


Theoren 1.1 Every partial spread of H(5, q2) has at most q3 + 1 elements.

We checked for q = 2 that H(5, q2) has partial spreads of cardinality q3 + 1
that do not arise from a symplectic spread as above. D. Luyckx in her paper
also shows that a maximal partial spread of H(2n + 1, q2) must have size at
least q + 1. It is likely that this bound is far away from the reality, but we
can only make a slight improvement.

Theoren 1.2 A maximal partial spread of H(5, q2) has at least 2q + 3, if
q ≥ 7, at least 2q + 2 generators for q ∈ {3, 4, 5} and at least 2q + 1 = 5
generators for q = 2.

2 The proof

Consider a partial spread S of the Hermitian variety H(5, q2) embedded in
PG(5, q2). The points that are covered by the planes of S will be called
covered points. The planes contained in H(5, q2) are called hermitian planes.
Since the partial spread is maximal, every hermitian plane contains a covered
point. On the other hand, a hermitian plane that is not in the partial spread
can meet at most one of the planes of S in a line. The hermitian planes that
are not in S and do not contain a line of a plane of S will be called free
planes. Finally we put x := q4 + 1− |S|.

Lemma 2.1 Every covered point lies on x free planes. Every uncovered
points of H(5, q2) lies on q3 + q + x free planes.

Proof. Let P be an uncovered point. For every plane π ∈ S the subspace
〈P, P⊥ ∩ π〉 is a hermitian plane on P meeting π in a line. Hence P lies
on exactly |S| hermitian planes that meet a plane of S in a line. Then the
number of free planes on P is (q +1)(q3 +1)−|S| = q3 + q +x. Now consider
a covered point P in a plane π0 of S. The other planes π of S still give rise
to the planes 〈P, P⊥∩π〉, but there are (q2 +1)q hermitian planes on P that
meet π0 in a line, so now the number of free planes on P is q3 + q smaller
than for the uncovered points. 2

This lemma shows that x ≥ 0 and hence |S| ≤ q4 + 1. This was noticed by
D. Luyckx in [5]. The lemma has another interesting consequence. Consider
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the multiset M consisting of the free planes and q3 +q copies of each plane of
S. Then every hermitian point is covered exactly q3 + q + x times by planes
of this multiset. This has powerful consequences. In order to prove these,
we need the following remarkable property of hermitian varieties noticed by
Thas [9].

Result 2.2 Let π1, π2 and π be three distinct generators of H(2n + 1, q2).
Then the points of π that lie on a line of H(2n + 1, q2) meeting π1 and π2

form a hermitian variety H(n, q2) in π.

In the degenerate situation n = 1, we mean by a hermitian variety H(1, q2)
a set of q + 1 collinear points. We remark that this property can be verified
easily in the case n = 1 by using the duality of H(3, q2) and Q−(5, q).

Lemma 2.3 For two different planes π1, π2 of S the number of free planes
intersecting both is equal to

y := x(q3 + 1)− (q3 + q)(q2 − q + 1)(q − 1).

Proof Let π1 and π2 be two different planes of S. Then the union U of all
hermitian lines meeting π1 and π2 has size (q4 +q2 +1)(q4 +1). Now consider
the multiset M constructed above whose planes cover every hermitian point
q3 + q + x times. We count incident pairs (P, π) ∈ U ×M. Each point of U
occurs in q3 + q + x pairs.

The q3 + q copies of π1 and π2 in M occur each in q4 + q2 + 1 pairs. A plane
of M that is skew to π1 and π2 occurs q3 + 1 times by the above result; this
applies to the (|S| − 2)(q3 + q) of planes of S \ {π1, π2}. For the free planes
in M there are three possibilities. They can be skew to π1 and π2. Then
they also meet U in q3 + 1 points. They can meet π1 and π2 in one point.
Then they meet U in a line, so these free planes occur in q2 + 1 pairs. We
denote by y the number of such free planes. Then the number of free planes
that meet exactly one of π1 and π2 is 2(q4 + q2 + 1)x− 2y by Lemma 2.1. It
follows from Result 2.2 that these free planes occur in 1 + (q + 1)q2 pairs.

