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Abstract

We examine the reverse-mathematical strength of several theorems in classical and effective
model theory concerning first-order theories and their number of models. We prove that, among
these, most are equivalent to one of the familiar systems RCA0, WKL0, or ACA0. We are led
to a purely model-theoretic statement that implies WKL0 but refutes ACA0 over RCA0.

1 Introduction

Simpson [22, Ch. II.8 and IV.3] laid the foundation for the study of first-order logic from the
point of view of reverse mathematics. There he provided suitable definitions of objects such as
theories and models in the language of second-order arithmetic, and proved versions of several
important theorems, including the Soundness and Completeness Theorems, in the weak axiom
system RCA0. In [22, Ch. IX.4] he began the study of model theory proper by formalizing
and proving the existence theorem for recursively saturated models in the system WKL0. This
work was motivated, however, by its applications to metamathematical conservation theorems.
Recently, there has been a surge interest in the reverse mathematics of model theory per se,
and researchers such as Harris, Hirschfeldt, Lange, Shore, and Slaman have undertaken a
systematic study using Simpson’s framework.

While much of this work has fallen into the familiar pattern of placing lists of theorems
in correspondence with one of several known axiom systems—most often one of the Big Five
isolated by Friedman [5, 6]—it has also enriched the field by suggesting totally new axiom
systems. For example, Hirschfeldt, Shore, and Slaman [13], in studying the classical existence
theorem for atomic models, isolated the new reverse-mathematical principles AMT and Π0

1G.
Hirschfeldt, Lange, and Shore [12], drawing on work in effective model theory by Goncharov [8]
and Peretyat′kin [19], have studied various versions of the classical existence theorem for
homogeneous models, finding further connections with AMT and with induction principles

∗Thanks to Uri Andrews and Asher Kach for helpful discussions on some directions of the Ryll-Nardzewski
Theorem. Thanks to Richard Shore for suggesting the topic, and for his many comments on early drafts. And
thanks to the anonymous referee for many careful corrections. The author was partially supported by NSF grants
DMS-0852811 and DMS-1161175.
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such as BΣ0
2 and IΣ0

2, and discovering a new hierarchy of principles Π0
nGA between IΣ0

n and
IΣ0

n+1 but incomparable with BΣ0
n+1.

Given the known connections between reverse and effective mathematics (as described
in, for example, Friedman, Simpson, and Smith [7]), it should come as no surprise that the
reverse-mathematical approach to model theory also has strong connections with effective
model theory. On the one hand, many known results and techniques from the effective setting
can be formalized in RCA0. On the other, the fact that many other results cannot be formalized
in RCA0 suggests new questions in effective mathematics.

It has typically been the case in effective model theory that when a particular object is
being studied its complexity is tightly controlled, while that of other objects varies freely. An
example that comes up frequently is the isomorphism relation: two models are isomorphic if
there is an isomorphism between them. The Turing degree of the isomorphism is not normally
considered, unless it is the main object of interest, as in the study of recursive stability or
relative categoricity. Because it is unnatural in reverse mathematics to treat a model or theory
differently from an isomorphism—all second-order objects obey the same basic set-existence
axioms—our approach here must be more uniform. When interpreted in ω-models, our results
over RCA0 can be viewed as correspondingly uniform results in effective mathematics.

In this paper we address, within various subsystems of second-order arithmetic, the follow-
ing two questions of basic model theory.

Q1. Under what conditions is a complete theory ℵ0-categorical?

Q2. For what finite values n may we have a complete theory with exactly n models up to
isomorphism?

We assume familiarity with reverse mathematics and with model theory. Subsections §1.1
and §1.2 describe some of our less standard notation, and provide a few useful lemmas in
reverse mathematics and in model theory, respectively. Subsections §2.1 and §2.2 summarise
our answers to the questions Q1 and Q2, respectively. Most of the proofs are deferred to the
remainder of the paper, namely §§3–7. Each section among §§3–7 is built around a partic-
ular construction or technique, and is split into four parts: first, a brief description of the
construction and its goals; second, a subsection giving the construction itself; third, a ‘verifi-
cation’ subsection where basic properties are checked (such as completeness and consistency of
a particular theory); and, finally, an ‘applications’ subsection where the construction is used
to prove claims from §2.1 and §2.2.

Suitable machinery is introduced and developed as needed, including a WKL0 version of
the Henkin model construction in §5 and an RCA0 version of the Fräıssé limit construction in
§6. Unless otherwise stated, all reasoning is in RCA0. A theorem’s statement may be tagged
with the axiom system in which it is being proved, such as RCA0, ACA0, or ‘Classical’ when
reasoning in ZFC.

1.1 Notation for reverse mathematics

Most of our reverse-mathematical notation follows Simpson [22]. We use M and S to denote
the first- and second-order parts, respectively, of a model (M,S,+M , ·M , 0M , 1M , <M ) of RCA0.
We typically assume, without mention, that we are working inside such a model; when we do
mention the model we omit the operation symbols, writing simply (M,S). We say that a set
X ∈ S is finite if it has an upper bound in M . We use the symbol {0, 1}<M or 2<M to denote
the set of all finite binary strings in S. We use IΣ0

1 to denote the axiom scheme of induction
for Σ0

1 formulas with parameters from M and S. We also use the following notation.

Definition 1.1. Fix a set Z ∈ S in a model (M,S) of RCA0.
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(i) Given a sequence of sets X0, . . . , Xn−1 ∈ S, where n ∈M may be nonstandard, we define
the coded tuple 〈X0, . . . , Xn−1〉 as the predicate:

〈X0, . . . , Xn−1〉(〈i, k〉) ⇐⇒ k ∈ Xi.

Given a sequence of sets X0, X1, . . . ∈ S with indices ranging over all of M , we define the
coded sequence 〈X0, X1, . . .〉 similarly:

〈X0, X1, . . .〉(〈i, k〉) ⇐⇒ k ∈ Xi.

We sometimes treat coded tuples and coded sequences as sets, for example by writing
〈i, k〉 ∈ 〈X0, X1, . . .〉. Depending on how the sets Xi are presented, a coded tuple or
coded sequence may or may not to be an element of S. In this paper, we usually point
out when it is.

(ii) Given a set Z ∈ S and a number s ∈M , let KZ
s = {e < s : ΦZ

e,s(e) converges}, where Φe

is the e-th Turing functional. The Turing jump enumeration for Z is the coded sequence
〈KZ

0 ,K
Z
1 , . . .〉. Note that the Turing jump enumeration exists in S by ∆0

1 comprehension.
We let KZ

at s denote the set difference KZ
s −KZ

s−1.

(iii) The Turing jump of Z, written KZ , is the Σ0
1 predicate

KZ(n) ⇐⇒ (∃s)[n ∈ KZ
s ].

We often write n ∈ KZ to mean KZ(n).

The following lemma shows how the Turing jump fits into reverse mathematics.

Lemma 1.2 (RCA0). Let (M,S) be a model of RCA0. Then (M,S) is a model of ACA0 if and
only if KZ is an element of S for every Z ∈ S.

Proof. See Simpson [22, Ex. VIII.1.12].

Lemma 1.2 allows us to obtain reversals from a principle P to ACA0 by coding 〈KZ
0 ,K

Z
1 , . . .〉

into an object and arguing that, if P holds, then we can use ∆0
1 comprehension to recover KZ .

We use this method frequently, for example, in the proofs of Proposition 4.5 and Proposi-
tion 6.11.

1.2 Background and notation for model theory

All definitions are in the language of second-order arithmetic. Our definitions for basic model-
theoretic terms such as language, formula, sentence, structure, model, consistent, and satisfiable
are mostly as given in Simpson [22, Ch. II.8] and in Hirschfeldt, Lange, and Shore [12]. All
structures have countably infinite domain unless otherwise specified. Given a language L, an
L-theory is any set of L-sentences. A complete L-theory is a theory containing either φ or ¬φ
for every L-sentence φ. Two structures A and B are isomorphic if there is an isomorphism
between them. When we are working in a model (M,S) of RCA0, the isomorphism must be
an element of S. A theory is ℵ0-categorical if all of its models are isomorphic.

We shall need the following theorem.

Theorem 1.3 (RCA0. Weak Completeness Theorem). Every deductively-closed consistent
theory is satisfiable. In particular, every complete consistent theory is satisfiable, and every
deductively-closed consistent theory can be extended to a complete consistent theory.
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Originally due to Gödel, the Weak Completeness Theorem 1.3 was formalized in effective
mathematics by Morley and translated to reverse mathematics by Simpson [22, Thm II.8.4].
Weak is in the name to contrast this with the stronger statement, not provable in RCA0, which
does not include deductively-closed as a hypothesis:

Theorem 1.4. The statement, ‘Every consistent theory is satisfiable’ is equivalent to WKL0

over RCA0.

Proof. See Simpson [22, Thm IV.3.3].

One of the Weak Completeness Theorem’s immediate consequences is the following theorem
of  Los and Vaught.

Theorem 1.5. (i) (Classical.  Los, Vaught.) If T is an L-theory with only one countable
model, then for every L-sentence φ, either T ` φ or T ` ¬φ.

(ii) (RCA0.) Every deductively-closed theory with exactly one model up to isomorphism is
complete.

(iii) The statement of part (i) is equivalent to WKL0 over RCA0.

Proof. A proof of part (i) can be found in standard texts such as Marker [14]. Part (ii) and
the forward direction of part (iii) are implicit in the proof given in Simpson [22, Ch. II.8] of
the Weak Completeness Theorem 1.3.

For the reverse direction of (iii), assume that ¬WKL0 holds. By Theorem 1.4, there is a
language L0 and a consistent L0-theory T0 with no models. We may assume L0 is a relational
language. Let L1 = {≤} be the language of partial orders, and let T1 be the theory of dense
linear orders without endpoints, which is ℵ0-categorical in RCA0. Define a new language
L = L0 ∪ L1 ∪ {R}, where R is a new 0-ary relation, and an L-theory T by:

T = {¬R→ φ : φ ∈ T0} ∪ {¬R→ all relations in L1 are empty}
∪{R→ φ : φ ∈ T1} ∪ {R→ all relations in L0 are empty}

This T has exactly one model, but neither proves nor refutes the sentence R.

Thus, in the system WKL0, if we wish to show that a theory is complete, it is enough to
construct a model and show that it is unique up to isomorphism. This is, in general, not
enough in the weaker system RCA0. Instead, we use a suitably effective notion of quantifier
elimination.

Definition 1.6. (i) We say a theory T has quantifier elimination if, for every L-formula
φ(x̄), there is a quantifier-free L-formula ψ(x̄)—possibly one of the formal logical symbols
Tr or Fa—such that T ` φ(x̄)↔ ψ(x̄).

(ii) We say a theory T has effective quantifier elimination if there is a function which takes
as input any L-formula φ(x̄) and returns an L-formula ψ(x̄)—possibly Tr or Fa—such
that T ` φ(x̄)↔ ψ(x̄).

Any theory with effective quantifier elimination has quantifier elimination, and, in a rela-
tional language, any theory with quantifier elimination is complete. The following lemma, used
in the work of Hirschfeldt, Shore, and Slaman [13], is our main tool for proving completeness
of a theory.

