Theoren 1.1 Every partial spread of $H\left(5, q^{2}\right)$ has at most $q^{3}+1$ elements.
We checked for $q=2$ that $H\left(5, q^{2}\right)$ has partial spreads of cardinality $q^{3}+1$ that do not arise from a symplectic spread as above. D. Luyckx in her paper also shows that a maximal partial spread of $H\left(2 n+1, q^{2}\right)$ must have size at least $q+1$. It is likely that this bound is far away from the reality, but we can only make a slight improvement.

Theoren 1.2 A maximal partial spread of $H\left(5, q^{2}\right)$ has at least $2 q+3$, if $q \geq 7$, at least $2 q+2$ generators for $q \in\{3,4,5\}$ and at least $2 q+1=5$ generators for $q=2$.

2 The proof

Consider a partial spread \mathcal{S} of the Hermitian variety $H\left(5, q^{2}\right)$ embedded in $\operatorname{PG}\left(5, q^{2}\right)$. The points that are covered by the planes of \mathcal{S} will be called covered points. The planes contained in $H\left(5, q^{2}\right)$ are called hermitian planes. Since the partial spread is maximal, every hermitian plane contains a covered point. On the other hand, a hermitian plane that is not in the partial spread can meet at most one of the planes of \mathcal{S} in a line. The hermitian planes that are not in \mathcal{S} and do not contain a line of a plane of \mathcal{S} will be called free planes. Finally we put $x:=q^{4}+1-|\mathcal{S}|$.

Lemma 2.1 Every covered point lies on x free planes. Every uncovered points of $H\left(5, q^{2}\right)$ lies on $q^{3}+q+x$ free planes.

Proof. Let P be an uncovered point. For every plane $\pi \in \mathcal{S}$ the subspace $\left\langle P, P^{\perp} \cap \pi\right\rangle$ is a hermitian plane on P meeting π in a line. Hence P lies on exactly $|\mathcal{S}|$ hermitian planes that meet a plane of \mathcal{S} in a line. Then the number of free planes on P is $(q+1)\left(q^{3}+1\right)-|\mathcal{S}|=q^{3}+q+x$. Now consider a covered point P in a plane π_{0} of \mathcal{S}. The other planes π of S still give rise to the planes $\left\langle P, P^{\perp} \cap \pi\right\rangle$, but there are $\left(q^{2}+1\right) q$ hermitian planes on P that meet π_{0} in a line, so now the number of free planes on P is $q^{3}+q$ smaller than for the uncovered points.

This lemma shows that $x \geq 0$ and hence $|\mathcal{S}| \leq q^{4}+1$. This was noticed by D. Luyckx in [5]. The lemma has another interesting consequence. Consider
the multiset \mathcal{M} consisting of the free planes and $q^{3}+q$ copies of each plane of \mathcal{S}. Then every hermitian point is covered exactly $q^{3}+q+x$ times by planes of this multiset. This has powerful consequences. In order to prove these, we need the following remarkable property of hermitian varieties noticed by Thas [9].

Result 2.2 Let π_{1}, π_{2} and π be three distinct generators of $H\left(2 n+1, q^{2}\right)$. Then the points of π that lie on a line of $H\left(2 n+1, q^{2}\right)$ meeting π_{1} and π_{2} form a hermitian variety $H\left(n, q^{2}\right)$ in π.

In the degenerate situation $n=1$, we mean by a hermitian variety $H\left(1, q^{2}\right)$ a set of $q+1$ collinear points. We remark that this property can be verified easily in the case $n=1$ by using the duality of $H\left(3, q^{2}\right)$ and $Q^{-}(5, q)$.