Thus, each plane of M occurs in q3 + 1 pairs, except that 2(q3 + q) occur
q4 − q3 + q2 extra times, 2(q4 + q2 + 1)x − 2y occur q2 extra times, and y
occur q3 + 1− (q2 + 1) = q3 − q2 times less. Hence

|U |(q3 + q + x) = |M|(q3 + 1) + 2(q3 + q)(q4 − q3 + q2)

+[2(q4 + q2 + 1)x− 2y]q2 − y(q3 − q2)
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As the planes of M cover H(5, q2) exactly q3 + q + x times, we have |M| =
(q5 + 1)(q3 + q + x). Simplifying gives y as stated. 2

We have |F| = |M| − |S|(q3 + q). Using the size for |M| from the above
proof, we find∑

F∈F

1 = |F| = (q5 − q4)(q3 + q) + x(q5 + q3 + q + 1)

For F ∈ F denote by cF the number of points of F that are covered by planes
of the partial spread S. Counting incident pairs (P, F ) with points covered
by S and free planes F , Lemma 2.1 gives∑

F∈F

cF = |S|(q4 + q2 + 1)x.

Counting triples (P, P ′, F ) of different points covered by S and free planes
F with P, P ′ ∈ F , the preceding lemma gives∑

F∈F

cF (cF − 1) = |S|(|S| − 1)y.

Using these three equalities to evaluate the Cauchy-Schwarz-inequality

|F|
∑
F∈F

c2
F ≥

(∑
F∈F

cF

)2

using x = q4 + 1− |S| and s := |S|, gives

0 ≤ sq(q2 − q + 1)(q3 + 1− s)(q11 + q10 + q9 − sq7 + q7 + 2q6 − 2sq6

− sq4 + q4 − sq3 + s2q3 − sq2 + q2 + s2q − 2sq + q − s2 + 2s− 1).

It follows that |S| ≤ q3 + 1. Here we used that we have |S| ≤ q4 + 1, see
above.

Now suppose that |S| = q3 + 1. Then we have equality and this implies
that all planes of F have the same number f of covered points. The above
equations for

∑
cF and |F| show that this number is q2 − q + 1. We also

have |F| = q6(q3 − 1) and the number y of planes of F meeting two planes
of F is

y = (q4 + q2 + 1)(q − 1)2q.

This information shows that all spreads of size q3+1 behave similar. However,
we also mention that there might exist different spreads.
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3 Small maximal partial spreads

In order to prove a lower bound for small maximal partial spreads of H(5, q2),
we need to calculate some numbers. The crucial point of our counting argu-
ment is that the number of planes of H(5, q2) that meet three mutually skew
planes of H(5, q2) is independent of the three planes chosen.

Lemma 3.1 (a) Every plane of H(5, q2) meets (q4 + q2 + 1)(q4 + q) other
planes of H(5, q2).

(b) If π1 and π2 are mutually skew planes of H(5, q2), then there exist
exactly (q4 + q2 + 1)(q3− q2 + q + 1) planes of H(5, q2) meet π1 and π2.

(b) If π1, π2 and π are three mutually skew planes of H(5, q2), then q6 −
2q5 + 3q4 + q + 1 planes of H(5, q2) meet π1, π2 and π.

Proof (a) Each of the q4+q2+1 lines of a plane π of H(5, q2) lies in q further
planes. A point of π lies in (q + 1)(q3 + 1) planes of H(5, q2), of which one
is π and (q2 + 1)q other ones meet π in a line, so q4 of which meet π only in
this point. Thus there exist (q4 + q2 + 1)q4 planes in H(5, q2) that meet π in
a unique point.

(b) Consider a point P ∈ π1. The number of planes on P that meet π2 can
be counted in the quotient geometry on P : Given two skew lines l1 and l2 in
H(3, q2), there are exactly 1 + (q2 + 1)q lines that meet l2 and exactly q2 + 1
of these meet also l1. Thus, P lies in q3 + q + 1 planes of H(5, q2) that meet
π2 and exactly q2 + 1 of these meet π1 in a line. It follows that there exists
q4 + q2 + 1 planes of H(5, q2) that meet π1 in a line and π2 in a point, and
there are (q4 +q2 +1)(q3−q2 +q) planes in H(5, q2) that meet π1 in a unique
point and that meet also π2.

(c) First we recall from Result 2.2 that we find a hermitian curve H =
H(2, q2) in the plane π consisting of those points of π that lie on a line of
H(5, q2) that meets π1 and π2. Alternatively, one can say that H consists of
the points P ∈ π such that the planes 〈P, P⊥ ∩ π1〉 and 〈P, P⊥ ∩ π2〉 meet in
a line l (and this is the line of H(5, q2) on P that meets π1 and π2).