Lemma 1.7 (RCA0). Suppose T is a theory and there is a function which takes as input an
L-formula θ(x̄, y) which is a conjunction of literals and returns a quantifier-free L-formula
ψ(x̄) such that T ` (∃y)θ(x̄, y)↔ ψ(x̄). Then T has effective quantifier elimination.
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Proof. Suppose such a function f exists, and fix any L-formula φ(x̄). We show how to produce
a ψ such that T ` φ(x̄) ↔ ψ(x̄). Suppose first that φ(x̄) is of the form (∃y)θ(x̄, y), where
θ is quantifier-free. The usual proof of De Morgan’s laws may be carried out in RCA0, so
we may assume that θ is in disjunctive normal form, say θ0(x̄, y) ∨ · · · ∨ θn−1(x̄, y). Since
RCA0 is also strong enough to prove the distributivity of ∃ over ∨, we have T ` φ(x̄) ↔
(∃y)θ0(x̄, y)∨· · ·∨(∃y)θn−1(x̄, y). We may now use the provided function f to to find quantifier-
free formulas ψ0(x̄), . . . , ψn−1(x̄) such that T ` (∃y)θi(x̄, y) ↔ ψi(x̄) for all i < n. Then
T ` φ(x̄)↔ ψ0(x̄) ∨ · · · ∨ ψn−1(x̄), so ψ0 ∨ · · · ∨ ψn−1 is the desired ψ.

Now suppose that φ(x̄) is a formula of arbitrary quantifier depth n > 0. Using the above
procedure on the deepest quantifiers of φ, we can find a formula which is provably equivalent
to φ and has quantifier depth n − 1. Iterate this procedure using ∆0

1 recursion to get a
quantifier-free ψ such that T ` φ(x̄)↔ ψ(x̄).

The following definitions are of central importance to the study of ℵ0-categorical theories.

Definition 1.8. Fix a natural number n, a language L, and a complete, consistent L-theory
T .

(i) An n-type of T is a set p(x0, . . . , xn−1) of formulas in variables taken from {x0, . . . , xn−1}
such that T ⊆ p(x0, . . . , xn−1) and, if c0, . . . , cn−1 are new constants not in L, then the
set

{φ(ci0 , . . . , cik−1
) : φ(xi0 , . . . , xik−1

) ∈ p(x0, . . . , xn−1)}

is a complete, consistent L∪{c0, . . . , cn}-theory. We sometimes abbreviate p(x0, . . . , xn−1)
to p(x̄), or just p. We often omit n and call p(x̄) simply a type.

(ii) A type p(x̄) of T is principal if there is a formula φ(x̄) ∈ p(x̄) such that T ` φ(x̄)→ ψ(x̄)
for all ψ(x̄) ∈ p(x̄). Otherwise, p(x̄) is nonprincipal.

(iii) Suppose that A is a model of T and p(x̄) is a type. We say that A realizes p(x̄) if there
is a tuple ā from its domain such that A |= φ(ā) for every φ(x̄) ∈ p(x̄). Otherwise, we
say that A omits p(x̄).

An RCA0 version of the classical Type Omitting Theorem can be proved by an easy Henkin-
style construction.

Theorem 1.9 (Classical and RCA0. Type Omitting Theorem). Let T be a complete theory
and p(x̄) a nonprincipal type. There is a model of T that omits p(x̄).

Proof. See Harizanov [9, Theorem 6.1].

Much more intricate type-omitting theorems can be found in the work of Millar [17] in
effective mathematics. Some of these have been studied in reverse mathematics by Hirschfeldt,
Shore, and Slaman [13].

2 Summary of results

The main results of this paper fall into two classes, listed separately in §2.1 and §2.2. Section
§2.1 deals with a theorem of Ryll-Nardzewski, Engeler, and Svenonius about ℵ0-categorical
theories and their n-types. Section §2.2 deals with theorems about theories, not necessarily
ℵ0-categorical, that have only finitely many models.1

1These are sometimes called Ehrenfeucht theories.

5



2.1 Reverse mathematics and ℵ0-categorical theories

Recall our first question:

Q1. Under what conditions is a complete theory T ℵ0-categorical?

In the classical setting, Engeler [4], Ryll-Nardzewski [20], and Svenonius [23] independently
discovered a number of properties characterising ℵ0-categorical theories. Many such properties
are now known. We focus on the following five:

Theorem 2.1 (Classical. Engeler; Ryll-Nardzewski; Svenonius). Let T be a
complete, consistent theory, and let M denote the true natural numbers ω. The following
are equivalent:

(S1) There is a function f : M → M such that, for all n ∈ M , T has exactly f(n) distinct
n-types.

(S2) There is a function f : M → M such that, for all n ∈ M , T has no more than f(n)
distinct n-types.

(S3) T has only finitely many n-types, for each n ∈M .

(S4) T is ℵ0-categorical.

(S5) All types of T are principal.

Our approach to the question Q1 is to explore the reverse-mathematical strength of The-
orem 2.1, allowing nonstandard M . In other words, we replace Q1 with the more specific
question:

Q1′. What is the strength over RCA0 of each implication (Si→ Sj)?

It is simple to check that the classical proofs of equivalence for principles (S1)–(S5), as found
in standard texts such as Marker [14], all work in ACA0. Over RCA0, each implication therefore
lies somewhere between RCA0 and ACA0.

The following table summarizes our results. Each implication (Si→ Sj) is equivalent to the
principle named in the cell in row (Si) and column (Sj); tautologies of the form (Si→ Si) are
greyed out; and any other blank cell means ‘unknown’. Each of these equivalences is justified
in one of Theorem 2.2, Theorem 2.3, and Theorem 2.4 below.

(S1) (S2) (S3) (S4) (S5)

(S1) RCA0 RCA0 RCA0 RCA0

(S2) ACA0 RCA0 ACA0 RCA0

(S3) ACA0 ACA0 ACA0 RCA0

(S4) WKL0 RCA0

(S5) ACA0 ACA0 ACA0 ACA0

We begin by isolating, in Theorem 2.2, the implications that require a detailed proof,
indicating in each case where in this paper the proof can be found. We then list, in The-
orem 2.3, several implications that are easily provable in RCA0, giving in each case a short
argument or reference. All other implications in the table follow by composing implications
from Theorems 2.2 and 2.3, as outlined in the proof of Theorem 2.4.

Theorem 2.2. (i) RCA0 ` (S2→ S1)→ ACA0. (Proposition 6.11)

(ii) RCA0 ` (S2→ S4)→ ACA0. (Corollary 6.14)

(iii) RCA0 ` (S3→ S2)→ ACA0. (Proposition 6.12)

(iv) RCA0 ` (S5→ S3)→ ACA0. (Proposition 4.5)

(v) RCA0 ` (S4→ S3)↔WKL0. (Propositions 3.5 and 5.6)
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(vi) RCA0 ` (S5→ S4)→ ACA0. (Proposition 4.6)

Theorem 2.3. (i) RCA0 ` (S1→ S2)

(ii) RCA0 ` (S2→ S3)

(iii) RCA0 ` (S3→ S5)

(iv) RCA0 ` (S1→ S4)

(v) RCA0 ` (S4→ S5)

Proof. (i) By definition.

(ii) By definition.

(iii) We prove the contrapositive. Suppose that T has a nonprincipal n-type p = {ψ0(x̄), ψ1(x̄), . . .}.
Then there are infinitely many m ∈M such that the formula

θm =
∧
i<m

ψi ∧ ¬ψm

is consistent with T . These θm can be extended uniformly to an infinite coded sequence
of distinct n-types.

(iv) Suppose that the property (S1) holds of T , and we are given two models A |= T and
B |= T . We can construct an isomorphism f : A → B by an effective version of the usual
back-and-forth argument. For an example of an effective back-and-forth argument, see
the proof of Lemma 3.5 below.

(v) We prove the contrapositive. Suppose that T has a nonprincipal type p. By the Weak
Completeness Theorem 1.3, there is a model A of T realizing p; and by the Type Omitting
Theorem 1.9, there is a model B that does not realize p. These A and B cannot be
isomorphic, so T is not ℵ0-categorical.

Theorem 2.4. All equivalences listed in the table are correct.

Proof sketch. We have already proved many of these equivalences in Theorems 2.2 and 2.3.
All others can be deduced from these. For example, we can see that (S1→ S5) holds in RCA0

by combining parts (i), (ii), and (iii) of Theorem 2.3:

RCA0 ` (S1→ S2) ∧ (S2→ S3) ∧ (S3→ S5)

and applying the rules of propositional logic. On the other hand, we can see that (S5 → S1)
implies ACA0 over RCA0 by combining parts (i) and (ii) of Theorem 2.3 with part (iv) of
Theorem 2.2:

RCA0 ` (S1→ S2) ∧ (S2→ S3) ∧ ((S5→ S3)→ ACA0).

The remaining directions are similar.

We can also combine parts of Theorems 2.2 and 2.3 to show that the two remaining di-
rections, (S4 → S1) and (S4 → S2), each imply WKL0 over RCA0. Hence their strength over
RCA0 lies somewhere between WKL0 and ACA0. The question of their precise strength remains
open.

Question 2.5. What is the strength over RCA0 of (S4→ S1) and (S4→ S2)?
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There are other statements besides (S1)–(S5) which are commonly given as pieces of the
Ryll-Nardzewski theorem. Here we list a few statements that are provably equivalent, in RCA0,
to one of (S1)–(S5). Some of these will be useful in the work that follows.

(S3′) For each n there is a number k such that any set {φ0, . . . , φk} of n-ary formulas contains
a pair φi, φj , i 6= j, such that T ` φi ↔ φj .

(S5′) Every model of T is atomic, i.e., realizes only principal types.

(S5′′) There is an atomic model of T realizing all types of T .

Theorem 2.6. (i) RCA0 proves that a complete theory T has only finitely many n-types if
and only if there is a number k such that any set {φ0, . . . , φk} of n-ary formulas contains
a pair φi, φj, i 6= j, such that T ` φi ↔ φj. In particular, RCA0 ` (S3↔ S3′).

(ii) RCA0 ` (S5↔ S5′) and RCA0 ` (S5↔ S5′′).

2.2 Reverse mathematics and theories with finitely many mod-
els

Recall our second question of basic model theory:

Q2. For what finite values n may we have a complete theory with exactly n models up to
isomorphism?

In the classical setting, this question was settled by work of Ehrenfeucht and work of Vaught.
Ehrenfeucht’s idea was to add to a linear order a sequence of constant symbols that together
give a small number of nonprincipal types, which can either be realized or omitted to give a
certain number of nonisomorphic models. This can be carried out in ACA0.

Theorem 2.7 (Classical and ACA0. Ehrenfeucht). For every n ≥ 3, there is a complete theory
T with exactly n models up to isomorphism.

Proof. See Chang and Keisler [1, Ex. 2.3.16].

Vaught’s idea was, given a complete theory T which is not ℵ0-categorical, to use the
nonprincipal type guaranteed by the Ryll-Nardzewski Theorem 2.1 to show that T has at least
three models. This can also be carried out in ACA0:

Theorem 2.8 (Classical and ACA0. Vaught). There is no complete theory with exactly two
models up to isomorphism.

Proof. See Chang and Keisler [1, Thm 2.3.15].