Lemma 2.3 For two different planes π_{1}, π_{2} of \mathcal{S} the number of free planes intersecting both is equal to

$$
y:=x\left(q^{3}+1\right)-\left(q^{3}+q\right)\left(q^{2}-q+1\right)(q-1) .
$$

Proof Let π_{1} and π_{2} be two different planes of \mathcal{S}. Then the union U of all hermitian lines meeting π_{1} and π_{2} has size $\left(q^{4}+q^{2}+1\right)\left(q^{4}+1\right)$. Now consider the multiset \mathcal{M} constructed above whose planes cover every hermitian point $q^{3}+q+x$ times. We count incident pairs $(P, \pi) \in U \times \mathcal{M}$. Each point of U occurs in $q^{3}+q+x$ pairs.
The $q^{3}+q$ copies of π_{1} and π_{2} in \mathcal{M} occur each in $q^{4}+q^{2}+1$ pairs. A plane of \mathcal{M} that is skew to π_{1} and π_{2} occurs $q^{3}+1$ times by the above result; this applies to the $(|S|-2)\left(q^{3}+q\right)$ of planes of $\mathcal{S} \backslash\left\{\pi_{1}, \pi_{2}\right\}$. For the free planes in \mathcal{M} there are three possibilities. They can be skew to π_{1} and π_{2}. Then they also meet U in $q^{3}+1$ points. They can meet π_{1} and π_{2} in one point. Then they meet U in a line, so these free planes occur in $q^{2}+1$ pairs. We denote by y the number of such free planes. Then the number of free planes that meet exactly one of π_{1} and π_{2} is $2\left(q^{4}+q^{2}+1\right) x-2 y$ by Lemma 2.1. It follows from Result 2.2 that these free planes occur in $1+(q+1) q^{2}$ pairs.
Thus, each plane of \mathcal{M} occurs in $q^{3}+1$ pairs, except that $2\left(q^{3}+q\right)$ occur $q^{4}-q^{3}+q^{2}$ extra times, $2\left(q^{4}+q^{2}+1\right) x-2 y$ occur q^{2} extra times, and y occur $q^{3}+1-\left(q^{2}+1\right)=q^{3}-q^{2}$ times less. Hence

$$
\begin{aligned}
|U|\left(q^{3}+q+x\right)= & |\mathcal{M}|\left(q^{3}+1\right)+2\left(q^{3}+q\right)\left(q^{4}-q^{3}+q^{2}\right) \\
& +\left[2\left(q^{4}+q^{2}+1\right) x-2 y\right] q^{2}-y\left(q^{3}-q^{2}\right)
\end{aligned}
$$

As the planes of \mathcal{M} cover $H\left(5, q^{2}\right)$ exactly $q^{3}+q+x$ times, we have $|\mathcal{M}|=$ $\left(q^{5}+1\right)\left(q^{3}+q+x\right)$. Simplifying gives y as stated.

We have $|\mathcal{F}|=|\mathcal{M}|-|S|\left(q^{3}+q\right)$. Using the size for $|\mathcal{M}|$ from the above proof, we find

$$
\sum_{F \in \mathcal{F}} 1=|\mathcal{F}|=\left(q^{5}-q^{4}\right)\left(q^{3}+q\right)+x\left(q^{5}+q^{3}+q+1\right)
$$

For $F \in \mathcal{F}$ denote by c_{F} the number of points of F that are covered by planes of the partial spread \mathcal{S}. Counting incident pairs (P, F) with points covered by \mathcal{S} and free planes F, Lemma 2.1 gives

$$
\sum_{F \in \mathcal{F}} c_{F}=|\mathcal{S}|\left(q^{4}+q^{2}+1\right) x
$$

Counting triples $\left(P, P^{\prime}, F\right)$ of different points covered by \mathcal{S} and free planes F with $P, P^{\prime} \in F$, the preceding lemma gives

$$
\sum_{F \in \mathcal{F}} c_{F}\left(c_{F}-1\right)=|\mathcal{S}|(|\mathcal{S}|-1) y
$$

Using these three equalities to evaluate the Cauchy-Schwarz-inequality

$$
|\mathcal{F}| \sum_{F \in \mathcal{F}} c_{F}^{2} \geq\left(\sum_{F \in \mathcal{F}} c_{F}\right)^{2}
$$

using $x=q^{4}+1-|\mathcal{S}|$ and $s:=|S|$, gives

$$
\begin{aligned}
0 \leq & s q\left(q^{2}-q+1\right)\left(q^{3}+1-s\right)\left(q^{11}+q^{10}+q^{9}-s q^{7}+q^{7}+2 q^{6}-2 s q^{6}\right. \\
& \left.-s q^{4}+q^{4}-s q^{3}+s^{2} q^{3}-s q^{2}+q^{2}+s^{2} q-2 s q+q-s^{2}+2 s-1\right) .
\end{aligned}
$$

