Ac) and (B,Bc) can be reduced
to zero by the binomials corresponding to the cuts (A\B, (A\B)c) and (B\A, (B\A)c).

(iii) It follows from the discussion in §1.2, Theorem 7.2, and the fact that the labeled cell complex
Aq,c

G coincides with the labeled complex Bq,c
G , that a minimal generating set for Oq

G is given by the
monomials mF as F varies over the vertices of the bounded cell complex Aq,c

G . By Proposition 7.5
and Lemma 7.6(ii), these labels are precisely of the form

∏

e∈E(Ac,A)

ye

for A ( V (G) with q ∈ A such that the edges between (A,Ac) form a bond.

(iv) follows from (ii) and (iii). �

Example 7.9. Consider the graph G depicted in Figure 4 with the fixed orientation O. Let q be
the distinguished (red) vertex at the bottom. Acyclic partial orientations of G with unique source
at q are depicted in Figures 5–7.

e5

e3e1

e4e2

Figure 4. Graph G and a fixed orientation O

Consider the arrangement H′
G = {He1 , . . . ,He5}. The graphic arrangement Hq,c

G (for some c > 0)
is two-dimensional and is depicted in Figure 8. Its bounded complex Bq,c

G is the bounded part of
this figure. Recall that the graphic arrangement “lives in” C0(G,R), which may be identified with
R4 after fixing a labeling of the vertices. For each hyperplane labeled He, the small arrow next to
it denotes the side where (df)(e) > 0. The hyperplane Hē coincides with He, but its arrow will be
reversed. We have also labeled the 0-cells according to (16).

The polynomial ring S has 10 variables:

{ye, yē : e ∈ O} = {ye1 , ye2 , ye3 , ye4 , ye5 ; yē1 , yē2 , yē3 , yē4 , yē5} .

By Theorem 7.2, the associated oriented matroid ideal Oq
G is minimally generated by the labels

of the 0-cells:

(20) O
q
G = 〈yē1ye4ye5 , ye2ye3ye5 , yē3ye4 , yē1ye3ye5 , ye1ye2 , ye2ye4ye5〉 .
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Figure 5. Acyclic partial orientations with 2 components

Figure 6. Acyclic partial orientations with 3 components

Figure 7. Acyclic partial orientations with 4 components
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Figure 8. Hq
G, B

q
G, and the monomial labels on the vertices

Note that the indices appearing in the minimal generating set correspond precisely to the oriented
edges leaving the connected partition containing q (i.e. the blue edges in Figure 5). This is what
we expect by Proposition 7.8(iii).
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The lattice of integral cuts L(G) is 3-dimensional. Instead of drawing it, we may directly write
a minimal generating set for JG using Proposition 7.8(i):

JG = 〈yē1ye4ye5 − ye1yē4yē5 , ye2ye3ye5 − yē2yē3yē5 , yē3ye4 − ye3yē4 , yē1ye3ye5 − ye1yē3yē5 ,

ye1ye2 − yē1yē2 , ye2ye4ye5 − yē2yē4yē5〉 .

The first term in each binomial is the dominant term for the term order ≺q. The bounded complex
Bq
G has six 0-cells {p1, . . . ,p6}, nine 1-cells {E1, . . . , E9}, and four 2-cells {F1, . . . , F4}. These

numbers correspond to the acyclic orientations of Figure 5, Figure 6, and Figure 7, as well as
the Betti numbers of Oq

G and JG. Moreover, Bq
G supports a minimal free resolution for O

q
G. To

explicitly describe this minimal resolution, let

E1 = {p1,p2}, E2 = {p2,p3}, E3 = {p1,p5}, E4 = {p2,p4}, E5 = {p3,p4}

E6 = {p4,p5}, E7 = {p5,p6}, E8 = {p4,p6}, E9 = {p3,p6} ,

F1 = {p1,p2,p4,p5}, F2 = {p2,p3,p4}, F3 = {p4,p5,p6}, F4 = {p3,p4,p6} .

We extend the labeling on the vertices to the whole Bq
G by the least common multiple construction.

For example,

mE2 = yē1yē3ye4ye5 , mE4 = yē1ye2ye4ye5 , mE5 = ye2yē3ye4ye5 , mE6 = ye2ye3ye4ye5 ,

mF2 = yē1ye2yē3ye4ye5 .

Then the minimal resolution of Oq
G is as follows.

0 →
4⊕

i=1

S(−mFi
)

∂2−→
9⊕

i=1

S(−mEi
)

∂1−→
6⊕

i=1

S(−mpi
)

∂0−→ S ։ S/Oq
G .

As usual, assume [F ] denotes the generator of S(−mF ). The homogenized differential operator of
the cell complex (∂0, ∂1, ∂2) is as described in (12). For example

∂0([pi]) = mpi
= m(pi) ,

∂1([E6]) =
ye2ye3ye4ye5
ye2ye4ye5

[p4]−
ye2ye3ye4ye5
ye2ye3ye5

[p5] = ye3 [p4]− ye4 [p4] ,

∂2([F2]) =
yē1ye2yē3ye4ye5
yē1yē3ye4ye5

[E2]−
yē1ye2yē3ye4ye5
yē1ye2ye4ye5

[E4] +
yē1ye2yē3ye4ye5
ye2yē3ye4ye5

[E5]

= ye2 [E2]− yē3 [E4] + yē1 [E5] .

Although JG has the same Betti table as O
q
G, it is not possible to read the minimal free res-

olution for JG directly from Bq
G; one really needs to consider the cell decomposition of the torus

L(G)R/L(G).