Since RCA0 is enough to prove the Weak Completeness Theorem 1.3 and to prove that some
theories are ℵ0-categorical—for instance, the theory of dense linear orders without endpoints—
we now have a full answer to Q2 over ACA0:

Corollary 2.9 (Classical and ACA0). Fix n ≥ 1. There is a complete theory T with exactly n
models up to isomorphism if and only if n = 1 or n ≥ 3.

It is not immediately clear whether Ehrenfeucht’s and Vaught’s constructions should work
in systems weaker than ACA0. In §7 below, we get a different answer to Q2 in the system
RCA0 +¬WKL0 by adapting a construction of Millar [15] from effective mathematics. Millar’s
idea was to define a complete decidable theory T with a recursive nonprincipal 1-type p(x)
such that there is exactly one decidable model omitting p and exactly n− 1 decidable models
realizing p, both up to classical and up to recursive isomorphism. This construction can be
carried out assuming the failure of Weak König’s Lemma:
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Theorem 2.10 (RCA0 +¬WKL0). For every n ≥ 1, there is a complete theory with exactly n
models up to isomorphism.

Proof. See §7.3 below.

Corollary 2.11. (i) ¬WKL0 implies the statement of Ehrenfeucht’s Theorem 2.7 over RCA0.

(ii) The statement of Vaught’s Theorem 2.8 implies WKL0 over RCA0.

It remains to answer Q2 in the system WKL0 + ¬ACA0. A reasonable first step is to ask
whether the proofs of Corollary 2.9 or Theorem 2.10 can be carried out in this system. The
work in §5 below gives the following:

Theorem 2.12. Over RCA0, the following are equivalent:

(i) (¬WKL0) ∨ ACA0

(ii) There is a complete theory with a nonprincipal type and only finitely many models up to
isomorphism.

(iii) There is a complete theory with infinitely many n-types, for some n, and with only finitely
many models up to isomorphism.

Proof. The direction (i → ii) follows from the use of a nonprincipal type in the proofs of
Theorem 2.7 and Theorem 2.10 in the systems ACA0 and RCA0 + ¬WKL0, respectively. The
direction (ii → iii) is immediate. The final direction (iii → i) follow from Proposition 5.7
below.

Although Theorem 2.12 is interesting in itself—it is the first example of a natural-seeming
statement equivalent to (¬WKL0)∨ACA0 or, in its negation, to WKL0 +¬ACA0—it is a serious
obstacle if we want a full answer to Q2 over RCA0. Since the constructions of Ehrenfeucht,
Vaught, and Millar each require a nonprincipal type, Theorem 2.12 tells us none of them can
be used in the system WKL0 + ¬ACA0. Beyond this, we know very little about the case of
WKL0 + ¬ACA0.

Question 2.13. Fix a model (M,S) of WKL0 + ¬ACA0. Is there a complete theory T ∈ S
with a finite number n ∈M , n ≥ 2 of models? If so, what values of n are possible?

3 Coding an extendable binary tree as a theory.

Our first and most straightforward technique is one that has seen heavy use in effective math-
ematics, and has already been used in reverse mathematics by Hirschfeldt, Shore, and Sla-
man [13] and by Harris [10]. The earliest published use appears to be Ehrenfeucht [3].

Recall that we are working within a model (M,S) of RCA0, and that 2<M denotes the set
of all finite binary strings. We say that a binary tree T ⊆ 2<M is extendable if, for every
σ ∈ T , at least one of σ̂0, σ̂1 is in T . (Here the ̂ symbol denotes concatenation.) Fix an
extendable binary tree T , and let L = (Ui)i∈M be a relational language with each Ui unary.
In §3.1 below we describe a complete L-theory T with the property that, for each σ ∈ 2<M ,

σ is in T if and only if T ` (∃x)

[∧
i<|σ|
σ(i)=0

¬Ui(x) ∧
∧

j<|σ|
σ(j)=1

Uj(x)

]

if and only if T ` (∃≥nx)

[∧
i<|σ|
σ(i)=0

¬Ui(x) ∧
∧

j<|σ|
σ(j)=1

Uj(x)

]
for all n.
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The theory T also has quantifier elimination, so its 1-types are determined entirely by literals
of the form Ui(x) and ¬Ui(x). This gives a natural correspondence between the 1-types of T
and the paths in T , and between the n-types of T and the coded tuples of paths in T .

We give the full construction in §3.1, some basic verification in §3.2, and a direct application
in §3.3. Further applications are obtained in §4, where we examine a specific instance of this
construction.

3.1 Construction.

Let L = (Ui)i∈M be a relational language with every Ui unary. Fix an extendable tree T .
(Extendable is defined at the beginning of this section.) Consider the following axiom schemes:

Ax I. (∃≥nx)

[∧
i<|σ|
σ(i)=0

¬Ui(x) ∧
∧

j<|σ|
σ(j)=1

Uj(x)

]
for every n ∈M and every σ ∈ T .

Ax II. ¬(∃x)

[∧
i<|σ|
σ(i)=0

¬Ui(x) ∧
∧

j<|σ|
σ(j)=1

Uj(x)

]
for every σ 6∈ T .

Let T ∗ be the collection of all sentences in Ax I and II, and let T be the deductive closure
of T ∗. This completes the construction. Although T ∗ is clearly in the second-order part of
(M,S) by ∆0

1 comprehension, it is not immediately evident that T is in S. One of our first
tasks in the next subsection is to prove that it is.

3.2 Verification.

Here we list some important properties of T , such as its existence, completeness, and consis-
tency. The analogous situation in effective mathematics is described in Harizanov [9, Section 7].
Unfortunately, we cannot rely on the proofs there, since in RCA0 we do not have access to
tools such as strong forms of the Completeness Theorem. Instead we give longer, elementary
proofs.

Lemma 3.1 (RCA0). T
∗ has effective quantifier elimination.

Proof. Fix a quantifier-free L-formula φ(x̄, y) which is a conjunction of literals. It suffices
by Lemma 1.7 to show an effective procedure producing a quantifier-free ψ such that T `
ψ ↔ (∃y)φ(x̄, y). By identifying and renaming variables if necessary, we may assume that no
conjunct in φ is of the form y = xi or xi = y.

Check whether there is a σ ∈ T such that |σ| ≥ i and σ(i) = 0 whenever ¬Ui(y) is a
conjunct in φ, and |σ| ≥ i and σ(i) = 1 whenever Ui(y) is in φ. If there is no such σ, then φ
contradicts Ax II, so we may let ψ be the formal logical symbol Fa.

Now suppose there is such a σ, and let ψ be the formula obtained from φ by replacing each
conjunct mentioning y with the propositional symbol Tr. Clearly T ∗ ` (∃y)φ(x̄, y) → ψ(x̄).
We wish to show the converse. Fix n = |x̄| + 1. The following is a version of the Pigeonhole
Principle, and is easily seen to be a tautology:(

ψ(x̄) ∧
∧

k<`<n

yk 6= y`

)
→

(
ψ(x̄) ∧

∨
k<n

∧
i<n−1

yk 6= xi

)
.

As φ has no conjunct of the form y = xi or xi = y, we deduce a second tautology:ψ(x̄) ∧
∧
k<n

∧
` 6=k

yk 6= y` ∧
∧
i<|σ|
σ(i)=0

¬Ui(yk) ∧
∧
j<|σ|
σ(j)=1

Uj(yk)


→ ∨

k<n

φ(x̄, yk).
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This statement, together with the instance of Ax I which uses the n and σ specified above,
gives T ∗ ` ψ(x̄)→ (∃y)φ(x̄, y).

Proposition 3.2 (RCA0). (i) For every L-sentence φ, either φ is provable from T ∗, or ¬φ
is provable from T ∗.

(ii) T is an element of S.

(iii) T is a complete theory. T has quantifier elimination.

Proof. (i) Given an L-sentence φ, use the procedure from Lemma 3.1 to produce a quantifier-
free ψ such that T ∗ ` φ ↔ ψ. Since L is relational, ψ is a propositional combination of
Tr and Fa, and hence provably equivalent either to Tr or to Fa. If Tr, then φ is in T ; if
Fa, then ¬φ is in T .

(ii) If T contains a contradiction, that is, a pair of sentences of the form φ and ¬φ, then T
is the set of all L-sentences, which is certainly in S. Otherwise, by part (i), T contains
exactly one of each pair {φ,¬φ}: we can effectively decide which by searching for the
shortest proof of either T ∗ ` φ or T ∗ ` ¬φ.

(iii) Completeness of T follows from part (i). Quantifier elimination is inherited from T ∗.

Lemma 3.3 (RCA0). T is consistent.

Proof. We build a model A |= T with domain {a0, a1, . . .}, beginning with its quantifier-free
diagram. For each i, k ∈ M , let Rk(ai) hold in A if and only if left(σi)(k) = 1, where left(σi)
is the path in T extending σ which is leftmost with respect to the ordering 0 < 1. Recursively
extend to a full quantifier-free diagram by adding formulas of the form ¬φ and φ ∧ ψ, in the
usual way. It is straightforward to check that this diagram satisfies every axiom in T ∗. (Here
we are using the usual truth-functional semantics, as given in Simpson [22, Ch. II.8].)

Now we extend to a complete diagram for A. Fix any φ(ā), where φ is a formula and ā is a
tuple of elements. We must decide whether to place φ(ā) into the diagram of A. By iterating
the effective construction of Proposition 3.1, obtain a quantifier-free ψ such that T ∗ ` ψ ↔ φ.
Add φ(ā) if and only if ψ(ā) is in the quantifier-free diagram. We claim that this process yields
a complete, consistent diagram. For a contradiction, suppose that it does not. Then there is
a formula φ(ā) which fails to have one of the following properties:

• If φ(ā) = ¬θ(ā), then φ is in the diagram iff θ(ā) is not in the diagram.

• If φ(ā) = θ0(ā) ∧ θ1(ā), then φ(ā) is in the diagram iff both θ0(ā) and θ1(ā) are in the
diagram.

• If φ(ā) = (∀x)θ(ā, x), then φ(ā) is in the diagram iff θ(ā, ai) is in the diagram for every
ai.

But this is impossible by IΣ0
1 and the proof of Proposition 3.1.

Lemma 3.4 (RCA0). (i) The 1-types of T correspond to paths in T in the following manner.
If p(x) is a 1-type of T , define a function fp : M → {0, 1} by fp(n) = 1 ⇐⇒ Un(x) ∈
p(x). The function fp is a path in T , and for every path f in T , there is a unique 1-type
p(x) such that f = fp.

(ii) An n-type p(x0, . . . , xn−1) is uniquely determined by the 1-types induced on its entries.
In particular, the correspondence from (i) can be extended to a correspondence between
n-types and coded n-tuples 〈f0, . . . , fn−1〉 of paths in T .

Proof. (i) By construction and the fact that T has quantifier elimination.

(ii) By construction, since the language L consists only of unary relations.
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3.3 Applications.

Recall from §2.1 the statements:

(S3) T has only finitely many n-types, for each n.

(S4) T is ℵ0-categorical.

The construction given in §3.1 is enough to show one direction of Theorem 2.2(v):

Proposition 3.5. Over RCA0, the implication (S4→ S3) implies WKL0.