It follows that $|\mathcal{S}| \leq q^{3}+1$. Here we used that we have $|\mathcal{S}| \leq q^{4}+1$, see above.
Now suppose that $|\mathcal{S}|=q^{3}+1$. Then we have equality and this implies that all planes of \mathcal{F} have the same number f of covered points. The above equations for $\sum c_{F}$ and $|\mathcal{F}|$ show that this number is $q^{2}-q+1$. We also have $|\mathcal{F}|=q^{6}\left(q^{3}-1\right)$ and the number y of planes of \mathcal{F} meeting two planes of \mathcal{F} is

$$
y=\left(q^{4}+q^{2}+1\right)(q-1)^{2} q .
$$

This information shows that all spreads of size $q^{3}+1$ behave similar. However, we also mention that there might exist different spreads.

3 Small maximal partial spreads

In order to prove a lower bound for small maximal partial spreads of $H\left(5, q^{2}\right)$, we need to calculate some numbers. The crucial point of our counting argument is that the number of planes of $H\left(5, q^{2}\right)$ that meet three mutually skew planes of $H\left(5, q^{2}\right)$ is independent of the three planes chosen.

Lemma 3.1 (a) Every plane of $H\left(5, q^{2}\right)$ meets $\left(q^{4}+q^{2}+1\right)\left(q^{4}+q\right)$ other planes of $H\left(5, q^{2}\right)$.
(b) If π_{1} and π_{2} are mutually skew planes of $H\left(5, q^{2}\right)$, then there exist exactly $\left(q^{4}+q^{2}+1\right)\left(q^{3}-q^{2}+q+1\right)$ planes of $H\left(5, q^{2}\right)$ meet π_{1} and π_{2}.
(b) If π_{1}, π_{2} and π are three mutually skew planes of $H\left(5, q^{2}\right)$, then $q^{6}-$ $2 q^{5}+3 q^{4}+q+1$ planes of $H\left(5, q^{2}\right)$ meet π_{1}, π_{2} and π.

Proof (a) Each of the $q^{4}+q^{2}+1$ lines of a plane π of $H\left(5, q^{2}\right)$ lies in q further planes. A point of π lies in $(q+1)\left(q^{3}+1\right)$ planes of $H\left(5, q^{2}\right)$, of which one is π and $\left(q^{2}+1\right) q$ other ones meet π in a line, so q^{4} of which meet π only in this point. Thus there exist $\left(q^{4}+q^{2}+1\right) q^{4}$ planes in $H\left(5, q^{2}\right)$ that meet π in a unique point.
(b) Consider a point $P \in \pi_{1}$. The number of planes on P that meet π_{2} can be counted in the quotient geometry on P : Given two skew lines l_{1} and l_{2} in $H\left(3, q^{2}\right)$, there are exactly $1+\left(q^{2}+1\right) q$ lines that meet l_{2} and exactly $q^{2}+1$ of these meet also l_{1}. Thus, P lies in $q^{3}+q+1$ planes of $H\left(5, q^{2}\right)$ that meet π_{2} and exactly $q^{2}+1$ of these meet π_{1} in a line. It follows that there exists $q^{4}+q^{2}+1$ planes of $H\left(5, q^{2}\right)$ that meet π_{1} in a line and π_{2} in a point, and there are $\left(q^{4}+q^{2}+1\right)\left(q^{3}-q^{2}+q\right)$ planes in $H\left(5, q^{2}\right)$ that meet π_{1} in a unique point and that meet also π_{2}.
(c) First we recall from Result 2.2 that we find a hermitian curve $H=$ $H\left(2, q^{2}\right)$ in the plane π consisting of those points of π that lie on a line of $H\left(5, q^{2}\right)$ that meets π_{1} and π_{2}. Alternatively, one can say that H consists of the points $P \in \pi$ such that the planes $\left\langle P, P^{\perp} \cap \pi_{1}\right\rangle$ and $\left\langle P, P^{\perp} \cap \pi_{2}\right\rangle$ meet in a line l (and this is the line of $H\left(5, q^{2}\right)$ on P that meets π_{1} and π_{2}).
Consider a point $P \in \pi$. Then every plane of $H\left(5, q^{2}\right)$ on P that meets π_{1} and π_{2}, meets π_{i} in a point of the plane $E_{i}:=\left\langle P, P^{\perp} \cap \pi_{i}\right\rangle$. Going into the quotient space P^{\perp} / P, in which we see a $H\left(3, q^{2}\right)$, the planes E_{1}, E_{2} and π
become lines l_{1}, l_{2}, l. The number of planes of $H\left(5, q^{2}\right)$ on P that meet also π_{1} and π_{2} is equal to the number of lines in the $H\left(3, q^{2}\right)$ that meet l_{1} and l_{2}. If $P \in H$, then the lines l_{1} and l_{2} meet in a point and l is disjoint to l_{1} and l_{2}. In this case there are $q+1$ lines meeting l_{1} and l_{2} and one of these meets also l. If $P \notin H$, then l_{1}, l_{2} and l are mutually skew, so there are $q^{2}+1$ lines in $H\left(3, q^{2}\right)$ that meet l_{1} and l_{2} and, by Result 2.2, exactly $q+1$ of these meet also l.
Thus the number of planes of $H\left(5, q^{2}\right)$ on P that meet π_{1} and π_{2} is $q+1$ in the first case and $q^{2}+1$ in the second case. Also in the first case one and in the second case $q+1$ of these planes meet π in line. Thus, from the planes of $H\left(5, q^{2}\right)$ that meet π_{1} and π_{2}, exactly

