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Toric degenerations of Grassmannians from
matching fields

Fatemeh Mohammadi & Kristin Shaw

Abstract We study the algebraic combinatorics of monomial degenerations of Plücker forms
which is governed by matching fields in the sense of Sturmfels and Zelevinsky. We provide
a necessary condition for a matching field to yield a SAGBI basis of the Plücker algebra for
3-planes in n-space. When the ideal associated to the matching field is quadratically generated
this condition is both necessary and sufficient. Finally, we describe a family of matching fields,
called 2-block diagonal, whose ideals are quadratically generated. These matching fields produce
a new family of toric degenerations of Gr(3, n).

1. Introduction
In this note we offer a new family of toric degenerations of Gr(3, n) arising from
monomial degenerations of the Plücker forms. Toric degenerations provide a useful
tool to study algebraic varieties. This is mainly because toric geometry is inextricably
linked to the theory of polytopes and polyhedral fans. Combinatorial invariants of
polytopes provide geometric information about toric varieties, and many of these
invariants are preserved under degeneration. Here, a toric degeneration is a Gröbner
degeneration such that the corresponding initial ideal is binomial and prime, see
Definition 2.12.

For general Grassmannians and flag varieties there are prototypic examples of toric
degenerations which are related to Young tableaux, Gelfand–Cetlin integrable sys-
tems, and their polytopes [1, 17]. In the case of the Grassmannian Gr(2, n), there are
many other toric degenerations generalizing this primary example. Namely, any triva-
lent tree with n number of labelled leaves gives rise to a toric degeneration of Gr(2, n).
The toric variety is governed by the isomorphism type of the trivalent tree [25, 29].
These degenerations are related to bending systems on polygon spaces and integrable
systems [15, 21].

The Gelfand–Cetlin degenerations arise from monomial initial degenerations of the
Plücker forms. These degenerations arise from the general theory of Khovanskii bases,
and in fact come from SAGBI bases for the Plücker algebra, see Definition 2.13. The
leading term of each Plücker form in this case is the monomial of the determinant
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corresponding to the identity permutation. The new degenerations of Gr(3, n) pro-
vided here depend only on the underlying coherent matching field. A matching field
is a choice of permutation for each Plücker form, see Definitions 2.2 and 2.8. A co-
herent matching field provides a monomial degeneration of the Plücker forms and are
therefore candidates for SAGBI bases.

To a general matching field, we associate a toric ideal in the polynomial ring K[xij ]
where K is a field. These matching field ideals are most conveniently represented
by matching field tableaux, which we also introduce here. These tableaux generalize
Young tableaux which are usually strictly increasing in the columns. Columns of a
matching field tableau are filled according to the permutation chosen by the match-
ing field. A matching field ideal is the kernel of a monomial map, and hence toric,
see Equation (2). Moreover, it is generated by binomials which come from pairs of
matching field tableaux whose contents are row-wise equal. The Plücker forms are a
SAGBI basis of the Plücker algebra with respect to a matching field if and only if
its matching field ideal is equal to the initial ideal of the corresponding degeneration
of the Plücker ideal, see Theorem 2.14 or [26, Theorem 11.4]. Therefore, obtaining a
SAGBI basis from a matching field is equivalent to obtaining a toric degeneration of
the Grassmannian.

From a weight matrix that produces a monomial degeneration of the Plücker forms,
we can produce a tropical hyperplane arrangement, and the matching field can be
determined from this geometric picture [10]. Using the associated tropical hyperplane
arrangement, we introduce the notion of hexagonal matching fields of size 3× 6 and
non-hexagonal matching fields, see Definition 3.6. This leads to our first theorem.

Theorem 1.1. If a 3 × n matching field produces a toric degeneration of Gr(3, n),
then it is non-hexgonal.

We also define submatching fields by using natural maps between Grassmannians
of different sizes, see Definition 3.15. This allows us to extend Theorem 1.1 to higher
Grassmannians.

Theorem 1.2. A k×n matching field that has a hexagonal submatching field does not
produce a toric degeneration of the Grassmannian Gr(k, n).

If a 3× n matching field ideal is quadratically generated, then the necessary con-
dition from Theorem 1.1 is also sufficient.

Theorem 1.3. A 3× n matching field whose ideal is quadratically generated provides
a toric degeneration of Gr(3, n) if and only if it is non-hexagonal.

Describing a generating set of toric ideals is a well-studied and difficult problem.
In particular, proving that an ideal is quadratically generated is quite a difficult task.
There are some combinatorial criteria for the toric ideals arising from graphs, matroids
and simplicial complexes to be generated by quadratics, see e.g. [28, 22, 8, 18]. Such
a criterion guarantees that the associated Koszul algebra is normal.

Not all coherent matching field ideals are quadratically generated. The first exam-
ples that we know of are of size 3×8. However, we introduce a class of matching fields
of size 3×n, called block diagonal, which are quadratically generated when they have
two blocks.

Theorem 1.4. The ideal of a 2-block diagonal matching field of size 3×n is quadrat-
ically generated.