Proof. We prove the contrapositive statement that, if WKL0 fails, there is a theory T satisfying
(S4) but not (S3). Let T0 be an infinite binary tree with no infinite path. Let 〈σ0, σ1, . . .〉 be
a one-to-one enumeration of all terminal nodes in T0. Define a second tree T by

T = T0 ∪ {σî0j : i, j ∈M}.

Then T is an extendable tree. (Extendable is defined at the beginning of §3.) Let T be
the theory obtained from T using the construction of §3.1. By Lemma 3.4, each path in T
corresponds to a unique 1-type of T . Since T has infinitely many paths, T has infinitely many
distinct 1-types, and so does not satisfy (S3).

On the other hand, each 1-type p of T corresponds to a path fp in T of the form fp = σî0M

for some terminal node σi of T0. This σi, in turn, is associated with a formula∧
j<|σi|
σi(j)=0

¬Uj(x) ∧
∧
j<|σi|
σi(j)=1

Uj(x)

which generates p. Hence there is a procedure mapping every 1-type to a formula which
generates it. With Lemma 3.4(iii), this gives a procedure for mapping any type of any arity
to a formula generating it.

Now suppose that A and B are two models of T , with domains {a0, . . .} and {b0, . . .},
respectively. We now produce an isomorphism from A to B:

Stage 0. Let f0 be the empty function.
Odd stages 2s + 1. Suppose that f2s is a finite partial elementary map from A into B

with domain of size 2s, enumerated 〈ak0 , . . . , ak2s−1〉. Let i be least such that ai is not in the
domain of f2s. Use the procedure outlined above to find a formula φ(x0, . . . , x2s) generating
tpA(ak0 , . . . , ak2s−1 , ai). Since f2s is a partial elementary map, we know that

tpA(ak0 , . . . , ak2s−1) = tpB(f2s(ak0), . . . , f2s(ak2s−1)),

and in particular that there exists a bj not in {f2s(ak0), . . . , f2s(ak2s−1)} and such that B |=
φ(f2s(ak0), . . . , f2s(ak2s−1), bj). Let j be the least index of such a bj , and define f2s+1 =
f2s ∪ {(ai, bj)}.

Even stages 2s+2. Let 〈ak0 , . . . , ak2s〉 be an enumeration of the domain of f2s+1. Beginning
with the least index j such that bj is not in the range of f2s+1, perform a procedure similar
to the one given for odd stages to find the least index i such that ai is not in the domain of
f2s+1 and such that tpA(ak0 , . . . , ak2s , ai) = tpB(f2s+1(ak0), . . . , f2s+1(ak2s), bj). Let f2s+2 =
f2s+1 ∪ {(ai, bj)}.

Then ∆0
1 comprehension allows us to form the limit f =

⋃
s∈M fs. It is straightforward to

check that f is an isomorphism.

The strategy we used to build f in the proof of Proposition 3.5 is called an effective back-
and-forth argument.
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4 A theory with infinitely many 1-types, whose ev-

ery nonprincipal type computes KZ.

Recall that we work in a model (M,S) of RCA0. Fix a set Z ∈ S. We begin by constructing
an infinite ternary tree T ⊆ {0, 1, b}<M with infinitely many isolated paths and whose every
nonisolated path computes the Turing jump KZ . We then convert T into a theory T , and
show that T has infinitely many 1-types and that KZ is ∆0

1 definable in each nonprincipal
type of T . This allows us, in §4.3, to prove some directions of Theorem 2.2. Our construction
is similar to some in the literature, for instance, Millar [16].

4.1 Construction.

We define the set T ⊆ 2<M as follows. Suppose that σ is any string in {0, 1, b}<M not beginning
with b. Then σ can be written uniquely in the form

σ = i0̂bt0̂i1̂ · · · ̂btm−1̂im̂bt∗ ,
with ik ∈ {0, 1}, tk ∈M for each k, and t∗ ∈M . We let σ be in T if and only if the following
condition holds:

For each k < m, tk is the least number ≥ k s.t. i0̂ · · · ̂ik = KZ
tk

� (k + 1). (1)

This completes the construction of T . Before constructing the theory T , we point out that
T is indeed a nonempty extendable tree:

Lemma 4.1 (RCA0). (i) The empty string ∅ is in T .

(ii) If σ ⊆ τ and τ ∈ T , then σ ∈ T .

(iii) If σ ∈ T , then σ̂b ∈ T .

Proof. All three claims are immediate.

Now we code T as a binary tree T0 by defining a function F : {0, 1, b}<M → {0, 1}<M :

F (∅) = ∅, F (σ̂0) = F (σ)̂0̂0, F (σ̂1) = F (σ)̂0̂1, F (σ̂b) = F (σ)̂1̂0,

and letting T0 = {τ : τ ⊆ F (σ) for some σ ∈ T }. Let T be the theory obtained from T0 by the
method of §3.1. This completes the construction.

4.2 Verification.

We claim that T has infinitely many 1-types, and we claim that KZ is ∆0
1 definable in every

nonprincipal type of T . By Lemma 3.4, the 1-types of T correspond to paths in T0, which
can be identified naturally with paths in T . We may therefore rephrase the claim that T has
infinitely many 1-types as part (ii) of the following lemma.

Lemma 4.2 (RCA0). (i) For every σ ∈ T , we have σ̂0 ∈ T ⇐⇒ σ̂1 ∈ T .

(ii) The tree T has infinitely many paths.

Proof. (i) Immediate from the definition.
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(ii) Let 〈σ0, σ1, . . .〉 be a one-to-one enumeration of all strings in T that end in a 1. (There
are infinitely many such σi.) We know by Lemma 4.1(iii) that T is extendable, so we may
effectively extend every σ ∈ T to the leftmost path left(σ) ∈ {0, 1, b}M of T extending
σ, using the ordering 0 < 1 < b. Then the coded sequence 〈left(σ0), left(σ1), . . .〉 is a
sequence of paths through T . Since the mapping from σi to left(σi) is effective, this
coded sequence exists in S by ∆0

1 comprehension. It is easy to see that i 6= j implies
left(σi) 6= left(σj), so 〈left(σ0), . . .〉 is a list of infinitely many distinct paths, as desired.

It remains to show that KZ is ∆0
1 definable in each nonprincipal type of T . This requires

a few more facts about T .

Lemma 4.3 (RCA0). (i) A path f through T is isolated if and only if f is of the form
f = σ̂bM for some finite string σ.

(ii) KZ is ∆0
1 definable in each nonisolated path through T .

(iii) If 〈f0, . . . , fn−1〉 is a tuple of isolated paths through T , then there is a level ` ∈M above
which every fi is isolated.

Proof. (i) For the ‘if’ direction, suppose that f = σ̂bM , with
σ = i0̂bt0̂ · · · ̂btm−2̂im−1. If there is no t ≥ k such that i0̂i1̂ · · · ̂im−1 = KZ

t � m,
then f is isolated above σ. If there is such a t, then f is isolated above σ̂bt+1.

For the ‘only if’ direction, we show the contrapositive. Suppose that f is a path through
T such that f(m) ∈ {0, 1} for infinitely many m. By Lemma 4.2(ii), for each such m,
the string σ = (f � m)̂(1 − f(m)) is in T , and hence there is a path gm 6= f with
gm � (m+ 1) = (f � m)̂(1− f(m)). Since these m are cofinal in M , it follows that f is
not isolated.

(ii) Suppose that f is an infinite path through T not ending in a string of b’s. Such an f
may be written

f = i0̂bt0̂i1̂bt1̂ · · · ,
with ik ∈ {0, 1} for every k. For every s ∈M , the initial segment σs ⊆ f given by

σs = i0̂bt0̂ · · · ̂bts−1̂is
is an element of T . It follows from the definition of T that, for all m ∈M :

(∀s > tm−1)
[
i0̂ · · · ̂im−1 = KZ

s � m
]
.

In other words, i0̂ · · · ̂im−1 = KZ � m. This gives a ∆0
1 definition for KZ .

(iii) Let 〈f0, . . . , fn−1〉 be a coded n-tuple of isolated paths in T . By part (i), each fj can be
written in the form:

fj = ij,0̂btj,0̂ · · · ̂btj,mj−1̂ij,mj−1̂bM .
The induction axioms of RCA0 are not strong enough, at least on their face, to guarantee
the existence of the tuple 〈mj : j < n〉. This adds to the complexity of our proof.

Every fj , being isolated, falls into one or more of the following cases:

1. fj has an initial segment of the form ij,0̂btj,0̂ · · · ̂ij,m̂bs+1 with s ≥ m and such
that ij,0̂ · · · ̂ij,m = KZ

s � (m+ 1).

2. There is a k such that ij,k = 0 while KZ(k) = 1.

3. There is a k such that ij,k = 1 while KZ(k) = 0.
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Whether fj falls into case 1 is a Σ0
1 question, and case 2, also a Σ0

1 question. Use bounded
Σ0
1 comprehension to partition the indices j < n along these lines:

X1 = {j < n : fj falls into case 1},

X2 = {j < n : j 6∈ X1 and fj falls into case 2},

X3 = {j < n : j 6∈ X1 ∪X2}.

Then every element of X3 falls into case 3. It suffices to show that for each z ∈ {1, 2, 3}
there is a level `z above which fj is isolated for all j ∈ Xz, and take ` = max(`1, `2, `3).
First consider z = 1. Assign to each j ∈ X1 a string σj ⊆ fj as in the statement of case
1. Then fj is isolated above the length |σj |. Let `1 be the maximum of |σj | as j ranges
over X1.

Now consider z = 2. For each j ∈ X2, the formula (∃k∃s)[ij,k = 0 and KZ
s (k) = 1]

holds. Use Σ0
1 bounding to assign to each j ∈ X2 a pair kj , sj witnessing this. Choose

any σj ⊆ fj of the form

σj = ij,0̂btj,0̂ · · · ̂ij,kj ̂τ ̂bsj+1

where τ is a string. Then fj is isolated above the length |σj |. Let `2 be the maximum of
|σj | as j ranges over X2.

Lastly, consider z = 3. Since it is a Π0
1 question to ask whether two paths are equal,

we may assume by bounded Π0
1 comprehension that the paths fj are all distinct as j

ranges over X3. Let j0, j1 ∈ X3 be distinct elements, and consider the paths fj0 , fj1 .
Let k be least such that ij0,k 6= ij1,k; we may assume by symmetry that ij0,k = 0 and
ij1,k = 1. Then KZ(k) must equal 0, since otherwise j0 would be an element of X2.
Let σj1 = ij1,0̂btj1,0̂ · · · ̂ij1,k. It follows that fj1 is isolated above |σj1 |. Repeat this
procedure on pairs from X3 − {j1}, and so on, until there is a σj associated to all but
one element of X3, say j′. Let σj′ be such that fj′ is isolated above |σj′ |, and let `3 be
the maximum of |σj | as j ranges over X3.

Now ` = max(`1, `2, `3) is the desired bound.

This is enough to verify the last desired property:

Proposition 4.4 (RCA0). K
Z is ∆0

1 definable in each nonprincipal type of T .

Proof. Let p(x0, . . . , xn−1) be a nonprincipal n-type for some n. Since the language of T
consists only of unary relations, p may be decomposed into 1-types 〈p0, . . . , pn−1〉:

p(x0, . . . , xn−1) ⇐⇒ p0(x0), . . . , pn−1(xn−1).