$$
\left(q^{3}+1\right) q+\left(q^{4}-q^{3}+q^{2}\right)\left(q^{2}-q\right)=q^{6}-2 q^{5}+3 q^{4}-q^{3}+q
$$

meet π in a unique point, and

$$
\frac{\left(q^{3}+1\right) \cdot 1+\left(q^{4}-q^{3}+q^{2}\right)(q+1)}{q^{2}+1}=q^{3}+1
$$

meet π in a line.
Remark. In the previous proof, one can also show the following. A tangent line of the hermitian curve H in π lies on a unique plane of $H\left(5, q^{2}\right)$ meeting π_{1} and π_{2}, whereas the other lines of π do not lie in planes that meet π_{1} and π_{2}. This explains the term $q^{3}+1$ for the number of planes meeting π, π_{1} and π_{2}.

To obtain from this information a lower bound we use a standard counting technique, see for example [7]. Suppose that \mathcal{F} is a maximal partial spread of $H\left(5, q^{2}\right)$. Let n_{i} be the number of planes of $H\left(5, q^{2}\right)$ that are not in \mathcal{F} and that meet exactly i planes of \mathcal{F}. Then $n_{0}=0$ as the spread is maximal. Also

$$
\begin{align*}
\sum_{i \geq 1} n_{i} & =(q+1)\left(q^{3}+1\right)\left(q^{5}+1\right)-|\mathcal{F}| \tag{1}\\
\sum_{i \geq 1} n_{i} i & =|\mathcal{F}|\left(q^{4}+q^{2}+1\right)\left(q^{4}+q\right) \tag{2}\\
\sum_{i \geq 1} n_{i} i(i-1) & =|\mathcal{F}|(|\mathcal{F}|-1)\left(q^{4}+q^{2}+1\right)\left(q^{3}-q^{2}+q+1\right) \tag{3}
\end{align*}
$$

$$
\begin{equation*}
\sum_{i \geq 1} n_{i} i(i-1)(i-2)=|\mathcal{F}|(|\mathcal{F}|-1)(|\mathcal{F}|-2)\left(q^{6}-2 q^{5}+3 q^{4}+q+1\right) \tag{4}
\end{equation*}
$$