Example 7.10. Consider the graph K3 with a fixed orientation as in Figure 1.
The lattice of integral cuts L(G) is two-dimensional and is depicted in Figure 9. This pic-

ture should be compared with Figure 2 (see Remark 5.13). This lattice “lives in” C1
O(G,R) =

span{e∗1, e
∗
2, e

∗
3}

∼= R3. In the picture a1 = dO(χu1) = e∗2 − e∗3, a2 = dO(χu2) = e∗1 − e∗2, and
a3 = dO(χu3) = e∗3 − e∗1.

The cell decomposition Del(L(G)) is the Delaunay decomposition of L(G)R with respect to the
cut lattice and the usual Euclidean metric (cf. Remark 4.5(ii)), which coincides with an infinite
hyperplane arrangement (Theorem 4.4(ii) and §6.2). The hyperplanes at the origin are defined by
ϕi = ei|L(G)R = 0. The quotient cell decomposition Del(L(G))/L(G) of the torus L(G)R/L(G) has
one 0-cell {p} (the orbit of the origin), three 1-cells {E,E′, E′′} (the orbits of the green, red, and
black edges), and two 2-cells {F,F ′} (the orbits of the upward and downward triangles). Assume
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ϕ1 = 0

ϕ2 = 0

ϕ3 = 0

ϕ1 = 1

ϕ2 = 1

ϕ3 = 1

a1

a2

a3 0

Gq,c

Figure 9. Cut lattice L(G)

that q = u3 is the distinguished vertex. The hyperplane Gq,c is the hyperplane passing through
points ca1 and ca2. In the figure c is roughly 1

3 . The bounded complex of the intersection of this
hyperplane with the arrangement at the origin is denoted by a solid blue segment. This is Aq,c

G ,
which is combinatorially equivalent to Bq,c

G (via the coboundary map).
In Figure 10, we have chosen a fundamental domain for the lattice, and have labeled all cells of

this fundamental domain according to the recipe described in §7.4. This labeling induces a labeling
on Aq,c

G (compatible with the labeling of Bq,c
G ) which is also given in the figure. The labelled cell

complexes in Figure 10 are enough to completely describe minimal free resolutions for JG and for
OG. Concretely, the minimal resolution of JG is as follows:

0 → S(−mF )⊕ S(−mF ′)
∂2−→ S(−mE)⊕ S(−mE′)⊕ S(−mE′′)

∂1−→ S(−mp) .

As usual, assume [F ] denotes the generator of S(−mF ). The labels of cells in Del(L(G))/L(G) are:

mE = ye2yē3 , mE′ = ye1yē3 , mE′′ = ye1yē2 ,

mF = ye1ye2yē3 , mF ′ = ye1yē2yē3 .

The homogenized differential operator (see (12)) of the cell complex (∂1, ∂2) is described as follows:

∂1([E]) =
ye2yē3

1
[p]−

ye2yē3
ye2yē3
yē2ye3

[p] = (ye2yē3 − yē2ye3)[p] ,

∂1([E
′]) =

ye1yē3
ye1yē3
yē1ye3

[p]−
ye1yē3

1
[p] = (yē1ye3 − ye1yē3)[p] ,

∂1([E
′′]) =

ye1yē2
ye1yē2
yē1ye2

[p]−
ye1yē2

1
[p] = (yē1ye2 − ye1yē2)[p] ,

∂2([F ]) =
ye1ye2yē3
ye2yē3

[E]−
ye1ye2yē3
ye1ye2yē3

ye3

[E′′] +
ye1ye2yē3
ye1yē3

[E′] = ye1 [E]− ye3 [E
′′] + ye2 [E

′] ,
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∂2([F
′]) =

ye1yē2yē3
ye1yē2yē3

yē1

[E]−
ye1yē2yē3
ye1yē2

[E′′] +
ye1yē2yē3
ye1yē3

[E′] = yē1 [E]− yē3 [E
′′] + yē2 [E

′] .

Clearly JG is the image of ∂1 after identifying [p] with 1 (see Proposition 7.8). Since the labeling
is compatible with the action of the lattice, any translation of this fundamental domain would give
rise to the exact same description of the differential maps.

The minimal resolution of Oq
G can be read from the bounded complex Aq,c

G . If we identify the
name of each cell in Aq,c

G with the name of the associated cell in Del(L(G)), we have

0 → S(−mF )⊕ S(−mF ′)
∂̃1−→ S(−mE)⊕ S(−mE′)⊕ S(−mE′′)

∂̃0−→ S ,

where

∂̃0([E]) = mE = ye2yē3 ,

∂̃0([E
′]) = mE′ = ye1yē3 ,

∂̃0([E
′′]) = mE′′ = ye1yē2 ,

∂̃1([F ]) =
ye1ye2yē3
ye2yē3

[E]−
ye1ye2yē3
ye1yē3

[E′] = ye1 [E]− ye2 [E
′] ,

∂̃1([F
′]) =

ye1yē2yē3
ye1yē3

[E′]−
ye1yē2yē3
ye1yē2

[E′′] = yē2 [E
′]− yē3 [E

′′] .

The ideal Oq
G is the image of ∂̃0 (see Proposition 7.8). This example is, of course, closely related to

Example 5.12. The general relationship between these two constructions is explained in Remark 9.6.

ye1yē2
yē1ye2

ye2yē3
yē2ye3

ye1yē3
yē1ye3

1

ye2yē3

ye1yē2

ye1yē3

ye1ye2yē3
ye3

ye1yē2yē3
yē1

ye1ye2yē3

ye1yē2yē3

ye1yē3

ye1yē2

ye2yē3

ye1ye2yē3

ye1ye2yē3

Figure 10. A choice of fundamental domain with labels (left) , Aq,c
G with its induced

labels (right)
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7.6. Potential theory and Gröbner weight functionals for JG. Let C0(G,R) denote the real
vector space spanned by V (G), and let C1(G,R) denote the real vector space spanned by E(G).
The usual boundary operator ∂ : C1(G,R) → C0(G,R) is defined by

(∂(σ))(v) =
∑

e+=v

σ(e) −
∑

e−=v

σ(e) .