Corollary 1.5. A 2-block diagonal matching field produces a toric degeneration of the
Grassmannian Gr(3, n). Equivalently, when k = 3 the Plücker forms are a Khovanskii
basis with respect to any weight matrix arising from a 2-block diagonal matching field.
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Before reviewing the contents of the paper we would like to comment on some
related works. Rietsch and Williams describe families of toric degenerations of Grass-
mannians arising from plabic graphs [23]. In [4], Bossinger et. al. show that already in
the case of Gr(3, 6) there is a discrepancy between the toric degenerations arising on
one hand from plabic graphs and on the other hand from top dimensional cones of the
tropical Grassmannian. The toric degenerations studied here are a subset of the latter
type coming from top dimensional cones of the tropical Grassmannian associated to
Stiefel tropical linear spaces, see [10] for more details. In general, the combinatorial
connection between matching fields and plabic graphs is still unknown. Kaveh and
Manon provide a general connection between tropical geometry and Khovanskii bases
(and hence toric degenerations) in [16]. This question has been studied in [5] for small
flag varieties. Here, we are interested in determining when the Plücker forms are a
SAGBI basis, equivalently when the associated initial degeneration of the Plücker ideal
is toric. The results presented here offer a family of examples that fit into the general
framework of Kaveh and Manon and which are linked to combinatorics. Lastly, we
would like to remark that toric degenerations of flag varieties and Schubert varieties
arising from matching fields is another open direction of research at the present time.

We finish the introduction with an outline of the paper. Section 2 fixes nota-
tions for the Grassmannians and introduces matching fields. In Section 3, we review
the connection between matching fields and tropical hyperplane arrangements. Here
we introduce the notion of hexagonal matching fields and prove Theorems 1.1, 1.2,
and 1.3. Block diagonal matching fields are introduced in Section 4 and the proof of
Theorem 1.4 is also given here. The final section defines matching field polytopes and
provides some examples as well as remarks about their combinatorics.

2. Preliminaries
Throughout we set [n] := {1, . . . , n} and we use Ik,n to denote the collection of subsets
of [n] of size k. The symmetric group on k elements is denoted by Sk. We also fix a
field K.

The Grassmannian Gr(k, n) is the space of all k dimensional linear subspaces of
Kn. A point in Gr(k, n) can be represented by a k × n matrix with entries in K. Let
X = (xij) be a k × n matrix of indeterminates. For a subset I = {i1, . . . , ik} ∈ Ik,n,
let XI denote the k × k submatrix with the column indices i1, . . . , ik. The Plücker
forms (or Plücker coordinates) are PI = det(XI) for I ∈ Ik,n. These forms determine
the Plücker embedding from Gr(k, n) into P(n

k)−1.
In the following, we consider the polynomial ring K[xij ] on the variables xij with

1 6 i 6 k and 1 6 j 6 n and the polynomial ring K[PI ] on the Plücker variables with
|I| = k.

Definition 2.1. The Plücker ideal Ik,n is defined as the kernel of the map

(1)
ψ : K[PI ]→ K[xij ]

PI 7→ det(XI).
The Plücker algebra is the finitely generated algebra K[PI ]/Ik,n denoted by Ak,n.

Definition 2.2. A k × n matching field is a map Λ : Ik,n → Sk.

Given a k × n matching field Λ and a subset I = {i1, . . . , ik} ∈ Ik,n we consider
the set to be ordered by i1 < · · · < ik. We think of the permutation σ = Λ(I) as
inducing a new ordering on the elements of I where the position of is is determined
by the value of σ(s). It is convenient to represent the variable PI as a k × 1 tableau
where (σ(r), 1) contains ir.

Algebraic Combinatorics, Vol. 2 #6 (2019) 1111
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Definition 2.3. Let Λ be a size k×n matching field. A Λ-tableau is a tableau of size
k×d for any d > 1 with entries in [n], so that the entries in each column are pairwise
distinct and filled according to the order determined by Λ.

Example 2.4. The diagonal matching field assigns to each subset I ∈ Ik,n the identity
permutation [27, Example 1.3]. Therefore, a Λ-tableau is a rectangular tableau of size
k × d filled with entries in [n] such that the columns are strictly increasing.

Example 2.5. A k × n matching field is called pointed if there exists i1, . . . , ik ∈ [n]
such that if is ∈ I for some 1 6 s 6 k then Λ(I)(s) = s [27, Example 1.4]. In other
words, if is ∈ I for some 1 6 s 6 k then the column corresponding to PI contains is
in row s. Below are the tableaux representing PI for a pointed matching field of size
3× 5 which is otherwise filled diagonally:

1
2
3
,

1
2
4
,

1
2
5
,

1
4
3
,

1
5
3
,

4
2
3
,

5
2
3
,

4
2
5
.

Generalising this, we say that a size k × n matching field Λ is pointed on S ⊂ [n] if
for all i ∈ S there exists a ji such that i always appears in row ji of any Λ matching
field tableau. Here S need not have size equal to k.

A monomial ΠI∈API can be represented by a Λ-tableau of size k×|A| given by the
concatenation of the columns with content I filled according to the matching field.
To each monomial ΠI∈API we associate a sign εA = ±1 determined by the signature
of the permutations Λ(I) for all I ∈ A. More precisely,

εA = ΠI∈A sgn(Λ(I)).

Definition 2.6. Given a matching field Λ, the matching field ideal IΛ ⊂ K[xij ] is
generated by the binomial relations

(2) εAΠI∈API − εBΠJ∈BPJ

if and only if the contents of the corresponding Λ-tableau of size k× |A| are row-wise
equal.