The first equation holds, since $H\left(5, q^{2}\right)$ has $(q+1)\left(q^{3}+1\right)\left(q^{5}+1\right)$ generators. The second equation follows from a double counting argument, since each generator meets $\left(q^{4}+q^{2}+1\right)\left(q^{4}+q\right)$ other generators. Finally the third and forth equation follow from the lemma by counting suitable triple and 4 -tuples. These equation enable us to calculate the sum

$$
S:=\sum_{i \geq 1} n_{i}(i-1)(i-3)(i-4)
$$

Clearly $S \geq 0$. Simplifying using the above equation yields (here we put $|\mathcal{F}|=2 q+2+x)$

$$
\begin{aligned}
0 \leq & \left(q^{6}-2 q^{5}+3 q^{4}+q+1\right) x^{3} \\
& +\left(q^{7}+6 q^{2}+9 q^{4}+4 q+2 q^{5}-10 q^{3}-2-4 q^{6}\right) x^{2} \\
& +\left(-22 q^{4}-1-7 q^{7}+4 q^{2}+q^{6}-6 q^{3}+14 q^{5}-9 q+4 q^{8}\right) x+2 \\
& -2 q^{8}-16 q^{4}+14 q^{6}-12 q^{5}-10 q^{2}-8 q^{3}+8 q^{7} .
\end{aligned}
$$

For large q we immediately see that $x>0$ and hence $|\mathcal{F}| \geq 2 q+3$. In fact, this holds for $q \geq 7$. For $q=5$ and $q=3$ we still deduce $x>-1$, that is $|\mathcal{F}| \geq 2 q+2$, and for $q=2$ we find $|\mathcal{F}| \geq 2 q+1=5$.
We remark that the same technique can be applied to $H\left(2 n+1, q^{2}\right)$ for any n, only one has to calculate the numbers as in Lemma 3.1. For example, if $n=1$, the numbers are easy to calculate, where again for the last number Result 2.2 is needed. Thus, if \mathcal{F} is a partial spread of $H\left(3, q^{2}\right)$, then

$$
\begin{aligned}
\sum_{i \geq 1} n_{i} & =(q+1)\left(q^{3}+1\right)-|\mathcal{F}| \\
\sum_{i \geq 1} n_{i} i & =|\mathcal{F}|\left(q^{2}+1\right) q \\
\sum_{i \geq 1} n_{i} i(i-1) & =|\mathcal{F}|(|\mathcal{F}|-1)\left(q^{2}+1\right) \\
\sum_{i \geq 1} n_{i} i(i-1)(i-2) & =|\mathcal{F}|(|\mathcal{F}|-1)(|\mathcal{F}|-2)(q+1)
\end{aligned}
$$

The calculating the same sum as above gives $|\mathcal{F}| \geq 2 q+1$ for $q=2,3$, and $|\mathcal{F}| \geq 2 q+2$ for $q \geq 4$

4 Particular results for small values of q

Using the computer algebra system GAP [6] and the package pg [3], we constructed all maximal partial spreads of $H(5,4)$ and $H\left(3, q^{2}\right), q=2,3$. For $H(5,4)$ we were interested in the different kind of maximal partial spreads that exist, and some of their geometric properties. For $H\left(3, q^{2}\right), q=2,3$ we were more interested in the possible sizes that maximal partial spreads can have.

maximal partial spreads of $H(5,4)$

The following table summarizes the information on the different maximal partial spreads of $H(5,4)$.

class	size	stabilizer group	order of the group
symplectic	9	$L_{2}(8): C_{3}$	$9 \cdot 8 \cdot 7 \cdot 3=1512$
derivation 1	9	$C_{3} 2 S_{3}$	$3^{3} \cdot 2 \cdot 3=162$
derivation 2	9	$\left(C_{2}^{3}: C_{7}\right): C_{3}$	$2^{3} \cdot 7 \cdot 3=168$
derivation 3	7	C_{2}	2
derivation 4	7	$D_{10} \cong C_{5}: C_{2}$	10