Consider a point P ∈ π. Then every plane of H(5, q2) on P that meets π1

and π2, meets πi in a point of the plane Ei := 〈P, P⊥ ∩ πi〉. Going into the
quotient space P⊥/P , in which we see a H(3, q2), the planes E1, E2 and π
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become lines l1, l2, l. The number of planes of H(5, q2) on P that meet also
π1 and π2 is equal to the number of lines in the H(3, q2) that meet l1 and l2.
If P ∈ H, then the lines l1 and l2 meet in a point and l is disjoint to l1 and
l2. In this case there are q + 1 lines meeting l1 and l2 and one of these meets
also l. If P /∈ H, then l1, l2 and l are mutually skew, so there are q2 + 1 lines
in H(3, q2) that meet l1 and l2 and, by Result 2.2, exactly q+1 of these meet
also l.

Thus the number of planes of H(5, q2) on P that meet π1 and π2 is q + 1 in
the first case and q2 + 1 in the second case. Also in the first case one and in
the second case q + 1 of these planes meet π in line. Thus, from the planes
of H(5, q2) that meet π1 and π2, exactly

(q3 + 1)q + (q4 − q3 + q2)(q2 − q) = q6 − 2q5 + 3q4 − q3 + q

meet π in a unique point, and

(q3 + 1) · 1 + (q4 − q3 + q2)(q + 1)

q2 + 1
= q3 + 1

meet π in a line. 2

Remark. In the previous proof, one can also show the following. A tangent
line of the hermitian curve H in π lies on a unique plane of H(5, q2) meeting
π1 and π2, whereas the other lines of π do not lie in planes that meet π1 and
π2. This explains the term q3 +1 for the number of planes meeting π, π1 and
π2.

To obtain from this information a lower bound we use a standard counting
technique, see for example [7]. Suppose that F is a maximal partial spread
of H(5, q2). Let ni be the number of planes of H(5, q2) that are not in F
and that meet exactly i planes of F . Then n0 = 0 as the spread is maximal.
Also ∑

i≥1

ni = (q + 1)(q3 + 1)(q5 + 1)− |F| (1)∑
i≥1

nii = |F|(q4 + q2 + 1)(q4 + q) (2)∑
i≥1

nii(i− 1) = |F|(|F| − 1)(q4 + q2 + 1)(q3 − q2 + q + 1) (3)
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∑
i≥1

nii(i− 1)(i− 2) = |F|(|F| − 1)(|F| − 2)(q6 − 2q5 + 3q4 + q + 1).(4)

The first equation holds, since H(5, q2) has (q +1)(q3 +1)(q5 +1) generators.
The second equation follows from a double counting argument, since each
generator meets (q4 + q2 + 1)(q4 + q) other generators. Finally the third
and forth equation follow from the lemma by counting suitable triple and
4-tuples. These equation enable us to calculate the sum

S :=
∑
i≥1

ni(i− 1)(i− 3)(i− 4).

Clearly S ≥ 0. Simplifying using the above equation yields (here we put
|F| = 2q + 2 + x)

0 ≤ (q6 − 2 q5 + 3 q4 + q + 1) x3

+ (q7 + 6 q2 + 9 q4 + 4 q + 2 q5 − 10 q3 − 2− 4 q6) x2

+ (−22 q4 − 1− 7 q7 + 4 q2 + q6 − 6 q3 + 14 q5 − 9 q + 4 q8) x + 2

− 2 q8 − 16 q4 + 14 q6 − 12 q5 − 10 q2 − 8 q3 + 8 q7.

For large q we immediately see that x > 0 and hence |F| ≥ 2q + 3. In fact,
this holds for q ≥ 7. For q = 5 and q = 3 we still deduce x > −1, that is
|F| ≥ 2q + 2, and for q = 2 we find |F| ≥ 2q + 1 = 5.

We remark that the same technique can be applied to H(2n + 1, q2) for any
n, only one has to calculate the numbers as in Lemma 3.1. For example, if
n = 1, the numbers are easy to calculate, where again for the last number
Result 2.2 is needed. Thus, if F is a partial spread of H(3, q2), then∑

i≥1

ni = (q + 1)(q3 + 1)− |F|∑
i≥1

nii = |F|(q2 + 1)q∑
i≥1

nii(i− 1) = |F|(|F| − 1)(q2 + 1)∑
i≥1

nii(i− 1)(i− 2) = |F|(|F| − 1)(|F| − 2)(q + 1).