To I ∈ Ik,n with σ = Λ(I) we associate the monomial

xΛ(I) := xσ(1)i1xσ(2)i2 · · ·xσ(k)ik .

A k × n matching field Λ, gives a map of polynomial rings

(3)
φΛ : K[PI ]→ K[xij ]

PI 7→ sgn(Λ(I))xΛ(I).

Proposition 2.7. Given a matching field Λ, the matching field ideal IΛ is the kernel
of the monomial map φΛ from Equation (3).

Definition 2.8. A k × n matching field Λ is coherent if there exists a k × n matrix
M with entries in R such that for every I ∈ Ik,n the initial form of the Plücker form
PI ∈ K[xij ], the sum of all terms inMI of lowest weight, is inM (PI) = sgn(Λ(I))xΛ(I).
In this case, we say that the matrix M induces the matching field Λ.

Example 2.9. When k = 2 all coherent matching fields are induced by a total ordering
on the set [n], see [27, Proposition 1.11].
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Example 2.10. The diagonal matching field of size k×n is coherent [27, Example 1.3].
For example, this matching field is induced by a k×n weight matrix M whose i, j-th
entry is (i− 1)(n− j). Therefore, we have,

M =


0 0 0 · · · 0

n− 1 · · · 2 1 0
2(n− 1) · · · 4 2 0
· · · · · · · · · · · ·

(k − 1)(n− 1) · · · 2(k − 1) k − 1 0

 .
For any size k subset I = {i1, i2, . . . , ik} with i1 < i2 < · · · < ik the unique term in
the determinant of MI with the lowest weight is the diagonal term.

Example 2.11. Recall the notion of a pointed matching field from Example 2.5. If a
pointed matching field is coherent then it can be induced by a weight matrix M such
that for all 1 6 s 6 k the is-th column has entries M >> 0 except for in row s where
the entry can be chosen to be 0.

Definition 2.12. Let I be an ideal in the polynomial ring S = K[y1, . . . , ym] and let
w ∈ Rm. The initial degeneration with respect to w is called toric if the initial ideal
inw(I) is prime and binomial.

Definition 2.13 ([24]). The set of Plücker forms {PI}I∈Ik,n
⊂ K[xij ] is a SAGBI

basis for the Plücker algebra Ak,n with respect to a weight matrix M if for all I ∈ Ik,n
the initial form inM (PI) is a monomial and inwM

(Ak,n) = K[inM (PI)]I∈Ik,n
. Here

wM is the weight vector on the variables PI induced by the weight matrix M ∈ Rk×n
on the variables xij.

The following theorem intimately relates SAGBI bases and toric initial degenera-
tions. It is phrased in the context of matching fields and Grassmannians.

Theorem 2.14 ([26, Theorem 11.4]). The set of Plücker forms {PI}I∈Ik,n
⊂ K[xij ]

is a SAGBI basis with respect to a weight matrix M if and only if inwM
(Ik,n) = IΛ,

where wM is the weight vector on the variables PI induced byM and Λ is the matching
field induced by M .

3. Coherent matching fields and tropical hyperplane
arrangements

In [10], Fink and Rincón provide a link between tropical hyperplane arrangements
and coherent matching fields (and more generally multi-matching fields). We will
summarize the facts needed here and refer the reader to [10] for more details. In [10],
tropical hyperplane arrangements are described in tropical projective space. We do
not require this level of generality here, therefore we simplify our considerations in
the following summary.

Let M = (aij) ∈ Rk×n be a weight matrix. For each 1 6 j 6 n consider the
piecewise linear function Fj : Rk−1 → R, given by
(4) Fj(x) = max{a1j , a2j + x2, . . . , akj + xk}.

In Rk−1 let Σ be the k − 2 dimensional polyhedral fan whose top dimensional
cones are spanned by subsets of size k − 2 of the vectors v1, . . . , vk, where v1 =
(1, . . . , 1) and vi = −ei−1 otherwise. For k = 3 this amounts to three rays in the
directions (1, 1), (−1, 0) and (0,−1) emanating from the origin. If a1j = 0, then
the non-differentiability locus of Fj is the fan Σ ⊂ Rk−1 translated by the vector
(−a2j , . . . ,−akj) ∈ Rk−1. Any coherent matching field is induced by a weight matrix
M whose first row consists of zeros. So we may assume that a1j = 0 for all j.

Algebraic Combinatorics, Vol. 2 #6 (2019) 1113
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Remark 3.1. In this paper we purposely use the minimum conventions for tropical
arithmetic and the maximum conventions for tropical geometry. We do this to avoid
the appearance of many minus signs when passing from the algebra of weight matrices
to the geometry of tropical hyperplane arrangements.

2
1

3

2

1

3

Figure 1. Two arrangements of three tropical lines in R2. On the
left the configuration intersects properly on the right the three lines
are concurrent.

A k × n weight matrix M ∈ Rk×n, whose first row consists of zeros, produces
an arrangement of tropical hyperplanes A = {H1, . . . ,Hn} defined by the functions
F1, . . . , Fn, whose coefficients come from M . To each k − 1 dimensional cell τ of the
complement of the arrangement A in Rk−1 there is an associated covector cτ ∈ P[n]k,
where P[n] denotes the power set of n. The i-th entry of the covector cτ is a subset
Si ⊂ [n] corresponding to the collection of hyperplanes in A which intersect the ray
x + tvi for x ∈ τ◦ and t > 0. Here the vectors vi = −ei−1 for i = 2, . . . , k − 1 and
v1 = (1, . . . , 1). The coarse covector of a cell is simply the vector which records the
sizes of the subsets of the covector.