An element σ ∈ C1(G,R) gives a map σ : C1(G,Z) → R by sending f to f(σ). So it may be
thought of as a weight functional for the ideal JG. Our next goal is to study the weight functionals
σ ∈ C1(G,R) that represent the term order ≺q in Proposition 7.8(iv). For our application, a very
important class of examples arises from weight functionals representing <q for IG as studied in §3.3
(see Lemma 3.4, Definition 3.6, or (6)).

Proposition 7.11. Let ϑ ∈ C0(G,R) be any weight functional representing <q for IG (i.e. M
q
G =

inϑ (IG)). Then the 1-chain σ ∈ C1(G,R) defined by

σ(e) = ϑ(e+) for all e ∈ E(G)

represents a term order ≺q for JG with O
q
G = inσ(JG).

Proof. By Proposition 7.8, the term order ≺q is characterized by requiring
∏

e∈E(A,Ac)

ye ≺q

∏

e∈E(Ac,A)

ye

for every A ( V (G), where q ∈ A with G[A] and G[Ac] connected. Since (see Lemma 7.6)
∏

e∈E(Ac,A) ye∏
e∈E(A,Ac) ye

=
∏

e∈E(G)

yd(χAc )(e)
e ,

we have O
q
G = inσ(JG) if and only if

(21) σ(d(χAc)) =
∑

e∈E(G)

σ(e) · (d(χAc))(e) > 0

for all bonds d(χAc)(e) associated to A ( V (G) with q ∈ A. Since ∂ is the adjoint to d, (21) is
equivalent to

(22)
∑

v∈V (G)

(∂(σ))(v) · χAc(v) > 0 .

Since σ(e) = ϑ(e+), we have

(∂(σ))(v) =
∑

e+=v

σ(e)−
∑

e−=v

σ(e) =
∑

e+=v

ϑ(e+)−
∑

e−=v

ϑ(e+)

= deg(v)ϑ(v) −
∑

{u,v}∈E(G)

ϑ(u) = ∆(ϑ)(v) .

Therefore (see (4))
∑

v∈V (G)

(∂(σ))(v) · χAc(v) =
∑

v∈V (G)

∆(ϑ)(v) · χAc(v) > 0

and (22) holds. �
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Definition 7.12. Let ϑq ∈ C0(G,Z) denote the non-negative, integral functional defined in Def-
inition 3.6. We denote by λq the associated non-negative, integral weight functional in C1(G,R)
defined by

λq(e) = ϑq(e+) for all e ∈ E(G)

as in Proposition 7.11 .

7.7. Gröbner cone of O
q
G. Next we will describe the Gröbner cone associated to O

q
G. As in §3.4,

this cone is intimately related to potential theory and Green’s functions.
The description of this cone is most elegant when G does not have a cut vertex. Cut vertices

introduce linear subspaces in the Gröbner cone and are slightly tedious (but similar) to deal with.
Throughout this section, we will therefore assume that G is 2-vertex-connected. This condition is
equivalent to assuming that the lattice L(G) is indecomposable ([BdlHN97, Proposition 4]).

Proposition 7.13. Assume G is 2-vertex-connected. Then σ ∈ C1(G,R) represents a term order
≺q for JG with O

q
G = inσ(JG) if and only if for all p ∈ V (G)\{q} we have

βp := (∂(σ))(p) > 0 .

Proof. We have already seen that σ ∈ C1(G,R) represents a term order ≺q for JG with O
q
G =

inσ(JG) if and only if (22) holds for all bonds d(χAc)(e) associated to A ( V (G) with q ∈ A. Since
we have assumed there is no cut vertex, the star of every vertex gives a bond, so it is necessary
(setting Ac = {p} for p 6= q in (22)) to have βp = (∂(σ))(p) > 0. This condition is also sufficient
because then for any bond d(χAc)(e) associated to A ( V (G) with q ∈ A, we get

∑

v∈V (G)

(∂(σ))(v) · χAc(v) =
∑

v∈V (G)

βv ·
∑

p∈Ac

χp(v) =
∑

p∈Ac

βp > 0

and (22) holds. �

Therefore σ ∈ C1(G,R) is a solution to ∂(σ) = β for β =
∑

p∈V (G) βv(v) in Div0(G) with βp > 0

for p 6= q.

After identifying C1(G,R) with C
1(G,R) (by sending e to e∗) we have the orthogonal (“Hodge”)

decomposition

C1(G,R) ∼= Ker(∂)⊕ Image(d) .

Let σ = σ′ + σ′′ for σ′ ∈ Ker(∂) and σ′′ = d(ψ) ∈ Image(d) for ψ ∈ C0(G,R). Then ∂(σ) = β if
and only if ∂d(ψ) = ∂(σ′′) = β. By Remark 3.1 ∂d = 2∆, so

∆ψ =
1

2
β .

It follows from the definition of the Green’s function jq(p, v), together with the fact that the
Laplacian operator has a one dimensional zero-eigenspace generated by 1, that:

ψ =
1

2

∑

p∈V (G)

βpjq(p, ·) + k · 1

for some constant k ∈ R. Therefore

σ(e) = σ′(e) + σ′′(e) = σ′(e) + (d(ψ))(e) = σ′(e) +
1

2

∑

p∈V (G)

βp(jq(p, e+)− jq(p, e−)) .