There are, up to collineation, 3 examples of maximal partial spreads of size 9 and two examples of maximal partial spreads of size 7. The (up to collinetion unique) spread of $W(5,2)$ (embedded in $H(5,4)$) is called the symplectic example. Its stabilizer group, i.e. the subgroup of $\operatorname{P\Gamma U}(6,4)$ stabilizing the spread planewise, has actually order 9072 , but its action on the planes of the maximal partial spread S is isomorphic with $L_{2}(8): C_{3}$, which is a group of order 1512. The reason is that a collineation of $W(5,2)$ embedded in $H(5,4)$ can be extended in several ways to a collineation of $H(5,4)$. The group acts 3 -transitively on the planes, the normal subgroup $L_{2}(8)$ acts sharply 3 -transitively on the planes and is simple.
Suppose that S is a maximal partial spread of size 9. Consider a triple T of planes of S. Denote with $F(T)$ the set of free planes of $H(5,4)$ intersecting every plane of T. Suppose that S is the symplectic example. Then for any triple T the set $F(T)$ contains at least one triple of mutually skew planes intersecting no other planes of S than the three planes of the chosen triple.

We say that the set $F(T)$ staisfies condition D. Hence replacing the planes from the triple with such a triple of mutually skew planes yield a new spread of size 9 . We call this procedure derivation. Since the stabilizer group of S acts 3 -transitively on the planes of S, it is clear that a derivation from any chosen triple yields the same spread. We call this example a derivation 1 example. Its stabilizer group has order 162 and acts transitively on the planes of the spread. The action is imprimitive. A non-trivial block system exists where each block contains exactly three planes, the action of the group on the blocks is isomorphic to S_{3} (the symmetric group on three elements). The subgroup stabilizing each block is elementary abelian and isomorphic with C_{3}^{3}. The derivation process can be executed on this example, but not all chosen triples will yield the same spread now. For some triples T, the set $F(T)$ will even not satisfy condition D , but if it does, the derivation can be a symplectic example, a derviation 1 or a derivation 2 example.

Suppose that S is a derivation 2 example. Its stabilizer group fixes exactly one plane, the action of the group is 2 -transitive on the 8 remaining planes and is isomorphic to $\left(C_{2}^{3}: C_{7}\right): C_{3}$. The normal subgroup $C_{2}^{3}: C_{7}$ acts sharply 2-transitive on the 8 remaining planes. Again the process of derivation can be executed and if, for a chosen triple T, the set $F(T)$ satisfies condition D , then the derivation of S is always a derivation 1 example.
Suppose now that S is a derivation 1 or a derivation 2 example. It is always possible to find a triple T of planes of S such that $F(T)$ does not satisfy condition D, such that $F(T)$ contains a plane π that intersects two planes of $S \backslash T$, such that $F(T)$ contains two more planes π^{\prime} and $\pi^{\prime \prime}$, not intersecting the planes of $S \backslash T$ and such that π, π^{\prime} and $\pi^{\prime \prime}$ are mutually skew. Removing the two planes of $S \backslash T$ that intersect π, and the three planes of T, and adding the three planes π, π^{\prime} and $\pi^{\prime \prime}$, yields a maximal partial spread of size 7. Starting from a derivation 1 or derivation 2 example, we can always construct derivation 3 and derivation 4 examples if we choose a suitable triple T.
If S is a derivation 3 example, then its stabilizer group fixes one plane of S. Its action on the remaining six planes is involutory, the stabilizer group is isomorphic with C_{2}. If S is a derivation 4 example, then its stabilizer group has order 10, fixes no plane, but does not act transitively on the planes of S. There are two orbits, one has length 7 , the second one has length 2 . The stabilizer group is isomorphic with $D_{10} \cong C_{5}: C_{2}$, the dihedral group of
order 10.
We recall that in the case $H(5,4)$ the theoretic lower bound from the previous section was 5 . We see that in reality the smallest maximal partial spread has size 7.