Definition 3.2. A collection of k hyperplanes H1, . . . ,Hk in Rk−1 is said to inter-
sect properly if ∩ki=1Hi = ∅. Equivalently, a collection of k hyperplanes H1, . . . ,Hk

in Rk−1 intersects properly if and only if there is a k − 1 dimensional cell in the
complement of ∪ki=1Hi whose coarse covector is (1, . . . , 1).

Example 3.3. Consider the two 3× 3 weight matrices,

M1 =

0 0 0
4 2 8
2 3 4

 , M2 =

0 0 0
6 4 2
4 6 2

 .
The matrix M1 corresponds to tropical lines intersecting properly in Figure 1 (left)
and the matrix M2 corresponds to concurrent tropical lines in Figure 1 (right).

The following proposition can be extracted from [7, Proposition 2.4] and [10, Propo-
sitions 5.11 and 5.12].

Proposition 3.4. Let M be a k × n weight matrix such that for any size k subset
I ⊂ [n], the collection of hyperplanes {Hi}i∈I intersects properly. Then

inM (PI) = sgn(Λ(I))x1c1x2c2 . . . xkck

where (c1, . . . , ck) is the covector of the unique cell with coarse covector (1, 1, . . . , 1)
and sgn(Λ(I)) is the sign of the permutation i 7→ σ(i), where cσ(1) < · · · < cσ(k).

Corollary 3.5. A k × n weight matrix provides a monomial degeneration of the
Plücker forms if and only if for any size k subset I ⊂ [n] the collection of tropical
hyperplanes {Hi}i∈I intersects properly.
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Next we compare the matching field ideal IΛ with the initial degeneration of the
Plücker ideal Ik,n with respect to the weights on the Plücker forms induced by Λ.

Definition 3.6. A coherent matching field Λ: I3,6 → S3 is hexagonal if it is the
matching field of a tropical hyperplane arrangement whose unique cell with coarse
covector (2, 2, 2) is a hexagon. A matching field Λ: I3,n → S3 is non-hexagonal if for
every size six subset J the matching field Λ|J is not hexagonal.

For a homogeneous ideal I we let Id denote the elements of degree d.

Proposition 3.7. LetM ∈ R3×n be a weight matrix such that inM (PI) is a monomial
for all Plücker forms PI . Then (IΛ)2 = (inwM

(I3,n))2 if and only if the matching field
is non-hexagonal.

Before giving the proof we pause to illustrate the condition presented in the above
proposition with two examples.

6

3

5

1

2

4

6

3

5

1

2

4

1

4

6

2

3

5

Figure 2. On the left a tropical hyperplane arrangement yielding
the diagonal matching field of size 3×6, in the middle an arrangement
yielding the block diagonal matching field BΛ2,4 and on the right a
block diagonal matching field BΛ3,3. See Section 4 for the definition
of a block diagonal matching field. In each arrangement, the (2, 2, 2)-
cell is shaded in red.

Example 3.8 (Diagonal matching field). The associated hyperplane arrangement of
the following weight matrix is depicted in Figure 2 (left).

M =

 0 0 0 0 0 0
6 5 4 3 2 1
11 9 7 5 3 1


The initial terms are x1ix2jx3k for 1 6 i < j < k 6 6. The following Λ-tableaux

indicate the row-wise equal tableaux which give all the binomial relations in IΛ of
multi-degree eJ for |J | = 6,

1
3
5

2
4
6

=
1
3
6

2
4
5

=
1
4
5

2
3
6

=
1
4
6

2
3
5
,

1
2
5

3
4
6

=
1
2
6

3
4
5
,

1
3
4

2
5
6

=
1
5
6

2
3
4
.

Notice that in each of the equivalence classes of the quadratic monomials listed
above the first monomial listed is a semi-standard tableaux, i.e. all rows are in weakly
increasing order and the columns are strictly increasing and it is the only semi-
standard tableaux of that equivalence class. The other quadratic terms of multi-degree
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(1, . . . , 1) are
1
2
3

4
5
6

and
1
2
4

3
5
6
.

Notice that they are independent in K[PI ].

6

3

5

1

4

2

Figure 3. The tropical hyperplane arrangement from the weight
matrix in Example 3.9 on the left and its dual regular subdivision on
the 2-dimensional simplex of size six. The region shaded in red is the
(2, 2, 2)-cell and is bounded by the lines L1, L5, and L3.

Example 3.9 (Hexagonal matching field). The associated hyperplane arrangement of
the following weight matrix

M =

0 0 0 0 0 0
6 1 5 9 2 7
5 8 2 7 3 1


is depicted in Figure 3 (left). The initial terms of the Plücker forms are:

123, 421, 125, 126, 413, 153, 136, 451, 416, 156, 423, 523, 326, 425, 426,
526, 453, 436, 356, and 456,

where by ijk we mean x1ix2jx3k. The following Λ-tableaux indicate the row-wise
equal tableaux which give all the binomial relations in IΛ of the form eJ for |J | = 6.