We summarize these observations in the following theorem.
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Theorem 7.14. Assume G is 2-vertex connected. The 1-chain σ ∈ C1(G,R) represents ≺q for JG

if and only if there exist σ′ ∈ Ker(∂) and real numbers β′p > 0 (for p ∈ V (G)) such that

σ(e) = σ′(e) +
∑

p∈V (G)

β′p(jq(p, e+)− jq(p, e−))

for all e ∈ E(G).

In other words σ (up to an element of the “extended cycle space” Ker(∂)) is in the interior of the
cone generated by the vectors (jq(p, e+) − jq(p, e−))e∈E(G) for various p ∈ V (G). It is easy, using
[BS13, Construction 3.1], to show that these vectors are independent.

8. Regular sequences for O
q
G and JG

8.1. Linear system of parameters for O
q
G. The ideal Oq

G ⊂ S is a squarefree monomial ideal.
Let Σq

G denote its associated simplicial complex on 2m vertices {ye : e ∈ E(G)}.

For each spanning tree T of G, let OT denote the orientation of T with a unique source at q (i.e.
the orientation obtained by orienting all paths away from q). For an example, see Figure 11.

Proposition 8.1.

(i) The number of facets of Σq
G is the same as the number of spanning trees of G. For each

spanning tree T , the corresponding facet τT is:

τT = {ye : e ∈ E(G)\OT } .

(ii) For each spanning tree T of G, let PT = 〈ye : e ∈ OT 〉. The minimal prime decomposition
of Oq

G is

O
q
G =

⋂

T

PT ,

the intersection being over all spanning trees of G.
(iii) For each facet τ of Σq

G we have |τ | = 2m− n+ 1. Therefore

dim(K[Σq
G]) = 2m− n+ 1 .

(iv) Σq
G is Cohen-Macaulay.

Proof. (i) By Proposition 7.8, we know thatOq
G is generated by monomials of the form

∏
e∈E(Ac,A) ye,

where q ∈ A ( V (G) and E(Ac, A) ⊂ E(G) denotes the set of oriented edges from A to its comple-
ment Ac.

First we show that for each spanning tree T , the monomial mT :=
∏

e∈E(G)\OT
ye does not belong

to O
q
G. Clearly mT ∈ O

q
G if and only if mT is divisible by one of the given generators

∏
e∈E(Ac,A) ye.

But ∏

e∈E(Ac,A)

ye |
∏

e∈E(G)\OT

ye ⇐⇒ E(Ac, A) ⊆ (E(G)\OT ) .

However, it follows from the definition of OT that it must contain some element of E(Ac, A) for
any A. This shows that τT = {ye : e ∈ E(G)\OT } is a face in the simplicial complex Σq

G.
Next we show that τT must be a facet; for f ∈ OT removing f from the tree gives a partition of

V (T ) = V (G) into two connected subsets B and Bc with f− ∈ B and f+ ∈ Bc. Then the monomial
mT · yf is divisible by

∏
e∈E(Bc,B) ye.

It remains to show that for any monomial m =
∏

e∈F ye that does not belong to O
q
G we have

F ⊆ (E(G)\OT ) for some spanning tree T . To show this, we repeatedly use the fact that m
is not divisible by generators of the form

∏
e∈E(Ac,A) ye for various A, and construct a spanning

tree T . This procedure is explained in Algorithm 1. Note that if
∏

e∈F ye is not divisible by
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∏
e∈E(Ac,A) ye then there exists an e ∈ E(Ac, A) such that e 6∈ F . The orientation OT is also

induced by Algorithm 1.

Input:
A monomial m =

∏
e∈F ye not belonging to O

q
G.

Output:
A spanning tree T such that F ⊆ (E(G)\OT ).

Initialization:

A = {q},
T = ∅.

while A 6= V (G) do
Find an oriented edge e such that e ∈ E(A,Ac) and e 6∈ F ,
T = T ∪ {e},
A = A ∪ {e+},

end

Output T .

Algorithm 1: Finding a facet containing a given monomial not belonging to O
q
G

(ii) follows from (i) and [MS05, Theorem 1.7].

(iii) follows from (i) and the fact that dim(K[Σq
G]) is equal to the maximal cardinality of the

faces of Σq
G.

(iv) The Krull dimension of K[Σq
G] = S/Oq

G is 2m − n + 1 by part (iii). By the Auslander–
Buchsbaum formula (for graded rings and modules, see [GP08, page 437]),

depth(S/Oq
G) = depth(S)− pdS(S/O

q
G) = 2m− n+ 1

because pdS(S/O
q
G) = n − 1 by Theorem 7.2. Therefore dim(S/Oq

G) = depth(S/Oq
G) and K[Σq

G]
is Cohen-Macaulay. �

Remark 8.2.
(i) Proposition 8.1(iii) can be strengthened; the simplicial complex Σq

G is in fact shellable. Since
JG is the lattice ideal associated to the free abelian group Λ = Image ∂∗, it is a toric ideal (in
the sense of [Stu96, Chapter 4]). Σq

G is precisely the initial complex of JG with respect to ≺q

(in the sense of [Stu96, Chapter 8]). Let σ ∈ C1(G,R) be any weight functional representing
the term order ≺q for JG (e.g. ϑq of Definition 7.12 – see also §7.7). By [Stu96, Theorem 8.3]
σ provides us with a regular triangulation of Σq

G. This is accomplished by “lifting” each
point ye into the next dimension by the height σ(e), and then projecting back the lower
face of the resulting positive cone. This is a unimodular triangulation because the ideal Oq

G

is squarefree ([Stu96, Corollary 8.9]). The associated Gröbner fan studied in §7.6 coincides
with the associated secondary fan of this triangulation.

It is well-known that given any regular triangulation, one can obtain shelling orders
using the line shelling technique (see, e.g., [DLRS10, Theorem 9.5.10]). For the shellability
of some seemingly related simplicial complexes, see [Koz99,Eng09,Joj13].

