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Abstract 

Background The use of magnetic resonance imaging (MRI) in forensic age estimation has been explored 

extensively during the past decade.  

Objective To synthesize the available MRI data for forensic age estimation in living children and young adults, 

and to provide a comprehensive overview that can guide age estimation practice and future research.  

Materials and Methods MEDLINE, Embase and Web of Science were searched. Additionally, cited and citing 

articles and study registers were searched. Two authors independently selected articles, conducted data extraction, 

and assessed risk of bias. Study populations including living subjects up to 30 years were considered.  

Results Fifty-five studies were included in qualitative analysis and 33 in quantitative analysis. Most studies 

suffered from bias, including relatively small European (Caucasian) populations, varying MR-approaches and 

varying staging techniques. Therefore, pooling of the age distribution data was not appropriate.  

Reproducibility of staging was remarkably lower in clavicles than in any other anatomical structure. Age 

estimation performance was in line with the gold standard, which uses radiographs, with mean absolute errors 

ranging from 0.85 to 2.0 years. The proportion of correctly classified minors ranged from 65% to 91%. Multi-

factorial age estimation performed better than based on a single anatomical site.  

Conclusion More multi-factorial age estimation studies are necessary, together with studies testing if the MRI 

data can safely be pooled. The current review results can guide future studies, help medical professionals to decide 

on the preferred approach for specific cases, and help judicial professionals to interpret the evidential value of age 

estimation results.  
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MAIN BODY 

Introduction 

When birth records or other official identification documents reporting the age of an individual are unavailable in 

criminal, civil and asylum procedures, forensic age estimation can be deemed necessary by the authorities. The 

estimation usually has to contain a predicted age together with a measure of the uncertainty, and the probability 

that the examined person has reached a specific legally relevant age threshold. In most countries the age threshold 

lies between 14 and 22 years of age, representing children and young adults [1]. Furthermore, in sports, age 

estimation is used to ensure fair play by checking if athletes participate in the correct age category [2]. 

Established methods for age estimation mainly use radiographs to evaluate teeth, carpal bones and long bones, 

which are still developing in children and young adults. The 2D radiographic registrations have two major 

drawbacks. Firstly, they imply an exposure to radiation without a clinical indication, resulting in deontological and 

ethical issues [3]. In some countries the use of ionizing radiation is prohibited in asylum and civil procedures [4]. 

Secondly, on plain radiographs, superposition can yield mistakes or impede allocating a developmental status to 

the anatomical structures of interest [5]. 

To counter these drawbacks, several research groups have been studying the use of magnetic resonance imaging 

(MRI) to register the developmental status of the considered anatomical site. Since the details necessary to study 

development might not be clear in routine clinical MRI, several dedicated MRI protocols have been developed. 

However, MRI has not found its way to age estimation practice yet, because it remains unclear which is the optimal 

MRI approach. 

The different MRI approaches were reported in pilot studies and cross-sectional reference studies. Compared to 

reference studies of age estimation based on radiographs of developing teeth or bones, the MRI studies have two 

shortcomings: (1) they all included a relatively small study population, and (2) few external validation studies 

(with an independent test sample) on any MRI approach for age estimation have been conducted. Due to these 

shortcomings, a first attempt to bring forensic age estimation based on MRI into practice resulted in large error 

rates [6].  

To address the small study population, pooling of the MRI data could be considered to increase age estimation 

performance. However, a review of the MRI studies is indispensable to study if pooling is appropriate. MR-images 

are highly dependent on the technical parameters of the MRI approach, thus, merging incompatible data would 
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lead to wrong conclusions. Unfortunately, a review cannot address the lack of external validation studies, but it 

can provide an overview of the internal validation statistics (within the study population). 

To the best of our knowledge, no systematic review has been published on the subject yet. Therefore, the current 

systematic review was conducted with the following objectives: (1) to synthesize the MRI data for forensic age 

estimation in living children and young adults, and (2) to provide a comprehensive overview that can guide age 

estimation practice and future research. The following research questions were studied: 

1) How is age estimation on MRI affected by population characteristics and MRI approach? 

2) How does the development of different anatomical structures, as registered on MRI, relate to chronological 

age in living children and young adults? 

3) How reproducible is developmental stage allocation based on MRI?  

4) What is the performance of age estimation based on development of different anatomical structures as 

registered on MRI? 

a) Which anatomical structures provide the best MRI information to render a point prediction of age? 

b) Which anatomical structures provide the best MRI information to discern minors from adults? 
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Materials and methods 

Protocol design 

The review protocol was drafted according to the Cochrane Guidelines for review protocols 

(http://training.cochrane.org/) [7], and registered in Prospero, international prospective register of systematic 

reviews (http://www.crd.york.ac.uk/PROSPERO), with registration number CRD42017061043). This project was 

approved by the Ghent University Hospital Ethics Committee (EC 2017/0024, with Belgian registration number 

B670201730806), as part of an ongoing larger project (EC 2011/0842, B670201112782). The reporting of the 

systematic review complies with the PRISMA statement [8, 9]. 

 

Selection of studies 

Criteria for considering studies for this review 

Types of studies 

Cross-sectional observational studies were included. When a pilot study was published, followed by a more recent 

study including a larger study population, only the final publication was included for the review. When the final 

publication was not yet published, results of the pilot publication were considered. Furthermore, cohort 

observational studies were included, but only results of one moment in time were extracted to avoid bias. Case 

reports and case series were also included, since they might provide information on minimum and/or maximum 

age per developmental stage. Review articles were excluded. Furthermore, no restrictions were made based on the 

country of publication, language or publication date. 

Types of participants 

Study populations including living children, adolescents, and adults up to 30 years old were considered. After the 

age of 30, age estimation is no longer based on development, but rather on degenerative changes [10, 11]. 

Moreover, studies which only included deceased individuals were excluded, since MRI is influenced by body 

temperature [12] and motion artefacts [13]. 

http://training.cochrane.org/
http://www.crd.york.ac.uk/PROSPERO


Page 9 of 36 

Types of interventions 

MRI of any field strength was included studying hard tissue development related to age. Authors should refer to 

the staging technique used to assess development. When measurements were made, the way of obtaining them 

should be described clearly. It was considered inappropriate to compare the age distributions within developmental 

stages based on MRI with those based on radiographs, since it has been demonstrated that imaging technique 

specific reference data are required [14-19]. 

Types of controls 

The control for age estimation performance was the chronological age. 