The 1-types 〈p0, . . . , pn−1〉 correspond to a tuple 〈f0, . . . , fn−1〉 of paths through T . Since p is
nonprincipal, there is an i such that fi is nonisolated by Lemma 4.3(iii). Therefore KZ is ∆0

1

definable from fi, and hence from p, by Lemma 4.3(ii).

4.3 Applications.

Recall from §2.1 the statements:

(S3) T has only finitely many n-types, for each n.

(S4) T is ℵ0-categorical.
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(S5) All types of T are principal.

We use this section’s construction to prove two parts of Theorem 2.2, beginning with part (iv):

Proposition 4.5. Over RCA0, the implication (S5→ S3) implies ACA0.

Proof. Suppose that (S5→ S3) holds, and fix any set Z ∈ S. Let T be the theory constructed
in §4.1. Since T has infinitely many 1-types, T satisfies (¬S3). Then T satisfies (¬S5), i.e., T
has a nonprincipal type p. By Proposition 4.4 above, KZ is ∆0

1 definable from p, and so KZ

exists by ∆0
1 comprehension. Since Z was arbitrary, we conclude by Lemma 1.2 that ACA0

holds.

Next, we prove Theorem 2.2(vi):

Proposition 4.6. Over RCA0, the implication (S5→ S4) implies ACA0.

Proof. Fix any set Z ∈ S, and let T be the theory constructed in §4.1. It is enough to exhibit
two models A,B of T such that KZ is ∆0

1 definable in any isomorphism f : A → B. Let
〈σ0, σ1, . . .〉 be a one-to-one enumeration of all strings in the tree T0. For each σi, let left(σi) be
the leftmost path of T0 extending σi; similarly, let right(σi) be the rightmost path extending
σi. We may form the coded sequences 〈left(σ0), left(σ1), . . .〉 and 〈right(σ0), right(σ1), . . .〉 by
∆0

1 comprehension.
First we build the model A, with domain {a0, a1, . . .}. For each i, k ∈ M , let Rk(ai) hold

in A if and only if left(σi)(k) = 1. It is easy to check that A satisfies the axioms of §3.1
semantically. Fill in the rest of the diagram as in the proof of Lemma 3.3 so that A is a model
of T . Build a second model B with domain {b0, b1, . . .} by a similar method: for each i, k ∈M ,
let Rk(bi) hold in B if and only if right(σi)(k) = 1, and fill in the rest of the diagram.

Now, suppose that f : A → B is an isomorphism. Use f to define a function g : M → M
by g(i) = j whenever f(ai) = bj . Then left(σi) = right(σg(i)) for all i ∈M . In particular either
σi ⊆ σg(i) or σi ⊇ σg(i), and the longer of the two, which we denote by σi ∪ σg(i), is isolated in
T0. It follows that σi is isolated if and only if there is no string τ such that σi ⊆ τ ⊆ σi ∪σg(i),
and such that both τ ̂0 and τ ̂1 are elements of T0. This gives a uniform procedure for
deciding whether a given σ is isolated, and, in particular, allows us to define a nonisolated
path of T0, and hence a nonisolated path of T . By Lemma 4.3(ii) and ∆0

1 comprehension, the
Turing jump KZ is an element of S. We conclude by Lemma 1.2 that ACA0 holds.

5 Models from a tree of Henkin constructions.

For the following informal discussion, we reason in WKL0. Fix a set Z ∈ S, a language L, a
complete L-theory T with infinitely many n-types for some n, and a model A |= T with domain
A = {a0, a1, . . .}. We produce a second model B |= T with domain B = {b0, b1, . . .} such that
the Turing jump KZ is ∆0

1 definable in any elementary embedding f : B → A. We achieve this
by making the function g : M → M defined by g(m) = n ⇐⇒ f(bm) = an grow roughly as
fast as the modulus function of KZ , which is given by m 7→ min{s > m : KZ

s � m = KZ � m}.
More specifically, we ensure that, if m is an element of KZ

at s, there is an n-ary formula satisfied
in B by an n-tuple taken from the initial segment {b0, b1, . . . , b2n(m+1)−1} of B, but not in A by
any n-tuple from the initial segment {a0, . . . , as−1} of A. Then if f : B → A is an elementary
embedding, the function given by m 7→ max

i<2n(m+1)
g(i) bounds the modulus function of KZ .

The model B itself is obtained by the following method. We construct a binary tree H∗
such that any node σ ∈ H∗ of length s represents the first s-many steps of a Henkin-style
construction, and such that the construction along any infinite path of H∗ yields a model B
with the property outlined above. We then show that H∗ is infinite, and apply Weak König’s
Lemma to obtain B.
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5.1 Construction.

We begin with some definitions. Fix a language L and a complete, consistent L-theory T .

Definition 5.1. (i) Let L′ be the enriched language L ∪ {c0, c1, . . .}, where each ci is a
constant symbol not in L. Let 〈φs〉s be a one-to-one enumeration of all L′-sentences.
First, define a 2<M -indexed sequence 〈Dσ〉σ∈2<M of sets of L′-sentences by

Dσ = {φs : s < |σ| and σ(s) = 1} ∪ {¬φs : s < |σ| and σ(s) = 0}.

Second, define a sequence 〈Ws〉s∈M of sets of L′-sentences by recursion:

W0 = ∅

Ws+1 =


Ws ∪ {φs → ψ(c2k+1)} if φs is of the form (∃ x)ψ(x), where

2k + 1 is the least odd index such that
c2k+1 is not mentioned in Ws or in any

Dσ with |σ| ≤ s.
Ws if φs is not of this form.

Third, define a tree H ⊆ 2<M by

H = {σ ∈ 2<M : T ∪Dσ ∪W|σ| is consistent}.

We call H the full tree of odd Henkin diagrams. (‘Odd’ because we are using only the
odd-numbered constants to witness existential sentences.)

(ii) Given an infinite path β in H, let Dβ =
⋃
s∈M Dβ�s. Then Dβ is a complete, consistent

L′-theory. Define an equivalence relation E on the constants {c0, c1, . . .} by ciEcj iff
Dβ ` ci = cj . Denote the E-equivalence class of ci by [ci]E , and let 〈b0, b1, . . .〉 be the
one-to-one listing of all E-equivalence classes given by

bm = [cim ]E , where im is least s.t. cim 6∈ bk for all k < m.

Let B be the L-structure such that, for any L-formula φ,

B |= φ(b0, . . . , bn−1) ⇐⇒ Dβ ` φ(ci0 , . . . , cim−1).

Then B is a model of T . We say that B is the Henkin model encoded by β.

Now fix a model A of T . We define an infinite subtree H∗ ⊆ H of the full tree of odd
Henkin diagrams such that, if β is an infinite path of H∗ and B is the Henkin model encoded
by β, then KZ is ∆0

1 definable in any elementary embedding f : B → A. Then WKL0 ensures
that such a path β exists, giving the desired model B.

For each t ∈M , choose an n-ary L-formula θt(x̄) such that T ` (∃x̄)θt(x̄), and such that θt
is not satisfied by any tuple taken from {a0, . . . , at} in A. (This is possible by Theorem 2.6(i),
since T has infinitely many n-types.) For each s ∈M , define a finite set D∗s of L′-sentences:

D∗s = {θt(c2mn, c2mn+2, . . . , c2(m+1)n−2) : m, t < s and m ∈ KZ
at t}.

Note that D∗s ⊆ D∗s+1 for each s. Define the subtree H∗ of H by:

H∗ =
{
σ ∈ 2<M : T ∪Dσ ∪D∗|σ| ∪W|σ| is consistent

}
. (2)

This completes the construction.
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5.2 Verification.

There are two facts to verify: first, that H∗ is infinite, and second, if a model B is encoded by
a path in H∗, then KZ is ∆0

1 definable in any elementary embedding of B into A.

Lemma 5.2 (RCA0). The tree H∗ is infinite.

Proof. Fix any s ∈M . It suffices to show that H∗ has an element of length s. We may choose
a finite tuple 〈cAi : i < N〉 of elements of A such that (A, cAi : i < N) is a model of T ∪D∗s ∪Ws.
In particular, 〈cAi : i < N〉 contains all constants mentioned in φ0, . . . , φs−1, where 〈φt〉t is the
enumeration of all L′-sentences fixed in Definition 5.1(i). Define a string σ of length s by

σ(t) =

{
1 if (A, cAi : i < N) |= φt,
0 otherwise

for all t < s. Then (A, cAi : i < N) is a model of T ∪Dσ ∪D∗s ∪Ws, so T ∪Dσ ∪D∗s ∪Ws is
consistent. Therefore σ is in H∗, as desired.

Lemma 5.3 (RCA0). If B is the model encoded by an infinite path β in H∗, and f : B → A is
an elementary embedding, then KZ is ∆0

1 definable from f .

Proof. Suppose that B is the model encoded by some path β in H∗, and that f : B → A is an
elementary embedding. Define a mapping h : M →M by

h(m) = greatest j s.t. f([c2mn+2i]E) = aj for some i < n.

By the definition of D∗s , if there is a t such that m ∈ KZ
t , then m ∈ KZ

h(m). Hence we have

m ∈ KZ ⇐⇒ m ∈ KZ
h(m), which gives a ∆0

1 definition for KZ .

5.3 Applications.

Recall from §2.1 the statements:

(S3) T has only finitely many n-types for each n.

(S4) T is ℵ0-categorical.

We say that a model A of a theory T is elementary-universal if, for any model B of T , there
is an elementary embedding from B into A. The construction in §5.1 above is tailored to give
the following result.

Lemma 5.4. WKL0 + ¬ACA0 ` (‘T has an elementary-universal model’→ S3).

Proof. Suppose that (M,S) is a model of WKL0 + ¬ACA0. By Lemma 1.2, we may fix a
set Z ∈ S whose Turing jump KZ is not in S. We show that the contrapositive statement
(¬S3→‘T has no elementary-universal model’) holds in (M,S).

Fix a complete theory T ∈ S with infinitely many n-types, and fix a model A ∈ S of T .
Use the construction of §4.1 and Lemma 5.3 to obtain a second model B ∈ S of T such that
KZ is ∆0

1 definable in every elementary embedding from B into A. This means, by our choice
of Z, that no f ∈ S can be an elementary embedding from B into A. In particular, A is not
elementary-universal.

Since any model of an ℵ0-categorical theory is elementary-universal, the following is an
immediate consequence of Lemma 5.4.

Lemma 5.5. WKL0 + ¬ACA0 ` (S4→ S3).
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We are ready to prove the remaining direction of Theorem 2.2(v), the other having been
proved in Proposition 3.5 above.

Proposition 5.6. WKL0 ` (S4→ S3)

Proof. We know from Lemma 5.5 that WKL0 + ¬ACA0 ` (S4 → S3). On the other hand, as
noted in §2.1, ACA0 is sufficiently strong to carry out the usual proof of equivalence of all the
principles (S1) through (S5), and in particular ACA0 ` (S4 → S3). Hence we conclude that
WKL0 ` (S4→ S3).