(ii) A minimal free resolution of the Alexander dual of Oq
G can be obtained by the construction

given in [BW02] (see also [DM14] for some related results). Following the results of [VLM15]
in an ongoing project, we further explore connections to the relation space of the hyperplane
arrangements, and the Orlik-Terao ideals.
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We are now ready to give a particularly nice linear system of parameters (abbreviated as l.s.o.p.)
for Oq

G. Note that since K[Σq
G] = S/Oq

G is Cohen-Macaulay, every homogeneous system of param-
eters (in particular every l.s.o.p.) is regular ([Sta96, p.35]).

First we introduce some notation. For each v ∈ V (G) we choose a distinguished incoming edge
to v and denote it by ev. In other words, we fix a distinguished subset {ev : v ∈ V (G) } ⊂ E(G) of
cardinality n in such a way that (ev)+ = v.

For each v define the set of linear forms

Lv = {ye − yev : e ∈ E(G) , e 6= ev , e+ = (ev)+ = v}

and let

(23) L =
⋃

v∈V (G)

Lv .

We also let

L(q) = L ∪ {yeq} .

Clearly, |Lv| = deg(v)− 1 for v ∈ V (G), |L| = 2m− n, and |L(q)| = 2m− n+ 1.

Proposition 8.3. The set L(q) forms an l.s.o.p. (and thus a regular sequence) for K[Σq
G] = S/Oq

G.

Proof. We will use the criterion of Kind and Kleinschmidt ([Sta96, pp.81-82], [KK79]). Note that

by Proposition 8.1(iii), dimK[Σq
G] = |L(q)|. For each facet τ and each vertex v 6= q, by Propo-

sition 8.1(i), all but one variable ye with e+ = v appear in τ . Again by Proposition 8.1(i), all
variables ye with e

+ = q appear in τ . It follows that the dimension of the vector space spanned by
the restrictions of forms in L(q) to the facet τ is equal to

∑
v(deg(v) − 1) + 1 = 2m− n+ 1 which

is equal to |τ | by Proposition 8.1(iii), and the conditions in [Sta96, Lemma 2.4] are satisfied. �

Example 8.4. For the graph in Example 7.9, Oq
G is the Stanley-Reisner ideal of the simplicial

complex Σq
G given by facets

Figure 11. Spanning trees T and orientations OT corresponding to τ1, τ2, . . . , τ8

τ1 = {ye1 , ye3 , ye4 , ye5 , yē2 , yē4 , yē5}, τ2 = {ye1 , ye3 , ye4 , yē1 , yē2 , yē4 , yē5},

τ3 = {ye2 , ye3 , ye4 , yē1 , yē2 , yē4 , yē5}, τ4 = {ye1 , ye3 , ye5 , yē2 , yē3 , yē4 , yē5},

τ5 = {ye1 , ye3 , yē1 , yē2 , yē3 , yē4 , yē5}, τ6 = {ye2 , ye3 , yē1 , yē2 , yē3 , yē4 , yē5},

τ7 = {ye1 , ye5 , yē1 , yē2 , yē3 , yē4 , yē5}, τ8 = {ye2 , ye5 , yē1 , yē2 , yē3 , yē4 , yē5}.

See Proposition 8.1(i) and Figure 11.
If we choose {e1, e3, e4, ē4} as our distinguished set of incoming edges to vertices, we have

Lu1 = {ye2 − ye1} , Lu2 = {yē1 − ye3 , ye5 − ye3} ,

Lu3 = {yē3 − ye4} , Lu4 = {yē2 − yē4 , yē5 − yē4} .
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Therefore

L =
⋃

v∈V (G)

Lv = {ye2 − ye1 , yē1 − ye3 , ye5 − ye3 , yē3 − ye4 , yē2 − yē4 , yē5 − yē4}

and

L(q) = L ∪ {yē4} .

Note that |L(q)| = 7 = 2× 5− 4 + 1. The restrictions of linear forms of L(q) to τ1 are

L(q)|τ1 = {−ye1 ,−ye3 , ye5 − ye3 ,−ye4 , yē2 , yē5 , yē4} ,

which span a vector space of dimension |τ1| = 7 = 2 × 5 − 4 + 1. Similarly, the restrictions of the

linear forms of L(q) to the other τi’s span a vector space of dimension |τi|.

8.2. Linear system of parameters for JG. Next we use [Eis95, Proposition 15.15] to give a
regular sequence for S/JG.

Proposition 8.5. The set L forms a regular sequence for S/JG.

Proof. Let λq ∈ C1(G,R) be the integral, non-negative weight functional defined in Definition 7.12.
Any element of L is of the form g = ye − yev with e+ = (ev)+ = v for some v ∈ V (G). Since
λq(e) = λq(ev) depends only on v by the construction in Proposition 7.11, we obtain inλq

(g) = g

and g̃ = g. Therefore {inλq
(g) : g ∈ L} = L which is a regular sequence on S/ inλq

(JG) = S/Oq
G by

Proposition 8.3. So we may apply [Eis95, Proposition 15.15] to conclude that L is a (S/JG)-regular
sequence. �

Remark 8.6. It follows from [Sta96, p.35] and Proposition 10.1 that L also forms a (partial) l.s.o.p.
for S/JG.

9. IG from JG and M
q
G from O

q
G

A common and powerful technique in the theory of divisors on graphs and chip-firing games is
to relate divisors to orientations. Given an orientation, one can form a divisor from the associated
indegrees or outdegrees (see, e.g., [BLS91, Theorem 2.3], [BN07, Theorem 3.3], [HP12], [MS14],
[ABKS14], and [Moh15]). Algebraically, there is a good justification for the strength of this method
related to the regular sequences studied in §8.