1
2
3

4
5
6

=
4
2
3

1
5
6

=
1
5
3

4
2
6

=
1
2
6

4
5
3
,

5
2
3

4
1
6

=
5
2
6

4
1
3
,

4
2
5

1
3
6

=
4
3
6

1
2
5
,

4
2
1

3
5
6

=
4
5
1

3
2
6
.

Notice that compared with Example 3.8, there is an additional binomial relation
listed.

Example 3.10. The matching field ideal in Example 3.8 is generated by 35 binomials
and it is equal to the initial ideal of I3,n. However, in Example 3.9, the ideal IΛ is
generated by 36 binomials. More precisely, the relation P523P416 − P526P413 is in IΛ,
but not in the initial ideal inwM

(I3,n).
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Lemma 3.11. LetM be a 3×n weight matrix providing a monomial degeneration of the
Plücker forms. Then for any size six subset J ⊂ [n], the (2, 2, 2)-cell of A|J determines
the initial terms of exactly eight Plücker forms. Moreover, these eight initial terms
come in four pairs which produce quadratic relations in IΛ.

Proof. Suppose that the covector of the (2, 2, 2)-cell is (S1, S2, S3) where |Si| = 2 for
all i. Then choosing si ∈ Si for i = 1, 2, 3 we obtain inM (Ps1s2s3) = ±x1s1x2s2x3s3 by
Proposition 3.4. Therefore the first claim follows.

For simplicity we can assume that J = {1, . . . , 6} and that

(S1, S2, S3) = ({1, 4}, {2, 5}, {3, 6}),

as in the case for the hexagon cell in Figure 3. Then the following Λ-tableaux are all
row-wise equal and give rise to three binomial relations in IΛ,

1
2
3

4
5
6

=
4
2
3

1
5
6

=
1
5
3

4
2
6

=
1
2
6

4
5
3
.

This completes the proof. �

Proof of Proposition 3.7. Suppose we have an arrangement of 6 tropical lines in R2.
The cell which has coarse covector (2, 2, 2) is a hexagon if and only if the edges with
endpoints (2, 2, 2)−(σ(1), σ(2), σ(3)) for all σ ∈ S3 are present in the dual subdivision
of 6∆2. See the right hand side of Figure 3.

Suppose without loss of generality that the covector of the hexagon cell is
({1, 4}, {2, 5}, {3, 6}), as it is for example in Figure 3. If the cell dual to (2, 2, 2) is a
hexagon, then up to the appropriate labeling there are covectors,

({1, 4}, {2}, {3, 5, 6}) and ({1, 4}, {2, 3, 5}, {6}).

From this pair of covectors we obtain the quadratic relation
1
2
5

4
3
6

=
4
2
5

1
3
6

in the ideal IΛ.
There are four other lattice points that are endpoints of the six segments of the

subdivision dual to the hexagon. They come in two pairs formed by the points which
are on the same line. For each of these pairs we obtain a new independent quadratic
relation in IΛ as above.

Taking into account the quadratic relations from Lemma 3.11 as well, we can
conclude that the dimension of the e1 + · · · + e6 graded piece of the coordinate ring
of the toric variety IΛ is at most four. However, the dimension of this piece for the
coordinate ring of I3,n and hence also of inwM

(I3,n) is five. This dimension is given
by the number of semi-standard tableaux with content {1, 2, 3, 4, 5, 6} of size 3× 2.

For the other direction, we again consider the multi-grading on the coordinate ring
of IΛ. The degree two part of this coordinate ring has elements which have two types
with respect to the multi-grading. They are either eJ or eJ + ei − ej for i, j ∈ J and
i 6= j where J is a size six subset. The dimension of the eJ + ei − ej piece of the
coordinate ring is of the correct dimension for any J and i, j. This follows from [25,
Corollary 4.4].

Finally, we consider the terms with eJ multi-grading for a J with |J | = 6. If Λ is not
hexagonal, then the dual subdivision of a tropical hyperplane arrangement inducing
Λ must be missing one of the possible edges with endpoint (2, 2) ∈ 6∆. Proceeding
case by case, we can verify the statement of the proposition. �
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Proof of Theorem 1.3. Assume that IΛ is quadratically generated. If the matching
field Λ is hexagonal, then by Proposition 3.7 there is a size six subset J ⊂ [n] such
that (IΛ)2 6= (inwM

(I3,n))2. However, by [26, Theorem 11.4], equality of the ideals IΛ
and inwM

(I3,n) is a necessary and sufficient condition for the Plücker forms to be a
SAGBI basis. This proves one direction.

For the other direction, we compare the ideals inwM
(I) and IΛ, and then we com-

plete the proof by applying Theorem 2.14. Since IΛ is quadratically generated, there
are two types of generators determined by their multi-degrees. There are generators
of type eJ or of type eJ + ei − ej where |J | = 6 and i, j ∈ J . We show that the
generators of IΛ are included in (inwM

(I3,n))2 by considering each type.
Firstly, the generators of type eJ +ei−ej can be reduced to the case of Gr(2, 5). In

this case the statement holds since the Plücker forms are a SAGBI basis with respect
to any coherent matching field Λ′ : I2,5 → S2 [25].