The calculating the same sum as above gives |F| ≥ 2q + 1 for q = 2, 3, and
|F| ≥ 2q + 2 for q ≥ 4
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4 Particular results for small values of q

Using the computer algebra system GAP [6] and the package pg [3], we
constructed all maximal partial spreads of H(5, 4) and H(3, q2), q = 2, 3. For
H(5, 4) we were interested in the different kind of maximal partial spreads
that exist, and some of their geometric properties. For H(3, q2), q = 2, 3 we
were more interested in the possible sizes that maximal partial spreads can
have.

maximal partial spreads of H(5, 4)

The following table summarizes the information on the different maximal
partial spreads of H(5, 4).

class size stabilizer group order of the group
symplectic 9 L2(8) : C3 9 · 8 · 7 · 3 = 1512
derivation 1 9 C3 o S3 33 · 2 · 3 = 162
derivation 2 9 (C3

2 : C7) : C3 23 · 7 · 3 = 168
derivation 3 7 C2 2
derivation 4 7 D10

∼= C5 : C2 10

There are, up to collineation, 3 examples of maximal partial spreads of size 9
and two examples of maximal partial spreads of size 7. The (up to collinetion
unique) spread of W (5, 2) (embedded in H(5, 4)) is called the symplectic
example. Its stabilizer group, i.e. the subgroup of PΓU(6, 4) stabilizing the
spread planewise, has actually order 9072, but its action on the planes of the
maximal partial spread S is isomorphic with L2(8) : C3, which is a group of
order 1512. The reason is that a collineation of W (5, 2) embedded in H(5, 4)
can be extended in several ways to a collineation of H(5, 4). The group
acts 3-transitively on the planes, the normal subgroup L2(8) acts sharply
3-transitively on the planes and is simple.

Suppose that S is a maximal partial spread of size 9. Consider a triple T of
planes of S. Denote with F (T ) the set of free planes of H(5, 4) intersecting
every plane of T . Suppose that S is the symplectic example. Then for any
triple T the set F (T ) contains at least one triple of mutually skew planes
intersecting no other planes of S than the three planes of the chosen triple.
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We say that the set F (T ) staisfies condition D. Hence replacing the planes
from the triple with such a triple of mutually skew planes yield a new spread
of size 9. We call this procedure derivation. Since the stabilizer group of
S acts 3-transitively on the planes of S, it is clear that a derivation from
any chosen triple yields the same spread. We call this example a derivation
1 example. Its stabilizer group has order 162 and acts transitively on the
planes of the spread. The action is imprimitive. A non-trivial block system
exists where each block contains exactly three planes, the action of the group
on the blocks is isomorphic to S3 (the symmetric group on three elements).
The subgroup stabilizing each block is elementary abelian and isomorphic
with C3

3 . The derivation process can be executed on this example, but not
all chosen triples will yield the same spread now. For some triples T , the set
F (T ) will even not satisfy condition D, but if it does, the derivation can be
a symplectic example, a derviation 1 or a derivation 2 example.

Suppose that S is a derivation 2 example. Its stabilizer group fixes exactly
one plane, the action of the group is 2-transitive on the 8 remaining planes
and is isomorphic to (C3

2 : C7) : C3. The normal subgroup C3
2 : C7 acts

sharply 2-transitive on the 8 remaining planes. Again the process of deriva-
tion can be executed and if, for a chosen triple T , the set F (T ) satisfies
condition D, then the derivation of S is always a derivation 1 example.

Suppose now that S is a derivation 1 or a derivation 2 example. It is always
possible to find a triple T of planes of S such that F (T ) does not satisfy
condition D, such that F (T ) contains a plane π that intersects two planes of
S \ T , such that F (T ) contains two more planes π′ and π′′, not intersecting
the planes of S \T and such that π, π′ and π′′ are mutually skew. Removing
the two planes of S \ T that intersect π, and the three planes of T , and
adding the three planes π, π′ and π′′, yields a maximal partial spread of
size 7. Starting from a derivation 1 or derivation 2 example, we can always
construct derivation 3 and derivation 4 examples if we choose a suitable triple
T .

If S is a derivation 3 example, then its stabilizer group fixes one plane of S.
Its action on the remaining six planes is involutory, the stabilizer group is
isomorphic with C2. If S is a derivation 4 example, then its stabilizer group
has order 10, fixes no plane, but does not act transitively on the planes of
S. There are two orbits, one has length 7, the second one has length 2. The
stabilizer group is isomorphic with D10

∼= C5 : C2, the dihedral group of
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order 10.