Types of outcome measures 

The included papers should provide any of these outcome measures: 

- Descriptive statistics on age distribution within the different developmental stages of the considered 

anatomical structures.  

- Probabilities of attaining certain threshold ages, diagnostic indices. 

- Statistics on the performance of the age estimation model. 

 

Search methods 

According to the described eligibility criteria, literature was searched in MEDLINE (via the PubMed interface), 

Embase (via the embase.com interface), and Web of Science. The search strings are reported in the Supplementary 

Material. Furthermore, reference lists of included studies were searched for additional suitable papers, and papers 

citing the included studies were searched using Web of Science and Google Scholar. Finally, grey literature was 

searched by consulting the following study registers: the United States' ClinicalTrials.gov, EU Clinical Trials 

Register, the United Kingdoms' ISRCTN registry, German Clinical Trials Register (DRKS). All searches were 

conducted on September 2, 2018. 

 

Reviewing process and selection of studies 

Two authors conducted every step of the reviewing process independently. The first author (JDT) was a reviewer 

throughout the whole process. Other authors (JB, GP, AF) acted as second reviewers. After a first selection of 

articles based on title and abstract, the authors considered and compared their selection to achieve a consensus. Of 
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the retained abstracts, the full text paper was checked independently for eligibility. Discrepancies between 

reviewers were identified at this stage and resolved by discussion to reach consensus. A record was kept of reasons 

for excluding studies at each step (either title and abstract, or full text). Reasons for exclusion were checked in the 

following order: 

1. Pilot of other reference. 

2. Wrong study design (S): review. 

3. Wrong population (P): deceased individuals, insufficient data to differentiate within the group of 1 to 30 

years of age. 

4. Wrong intervention (I): MRI studying soft tissue  

5. Wrong outcome measures (O): no data on age distribution or age estimation performance. 

References were managed and duplications removed with Endnote software. Covidence software (Covidence 

systematic review software, Veritas Health Innovation, Melbourne, Australia. Available at www.covidence.org) 

was used for study selection. The process and the results of the literature search and study selection were presented 

in the PRISMA flowchart (Fig. 1).  

 

Data extraction and management 

Study characteristics and outcome data were extracted by two reviewers independently. The study characteristics 

table summarized data on study population, MRI approach, staging technique, statistical analysis, and observers. 

The data extraction table summarized data on missing data, correlation between stages and age, age distributions 

within stages, reproducibility of staging, regression formulas, and age estimation performance. 

When multiple records were identified of the same study, they were collated, so that the unit of interest in the 

review was the study, rather than each record. 

 

Data analysis 

The results from data extraction were compared to detect trends relevant to the research questions. Age 

distributions within stages were summarized into graphs, combining data from multiple studies with similar 

approaches. Then, it was checked whether meta-analysis of those data would be appropriate. 
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Quality assessment of studies 

Risk of bias assessment of included studies 

Risk of bias was assessed by two reviewers independently using a dedicated tool based on the EPOC overview 

[20] and QUADAS-2 [21]. Questions were phrased in such a way that the preferred approach corresponded with 

answering “yes”. In case the answer was “no”, the reasons for high risk of bias were elaborated. 

Dealing with missing data 

When information was missing in a paper, only graphs were reported or clarification was needed, the authors were 

contacted by e-mail or telephone. When the authors did not provide additional data, but graphs were reported in 

their paper, data were extracted from the graphs using calibration and the measuring tool in Adobe Photoshop CS2. 

For missing values due to images not being assessable, the reasons were registered. Moreover, it was evaluated 

whether missing values depended on age, imaging sequence or research group. 

Assessment of heterogeneity 

Methodological heterogeneity was checked by comparing biological origin of participants and types of MR 

sequence. Statistical heterogeneity was taken into account by comparing the different types of statistical analysis 

that were used.  
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Results 

The essential results are discussed in this section, while the Supplementary Material includes additional 

considerations, overview tables and graphs. 

 

Selection of studies and data 

Figure 1 displays the selection process, whose details are elaborated in the Supplementary Material. 

 

Characteristics and quality of included studies 

Study characteristics 

Results on age distribution were affected by the study characteristics displayed in Table 1 and Tables 5 and 6 of 

the Supplementary Material. In those tables, studies are grouped according to anatomical site from head to toe: 

skull, teeth, chest, upper limb, hip, and lower limb. Note that only one study has been published which integrates 

information from several anatomical sites into one age estimate (multi-factorial age estimation, as opposed to 

single site age estimation) [34]. 

Study populations 

Table 1 displays the population characteristics. Most studies included European (Caucasian) populations. In 

addition, there were limited studies including African, Asian and Latin American populations. Healthy volunteers 

or athletes were recruited prospectively or patient records were searched retrospectively, excluding pathology. 

Only one study included patients with possible growth disorders, but their focus was on the agreements between 

X-ray based bone age and MRI based bone age, rather than on chronological age [19]. Furthermore, the age range 

of the study populations varied widely, with some studies only including minors, while others included participants 

from birth to age 30.  

Magnetic resonance imaging approaches 

The included scanning protocols used scanners with field strengths from 0.2T to 3T (Table 5 of the Supplementary 

Material). The low field open scanners did not render the highly detailed images necessary for staging and 

substaging of both the epiphyseal and physeal development, but they allowed assessing individual bone 
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development of the hand/wrist [36, 39]. Conversely, to study developing teeth and clavicles, 3T appears to be 

necessary [35, 41, 42, 48-52].  

T1 sequences were most frequently used to study bone development, whereas for teeth, T2 sequences were most 

frequent. The voxel size of those sequences varied widely. Retrospective studies mostly lacked specifics on this, 

but some reported slice thicknesses ranging from 2 to 4 mm. In-plane resolution was never lower than 1.0 × 1.0 

mm² and high resolutions were reached in all anatomical sites, with a minimum of 0.188 × 0.188 mm² [46]. 

Unfortunately, the study with the highest resolution [46] did not report the acquisition time. Since 6 minutes 30 

seconds could be considered the maximum acceptable acquisition time [55], only the teeth and the iliac crest 

exceeded this threshold. 

Staging techniques and statistical processing 

Regarding dental development, the first staging techniques were based on radiographs [56, 57]. However, since 

the cemento-enamel junction is indiscernible using the reported MRI sequences, these staging techniques were 

said to be inappropriate for MRI [42]. Consequently, an MRI-specific technique was reported (Table 6 of the 

Supplementary Material) [42, 49].  