Recall that R = K[x] denotes the polynomial ring in n variables {xv : v ∈ V (G)} and S = K[y]
denotes the polynomial ring in 2m variables {ye : e ∈ E(G)}. There is a canonical surjective
K-algebra homomorphism

φ : S → R

defined by sending ye to xe+ for all e ∈ E(G). The kernel of this map is precisely the ideal generated
by L (defined in (23)), which we denote by a = 〈L〉. The induced isomorphism

φ̄ : S/a
∼
−→ R

is the “algebraic indegree map”, and it relates the ideals IG and M
q
G to the ideals JG and O

q
G.

Proposition 9.1.

(i) φ̄(JG + a) = IG. In other words φ̄ induces an isomorphism (S/JG)⊗S (S/a) ∼= R/IG.
(ii) φ̄(Oq

G + a) = M
q
G. In other words φ̄ induces an isomorphism (S/Oq

G)⊗S (S/a) ∼= R/Mq
G.

Proof. The map φ̄ sends
∏

e∈E(Ac,A) ye+a to xD(Ac,A). So the proposition immediately follows from

examining the generating sets described in Theorem 3.3 and in Proposition 7.8. �
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Remark 9.2. The variables ye with e+ = q do not appear in the support of any element of Oq
G (see

Theorem 7.8(iii)). Likewise, the variable xq does not appear in the support of any element of Mq
G

(see Theorem 3.3). Therefore we also have an isomorphism φ̄(Oq
G + 〈L(q)〉) = φ̄(Oq

G + a+ 〈yeq〉)
∼=

M
q
G + 〈xq〉. In other words (S/Oq

G)⊗S (S/〈L(q)〉) ∼= R̃/Mq
G, where R̃ = K[{xv}v 6=q].

Theorem 9.3.

(i) The polyhedral cell complex Bq,c
G (equivalently, Aq,c

G ) supports a Div(G)-graded (and Z-
graded) minimal free resolution for M

q
G.

(ii) The quotient labeled cell complex Del(L(G))/L(G) supports a Pic(G)-graded (and Z-graded)
minimal free resolution for IG.

(iii) The Z-graded Betti diagrams of JG, IG, O
q
G, and M

q
G coincide.

Proof. (i) By Theorem 7.2, we know that Bq,c
G gives a C1(G,Z)-graded minimal free resolution for

S/Oq
G. The same statement is true if we replace Bq,c

G with Aq,c
G by the discussion in §7.5. By

[Eis05, Lemma 3.15] (see also [BH93, Proposition 1.1.5]) and Proposition 8.3, if we replace all the
labels mF with mF +a, we obtain a minimal cellular free resolution for (S/Oq

G)/⊗S (S/a) ∼= R/Mq
G

(see Proposition 9.1(ii)). Alternatively we could replace all labels mF with mF + 〈L(q)〉 to obtain

a minimal cellular free resolution for (S/Oq
G) ⊗S (S/〈L(q)〉) ∼= R̃/Mq

G. The new labels are easily
seen to be Div(G) and Z-homogeneous, and the resulting minimal free resolution is Div(G) and
Z-graded.

(ii) follows similarly from Theorem 7.4, [Eis05, Lemma 3.15], Proposition 8.5, and Proposi-
tion 9.1(i).

(iii) The fact that the (ungraded) Betti numbers of JG and O
q
G coincide follows from Lemma 7.7.

By the labeling compatibility described in Lemma 7.6 the Z-graded Betti numbers of JG and O
q
G

coincide as well. Since all elements of L are homogeneous (linear) forms, the relabeling of cells
described above (in passing from JG to IG and from O

q
G to M

q
G) does not change the Z-degrees.

Therefore the Z-graded Betti diagrams of all four ideals coincide. �

Remark 9.4. Recall from Remark 6.3 that the number of i-dimensional cells in Bq,c
G is equal to the

number of acyclic partial orientations of G with (i + 2) (connected) components having unique
source at q. So one immediately obtains a combinatorial description of the (ungraded) Betti
numbers in terms of acyclic partial orientations. This interpretation for the Betti numbers of IG
was conjectured in [PPW13] and was proved in [MS14] and [MSW15].

Example 9.5. We return to Examples 7.9. We described the sequence L(q) in Example 8.4. For
simplicity we let xi = xui

. By sending {ye2 , ye1} to x1, {yē1 , ye5 , ye3} to x2, and {yē3 , ye4} to x3,
O

q
G in (20) is sent to the ideal

〈x22x3, x1x
2
2, x

2
3, x

3
2, x

2
1, x1x2x3〉

which is precisely M
q
G = in<q(IG) by Theorem 3.3(ii). The minimal cellular free resolution of

M
q
G is obtained from the minimal cellular free resolution of Oq

G (described in Examples 7.9) by
“relabeling” (i.e. by replacing each ye with xe+). We first relabel the complex in Figure 8 to obtain
Figure 12. The resulting labeled complex gives a minimal free resolution for Mq

G which is precisely
the minimal free resolution of Oq

G “relabeled”. Concretely, we first extend the labels m′(pi) on the
vertices to the whole of Bq

G by the least common multiple construction. For example,

mE2 = yē1yē3ye4ye5 7→ m′
E2

= x22x
2
3 ,

mE4 = yē1ye2ye4ye5 7→ m′
E4

= x1x
2
2x3 ,
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mE5 = ye2yē3ye4ye5 7→ m′
E5

= x1x2x
2
3 ,

mE6 = ye2ye3ye4ye5 7→ m′
E6

= x1x
2
2x3 ,

mF2 = yē1ye2yē3ye4ye5 7→ m′
F2

= x1x
2
2x

2
3 .

The minimal resolution of Mq
G is as follows.