Maximal partial spreads of $H\left(3, q^{2}\right), q=2,3$

From the previous section we known that the a maximal partial spread of $H\left(3, q^{2}\right), q=2,3$ contains at least $2 q+1$ planes. That $H\left(3, q^{2}\right.$ has a maximal partial spread of size $q^{2}+1$ is observed in [4], as in the $H\left(5, q^{2}\right)$, we can embed the symplectic polar space (now of rank 2) into $H\left(3, q^{2}\right)$. Alternatively, one says that $W(3, q)$ is a subquadrangle of the generalized quadrangle $H\left(3, q^{2}\right)$ [8]. It is known that $W(3, q)$ has spreads. Suppose that S is a spread of $W(3, q)$, than one can show that the extension in $H\left(3, q^{2}\right)$ is a maximal partial spread as follows. Consider the dual situation, i.e. we interchange the role of the points and the lines in the generalized quadrangles $W(3, q)$ and $H\left(3, q^{2}\right)$. The dual of $W(3, q)$ is isomorphic with $Q(4, q)$ and the dual of $H\left(3, q^{2}\right)$ is isomorphic with $Q^{-}(5, q)$. Hence in the dual situation we consider an ovoid of $Q(4, q)$ embedded in $Q^{(5, q)}$. An ovoid of $Q(4, q)$ is a set \mathcal{O} of points of $Q(4, q)$ such that every line of $Q(4, q)$ meets the ovoid in exactly one point. (remark that this is exactly the dual of a spread of $W(3, q)$. Considering the ovoid \mathcal{O} of $Q(4, q)$, we have to show that any point of $Q^{-}(5, q)$ is collinear on $Q^{-}(5, q)$ with at least one point of \mathcal{O}. Consider a point $p \in Q^{-}(5, q) \backslash Q(4, q)$, then all points collinear with p lie in a hyperplane π_{4} of $\operatorname{PG}(5, q)$. Consider the 4 -dimensional space π_{4} containing $Q(4, q)$. Then π intersects π_{4} in a 3dimensional space, and it is known that each 3-dimensional space contains exactly $1 \bmod p$ points of \mathcal{O}, with $q=p^{h}[1,2]$. This shows that any spread of $W(3, q)$ constitutes a maximal partial spread of $H\left(3, q^{2}\right)$, of size $q^{2}+1$.
Using an exhaustive search, we found that $H\left(3, q^{2}\right), q=2$ has, up to collineation, 1 maximal partial spread of size 5 and 1 maximal partial spread of size 6 . Hence the lower bound $2 q+1$ is reached in this case. For $q=3$, we found that $H\left(3, q^{2}\right)$ has maximal partial spreads of size $10,11,12,13$ and 16. In this case the lower bound $2 q+1$ is not reached. We observe that the size of the symplectic spread $\left(q^{2}+1\right)$ is the real lower bound for $q=2,3$, so the question arises whether this is true for general q. We remark that more results on maximal partial spreads of $H\left(3, q^{2}\right), q=2,3$ can be found in [4].

References

[1] S. Ball. On ovoids of $\mathrm{O}(5, q)$. Adv. Geom., 4(1):1-7, 2004.
[2] S. Ball, P. Govaerts, and L. Storme. On ovoids of parabolic quadrics. Des. Codes Cryptogr., to appear.
[3] J. De Beule, P. Govaerts, and L. Storme. Projective Geometries, a share package for GAP. (http://cage.ugent.be/~jdebeule/pg)
[4] G. L. Ebert and J. W. P. Hirschfeld. Complete systems of lines on a Hermitian surface over a finite field. Des. Codes Cryptogr., 17(1-3):253268, 1999.
[5] D. Luyckx. On maximal partial spreads of $H\left(2 n+1, q^{2}\right)$. Discrete Math., submitted.
[6] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4; 2004. (http://www.gap-system.org)
[7] D. Glynn. A lower bound for the maximal partial spreads in $\operatorname{PG}(3, q)$. Ars Combinatoria, 13:39-40.
[8] S. E. Payne and J. A. Thas. Finite generalized quadrangles, volume 110 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1984.
[9] J.A. Thas. Old and new results on spreads and ovoids of finite classical polar spaces. Ann. Discr. Math., 52:529-544, 1992.

Jan De Beule, Department of Pure Mathematics and Computer Algebra, Ghent University, Krijgslaan 281 S 22, B-9000 Gent, Belgium
http://cage.ugent.be/~jdebeule, jdebeule@cage.ugent.be

Klaus Metsch, Mathematisches Institut, Arndtstrasse 2, D-35392 Giessen, Germany
Klaus.Metsch@math.uni-giessen.de