The construction from this section also justifies an assertion in §2.2. The following propo-
sition completes the proof of Theorem 2.12:

Proposition 5.7. Over WKL0, the following are equivalent:

(i) ACA0

(ii) There is a complete theory with a nonprincipal type and only finitely many models.

(iii) There is a complete theory with infinitely many n-types for some n, and only finitely
many models.

Proof. Reason in WKL0. The implication (i→ ii) follows from the use of a nonprincipal type
in the proof of Ehrenfeucht’s Theorem 2.7 in the system ACA0. The implication (ii → iii) is
immediate from the definitions.

We prove the final implication (iii→ i) by way of its contrapositive statement (¬i→ ¬iii).
Suppose that WKL0 + ¬ACA0 holds, and let T be a complete theory with infinitely many
n-types for some n. Dovetail the proof of Lemma 5.4 to get a coded sequence 〈A0,A1, . . .〉 of
models of T such that no Aj embeds elementarily into any Ai with i < j. (For each triple
〈i, j,m〉 where i < j, if m is in KZ

at s, use the method of §5.1 to ensure that there is a formula
realized by a tuple from among the first 2n(〈i, j,m〉 + 1)-many elements of Aj but not by
any tuple from among the first s-many elements of Ai.) We have produced an infinite list of
pairwise nonisomorphic models of T , so (iii) fails, as desired.

6 Theories with only finitely many n-types for every

n.

The Ryll-Nardzewski function for a theory T is the Σ0
2 partial function RNT : M → M given

by:

RNT (n) = m ⇐⇒ T has exactly m different n-types
⇐⇒ there exists a sequence φ0, . . . , φm−1 of n-ary formulas

such that T ` φ0 ∨ · · · ∨ φm−1 and T 6` φi → φj for each
i 6= j, and for all n-ary ψ and all i s.t. T ` ψ → φi we
have T ` φi → ψ.

If RNT (n) has no value according to the above definition, we treat RNT (n) as an infinite
number. The properties (S1), (S2), and (S3) from §2.1 can all be phrased in terms of RNT .

In this section, we prove several directions of Theorem 2.2 by constructing examples of
a theory T for which RNT is finite-valued, but for which RCA0 cannot prove the existence
of RNT . One of these examples, given in Proposition 6.12, has a RNT so fast-growing that
ACA0 is needed to prove even that RNT is dominated by a function in the second-order part
of (M,S). A second example, given in the proof of Proposition 6.11 and used again in that
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of Proposition 6.13, has a RNT that is slow-growing, but whose existence nonetheless implies
ACA0. Our theories are built using a simple common framework, given in §6.1 below, which
takes as a parameter a coded sequence 〈X1, X2, . . .〉 of sets. By varying this parameter, we
control RNT .

In effective model theory, similar constructions have been done before to control the
Turing degree of RNT for a decidable ℵ0-categorical theory with infinitely many predicates
(Palyutin [18] and Venning [24, Ch. 2]) and with a single binary predicate (Herrmann [11],
Schmerl [21], and Venning [24, Ch. 3]). Both our construction and our verification are very
similar to Palyutin’s, when done carefully in second-order arithmetic.2 Our construction is
also similar to Venning’s [Ch. 2], but the verification more elementary.

6.1 Construction.

Let L be the language L = 〈Rns 〉s∈M,n≥1, with each Rns an n-ary relation. Let 〈X1, X2, . . .〉 be
a coded sequence of sets. We introduce three axiom schemes:

Ax I. Rns (x0, . . . , xn−1)→ xi 6= xj , for each n, s and each pair i, j < n with i 6= j.

Ax II. ¬Rns (x̄), for each n, s such that s 6∈ Xn.

Ax III. ψ(x̄)→ (∃y)φ(x̄, y) for every pair φ, ψ of formulas with the following properties:

• φ and ψ are conjunctions of L′-literals, where L′ = {Rns : n, s < `} for some ` >
|x̄|+ 1;

• For every atomic L′-formula θ with variables in x̄, either θ or ¬θ appears as a
conjunct in ψ;

• φ(x̄, y) is consistent with Ax I and II;

• Every conjunct in ψ is a conjunct in φ;

Let T ∗ denote the collection of all sentences in Ax I–III, and let T be the deductive closure
of T ∗. This completes the construction. Notice that we have not yet proved the existence
either of T ∗ or of T in the second-order part of (M,S). For T ∗, this follows from Lemma 6.2
below, where we prove that the consistency check in Ax III can be performed effectively. For
T , existence is proved in Proposition 6.5 using quantifier elimination.

The intuition behind these axioms is as follows. Axiom I is an n-ary version of the irreflexiv-
ity property for binary relations: Rns holds only of n-tuples whose entries are all distinct. This
limits the number of quantifier-free formulas that may hold of an n-tuple. Axiom II relates the
parameter 〈X1, X2, . . .〉 to the number of different quantifier-free formulas that might hold of
an n-tuple. Axiom III then binds this number to RNT (n) by providing quantifier elimination.

6.2 Verification.

Most of this section is devoted to checking that the T defined in §6.1 is an element of S,
is complete, and is consistent. The exception is Lemma 6.10, in which we relate the coded
sequence 〈X1, X2, . . .〉 to the Ryll-Nardzewski function RNT . The following technical lemma
will be useful in this section, and again in §7.

Lemma 6.1 (RCA0). Let L0 = 〈Qn〉n be a relational language. Let Ψ = {ψs : s ∈ M} be
L0-theory where each ψs is of the form (∀x̄, ȳ)[`s(x̄)∨θs(x̄, ȳ)] where θs is quantifier-free and `s
is either Qn(x̄) or ¬Qn(x̄), where n ≥ s and Qn is not mentioned in any ψt, t < s. Then there
is a procedure that decides, given a quantifier-free L-formula φ(z̄), whether Ψ ∪ {(∃z̄)φ(z̄)} is
consistent.

2We thank the referee for bringing this paper to our attention.
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Proof. Fix a quantifier-free formula φ(z0, . . . , zm−1). Let n be the greatest index such that Qn
is mentioned in φ, and consider the set Ψn = {ψs : s ≤ n}. Recall that a theory is consistent
if does not entail a contradiction. We claim that Ψ ∪ {(∃z̄)φ(x̄)} is consistent if and only if
Ψn ∪ {(∃z̄)φ(x̄)} has an m-element model. We prove this claim by a series of implications:

(a) If Ψ ∪ {(∃z̄)φ(z̄)} is consistent, then Ψn ∪ {(∃z̄)φ(z̄)} is consistent.

(b) If Ψn ∪ {(∃z̄)φ(z̄)} is consistent, then Ψn ∪ {(∃z̄)φ(z̄)} has an m-element model.

(c) If Ψn∪{(∃z̄)φ(z̄)} has an m-element model, then Ψ∪{(∃z̄)φ(z̄)} has an m-element model.

(d) If Ψ ∪ {(∃z̄)φ(z̄)} has an m-element model, then Ψ ∪ {(∃z̄)φ(z̄)} is consistent.

Item (a) is immediate. For item (b), notice that it is possible to construct a propositional
formula P such that if Ψn∪{(∃z̄)φ(z̄)} is consistent then P is consistent, and if P is satisfiable
then Ψn ∪ {(∃z̄)φ(z̄)} has an m-element model. (Use one propositional variable to represent
the truth value of each relevant ψs on each tuple taken from z̄.) Item (c) holds because,
given an m-element model of Ψn ∪ {(∃z̄)φ(z̄)}, we can effectively transform it into a model of
Ψ ∪ {(∃z̄)φ(z̄)} by reassigning the truth values of `s to satisfy ψs for each s > n. Item (d)
follows from the Soundness Theorem, which is provable in RCA0—see Simpson [22, Theorem
II.8.8].

Our procedure works as follows: Given a formula φ(z0, . . . , zm−1), find n as above, and
construct the propositional formula P used in (b). Test all truth valuations to see whether P
is consistent. If so, Ψ ∪ {(∃z̄)φ(z̄)} is consistent. If not, Ψ ∪ {(∃z̄)φ(z̄)} is inconsistent.

Lemma 6.2 (RCA0). There is a procedure to check whether a quantifier-free L-formula φ is
consistent with Axioms I and II.

Proof. We may rewrite Axiom I by replacing the → with an equivalent ∨, and restricting the
parameters n, s so as not to conflict with Axiom II:

¬Rns (x0, . . . , xn−1) ∨ xi 6= xj , for each n, s ∈M such that s ∈ Xn and

each pair i, j < n such that i 6= j.

Then, after an appropriate reindexing of the relations Rns , our axioms meet the hypothesis
of Lemma 6.1. The result follows.

Recall that T ∗ denotes the collection of all sentences in Ax I–III. We are ready to begin
dealing with T ∗ directly.

Lemma 6.3 (RCA0). T
∗ is an element of S.

Proof. We can easily tell whether a given formula is in Ax I or Ax II. Lemma 6.2 gives a
method for deciding whether or not a formula is in Ax III.

Lemma 6.4 (RCA0). The theory T ∗ has effective quantifier elimination.

Proof. By Lemma 1.7, it is enough to give an effective procedure that takes as input any
conjunction of literals φ(x̄, y) and returns a quantifier-free formula ψ(x̄) such that T ∗ `
(∃y)φ(x̄, y) ↔ ψ(x̄). By performing the appropriate substitutions, we may assume that no
literal in φ is of the form (z0 = z1). First use the effective procedure given by Lemma 6.2
to see whether φ is consistent with Axioms I and II. If it is not, we conclude that T ∗ `
(∃y)φ(x̄, y)↔ Fa.

If it is consistent, let ψ(x̄) be the formula produced from φ by substituting Tr for each
conjunct mentioning the variable y. Let L′ = {Rns : n, s < `}, where ` is a number greater
than any n or s such that Rns is mentioned in ψ. Use Lemma 6.2 to find all conjunctions
ψ0, ψ1, . . . , ψm of L′-literals without repetitions such that
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• ψi ∧ φ is consistent with Ax I and II.

• Every conjunct of ψ is a conjunct of ψi.

• For every atomic L′-formula θ with variables in x̄, either θ or ¬θ appears as a conjunct
in ψi.

Then T ∗ ` (∃y)φ → (ψ0 ∨ · · · ∨ ψm). The converse direction T ∗ ` (ψ0 ∨ · · · ∨ ψm) → (∃y)φ
follows from Ax III applied to each pair φ, φ ∧ ψi.

Recall that T denotes the deductive closure of T ∗.

Proposition 6.5 (RCA0). (i) For every L-sentence φ, either φ is provable from T ∗, or ¬φ
is provable from T ∗.

(ii) T is an element of S.

(iii) T has quantifier elimination. T is a complete theory.

Proof. Similar to the proof of Proposition 3.2.

Next, we verify that T is consistent. It suffices to show that T has a model. This is
achieved in Proposition 6.9 below, using an effective version of the Fräıssé limit construction.
This argument is both clean and reusable—we use it again in the proof of Proposition 6.13
and later in §7—but requires some definitions and lemmas. The following definitions are based
on those given by Csima, Harizanov, Miller, and Montalbán [2] for Fräıssé limits in recursive
mathematics.

Definition 6.6. Fix a language L0 of relation symbols. Let K = 〈A0,A1, . . .〉 be a sequence
of finite L0-structures.