Regarding bone development, staging techniques were developed based on radiographs and CT. In contrast to the 

dental staging techniques, the criteria for staging bone development did not include tissues which are indiscernible 

on MRI. Therefore, the staging techniques could integrally be applied to MRI (Table 6 of the Supplementary 

Material). Moreover, they could be grouped when their stages overlapped. The most elaborate staging technique 

(Table 2) was developed by a German research group and combined stages [58], substages [59] and advanced 

substaging [60]. When applicable, other staging techniques were transposed to this staging technique to compare 

studies (Fig. 5 of the Supplementary Material).  

In a minority of included papers, regression was used to relate ordinal staging data to age. Most papers only 

reported descriptive statistics on age per stage in tables. Those statistics were summarized in Fig. 5 of the 

Supplementary Material and will be elucidated further on. Furthermore, a few papers applied Bayes’ rule to nuance 

the age estimation, which has been stated to be more appropriate than linear regression [47-49, 69, 70]. Finally, 

advanced machine learning was applied to estimate age in two papers, but no details on the statistical approach 

were reported [34, 45]. The latter studies, together with four others, applied cross-validation [30, 34, 45, 47-49], 

while one study tested their results on a validation sample [31]. 
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Risk of bias assessment 

Bias was a major concern in almost all included studies (Table 7 of the Supplementary Material). Selection bias 

was caused by including elite football players, who might be advanced in their development [33], or by including 

patients in whom developmental disorders could not be ruled out [19, 23, 24, 29]. Furthermore, the small study 

samples resulted in an uneven distribution among age categories [2, 16, 19, 22, 25, 26, 29, 33, 35, 39-41, 43-46, 

53, 61, 62, 69-76], or frequencies per age were not reported [23]. Retrospective studies did not report the biological 

origin of the population, while some prospective studies included different ethnic groups [2, 35, 44], or only a few 

individuals of another ethnic group [53]. Moreover, few studies reported the socio-economic status of their study 

participants. Other sources of bias were elaborated in the Supplementary Material. 

Because of the highly biased nature of most studies, it was decided not to conduct meta-analysis on the age 

distributions per stage. Moreover, it remains unclear if data from an anatomical site can safely be pooled, when 

the MRI sequences are not identical. To date, only one study compared scanning protocols in the same individuals, 

but their sample was too small to draw strong conclusions [15].  

 

Quantitative synthesis 

Age distributions in relation to development 

Statistics were extracted from boxplots for the following references: [2, 69, 70, 79]. Moreover, the following 

authors provided additional data: Markus Auf der Mauer [43, 46], Jannick De Tobel [42, 47-49], Astrid Junge 

[44], and Martin Urschler [19, 45]. 

To provide a clear overview, statistics on age distributions per stage were displayed in box-plots (Figs. 4 and 5 of 

the Supplementary Material). Note that some boxplots (in early stages) fall entirely below the 18-year-threshold, 

while others (in late stages) lie entirely above the threshold. Cut-off stages for these absolute statements regarding 

childhood and adulthood are summarized in Table 3. 

Reproducibility of staging 

To quantify reproducibility, different statistics were used, with a majority of studies reporting reproducibility 

statistics > 0.80 (Table 8). However, different studies on clavicular development indicated that staging was less 

reproducible than at other anatomical sites [35, 48, 83]. Furthermore, for all anatomical sites except the ankle, at 
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least one study reported considerably lower values than 0.80 [19, 35, 40, 41, 48, 61, 79]. No relation between those 

lower values and MR-sequence or staging technique seemed apparent. 

Age estimation performance 

Regression formulas were reported in [25, 30, 36, 72, 82]. Corresponding coefficients of determination ranged 

from 0.40 [25] to 0.85 [36]. When statistical models were applied to estimate age, two aspects were considered to 

quantify age estimation performance: (1) the point prediction of age with its uncertainty, and (2) the ability to 

discern minors from adults. 

The first aspect is reflected by the mean absolute error  and root mean squared error. Only a few studies reported 

mean absolute error. For females, mean absolute error reached 2.0 years studying third molars [49]. For males, it 

reached 1.7 years studying third molars [49], 0.85 years studying the left hand/wrist [45], and 1.14 years combining 

third molars, both clavicles and the left hand/wrist [34]. Not sex-specific, mean absolute error reached 1.97 years 

studying both clavicles [48], and 1.79 years studying the left wrist [47]. Moreover, the effect of large differences 

between chronological and estimated age was quantified by the root mean squared error in three studies: for 

females root mean squared error was 2.38 years and for males 2.06 years, studying third molars [49], while it was 

2.60 years studying both clavicles [48], and 2.24 years studying the left wrist [47]. The latter values were not sex-

specific. 

The second aspect is reflected by predictive probabilities to be younger/older than 18 and by diagnostic indices 

(Table 4). For diagnostic indices in the current review, reported statistics were recalculated so specificity would 

reflect the proportion of correctly classified minors, whereas sensitivity would reflect the proportion of correctly 

classified adults. Overall, the sensitivity was higher (ranging from 83% to 100%) than the specificity (ranging 

from 66% to 93%), while the reverse is desirable in forensic age estimation. Still, the reported predictive 

probabilities to be a minor were very low for the final stages of development, with values under 1% for third 

molars and clavicles. 
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Discussion 

Characteristics and quality of included studies 

Study populations and magnetic resonance imaging approaches 

The current systematic review provides an overview of how hard tissue development registered with MRI relates 

to age. Included studies showed high risk of bias, mainly due to their study population. Since a wide age range 

was studied, from birth to age 30, large reference populations are indispensable. It has been suggested that at least 

10 participants per age category of one year per sex should be included per anatomical structure [1]. Moreover, 

the age range of the study population affects lower and upper limits of age distributions within developmental 

stage, as well as the mean age. This phenomenon is called ‘age mimicry’ and has been a major issue in age 

estimation for decades [84]. Ideally, a reference study should include participants with an age range starting several 

years before the studied anatomical structure starts its development, and ending several years after the structure 

has reached full maturity. For instance, an ideal reference study on third molars’ development might include 

participants between 6 and 28 years old [85]. Unfortunately, these ideally designed studies are scarce even using 

radiographs, which can easily be done retrospectively. Therefore, it seems self-evident that, in the case of MRI, 

those ideally designed studies will be rarer still. Only for the clavicles’ sternal end did two studies encompass the 

entire development with lower and upper age margins beyond developmental changes [48, 52]. For other 

structures, pooling the data of different studies might address this issue, but before this is done, it needs to be 

ascertained whether or not it is safe to pool data obtained with different MR-sequences. After all, it has been 

demonstrated that age distributions within stages might differ between sequences for third molars [15] and for the 

left wrist (Fig. 2) [47]. In the latter study, applying the model derived from one MR-sequence to assessments of 

the other sequence resulted in a markedly worse age estimation performance [47]. Moreover, different sequences 

may lead to different staging techniques, impeding the pooling of data [61, 62]. On the other hand, different 

sequences might provide complementary information, to allow for a more nuanced age estimation [47, 63]. 