For generators of type eJ where |J | = 6, we reduce to the situation of Gr(3, 6)
and matching fields of the form Λ′ : I3,6 → S3. Combining Proposition 3.7 and [26,
Theorem 11.4] shows that the Plücker forms are a SAGBI basis with respect to any of
these coherent matching fields. Therefore the subduction algorithm terminates with a
constant for any generator of type eJ when the restriction to J is not hexagonal. By
again applying [26, Corollary 11.5] we prove the other direction and our theorem. �

Following Theorem 1.3, we are interested in determining when a 3 × n matching
field ideal is quadratically generated.

Example 3.12. The ideal of the diagonal matching field from Example 2.4 is quadrat-
ically generated, see [20, Theorem 14.16].

Example 3.13. Consider the 2 × 6 matching field Λ that assigns the transposition
(12) for sets I ∈ {{1, 4}, {2, 3}, {3, 6}, {4, 5}} and the identity permutation otherwise.
A minimal generator of the matching field ideal is

1
2

3
4

5
6 = 1

6
3
2

5
4 .

Therefore, this matching field ideal is not quadratically generated.

Remark 3.14. The matching field of the non-quadratically generated ideal in Exam-
ple 3.13 is not coherent since it does not arise from a total ordering on the set [n]. Our
smallest known examples of coherent matching fields whose ideals are not quadrati-
cally generated are of size 3× 8 and were found via a random search. In our random
checks, approximately 0.03% of coherent matching fields of size 3× 8 produced ideals
which were not quadratically generated. A random search of coherent matching fields
of size 3× 7 produced no non-quadratically generated matching field ideals.

Before presenting the proof of Theorem 1.2 we introduce the notion of submatching
field. Before defining hexagonal submatching fields, recall the notion of a matching
field being pointed on a subset S of [n] from Example 2.5.

Definition 3.15. Given a matching field Λ and two subsets S ⊂ T ⊂ [n], the sub-
matching field Λ|T−S,T of Λ is obtained by restricting Λ to subsets I of [n] with
S ⊂ I ⊂ T and restricting the matching to I\S.

The submatching field Λ|T−S,T is hexagonal if it is a size 3×6 hexagonal matching
field and Λ is pointed on S ⊂ [n].

Proof of Theorem 1.2. Let Λ|T−S,T be a hexagonal submatching field of Λ. Consider
the graded piece of the Plücker algebra consisting of degree two monomials in the
variables PI such that S ⊂ I ⊂ T . This vector space has the same dimension as the
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degree two graded piece of A3,6, and this is five dimensional. However, the analogous
graded piece of K[xij ]/IΛ is only four dimensional since IΛ consists of the list of
binomials from Example 3.9. The graded Hilbert functions of Ak,n and K[xij ]/IΛ are
not equal and therefore the matching field Λ does not produce a toric degeneration
of Gr(k, n). �

4. Block diagonal matching fields
In this section we describe a family of coherent matching fields of size 3 × n whose
toric ideals are generated in degree two and therefore yield toric degenerations and
SAGBI bases of Gr(3, n).

Consider a sequence of positive numbers a1, a2, . . . , ar so that
∑r
i=1 ai = n. For

1 6 s 6 r set Is = {αs−1 + 1, αs−1 + 2, . . . , αs}, where αs =
∑s
i=1 ai and α0 = 0.

Definition 4.1. The block diagonal matching field of size 3 × n corresponding to a
collection a = {a1, . . . , ar} satisfying

∑r
i=1 ai = n is denoted BΛa. This matching

field is defined by:
(1) BΛa(I) = id if |I ∩ Is| > 2 where s is the minimal t such that It ∩ I 6= ∅;
(2) BΛa(I) = (12) if |I ∩ Is| = 1 where s is the minimal t such that It ∩ I 6= ∅.

A 2-block diagonal matching field is a block diagonal matching field with r = 2.

Example 4.2. Consider the case when a1 = 1 and a2 = n − 1. Then I1 = {1} and
I2 = {2, . . . , n}. Then BΛ1,n−1(I) = id if and only if I ⊂ I2. Otherwise, we have
1 ∈ I and 1 appears in the second row of column tableau corresponding to I. The
matching field BΛ1,n−1 is isomorphic to a pointed matching field Λ. This isomorphism
is given by acting on [n] by the transposition (12). In fact, the Λ-tableaux are then
the PBW-tableaux from [9].

Remark 4.3. Block diagonal matching fields can be generalised to size k × n. The
ideals of all 2-block diagonal matching fields are also quadratically generated. This can
be proved in the same way as Theorem 1.4. However, we cannot prove analogues of
Corollary 1.5 for Grassmannians Gr(k, n) for k > 3 since in these cases quadratic gen-
eration of the initial ideals does not directly imply that the initial degeneration is toric.

In general there is a Z4-grading given by the number of elements of type I1 in
different rows of a tableau. A 3×d tableau T is of degree (α, β, γ, d−α−β−γ) where

(1) α = |{Content of row 3 of T} ∩ I1| = |{I ∈ T : |I ∩ I1| = 3}|
(2) β = |{Content of row 1 of T} ∩ I1| − α = |{I ∈ T : |I ∩ I1| = 2}|
(3) γ = |{Content of row 2 of T} ∩ I1| − α− β = |{I ∈ T : |I ∩ I1| = 1}|

For two Λ-tableaux T, T ′ which are row-wise equal, these numbers are equal. This
implies the following lemma.