0 →
4⊕

i=1

R(−m′
Fi
)

∂′
2−→

9⊕

i=1

R(−m′
Ei
)

∂′
1−→

6⊕

i=1

R(−m′
pi
)

∂′
0−→ R ։ R/Mq

G .

Assume [[F ]] denotes the generator of R(−m′
F ). The homogenized differential operator of the cell

complex (∂′0, ∂
′
1, ∂

′
2) is as described in (12). For example:

∂′0([[pi]]) = m′
pi

= m′(pi) ,

∂′1([[E6]]) = x2[[p4]]− x3[[p4]] ,

∂′2([[F2]]) = x1[[E2]]− x3[[E4]] + x2[[E5]] .

Although JG and IG have the same Betti table as O
q
G and M

q
G, it is not possible to read

the minimal free resolutions for JG or IG directly from Bq
G; one really needs to consider the cell

decomposition of L(G)R/L(G) or of Div0R(G)/Prin(G).

s

x22x3

s

x1x
2
2

s

x23

s

x32

sx21

s

x1x2x3 ❍❍❍❍❍❍❍❍❍❍❍❍

❍❍❍❍❍❍❍❍

✛

He3

✻
He2

❅❅❘

He4

❅
❅❅

❅
❅❅✡✡✢

He5

✡✡✣
He1

◗
◗
◗◗

�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

��

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅❅

❅
❅
❅❅

p1 p2
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Figure 12. The relabeled bounded complex Bq,c
G giving a minimal free resolution of Mq

G

Remark 9.6. There is an isometry between the principal lattice (Prin(G), 〈·, ·〉en) and the cut lattice
(L(G), 〈·, ·〉) (Remark 5.13). So the Delaunay decompositions Del(Prin(G)) and Del(L(G)) are
combinatorially equivalent (compare Figure 2 with Figure 9) and the relabeling of cells in Del(L(G))
described above correspond to the labels that were given to cells of Del(Prin(G)) in §5.2. Therefore
the resolution of IG described in Theorem 5.11 coincides with the resolution of IG obtained from
the resolution of JG in Theorem 7.4 by “relabeling” as in Theorem 9.3. For example, the resolution
of IG described in Example 5.12 can alternatively be obtained from the resolution of JG described
in Example 7.10.

It is straightforward to give an alternate proof for Theorem 5.10 and Theorem 5.11 using these
observations.
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10. Some consequences of our main results

10.1. Cohen-Macaulayness. For a polynomial ring S, a term order < and an ideal I ⊂ S,
it is known that S/I is Cohen-Macaulay if and only if S/ in<(I) is Cohen-Macaulay (see, e.g.,
[HH11, Corollary 3.3.5]).

Proposition 10.1. The modules S/Oq
G, R/M

q
G, S/JG, and R/IG are all Cohen-Macaulay.

Proof. By Proposition 8.1(iv) we have that S/Oq
G is Cohen-Macaulay. For R/Mq

G, first observe
that by Theorem 3.3 the variable xq does not appear in the support of any of the given monomial
generators of Mq

G. This implies that depth(R/Mq
G) ≥ 1. On the other hand, dim(R/Mq

G) = 1.
Therefore Mq

G is also Cohen-Macaulay. Since in≺q(JG) = O
q
G and in<q (IG) = M

q
G, we immediately

conclude that S/JG and R/IG are also Cohen-Macaulay. �

We remark that the Cohen-Macaulay property of R/Mq
G and R/IG also follows from the results

of [MS14] and [MSW15].

10.2. Multiplicities. For a finitely generated (graded) module M of dimension d > 0 over a poly-
nomial ring, the multiplicity of M is defined to be the leading coefficient of the Hilbert polynomial
of M (i.e. the polynomial defining i 7→ dim(Mi) for i >> 0). We will denote this quantity by e(M).
Since the Hilbert polynomial is completely determined by the Betti table (see, e.g., [MS05, The-
orem 8.20 and Proposition 8.23]), the multiplicity is also determined by the Betti table. The
following result easily follows.

Theorem 10.2.

e(S/Oq
G) = e(S/JG) = e(R/Mq

G) = e(R/IG) = κ(G) ,

where κ(G) denotes the number of spanning trees of G.

Proof. All these ideals have the same Betti table and hence the same multiplicity. It suffices to
compute the multiplicity of S/Oq

G = K[Σq
G]. By Proposition 8.1(ii), we have

O
q
G =

⋂

T

PT ,

the intersection being over all spanning trees of G. By Proposition 8.1(iii), we have dim(S/Oq
G) =

2m− n+ 1. Also, for each spanning tree T we have PT = 〈ye : e ∈ OT 〉 and therefore

dim(S/PT ) = 2m− n+ 1 and e(S/PT ) = 1 .

In this situation (see, e.g., [GP08, Lemma 5.3.11]) we have

e(S/Oq
G) =

∑

T

e(S/PT ) ,

the sum being over all spanning trees of G. �

For R/IG, the multiplicity was recently computed in [OPVV14] using a different method. There
are other related ideals with the same multiplicity (see e.g. [KMS15, Proposition 3.7]).

10.3. Alexander dual of M
q
G and cocellular free resolution. In [MS13], Riemann-Roch theory

for graphs is linked to Alexander duality for the ideal Mq
G. Recall that M

q
G ⊂ R̃ = K[{xv}v 6=q] (see

Remark 9.2). Here we quickly study the Alexander dual of Mq
G and use Theorem 7.2 to obtain its

minimal cocellular free resolution.

We define the divisor
a =

∑

v∈V (G)

(deg(v))(v) .

It follows from Theorem 3.3 and Theorem 9.3(i) that:
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(i) M
q
G is generated in degree preceding a.