 

Compared to age estimation studies using radiographs, MRI study populations were relatively small, which could 

be attributed to the MRI technique. Since developmental stages are based on details, such as bone bridging and 

apical closure of teeth, routine clinical MRI is mostly not suitable for age estimation. For instance, a thorax MRI 

will not be suitable to study clavicular development, and neither will a maxillofacial MRI be suitable to assess the 

apex of third molars. Only larger anatomical structures, such as knee and ankle bones, show sufficient details on 
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clinical MRI. This also explains why only those structures have been studied for age estimation in retrospective 

studies [16, 23, 25, 26, 28, 29, 31, 32, 61, 62, 69, 71, 73-76, 82]. Smaller structures require a dedicated scanning 

protocol, with a dedicated coil and sufficiently high in-plane resolution (Table 5 of the Supplementary Material), 

and thus, require a prospective study design. Still, such prospective studies have been conducted and it should be 

investigated whether their data can safely be pooled to create a large reference study.  

 

Ethnic differences between populations have been studied using radiographs. Conclusions vary, with some authors 

claiming that inter-individual variability within ethnic group is larger than inter-ethnic variability [85-89], and 

others claiming that socio-economic status is more important than ethnicity [90]. By contrast, differences between 

ethnic groups have been demonstrated too [91, 92]. Presumably, trends in those studies also apply to MRI, but 

ethnic differences have only been studied for hand/wrist MRI [2, 44, 72, 79]. Moreover, these studies were only 

conducted in football players, who might be more advanced in their development than a general population of the 

same age [93-96]. After all, their advanced development might be part of their talent, i.e. their advanced 

development might contribute to better performance in sports. Thus, they might be scouted at an earlier age and 

be more likely to move on to elite sports. The study by Sarkodie et al. (2018) [33] was excluded for quantitative 

analysis, because it only included elite football players. At the other end of the spectrum, skeletal development in 

gymnasts might be delayed, allowing more elasticity at a relatively older age [95, 96]. Maybe different standards 

should be applied to athletes, to take into account their possible advanced or delayed skeletal age. 

 

Staging techniques and statistical processing 

MRI-specific staging techniques have been developed [49, 61, 63], but no comparative studies were conducted 

between staging techniques. Moreover, two studies on clavicle MRI have raised concerns about a possible 

confusion between stage 1 and stages 4/5 [48, 83]. The authors advise to discard clavicles in those stages for age 

estimation, and assess development of other structures instead.  

Remarkably, only one study [34] has combined the information of three anatomical sites into one age estimate. 

Other groups have studied different anatomical structures in the same individuals, but did not report how to 

combine them. From studies using radiographs, it has been demonstrated that linear regression takes on statistical 

assumptions that do not hold for age estimation [97]. Neither should conditional independence be assumed [98]. 

Otherwise, artificially narrow uncertainty intervals of the point prediction and artificially high probabilities to be 

a minor or an adult will cause the judicial evidence to appear stronger than it really is [84, 98, 99]. 
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Quantitative synthesis 

Age distributions in relation to development 

Bone development has been studied with MRI at most joints of the appendicular skeleton. The only site of the 

axial skeleton that has been studied was the spheno-occipital synchondrosis. Combined, these anatomical sites 

cover development from childhood to adulthood. By contrast, dental development has only been studied with MRI 

in molars, while in children up to age 14, the development of other permanent teeth is essential to estimate age 

[100, 101].  

The graphs (Fig. 5 of the Supplementary Material) revealed some remarkable concerns about how stages relate to 

age. Firstly, only few anatomical sites and staging techniques provided a steady increase of age with increasing 

stage, with all participants in the first stage well below the 18-year-threshold and those in the final stage well above 

it in both sexes. They were Dedouit staging of the distal femur (Fig. 5k) and Vieth staging of the distal femur (Fig. 

5n). De Tobel staging of the lower left third molars came close, but the minimum ages of the final stage were still 

close to 18 (Fig. 5d).  

Secondly, the high maximum ages in stage 1 of clavicular development, and the low minimum ages in stages 4 

and 5 suggest that those stages might be confused (Fig. 5e), as was pointed out in the original studies[48, 83]. This 

hinders a logical increase of age with an increase in stages.  

Thirdly, although in wrist MRI, Dvorak stage 1 coincides with Schmeling stage 2, Dvorak stage 1 has never been 

reported above the age of 18 (Fig. 5g), while Schmeling stage 2 has been reported in one male of 18.6 years old 

(Fig. 5h) [70]. At the other end of the spectrum, in third molar MRI, De Tobel stage 8 coincides with Demirjian 

stage H. The first has not been reported below the age of 18 (Fig. 5d), while the latter has in males (Fig. 5c) [41, 

50]. 

Fourthly, the influence of the study populations’ age ranges is obvious. For instance, Fig. 5e demonstrates that the 

boxplots of the male participants in Vieth et al. (2014) are situated at the upper ends of other studies’ box plots for 

lower stages, while they are at the lower end of other studies’ box plots for higher stages. This can be explained 

by the narrow age range (5 years) of participants in Vieth et al. (2014). The same applies to Schmidt et al. (2015) 

in Fig. 5h. Fifthly, the iliac crest does not seem useful for age estimation, since ages within stages all overlap [78]. 

However, this study suffered from high population bias, with the same narrow age range of participants as Vieth 

et al. (2014) [51] and Schmidt et al. (2015) [64]. 
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Finally, the introduction of substaging was clearly an attempt to provide more accurate age estimation around the 

age of 18. They provide a more gradual increase of age with increasing stage than the main stages. 

 

However, there is more to certain staging techniques than the graphs revealed. Some MRI-specific characteristics 

of skeletal structures have been studied, but their relevance to age estimation remains unclear. The threefold 

stratification sign was stated to be useful by Timme et al. (2017) [65] while De Tobel et al. (2019) [47] could not 

confirm its use. Other signs such as the metaphyseal stripe [23], the oreo-sign and the crack-sign [31] still need to 

be explored in future studies. 