(i) We say that K has the effective hereditary property (EHP) if there is a function that,
given an index i and a finite set F of elements from Ai, returns an index j and an
isomorphism from Aj to the induced substructure Ai � F .

(ii) We say that K has the effective joint embedding property (EJEP) if there is a function
that, given indices 〈i, j〉, returns an index k and a pair of embeddings Ai ↪→ Ak and
Aj ↪→ Ak.

(iii) We say that K has the effective amalgamation property (EAP) if there is a functions that,
given indices 〈i, j, k〉 and injections f : Ai → Aj and g : Ai → Ak, returns an index `, an
embedding e : Aj ↪→ A`, and an injection h : Ak → A` such that h ◦ f = e ◦ g and, if f
and g are embeddings, h is an embedding as well.

(iv) Let A be a countably infinite L0-structure with domain A. Suppose that there is a pair
of functions h0, h1 such that h0 maps finite subsets F ⊆ A surjectively onto the indices
{0, 1, . . .} of K, and h1 maps finite subsets F ⊆ A to isomorphisms from the induced
substructure A � F to Ah0(F ). Suppose further that, for every choice of a finite F ⊆ A, a
pair of indices 〈i, j〉, an isomorphism f from A � F to Ai, and an embedding g : Ai ↪→ Aj ,
there is a second finite G ⊆ A containing F and an isomorphism from A � G to Aj which
agrees with g ◦ f on F . Then we say that A is an effective Fräıssé limit of K.

When interpreted in the standard model REC of RCA0, the definitions of EHP, EJEP,
and EAP agree with those of the computable hereditary, joint embedding, and amalgamation
properties in [2]. Our notion of effective Fräıssé limit is essentially the same, except that we
require an explicit mapping from finite substructures of A onto K. (The same effect is achieved
in [2] using what they call a canonical age.)
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Lemma 6.7 (RCA0). Let L0 be a relational language, and let K = (Ai)i∈M be a sequence
of finite L0-structures. If K has the EHP, the EJEP, and the EAP, then K has an effective
Fräıssé limit.

Proof. Similar to [2, Thm 3.9].

Lemma 6.8 (RCA0). Let L0 be a relational language, and let T0 be an L0-theory axiomatized
by a set T ′0 of ∀∃-sentences. Let K = 〈A0,A1, . . .〉 be a sequence of finite models of the ∀ part
of T0 with the EHP, the EJEP, and the EAP. Suppose that, for any ∃ L0-formula φ(x̄) such
that (∀x̄)φ(x̄) is in T ′0, and any (Ai, b̄) with b̄ having the same length as x̄, there is an Aj and
an embedding g : Ai ↪→ Aj such that Aj |= φ(g(b̄)). Then any effective Fräıssé limit of K is a
model of T0.

Proof. Suppose that A is an effective Fräıssé limit of K with domain A. It suffices to show
that A satisfies T ′0. Let φ be an n-ary ∃ formula such that (∀x̄)φ(x̄) is in T ′0. Fix any n-tuple
ā taken from A, and let F ⊆ A be a finite set containing all entries of ā. Using the functions
h0, h1 from the definition of effective Fräıssé limit, find an index i and an isomorphism f from
the induced substructure A � F to Ai. By assumption, there is an Aj and an embedding
g : Ai ↪→ Aj such that Aj |= φ(g(f(ā))). Use the definition of effective Fräıssé limit to get a
finite G ⊆ A containing F such that A � G embeds into Aj by a mapping agreeing with g ◦ f
on F . Then A � G |= φ(ā), and hence A |= φ(ā). Since φ and ā were arbitrary, A satisfies T ′0,
as desired.

We are now ready to verify the consistency of the theory T .

Proposition 6.9 (RCA0). T is consistent.

Proof. Notice that the axioms for T given in §6.1 consist of ∀∃ sentences. To see that T has
a model, it is enough to construct a sequence K = 〈A0,A1, . . .〉 meeting the hypotheses of
Lemmas 6.7 and 6.8 with T in place of T0. We begin by defining K, and then verify that K
has the required properties.

Let Y be the set of all triples 〈n, s, σ〉, where n is a natural number and σ is a function
mapping each tuple taken from {0, . . . , n−1}≤n to a value in {0, 1}s+1, with the property that,
if ȳ has a repeated entry, we have σ(ȳ)(t) = 0 for all t ≤ s. This Y is an element of S by ∆0

1

comprehension. Let G be a surjection G : M → Y . Each Ai is constructed as follows. Suppose
that G(i) = 〈n, s, σ〉. Let Ai be the L-structure with domain {a0, . . . , an−1} such that, for all
1 ≤ k ≤ n, all t ≤ s, and all k-tuples 〈j0, . . . , jk−1〉 taken from {0, . . . , n− 1}, we have

Ai |= Rkt (aj0 , . . . , ajk−1
) ⇐⇒ (t ∈ Xk and σ(〈j0, . . . , jk−1〉)(t) = 1) ,

and Ai |= ¬Rkt (ā) for all other t, k, ā.
It is clear from the definition that K has the EHP, the EJEP, and the EAP, and hence by

Lemma 6.7 has an effective Fräıssé limit A. It can be checked that K satisfies the hypothesis
of Lemma 6.8, and hence A is a model of T .

We now show how the coded sequence 〈X1, X2, . . .〉 relates to RNT (n).

Lemma 6.10 (RCA0). Define a function F on tuples ā = 〈a1, . . . , an〉 ∈M<M by:

F(∅) = 1,

F(ā) =

n∑
m=1

S(n,m)

m∏
k=1

2

(
m!

(m−k)!

)
ak , whenever |ā| ≥ 1,
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where S(n,m) is the number of ways to partition an n-element set into m nonempty subsets.3

The following statements hold.

(i) If ā = 〈a1, . . . , an〉 and b̄ = 〈b1, . . . , bn〉 are n-tuples such that F(a1, . . . , ak) = F(b1, . . . , bk)
for all k ≤ n, then ā = b̄.

(ii) If the tuple 〈|X1|, . . . , |Xn|〉 exists in M , then RNT (n) = F(|X1|, . . . , |Xn|).
(iii) If RNT (n) is finite, then 〈|X1|, . . . , |Xn|〉 exists in S.

(iv) The Ryll-Nardzewski function RNT exists in S if and only if the function n 7→ |Xn| exists
in S.

Proof. (i) This is immediate when n = 0. If 〈a0, . . . , ak〉 = 〈b0, . . . , bk〉 and F(a0, . . . , ak+1) =
F(b0, . . . , bk+1), then it is clear from the definition of F that ak+1 = bk+1. The result now
follows by ∆0

1 induction.

(ii) If n = 0, then there is exactly one 0-type, namely T itself, so RNT (0) = 1 = F(∅). The
case when n ≥ 1 follows by a straightforward induction.

(iii) It is clear that, for all k ≤ n, we have |Xk| ≤ RNT (n). Using bounded Σ0
1 comprehension

we may form the set {〈k, i〉 : |Xk| ≥ i and k ≤ n}, from which 〈|X1|, . . . , |Xn|〉 is ∆0
1

definable.

(iv) The ‘if’ direction is immediate from part (ii). For the ‘only if’ direction, suppose RNT is
in S, and fix n. We know by parts (i), (ii), and (iii) that 〈|X1|, . . . , |Xn|〉 is in S, and is
the unique n-tuple satisfying that RNT (k) = F(|X1|, . . . , |Xk|) for every k ≤ n. Thus we
can find |Xn| by testing each n-tuple for this property.

6.3 Applications

Recall from §2.1 the statements:

(S1) There is a function f such that, for all n, T has exactly f(n) distinct n-types.

(S2) There is a function f such that, for all n, T has no more than f(n) distinct n-types.

(S3) T has only finitely many n-types, for each n.

We now use the construction of §6.1 to prove Theorem 2.2(i):

Proposition 6.11. Over RCA0, the implication (S2→ S1) implies ACA0.

Proof. Suppose that (S2 → S1) holds. Let Z be any set, and recall from Definition 1.1 the
Turing jump KZ and its enumeration 〈KZ

0 ,K
Z
1 , . . .〉. Define sets X1, X2, . . . by, for each s, n,

s ∈ Xn+1 ⇐⇒ n ∈ KZ
at s.

The coded sequence 〈X1, . . .〉 exists by ∆0
1 comprehension. Let T be the theory constructed

by the method of §6.1 using 〈X1, . . .〉 as its parameter. Since each Xn has size ≤ 1, we can
see by Lemma 6.10(ii) that RNT is dominated by the function f(n) = F(1, 1, . . . , 1︸ ︷︷ ︸

n times

). Hence T

satisfies (S2). Since (S2 → S1) holds, T satisfies (S1) as well, that is, RNT is an element of
S. By Lemma 6.10(iv), the function n 7→ |Xn+1| is in S as well. But this is the characteristic
function of KZ . We conclude by Lemma 1.2 that ACA0 holds.

Next, we verify Theorem 2.2(iii):

3These S(n,m) are called Stirling numbers of the second kind.
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Proposition 6.12. Over RCA0, the implication (S3→ S2) implies ACA0.

Proof. Suppose that (S3 → S2) holds. Fix any set Z. Define sets X1, X2, . . . by, for each
s, n ∈M ,

s ∈ Xn+1 ⇐⇒ (∃t)[t ≤ s < 2t ∧ n ∈ KZ
at t].

If n ∈ KZ
at t for some t, then |Xn+1| = t; if there is no such t, then |Xn+1| = 0. The coded

sequence 〈X1, . . .〉 exists by ∆0
1 comprehension. Let T be the theory constructed by the method

of §6.1 using 〈X1, . . .〉 as its parameter.
For each n ≥ 1, K � n exists by bounded Σ0

1 comprehension, so way may form the tuple
〈|X1|, . . . , |Xn|〉. It follows by Lemma 6.10(ii) that RNT (n) is a finite number, and KZ � n =
KZ

RNT (n)
� n. Thus T satisfies (S3). Since (S3 → S2) holds, T satisfies (S2) as well. Let f be

a function such that f(n) ≥ RNT (n) for all n. Then we have KZ � n = KZ
f(n) � n for all n, so

KZ is in S by ∆0
1 comprehension. We conclude by Lemma 1.2 that ACA0 holds.

Finally, we prove Theorem 2.2(ii). In fact, we prove a stronger result.

Proposition 6.13. Over RCA0, the implication (S2→ ‘T has a prime model’) implies ACA0.

Proof. Fix any set Z. Define a coded sequence of sets 〈X1, . . .〉 and a theory T as in the proof
of Proposition 6.11 above. As we have seen, T satisfies (S2). We construct two models A,B
of T such that, if C is a third model, and e0 : C ↪→ A, e1 : C ↪→ B are embeddings, then KZ is
computable from e0 and e1. The models A,B will be the effective Fräıssé limits of sequences
K0 and K1, respectively.