We recall that in the case H(5, 4) the theoretic lower bound from the previous
section was 5. We see that in reality the smallest maximal partial spread has
size 7.

Maximal partial spreads of H(3, q2), q = 2, 3

From the previous section we known that the a maximal partial spread of
H(3, q2), q = 2, 3 contains at least 2q+1 planes. That H(3, q2 has a maximal
partial spread of size q2+1 is observed in [4], as in the H(5, q2), we can embed
the symplectic polar space (now of rank 2) into H(3, q2). Alternatively, one
says that W (3, q) is a subquadrangle of the generalized quadrangle H(3, q2)
[8]. It is known that W (3, q) has spreads. Suppose that S is a spread of
W (3, q), than one can show that the extension in H(3, q2) is a maximal partial
spread as follows. Consider the dual situation, i.e. we interchange the role of
the points and the lines in the generalized quadrangles W (3, q) and H(3, q2).
The dual of W (3, q) is isomorphic with Q(4, q) and the dual of H(3, q2) is
isomorphic with Q−(5, q). Hence in the dual situation we consider an ovoid
of Q(4, q) embedded in Q(5, q). An ovoid of Q(4, q) is a set O of points of
Q(4, q) such that every line of Q(4, q) meets the ovoid in exactly one point.
(remark that this is exactly the dual of a spread of W (3, q). Considering the
ovoid O of Q(4, q), we have to show that any point of Q−(5, q) is collinear on
Q−(5, q) with at least one point of O. Consider a point p ∈ Q−(5, q)\Q(4, q),
then all points collinear with p lie in a hyperplane π4 of PG(5, q). Consider
the 4-dimensional space π4 containing Q(4, q). Then π intersects π4 in a 3-
dimensional space, and it is known that each 3-dimensional space contains
exactly 1 mod p points of O, with q = ph [1, 2]. This shows that any spread
of W (3, q) constitutes a maximal partial spread of H(3, q2), of size q2 + 1.

Using an exhaustive search, we found that H(3, q2), q = 2 has, up to
collineation, 1 maximal partial spread of size 5 and 1 maximal partial spread
of size 6. Hence the lower bound 2q + 1 is reached in this case. For q = 3,
we found that H(3, q2) has maximal partial spreads of size 10, 11, 12, 13 and
16. In this case the lower bound 2q + 1 is not reached. We observe that the
size of the symplectic spread (q2 + 1) is the real lower bound for q = 2, 3, so
the question arises whether this is true for general q. We remark that more
results on maximal partial spreads of H(3, q2), q = 2, 3 can be found in [4].

10



References

[1] S. Ball. On ovoids of O(5, q). Adv. Geom., 4(1):1–7, 2004.

[2] S. Ball, P. Govaerts, and L. Storme. On ovoids of parabolic quadrics.
Des. Codes Cryptogr., to appear.

[3] J. De Beule, P. Govaerts, and L. Storme. Projective Geometries, a share
package for GAP. (http://cage.ugent.be/~jdebeule/pg)

[4] G. L. Ebert and J. W. P. Hirschfeld. Complete systems of lines on a
Hermitian surface over a finite field. Des. Codes Cryptogr., 17(1-3):253–
268, 1999.

[5] D. Luyckx. On maximal partial spreads of H(2n+1, q2). Discrete Math.,
submitted.

[6] The GAP Group, GAP – Groups, Algorithms, and Programming, Version
4.4 ; 2004. (http://www.gap-system.org)

[7] D. Glynn. A lower bound for the maximal partial spreads in PG(3, q).
Ars Combinatoria, 13:39–40.

[8] S. E. Payne and J. A. Thas. Finite generalized quadrangles, volume 110 of
Research Notes in Mathematics. Pitman (Advanced Publishing Program),
Boston, MA, 1984.

[9] J.A. Thas. Old and new results on spreads and ovoids of finite classical
polar spaces. Ann. Discr. Math., 52:529–544, 1992.

Jan De Beule, Department of Pure Mathematics and Computer Algebra,
Ghent University, Krijgslaan 281 S 22, B-9000 Gent, Belgium
http://cage.ugent.be/∼jdebeule, jdebeule@cage.ugent.be

Klaus Metsch, Mathematisches Institut, Arndtstrasse 2, D-35392 Giessen,
Germany
Klaus.Metsch@math.uni-giessen.de

11