 

Furthermore, considering how stages relate to age, correlation coefficients and coefficients of determination need 

to be interpreted cautiously, since they depend on the age distribution of the study population. Relatively high 

coefficients have been reported for single site age estimation based on MRI. Still, they are expected to increase by 

multi-factorial age estimation, as has been demonstrated for multi-factorial age estimation based on radiographs 

and computed tomography (CT) [102-107]. Although only one study on multi-factorial age estimation based on 

MRI has been published [34], all researchers in this field prefer multi-factorial age estimation over single site age 

estimation [108]. However, no study has been published on how the MRI information of the different sites can be 

combined appropriately for age estimation. Stern et al. (2017) combined all four third molars, both clavicles and 

the left hand/wrist [34]. Unfortunately, the statistical approach of their network remains to be elucidated. This 

combination of third molars, clavicles and hand/wrist complies with international recommendations, but is only 

partly supported by the current results of the review. Table 3 suggests that in females, combining third molars, the 

left hand/wrist and the knee might render a more robust model for age estimation. For males, combining third 

molars, the proximal humerus and the knee might be ideal. However, in practice, a uniform approach for both 

sexes is desirable.  

Reproducibility of staging 

Another major concern regarding age estimation based on MRI is the low reproducibility of staging that has been 

pointed out by some authors (Table 8). An obligatory quality control of centers that perform age estimation is still 

lacking, resulting in large discrepancies between results from different centers [109]. This already affects the 

current gold standard of age estimation, using radiographs, and its effect might be even larger using MRI, 

considering the complexity of interpreting different MR sequences. Therefore, staging development should be 
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based upon a consensus between experts. These experts should be experienced in age estimation as well as being 

experienced in interpreting the imaging modality at hand. 

To solve this problem, automated approaches have been developed to assess radiographs for age estimation [110, 

111]. Since validation studies support the use of these approaches, they are applied in current age estimation 

practice [112]. Such an automated approach has been developed and optimized for MRI, but still needs to be 

validated [34, 45, 113-116]. Moreover, should the same automated approaches be used internationally, 

discrepancies between age estimation performed in different institutes would, presumably, be eliminated [117, 

118].  

Age estimation performance 

Few MRI studies have developed models for age estimation and reported statistical measures of age estimation 

performance. Remarkably, the same applies to X-ray studies. Studying radiographs of third molars, Thevissen et 

al. (2010) reported a mean absolute error of 1.13 years [97]. Knowing that their study population included 2513 

participants, one might presume that such a mean absolute error value would also be reached by larger MRI studies. 

Note that this value is almost equal to the one reached by the multi-factorial age estimation MRI study by Stern et 

al. (2017) [34]. Therefore, the limiting effect of the small study populations in MRI studies might be overcome by 

the study of multiple anatomical sites with MRI. Furthermore, note that studies applying Bayes’ rule to estimate 

uncertainty of the point prediction are not hampered by ‘age mimicry’ and counter false assumptions that are made 

when linear regression is applied [98]. Therefore, interpreting confidence intervals from those studies should be 

preferred over those obtained from age distribution tables or regression. 

Similar to the better (i.e. lower) mean absolute error, the proportion of correctly classified minors is better (i.e. 

higher) for multi-factorial age estimation than for single site age estimation. This has been demonstrated for MRI 

[34] as well as for radiographs [119]. 

 

Age estimation in practice 

To combine the information of different anatomical sites for forensic age estimation two approaches have been 

put forward. The first approach – called the minimum age principle – is based on descriptive statistics of the age 

distributions within stages, reported in reference studies [108]. The combined age estimation is an interval (Fig. 

3a). For the lower border of the interval, the highest minimum age is retained, since for that anatomical site, no 
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individuals younger than that age have been reported. For the upper border of the interval, the lowest maximum 

age is retained, since for that anatomical site, no individuals older than that age have been reported. 

The second approach is also based on the age distributions within stages, albeit incorporated in a statistical model 

[98]. Posterior density curves of age are obtained using a continuation ratio model with Bayesian correction for 

violation of the conditional independence assumption. The combined age estimation is defined by the combined 

curve, providing the following statistics: point prediction, 95% prediction interval, and the probability to be an 

adult (Fig. 3b). 

There is no legislation on which approach should be applied or which statistics should be reported. Moreover, the 

magistrate who decides about a case is free to interpret the findings. For instance, when the age estimation interval 

of the first approach is close to the threshold of 18, but does not contain it (Fig. 3a), then the magistrate might 

decide to grant the benefit of the doubt and consider the individual as a minor. Similarly, when the second approach 

renders a probability to be an adult equal to 0.706 (Fig. 3b), then the magistrate decides if this is sufficient to 

consider the individual as an adult. Therefore, it is up to the forensic expert who conducts age estimation (e.g. 

radiologist, odontologist) to be transparent and clear in the report, and to motivate and nuance the findings as much 

as possible. Moreover, to minimize the effect of inter-observer variability, at least two experts should reach a 

consensus about the age estimation. 

 

Strengths and weaknesses 

This systematic review provides a comprehensive overview of literature that is currently available on age 

estimation based on MRI. It puts the studies in perspective, allowing medical professionals to decide on which 

approach seems the most valuable in their casework, and allowing judicial advisors to interpret the evidential value 

of the age estimation results. According to the PRISMA guidelines, all steps of the review were independently 

conducted by two reviewers, to avoid errors in the reported data. 

However, this review also faced two limitations. Firstly, the search string did not include a part on “development”. 

Instead only “age estimation” and its variants were used. Therefore, there remains the possibility that studies on 

development were missed, which may, in turn, have highlighted other MRI-specific signs that might be of interest 

to age estimation. On the other hand, the encountered studies on development – without a focus on age estimation 

– were excluded from quantitative analysis, since their data was not sufficiently extensively reported. Secondly, 

pooling of the data was considered inappropriate, because of discrepancies between the MRI approaches and the 
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staging techniques. New studies are necessary to compare the age distributions within stages using different MRI 

approaches in the same population. 