(ii) M
q
G + 〈{x

a(v)+1
v }v 6=q〉 = M

q
G; this this is because for each v 6= q in V (G), the star of the

vertex v forms a cut and therefore x
deg(v)
v ∈ M

q
G.

(iii) All face labels in the labeled cell complex Bq,c
G resolving M

q
G (as in Theorem 9.3(i)) divide

xa+1. In fact a stronger statement is true; all vertex labels divide xa.

Consider the cellular complex Bq,c
G with labels m′

F for cells F as in the proof of Theorem 9.3(i).
Relabel each cell F with xa+1/m′

F . For simplicity, let us call Bq,c
G with its new labels D. Let D≤a

denote the subcomplex consisting of cells with labels dividing a. Let (Mq
G)

[a] denote the Alexander
dual of Mq

G with respect to a ([MS05, Definition 5.20]). In this setting, [MS05, Theorem 5.37] gives
the following result:

Proposition 10.3. The polyhedral complex (DG)≤a supports a minimal (cocellular) resolution for

the ideal (Mq
G)

[a].

This observation has been made (independently) in [DS14].

10.4. Graphic matroid ideal and h-vectors. Let S̃ = K[z] denote the polynomial ring in m
variables {ze : e ∈ E(G)}. There is a surjective K-algebra homomorphism

π : S → S̃

defined by sending both ye and yē to ze. The kernel of this map is the ideal generated by

K = {ye − yē : e ∈ O}

for some fixed orientation O. We will denote this kernel by b = 〈K〉. We get an induced isomorphism

π̃ : S/b → S̃ .

We define the (unoriented) graphic matroid ideal MatG ⊂ S̃ to be the image of Oq
G + b under this

isomorphism. Concretely, MatG is obtained from O
q
G by identifying the variables ye and yē and

replacing them with ze.

Lemma 10.4.

(i) K forms a regular sequence for S/Oq
G.

(ii) Bq,c
G (equivalently Aq,c

G ) supports a minimal free resolution for MatG.
(iii) MatG is independent of the choice of q.
(iv) The Z-graded Betti diagram of MatG coincides with the Z-graded Betti diagrams of JG,

IG, O
q
G, and M

q
G.

Proof. (i) follows from [NPS02, Corollary 2.7]. Alternatively, by the explicit description of the facets
in Proposition 8.1(i), the restriction of each linear form in K spans a vector space of dimension 1
and therefore the result follows from [Sta96, Lemma 2.4].

(ii) follows from (i) and [Eis05, Lemma 3.15].
There are several ways to see (iii). For example, it follows from (ii) and the discussion in §7.5

(e.g. Proposition 7.8) that MatG is minimally generated by monomials

(24) {
∏

e∈E(Ac,A)

ze : A ( V (G), G[A] and G[Ac] are connected}

where E(Ac, A) denotes the set of (unoriented) edges connecting G[A] and G[Ac]. This description
is independent of the choice of the base vertex q.

(iv) follows from Theorem 9.3 and [Eis05, Lemma 3.15]. �
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It is a fact, essentially due to Hilbert, that the Hilbert series of a module is completely determined
by its graded Betti table and its dimension. The numerator of the Hilbert series is called the h-
polynomial. Its coefficients are obtained from the Betti numbers as an alternating sum and they
form the h-vector (see, e.g, [MS05, Theorem 8.20 and Theorem 8.23]). So we immediately obtain,
from Lemma 10.4(iv), the following result.

Lemma 10.5. The h-vectors of S/JG, R/IG, S/O
q
G, R/M

q
G, and S̃/MatG coincide.

The ideal MatG has been extensively studied in the literature (see, e.g., [Sta77], [Sta96, Sec-
tion III.3], [NPS02, Section 3]). A more well known presentation of this ideal is by its prime
decomposition; for each spanning tree T of G, let IT = 〈ze : e ∈ T 〉. The minimal prime decompo-
sition of MatG is

(25) MatG =
⋂

T

IT ,

the intersection being over all spanning trees of G. This can be proved the same way as Proposi-
tion 8.1(ii) (or can be deduced from it).

From (25) it is evident that MatG is the Stanley-Reisner ideal of the simplicial complex Σ of
independent sets of the cographic matroid (i.e. the matroid whose bases are the complements of

spanning trees of G). Therefore the h-polynomial of S̃/MatG is precisely T (1, y), where T (x, y) is
the Tutte polynomial of the graph ([Bjö92, page 236]). By Lemma 10.5, we obtain the following
result:

Corollary 10.6. T (1, y) is the h-polynomial for S/JG, R/IG, S/O
q
G, R/M

q
G, and S̃/MatG.

Postnikov and Shapiro in [PS04] prove this result for R̃/Mq
G (equivalently, for R/Mq

G) by a
combinatorial argument. Merino’s work in [ML97] proves this result for R/IG using deletion-
contraction methods. A bijective proof of Merino’s result was later presented in [CLB03] (see
also [BS13]). We believe that Corollary 10.6 gives a unified and more conceptual proof of these
results. Moreover, Merino’s theorem (stating that T (1, y) is the generating function for the number
of q-reduced divisors in various degrees) is a straightforward consequence of Corollary 10.6 and
Theorem 3.3.

Remark 10.7. It follows from our descriptions of the minimal free resolutions that the Castelnuovo-
Mumford regularity of S/JG, R/IG, S/Oq

G, R/Mq
G, and S̃/MatG is equal to g = m − n + 1.

Moreover, g is equal to the projective dimension of the squarefree Alexander dual of Oq
G (called

spanning tree ideal of G in the literature). The minimal free resolution of this ideal is explicitly
given in [Moh15], and the degenerations from the toric ideals associated to graphs to the spanning
tree ideals are studied in [KMS15] in the context of statistical models.
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