Lemma 4.4. The ideal of a block diagonal matching field has a Z4-grading given by
(α, β, γ, d− α− β − γ) from above.

Proof of Theorem 1.4. Consider a binomial relation obtained from two Λ-tableaux
T and T ′ of size 3 × d where d > 2 whose contents are row-wise equal. By applying
quadratic changes to the tableaux (changes involving only two columns) we will reduce
the degree of this relation thus proving that the matching field ideal is quadratically
generated.

Given a Λ-tableau T , arrange the columns so that the first columns are those for
which the matching field assigns the identity permutation and to the last column the
matching field assigns the transposition (12). Let C denote the subtableau formed by
the first columns and let D denote the subtableau formed by the last columns.
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The tableaux C and D can each be put into semi-standard format. In other words,
we can rearrange both C and D so that all rows are in weakly increasing order, and
the columns of C are strictly increasing, whereas the columns of D are arranged so
that the first and second entries are permuted from the diagonal order.

Now given a binomial relation obtained from two Λ-tableaux T and T ′. We assume
that T (respectively T ′) is organized as a pair of subtableaux C, D (respectively
C ′, D′) satisfying the requirements described above. If the first columns of T and
T ′ are equal, then we can cancel them from the binomial relation and it is not a
minimal generator. We let I and I ′ denote the first columns of T and T ′, respectively.
Otherwise by Lemma 4.4 the matching field relations are homogeneous with respect
to the Z4-grading and so |I ∩ I1| = |I ′ ∩ I1|.

Case 1. Suppose that |I ∩ I1| = |I ′ ∩ I1| = 3. In this case, the columns I and I ′ could
only differ in the second row. Suppose the entries of the second row of I and I ′ are
j and j′, respectively. We can also assume that j < j′. Then there must be a j in
the second row of the tableaux D′ since the contents are row-wise equal and C ′ is in
weakly increasing order. Then swap the positions of j and j′ in the second row of T ′
so that the first columns of T and T ′ now agree. Notice that we can exchange the
position of j with that of j′ since j, j′ ∈ I1 and j′ was originally in the second row of
a column whose the first and third entries were in I2.

Case 2. Suppose that |I ∩ I1| = |I ′ ∩ I1| = 2. In this case, the columns I and I ′ may
only differ in the second and third rows but not in the first. Assume the column I is
i, j, r and the column I ′ is i, j′, r′. If j < j′ then just as above there must be a j in
the second row of D′. We have that j < r′ since j is in the first block and r′ is in the
second block, so we can swap the positions of j and j′ in the second row of T ′.

Assume now that j = j′, without loss of generality we can suppose that r < r′.
Then there is an r in the third row of D′. Suppose that the column containing r is
s, t, r. Then we can swap the positions of r and r′ since t < r < r′ and we can place
r in the last row. Now the two first terms are equal and hence, the binomial is not a
minimal generator.

Case 3. Suppose that |I ∩ I1| = |I ′ ∩ I1| = 1. In this case, the tableaux C and C ′ are
empty. Then the first two columns must be equal since T = D and T ′ = D′ and they
are both in (transposed) semi-standard form.

Case 4. Suppose that |I ∩ I1| = |I ′ ∩ I1| = 0. In this case, the entries of I and I ′ can
only differ in the first and third row. Suppose that the column I is r, s, t and that the
column I ′ is r′, s, t′. Therefore r, r′ < s < t, t′ and we can assume that r′ < r. Then
there is a column in T ′ with r in the first row and we can swap r and r′ in the first
row of T ′. Thus we may assume that r = r′ and without loss of generality that t < t′.
Then there must be a t somewhere in the last row of D′ and we can again swap t and
t′ so that the columns are now equal. This completes the proof. �

Example 4.5. Here we provide examples of the manipulations of the matching field
tableaux used throughout the proof of Theorem 1.4. The examples we consider are in
Gr(3, 8) with the block matching field given by I1 = {1, 2, 3, 4} and I2 = {5, 6, 7, 8}.

The following is an example of a tableau in the semi-standard form as described
in the beginning of the proof of Theorem 1.4,

T =

1 2 5 5 6
3 3 6 2 4
4 7 8 7 8︸ ︷︷ ︸ ︸︷︷︸

C D

.
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The three columns on the left belong to C, since the entries are in ascending order and
the two columns on the right belong to D. The degree of T with respect to the grading
described in Lemma 4.4 (1, 1, 2, 1) which can be seen by calculating α = |{(1, 3, 4)}|,
β = |{(2, 3, 7)}| and γ = {(5, 2, 7), (6, 4, 8)}.

As an example of Case 1 in the proof, consider the tableaux

T =

1 3 5
2 4 3
4 7 6︸︷︷︸ ︸︷︷︸
C D

, T ′ =

1 3 5
3 4 2
4 6 7︸︷︷︸ ︸︷︷︸
C D

.

Then we may swap the entries 2 and 3 in the second row of T ′ to obtain a row-wise
equal tableau whose left most column is (1, 2, 4).

As an example of a tableau manipulation performed in Case 2 of the theorem
consider the tableaux,

T =

1 5 6
2 1 3
8 6 7︸︷︷︸ ︸︷︷︸
C D

, T ′ =

1 5 6
3 1 2
6 7 8︸︷︷︸ ︸︷︷︸
C D

.