 

Future prospects 

Recommendations for new studies 

The use of MRI for forensic age estimation has been intensively studied since 2007, because of its major advantage 

of avoiding ionizing radiation. In its most recent Practical Guide on Age Assessment [117], the European Asylum 

Support Office states that “radiation-free methods should be applied first and only as a last resort can other methods 

involving radiation be considered”. However, in the European Commission’s Science for Policy Report by the 

Joint Research Centre [120], the authors state that “more studies should be conducted with MRI instead of CT in 

order to increase the available knowledge base”. Consequently, despite the large number of studies discussed in 

this systematic review, MRI has not found its way into age estimation practice. Thus, the considerations from this 

review should be taken into account when future studies are designed and when MRI would be taken into practice 

for age estimation. In particular, the following recommendations can be made: 

1) Larger reference populations are desirable. Since the prospective nature of studies impedes a fast expansion 

of reference data, it would make more sense to try to combine the data of different research groups. However, 

since small differences exist between MRI approaches and between populations, comparative studies are 

needed to check if the data can be pooled safely. 

2) Multi-factorial age estimation seems to improve age estimation performance, as has been demonstrated using 

an automated age estimation method. Since most MRI data is based on staging of development, studies are 

needed in which that staging information is combined using an appropriate statistical approach. 

a) Several research groups have collected MRI data at different anatomical sites, in the same individual, on 

the same day. Those groups can attempt to combine that information to create age estimation models, 

taking into account the possible conditional dependence. 

b) It remains unclear if data from different anatomical sites can be combined safely to create age estimation 

models, when those data were not collected in the same individual. This could be studied, as soon as 

results from studies complying with the former recommendation (2a) are available. 
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Incorporating soft tissue development 

Since the intervention of interest was MRI, results of the initial search included many studies on brain development 

and degeneration. However, in literature on age estimation in children, adolescents and young adults, the 

developing brain is generally not considered. After all, structural changes in the brain are mostly studied in older 

patients, when degeneration occurs related to age (or disease). However, changes in the developing brain might be 

useful for age estimation in younger individuals. Another strength of MRI is the possibility of studying dynamic 

changes in the body, such as diffusion in the brain or blood flow in the heart [121-126]. 

Therefore, since inter-individual variation remains a challenge in age estimation, adding soft tissue information 

might allow for a more nuanced age estimation than that based solely on hard tissue information. Moreover, 

studying functional and anatomical age-related changes in a research context is justifiable because of the lack of 

ionizing radiation. MRI even enables longitudinal evaluation of the changes over the years in an ethically 

justifiable way. However, to date, the bridge between hard and soft tissue development remains unexplored. 

Conclusion 

Single site age estimation using MRI has been studied extensively, providing several reference studies, which all 

included a relatively small study sample. Although a review might solve the issues of small study samples and 

disparities in their age distributions by pooling the data, this was currently not appropriate, because of a wide 

variety in study characteristics. Furthermore, the current review highlighted that age estimation performance was 

better for multi-factorial age estimation than for single site age estimation. As a next step in the field, more multi-

factorial age estimation studies are imminent, since MRI avoids the use of ionizing radiation and, consequently, 

allows the study of multiple anatomical sites. The current review results can guide those multi-factorial age 

estimation studies. Moreover, this review can help medical professionals to decide on the preferred approach for 

specific cases, and it can help judicial professionals to interpret the evidential value of age estimation results. 
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Table 1 Population characteristics of eligible studies. Studies are grouped per anatomical site and ordered per 

staging technique (see Table 6 of the Supplementary Material). 
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Anatomical structure Reference Year Study 
design 

Excluded reference 
because of 
correspondence 

Geographical 
population 

Number of 
females 

Age range (years) Number of 
males 

Age range (years) 

Spheno-occipital 
synchondrosis 

Ekizoglu 2016a RCS NA Turkish 623 7 - 21 455 7 - 21 

              

Molars Baumann 2015 PCS NA Living in Austria 18 13.5 - 23.1 8 13.7 - 21.3 

Lower left third molar Guo 2015 PCS NA German 248 12.3 - 25 269 12.1 - 25 

Third molars De Tobel 2017b PCS NA Belgian 26 14.5 - 26.8 26 14.3 - 26.80 

Third molars De Tobel 2017c PCS NA Belgian and Dutch 146 14.10 - 26.80 163 14.10 - 27.00               

Clavicle Hillewig 2013 PCS Hillewig 2011 Belgian 110 16.0 - 26.9 110 16.1 - 26.9 

Clavicle Tangmose 2014 PCS NA Mainly European 
Caucasian, four from 
Middle East, Asia or 
Africa 

16 NA 39 NA 

Clavicle Vieth 2014 PCS NA German 0 NA 152 18.1 - 23.0 

Clavicle Schmidt 2017 PCS NA German 310 12.1 - 25.0 260 12.1 - 24.9 

Clavicle De Tobel 2019c PCS Hillewig 2011, 2013 Belgian and Dutch 264 14.1 - 30.5 199 14.1 - 30.1 

Manubrium Martínez 
Vera 

2017 RCS NA Austrian 0 NA 130 13   25 

              

Proximal humerus Ekizoglu 2018 RCS NA Turkish hospital 188 12.2 - 30.7 240 12.1 - 30.6               

Left distal radius Dvorak 2007 PCS NA Swiss, Malay, Algerian 
and Argentinan 

0 NA 496 14 - 19 

Left distal radius George 2012 PCS NA Malaysian Malay 0 NA 150 15 - 19.0 

Left distal radius Bolivar 2015 PCS NA Colombian 0 NA 60 12 - 18 

Left distal radius Rashid 2015 PCS NA Iraqi 0 NA 179 13 - 18 

Left distal radius Tscholl 2016 PCS NA African (Tanzania), 
Asian (Malaysia), 
European (Germany), 
Latin American (Brazil) 

487; T 140; M 
129; G 117; B 

101 

13.3 - 19.3 0 NA 

Left distal radius Abdelbary 2018 PCS NA Egyptian 0 NA 61 13 - 18 

Left distal radius Sarkodie 2018 PCS NA Ghanaian 0 NA 286 13 - 16 

Left distal radius Schmidt 2015 PCS NA German 0 NA 152 18.1 - 22.9 

Left hand/wrist Serin 2016 RCS NA French hospital 156 9 - 25 107 9 - 25.0 

Left distal radius Timme 2017 PCS NA NA 333 12.1 - 24.9 335 12.1 - 24.9 

Left wrist De Tobel 2019b PCS NA Belgian and Dutch 185 14.10 - 26.90 178 14.10 - 27.00 