Let Y be the set of all pairs 〈n, σ〉 such that n is a natural number, and σ : {0, . . . , n −
1}≤n → {0, 1} is a function such that σ(x̄) = 0 whenever x̄ has a repeated entry. This Y is a
recursive set. Let G : M → Y be an infinite-to-one surjection. We use G to define sequences
K0 = 〈A0,A1, . . .〉 and K1 = 〈B0,B1, . . .〉 of finite structures. If G(i) = 〈n, σ〉, then Ai has
domain {a0, . . . , an−1} and, for all s and all tuples 〈j0, . . . , jk−1〉 ∈ {0, . . . , n− 1}≤n of length
k ≥ 1,

Ai |= Rks (aj0 , . . . , ajk−1
) ⇐⇒ (s ∈ Xk and σ(j0, . . . , jk−1) = 1 and i > s) ,

and, for all other s, k, ā, we have Ai |= ¬Rks (ā). The structure Bi has domain {b0, . . . , bn−1}
and, for all s and all tuples 〈j0, . . . , jk−1〉 ∈ {0, . . . , n− 1}≤n,

Bi |= Rks (bj0 , . . . , bjk−1
) ⇐⇒ (s ∈ Xk and (σ(j0, . . . , jk−1) = 1 or i ≤ s)) ,

and, for all other s, k, b̄, we have Bi |= ¬Rks (b̄). The coded sequences K0,K1 exist by ∆0
1

comprehension. It can be checked that K0 and K1 each have the EHP, the EJEP, and the
EAP, and satisfy the hypotheses of Proposition 6.8. Hence, by Propositions 6.7 and 6.8, K0

has an effective Fräıssé limit A |= T and K1 has an effective Fräıssé limit B |= T .
Now suppose that C is a model of T with domain C, and e0 : C ↪→ A, e1 : C ↪→ B are

embeddings. Given a finite F ⊆ C, we may use e0 and the fact that A is an effective Fräıssé
limit to find an index i and an isomorphism from the induced substructure C � F to Ai.
Likewise, we may use e1 to find an index j and an isomorphism from C � F to Bj , giving an
isomorphism from Ai to Bj .

Fix enumerations ā of the elements of Ai and b̄ of the elements of Bj such that (Ai, ā) ∼=
(Bj , b̄). Let n be the cardinality of F , and suppose that n ∈ KZ . Then there is an s such
that n ∈ KZ

s and Xn+1 = {s}. We claim that s ≤ max(i, j). To see this, assume that j < s,
so that Bj |= Rn+1

s (b̄) by construction of Bj . Then Ai |= Rn+1
s (ā) as well, which implies by

construction of Ai that i ≥ s. Our claim now proven, we deduce that n is in KZ if and only
if n is in KZ

max(i,j). Hence KZ exists by ∆0
1 comprehension. We conclude by Lemma 1.2 that

ACA0 holds.

Corollary 6.14. Over RCA0, the implication (S2→ S4) implies ACA0.
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7 Theories with finitely many models

In this section, we present a construction due to Millar [15]. Given any n ≥ 2, it builds a
complete, decidable theory T with exactly n decidable models, both up to classical isomorphism
and up to recursive isomorphism. We use this construction largely unchanged in the system
RCA0 + ¬WKL0 to prove Theorem 2.10. The construction itself is given in §7.1 below. We
begin with some definitions and an overview of our goals.

Definition 7.1. A disjoint Σ0
1 pair is a coded sequence 〈Us, Vs〉s∈M of pairs Us, Vs ⊆M with

the following properties:

• Each Us and Vs is finite, with max(Us ∪ Vs) < s.

• Us ∩ Vs = ∅ for every s.

• Us ⊆ Us+1 and Vs ⊆ Vs+1 for every s.

Given a disjoint Σ0
1 pair 〈Us, Vs〉s, a set C ⊆ M is called a separating set for 〈Us, Vs〉s if, for

every s, we have Us ⊆ C ⊆ (M−Vs). If no such C exists, then 〈Us, Vs〉s is called an inseparable
Σ0
1 pair. The Σ0

1 separation principle is the statement: There is no inseparable Σ0
1 pair.

In the standard model REC of RCA0, a disjoint Σ0
1 pair 〈Us, Vs〉s can be written as a pair

of recursive approximations 〈Us〉s, 〈Vs〉s to disjoint r.e. sets U = lims Us and V = lims Vs. If
〈Us, Vs〉s is an inseparable Σ0

1 pair in REC, then the limits U and V are recursively inseparable
in the sense of recursion theory.

We are interested in these pairs, first, because they figure in Millar’s construction, and
second, because of the following result of Friedman, Simpson, and Smith [7] pinpointing the
reverse-mathematical complexity of the Σ0

1 separation principle.

Lemma 7.2. RCA0 `WKL0 ↔ (Σ0
1 separation)

Proof. See Simpson [22, Lemma IV.4.4].

Fix a natural number n ≥ 2 and a disjoint Σ0
1 pair 〈Us, Vs〉s. Our construction in §7.1 is of

a complete, decidable theory T with the following properties:

1. T has exactly one nonprincipal 1-type p(x).

2. For every k < n, T has a decidable model A with exactly k distinct elements realizing p.

3. For every k ∈M , if A,B are models of T each with exactly k distinct elements realizing
p, then there is an isomorphism f : A ∼= B which is ∆0

1 definable in A⊕ B.

4. If A is a model of T with at least n distinct elements realizing p, then there is a separating
set C for 〈Us, Vs〉s which is ∆0

1 definable in A.

If we are working within a model of RCA0 + ¬WKL0 and 〈Us, Vs〉s is an inseparable Σ0
1 pair

as given by Lemma 7.2, then the properties above imply that T has exactly n nonisomorphic
models. (This is proved in §7.3 below.)

7.1 Construction

Fix a natural number n ≥ 2 and a disjoint Σ0
1 pair 〈Us, Vs〉s. Let L = 〈Ps, Rs〉s∈M be a

language with every Ps unary and every Rs n-ary. Consider the following axiom schemes:

Ax I. Ps(x)→ Pt(x), whenever t ≤ s.
Ax II. Rk(x0, . . . , xn−1)→

∧
i<j<n(Pk(xi) ∧ xi 6= xj)

Ax III.
(∧

i<j<n(Ps(xi) ∧ xi 6= xj)
)
→ Rk(x0, . . . , xn−1), whenever k ∈ Us.
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Ax IV.
(∧

i<j<n(Ps(xi) ∧ xi 6= xj)
)
→ ¬Rk(x0, . . . , xn−1), whenever k ∈ Vs.

Ax V. ψ(x̄)→ (∃y)φ(x̄, y) for every pair φ, ψ of formulas with the following properties:

• φ and ψ are conjunctions of L′-literals, where L′ = {Ps, Rs : s < `} for some `;

• For every atomic L′-formula θ with variables in x̄, y, either θ or ¬θ appears as a
conjunct in ψ;

• φ(x̄, y) is consistent with Ax I–IV;

• Every conjunct in ψ is a conjunct in φ;

Let T ∗ be the collection of all sentences in Ax I–V, and let T be the deductive closure of T ∗.
This completes the construction. Notice that we have not yet established that either T ∗ or T
is in S. The existence of T ∗ is a consequence of Lemma 7.3 below, while that of T is part of
Proposition 7.5.

The intuition behind these axioms is as follows. Given an element a of a model and an
index s, the statement Ps(a) is read as, ‘a is turned on at stage s’. Axiom I says that the
stages at which an element is turned on form an initial segment of M—possibly ∅ or all of M .
Axiom II says that Rk can hold of a tuple ā only if the entries of ā are all distinct and are all
turned on at stage k. Axioms III and IV together say that if ā is a tuple of distinct elements,
all turned on at stage s, then Us ⊆ {k : Rk(ā) holds} ⊆M − Vs. As with the similar axiom in
§6.1 above, Axiom V gives the theory effective quantifier elimination.

7.2 Verification

Lemma 7.3 (RCA0). There is a procedure to decide whether a given L-formula φ is consistent
with Axioms I–IV.

Proof. Assume that k ∈ Us ∪ Vs implies k < s. Combine Axioms I, III, and IV into a single
equivalent scheme of the form:

Ps(x0)→

∧
t≤s

Pt(x0) ∧

 ∧
i<j<n

Ps(xi) ∧ xi 6= xj

→
 ∧
k∈Us

Rk(x0, . . . , xn−1)∧

∧
k∈Vs

¬Rk(x0, . . . , xn−1)

 .

As in the proof of Lemma 6.2, we may replace the initial → with ∨ in both this scheme and
Axiom II and perform an appropriate reindexing of the relations to get a sequence of sentences
satisfying the hypothesis of Lemma 6.1 above. The result follows.

It follows that T ∗ is in S.

Lemma 7.4 (RCA0). The theory T ∗ has quantifer elimination.

Proof. Similar to the proof of Lemma 6.4.

Proposition 7.5. T is in S, is complete, and has quantifier elimination.

Proof. Similar to the proof of Proposition 3.2.

Lemma 7.6 (RCA0). The theory T is consistent.
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Proof. It suffices by the Soundness Theorem to show that T has a model. Suppose that A
is a finite L-structure, and suppose that there is an s0 such that, for every s ≥ s0, every
n-tuple ā of elements of A, and every entry ai of ā, we have A |= ¬Ps(ai) and A |= ¬Rs(ā).
Then there is a recursive procedure to check whether A is a model of Axioms I–IV. Let K be
an infinite-to-one enumeration of all finite L-structures which have such an s0 and which are
consistent with Axioms I–IV. This K satisfies the hypotheses of Lemma 6.8, and hence, by
Lemmas 6.7 and 6.8, has an effective Fräıssé limit which is a model of T .

Lemma 7.7 (RCA0). T has exactly one nonprincipal 1-type p(x). Furthermore, Ps(x) is in
p(x) for every s, and if q(x) is a 1-type of T not equal to p(x), then there is an s such that
¬Ps(x) ∈ q.

Proof. As in Harizanov [9, Lemma 10.7].

Lemma 7.8 (RCA0). For every k < n, T has a decidable model A with exactly k distinct
elements realizing p.

Proof. Use a Fräıssé construction similar to that in the proof of Lemma 7.6, except, instead
of just one, allow up to k distinct elements to realize p.

Lemma 7.9 (RCA0). Fix a number k < n and models A,B of T . If A and B each have exactly
k distinct elements realizing p, then A ∼= B.

Proof. An effective back-and-forth argument.

Lemma 7.10 (RCA0). If A is a model of T with at least n distinct elements realizing p, then
there is a separating set C for 〈Us, Vs〉s. In particular, 〈Us, Vs〉s is not an inseparable Σ0

1 pair.

Proof. Suppose A is such a model, and let ā be a tuple of distinct elements all realizing p.
Define C = {k : A |= Rk(ā)}. Then Ax III ensures that Us ⊆ C for all s, and Ax IV ensures
Vs ⊆M − C for all s. Therefore, C is a separating set for 〈Us, Vs〉s.

7.3 Application

We now prove the remaining theorem from §2.2.

Proof of Theorem 2.10. Assume WKL0 fails. When n = 1, use the ℵ0-categorical theory
constructed in the proof of Proposition 3.5. (Alternatively, we could use an effectively ℵ0-
categorical theory such as the theory of dense linear orders without endpoints.) Now suppose
n ≥ 2. Lemma 7.2 tells us that there is an inseparable Σ0

1 pair 〈Us, Vs〉s. Let T be the theory
constructed by the method of §7.1 using 〈Us, Vs〉s and the given n. Lemmas 7.8, 7.9, and 7.10
together imply that T has exactly n models up to isomorphism.
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