First we can swap entries 2 and 3 in the second row of T ′ to obtain tableau whose
left most column is (1, 2, 6). Then we swap entries 8 and 6 in the third row of T to
obtain a tableau whose left most column is also (1, 2, 6). Note that we cannot swap
entries 6 and 8 in the third row of T ′.

We omit examples of Case 3 in the proof since no swaps occur in this case. For an
example of the manipulations made in Case 4, we consider instead the block matching
field I1 = {1, 2} and I2 = {3, 4, 5, 6, 7, 8}. Consider then the two tableaux,

T =

4 5 3 6
5 7 1 2
6 8 5 7︸︷︷︸ ︸︷︷︸
C D

, T ′ =

3 6 4 5
5 7 1 2
7 8 5 6︸︷︷︸ ︸︷︷︸
C D

.

First we swap entries 3 and 4 in the first row of T ′ to obtain a tableau whose left
most column is (4, 5, 7). Then we may swap entries 6 and 7 in the last row of T ′ to
obtain a tableau whose left most column is (4, 5, 6) which is identical to the left most
column of T . Note that we can perform the swap of entries 3 and 4 in T however we
cannot swap entries 6 and 7 in T .

5. Matching field polytopes
From a k × n matching field we can define a polytope in Rn×k. We expect these
polytopes to be of interest in geometric combinatorics. Let ei,j denote coordinates on
Rn×k. Given a matching field Λ, for each I ∈ Ik,n we set vI,Λ :=

∑
i∈I ei,Λ(I)(i).

Definition 5.1. Given a k×n matching field Λ the matching field polytope ΠΛ is the
convex hull of the set of points {vI,Λ | I ∈ Ik,n} in Rn×k.

Proposition 5.2. If Λ is a coherent matching field then ΠΛ is the polytope of the
toric variety defined by the binomial ideal IΛ.

Algebraic Combinatorics, Vol. 2 #6 (2019) 1121



Fatemeh Mohammadi & Kristin Shaw

Corollary 5.3. Let Λ be a coherent k × n matching field then
1

[k(n− k)]! vol(ΠΛ) 6 deg Gr(k, n).

Recall that the degree of the Grassmannian is given by the number of standard
Young tableaux of shape λ = (λ1, . . . , λk) with λi = n − k for all i. The number of
standard Young tableaux is given by the hook-length formula

deg Gr(k, n) =
(k(n− k))!

∏
16l6k−1 l!∏

16l6k(n− l)! .

Example 5.4. Let Λ be the hexagonal matching field from Example 3.9. The match-
ing field polytope ΠΛ has Euclidean volume equal to 19

181440 and normalised lattice
volume equal to 38. Whereas the polytope of the diagonal matching field from Exam-
ple 3.8 has volume 1

8640 and normalised lattice volume equal to 42. The degree of the
Grassmannian (3, 6) under the Plücker embedding is 42. Table 1 lists all of the cones
of the tropical Grassmannian coming from matching fields.

Bounded 2-cell Cone of Gr(3,6) f -vector of ΠΛ Z-vol

∅ EEEE does not arise from a matching field 42
Triangle EEEG (20, 123, 386, 728, 882, 700, 358, 111, 18) 42
Diagonal EEFF(a) (20, 122, 372, 670, 766, 571, 276, 83, 14) 42

Parallelogram EEFF(b) (20, 122, 376, 690, 807, 615, 302, 91, 15) 42
4-gon EEFG (20, 122, 378, 701, 832, 645, 322, 98, 16) 42

Pentagon EFFG (20, 122, 376, 690, 807, 615, 302, 91, 15) 42
Hexagon FFFGG (20, 120, 361, 641, 720, 526, 250, 75, 13) 38

Table 1. The f -vectors of the polytopes of the different possible
initial degenerations of the Plücker embedding of the Grassmannian
Gr(3, 6). The description via the bounded 2-dimensional cell in the
tropical hyperplane arrangement is from the classification in [11].
The first row is a toric degeneration which does not arise from a
monomial degeneration of the Plücker forms, hence it does not come
from a matching field.

Four of the matching fields in Table 1 arise as 2-block diagonal matching fields.
Namely, the toric degeneration named “diagonal” comes from diagonal matching field
(as well as the isomorphic block diagonal matching field BΛ5,1). The toric degenera-
tion named “parallelogram” comes from the block diagonal matching field BΛ1,5. The
“4-gon” comes from the matching field BΛ4,2 and the “pentagon” comes from BΛ2,4.
The other rows do not arise from block diagonal matching fields.
Remark 5.5. We say that two matching fields Λ and Λ′ are isomorphic if there exists
an element Sk × Sn sending one to the other. In Table 1, the toric degenerations of
Gr(3, 6) from the tropical hyperplane arrangements with bounded cells a parallelo-
gram and a pentagon produce isomorphic toric varieties. Already from the table we
see that the corresponding polytopes have the same f -vector. However, it can be ver-
ified that the matching fields are not isomorphic. Therefore, the isomorphism type of
the toric variety of a matching field does not determine the matching field. Also, the
toric degeneration coming from the diagonal matching field is isomorphic to the one
obtained from the non-isomorphic 2-block diagonal matching field BΛ3,3.
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