Left hand/wrist Tomei 2014 PCS NA Italian 78 11 - 17 101 11 - 17 

Left hand/wrist Serinelli 2015 PCS NA Italian 74 12.00 - 18.8 77 12 - 19.1 

Left hand/wrist Terada 2013 PCS NA Japanese 43 4.1 - 16.4 50 4.1 - 16.4 

Left hand/wrist Terada 2014 PCS NA Japanese 23 3.4 - 15.7 65 3.4 - 15.7 

Left hand/wrist Terada 2016 PCS NA Japanese 24 4.4 - 15.3 35 4.4 - 15.3 

Left hand/wrist Urschler 2016 PCS NA Austrian 4 7.57 - 14.1 14 7.92 - 16.8 

Left hand/wrist Hojreh 2018 PCS Hojreh 2017 European; Iranian, 
Argentinian, Malian, 
Philippine excluded for 
current results 

29 12 - 19.8 17 12.8 - 18.5 

Left hand/wrist Urschler 2015 PCS Stern 2014 Austrian 0 NA 102 13 - 20               

Iliac crest Wittschieber 2014 PCS NA German 0 NA 152 18.0 - 22.9 

Proximal femur Vo 2015 PCS NA NA 17 8 - 16 26 10 - 18               

Sacrum Bollow 1997 PCS NA German hospital 43 8 - 17 71 8 - 17 

Sacrum Bray 2016 RCS NA British hospital 36 10.2 - 18.9 19 10.2 - 18.9               

Patellofemoral joint Kim 2014 RCS NA NA 51 5 - 22 46 5 - 22 

Distal femur Saint-Martin 2015 RCS NA French hospital 0 NA 214 14 - 20 

Knee Dedouit 2012 RCS NA French hospital 152 10.1 - 30.9 138 10.3 - 30.3 

Knee Ekizoglu 2016b RCS NA Turkish hospital 198 10 - 30 305 10 - 30 

Knee Harcke 1992 PCS NA NA 27 0 - 20 33 0 - 20 

Knee Laor 2002 RCS NA American hospital 100 0 - 40 97 0 - 40 

Proximal tibia Jopp 2010 PCS NA German 0 NA 41 15.7 - 19.8 

Distal femur Krämer 2014a RCS NA German hospital 124 10.1 - 30.8 166 10.1 - 30.8 

Proximal tibia Krämer 2014b RCS NA German hospital 124 10.1 - 30.8 166 10.1 - 30.8 

Knee Fan 2016 RCS NA West China Han 139 11.00 - 29.5 183 11.00 - 29.9 

Knee Ottow 2017 PCS NA German 333 12.1 - 25.00 325 12.1 - 25 

Knee Auf der 
Mauer 

2018 PCH NA German 0 NA 36 15.3 - 20.7 

Knee Vieth 2018 PCS NA German 350 12.1 - 25 344 12.1 - 25 

Knee Pennock 2018 RCS NA American hospital 421 2 - 19 438 2 - 19 

Knee Craig 2004 RCS NA American hospital 5 3.8 - 15.6 9 3.8 - 15.6 

Knee Kercher 2009 RCS NA NA 21 10 - 15 10 10 - 15               

Ankle Saint-Martin 2013 RCS NA French hospital 100 8 - 25 80 8 - 25 

Distal tibia Saint-Martin 2014 RCS NA French hospital 60 8 - 25 60 8 - 25 

Ankle Ekizoglu 2015 RCS NA Turkish hospital 70 8 - 25 97 8 - 25               

MFA Stern 2017 PCS NA Austrian 0 NA 103 13 - 24.9 

MFA = multi-factorial age estimation; NA = not applicable or not reported; PCH = prospective cohort; PCS = prospective cross-sectional; RCS = retrospective cross-sectional 
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Table 2 Descriptive criteria for developmental stages of long bones on magnetic resonance imaging. 

Main 
stage 

Sub-
stage 

Advanced 
substage 

  

1 
  

Ossification center is invisible (= not yet ossified).     

2 
  

Ossification center is visible (= ossified), nonunion of the epiphysis and 
metaphysis.  

2a 
 

- The lengthwise epiphyseal measurement is one third or less compared to 

the widthwise measurement of the metaphyseal ending.  
2b 

 
- The lengthwise epiphyseal measurement is over one third until two thirds 

compared to the widthwise measurement of the metaphyseal ending.  
2c 

 
- The lengthwise epiphyseal measurement is over two thirds compared to 

the widthwise measurement of the metaphyseal ending.     

3 
  

Physeal plate is partially ossified (= bone trabeculae cross the physeal plate 
from ossification center to metaphysis).  

3a 
 

- The epiphyseal-metaphyseal fusion completes one third or less of the 

former gap between epiphysis and metaphysis.   
3aa - Lengthwise measurement of the epiphysis is one third or lower 

compared with the widthwise measurement of the metaphyseal 

ending.   
3ab - Lengthwise measurement of the epiphysis is between one third 

and two thirds compared with the widthwise measurement of the 

metaphyseal ending.   
3ac - Lengthwise measurement of the epiphysis is over two thirds 

compared with the widthwise measurement of the metaphyseal 

ending.  
3b 

 
- The epiphyseal-metaphyseal fusion completes over one third until two 

thirds of the former gap between epiphysis and metaphysis.  
3c 

 
- The epiphyseal-metaphyseal fusion completes over two thirds of the 

former gap between epiphysis and metaphysis.     

4 
  

Complete union of the epiphysis and metaphysis (= physeal plate is completely 
ossified). Physeal scar is still visible.     

5     Complete union of the epiphysis and metaphysis. Physeal scar is indiscernible. 
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Table 3 Absolute statements regarding the age threshold of 18 years. 

  Minor     Adult   

  Anatomical structure Stage   Anatomical structure Stage 

Females Spheno-occipital synchondrosis  Bassed stage 1 
 

Lower left third molar  Demirjian stage H  
Lower left third molar * up to De Tobel stage 2 

 
Lower left third molar *  from De Tobel stage 7 on  

Proximal humerus  up to Kellinghaus stage 3a 
 

Left hand/wrist SE * Tomei atlas skeletal age 18  
Left hand/wrist SE * Tomei atlas up to skeletal age 17 

 
Left distal radius SE * Schmeling stage 5  

Left hand/wrist VIBE Greulich-Pyle atlas up to skeletal age 16 
 

Distal femur * Dedouit stage 5  
Left distal radius SE Dvorak stage 1 

 
Distal femur * Vieth stage 6  

Left distal radius SE * up to Kellinghaus stage 3a 
   

 Left distal radius VIBE up to Kellinghaus stage 3b     
Distal femur  up to Kellinghaus stage 2c 

   

 
Distal femur * up to Dedouit stage 2 

   

 
Distal femur * up to Vieth stage 2 

   

 
Proximal tibia  up to Kellinghaus stage 2c 

   

 
Proximal tibia  up to Dedouit stage 2 

   

 
Proximal tibia  up to Vieth stage 4 

   

 
Proximal fibula  up to Kellinghaus stage 3c 

   

 
Distal tibia  up to Schmeling stage 2 

   

 
Calcaneum  up to Schmeling stage 3 

   

      

Males Spheno-occipital synchondrosis  Bassed stage 1 
 

Lower left third molar * from De Tobel stage 7 on  
Lower left third molar  up to Demirjian stage D 

 
Proximal humerus * Schmeling stage 4  

Lower left third molar * up to De Tobel stage 2 
 

Left hand/wrist VIBE Urschler automated skeletal age 19  
Proximal humerus * up to Kellinghaus stage 3a 

 
Left distal radius SE  Schmeling stage 5  

Left hand/wrist SE Tomei atlas up to skeletal age 17 
 

Distal femur * Dedouit stage 5  
Left hand/wrist VIBE Greulich-Pyle atlas up to skeletal age 17 

 
Distal femur * Vieth stage 6  

Left hand/wrist VIBE Urschler up to automated skeletal age 15 
 

Proximal tibia * Dedouit stage 5  
Left distal radius  Dvorak stage 1 

 
Proximal tibia * Vieth stage 6  

Distal femur * up to Dedouit stage 2 
   

 
Distal femur * Vieth stage 1 

   

 
Proximal tibia * Dedouit stage 1 

   

 
Proximal tibia * up to Vieth stage 3 

   

 
Proximal fibula  up to Schmeling stage 2 

   

 
Knee  SKJ up to 5 

   

 
Distal tibia  up to Schmeling stage 2 

   

  Calcaneum  up to Schmeling stage 2       

SE = T1 spin echo sequence; SKJ = cumulative score of the knee joint; VIBE = T1 gradient echo volumetric interpolated breath-hold examination. 
* Anatomical structure and staging technique which allow absolute statements about minority as well as adulthood. 
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Table 4 Ability to discern minors from adults. 

Regarding predictive probabilities, stages or combinations of stages are displayed between brackets and only stages at the end of development were included. Regarding third molars, stages 

apply to FDI (World Dental Federation) teeth 18, 28, 38, and 48, respectively. For instance, “(6666)” means that all third molars were in stage 6. Regarding clavicles, stages apply to the left 

and right clavicle, respectively. For instance, “(3,4)” means that the left clavicle was in stage 3, while the right one was in stage 4. 

Regarding diagnostic indices, sex-specific results were not reported in all studies. Instead, some studies reported non-sex-specific results, which were displayed in the center of the column. 

Anatomical structure Reference Year Predictive probabilities P(Age < 18 years) Sensitivity Specificity 

      Females Males Females Males Females Males 

Third molars De Tobel 2017 (6666) 0.0491; (7777) 0.0044; (8888) 0.0011 (6666) 0.1117; (7777) 0.0074; (8888) 0.0024 82.6 91.0 65.8 87.2 

Clavicles Hillewig 2013 (3,3) 0.258; (3,4) 0.067; (4,3) 0.070; (4,4) 0.008 (3,3) 0.159; (3,4) 0.026; (4,3) 0.029; (4,4) 0.002 NA NA 

Clavicles De Tobel 2019c (3b, 3c) 0.0059; (3c, 3b) 0.0198; (3c, 3c) 0.0023 (3b, 3c) 0.0053; (3c, 3b) 0.0182; (3c, 3c) 0.0019 86.1 69.4 

Manubrium Martínez Vera 
 

NA NA 91.1 82.4 

Left distal radius Serin 2016 NA NA 100.0 92.5 89.9 92.5 

Left wrist SE De Tobel 2019b (4/5) 0.0547 (4/5) 0.0171 88.5 92.8 

Left wrist VIBE De Tobel 2019b (4) 0.2570; (5) 0.0840 (4) 0.0547; (5) 0.0248 90.9 87.4 

Distal tibia Saint-Martin 2013 (4) 0.328 (4) 0.026 NA NA 

Calcaneum Saint-Martin 2013 (4) 0.353 (4) 0.064 NA NA 

Distal tibia and calcaneum Saint-Martin 2013 NA NA 97.7 91.7 78.6 90.6 

Distal tibia Saint-Martin 2014 NA NA 94.3 97.4 71.2 65.5 

MFA Stern 2017 NA NA 93.2 88.6 

MFA = multi-factorial age estimation; NA = not applicable or not reported. 
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Figure captions 

 

Fig. 1 Flowchart showing the process of literature search and study selection 
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a b 

 

Fig. 2 Wrist magnetic resonance imaging in a 17.85 year old male. a T1 spin echo sequence shows partial 

bridging of the physeal plate. Stage 3b was allocated. The chemical shift artifact causes a widened appearance of 

the remaining physeal plate. b T1 gradient echo volumetric interpolated breath-hold examination sequence 

shows more advanced bridging of the physeal plate. Stage 3c was allocated. Fat suppression avoids the chemical 

shift artifact, causing a more tight delineation of the physeal plate 
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Fig. 3 Male case example of two methods for multi-factorial forensic age estimation in practice. a Minimum age 

principle. Three anatomical sites were assessed. For the third molars and the wrist, only one anatomical structure 

was considered. For clavicles, both clavicles were assessed and in case of different stages between left and right, 

the most advanced clavicle was selected. The boxplots show the age distribution for the allocated stage per 

anatomical site, based on a reference study. The whiskers show the minimum and maximum ages, the box the first 

and third quartiles, and the central line displays the median. The combined age estimation is an interval: (1) the 

highest minimum age is retained, since for that anatomical site, no individuals younger than that age have been 

reported; and (2) the lowest maximum age is retained, since for that anatomical site, no individuals older than that 

age have been reported. In this male example, the interval was [18.60;19.88]. b Continuation ratio model with 

Bayesian correction for violation of the conditional independence assumption. Three anatomical sites were 

assessed. For third molars, all four third molars were taken into account. For the wrist, the distal radius and ulna 

were taken into account. For the clavicles, both of them were taken into account. Thus, the curves per anatomical 

site already combine the information of the different anatomical structures per site. The curves show the posterior 

densities of age for the allocated stages to all anatomical structures per anatomical site, based on a reference study. 

The combined age estimation is defined by the combined curve, providing the following statistics: point prediction, 

95% prediction interval, and the probability to be an adult. In this male example these statistics were 19.03 years 

old, [16.57;22.00], and 0.709, respectively 

 


