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Chronic kidney disease (CKD) is characterized by
accumulation of protein-bound uremic toxins such as p-
cresyl sulfate, p-cresyl glucuronide, indoxyl sulfate and
indole-3-acetic acid, which originate in the gut. Intestinal
bacteria metabolize aromatic amino acids into p-cresol and
indole, (further conjugated in the colon mucosa and liver)
and indole-3-acetic acid. Here we measured fecal, plasma
and urine metabolite concentrations; the contribution of
gut bacterial generation to plasma protein-bound uremic
toxins accumulation; and influx into the gut of circulating
protein-bound uremic toxins at different stages of CKD.
Feces, blood and urine were collected from 14 control
individuals and 141 patients with CKD. Solutes were
quantified by ultra-high performance liquid
chromatography. To assess the rate of bacterial generation
of p-cresol, indole and indole-3-acetic acid, fecal samples
were cultured ex vivo. With CKD progression, an increase in
protein-bound uremic toxins levels was observed in
plasma, whereas the levels of these toxins and their
precursors remained the same in feces and urine.
Anaerobic culture of fecal samples showed no difference in
ex vivo p-cresol, indole and indole-3-acetic acid generation.
Therefore, differences in plasma protein-bound uremic
toxins levels between different CKD stages cannot be
explained by differences in bacterial generation rates in the
gut, suggesting retention due to impaired kidney function
as the main contributor to their increased plasma levels.
Thus, as fractional clearance decreased with the
progression of CKD, tubular clearance appeared to be more
affected than the glomerular filtration rate, and there was
no net increase in protein-bound uremic toxins influx into
the gut lumen with increased plasma levels.
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C hronic kidney disease (CKD) is characterized by an
accumulation of protein-bound uremic toxins (PBUTs)
such as p-cresyl sulfate (pCS), p-cresyl glucuronide

(pCG), indoxyl sulfate (IxS), and indole-3-acetic acid
(IAA).1–3 Each of these uremic retention solutes exerts toxic
effects, and several of them have been associated with wors-
ening outcomes in CKD patients,4–7 in particular with cardio-
vascular morbidity and mortality.7–9 All 4 PBUTs originate
from the intestinal microbial metabolism of the aromatic
amino acids (AAAs) tyrosine, phenylalanine, and trypto-
phan.10–13 In the distal part of the colon, tyrosine and phenyl-
alanine are converted into p-cresol, and tryptophan into
indole and IAA. Further, p-cresol and indole are partly detox-
ified by the host through sulfation in the colon mucosa and
liver into respectively the uremic toxins pCS and IxS, whereas
a smaller fraction of p-cresol is detoxified through glucuroni-
dation into pCG.10,14,15 Of note, IAA is as such an intestinal
bacterial fermentation metabolite of tryptophan,16,17 but it
is also considered a uremic toxin when entering the circula-
tion.11 Several other uremic toxins also originate from bacte-
rial metabolization in the gut, such as hippuric acid, phenyl
sulfate, trimethylamine-N-oxide, and hydrogen
sulfide.11,13,18,19

In blood, PBUTs reversibly bind to different degrees on
plasma albumin.20 In CKD, removal of the free (glomerular
filtration) as well as the bound (tubular secretion) fraction of
uremic toxins is impaired, resulting in their accumulation in
blood.21–24 The highest serum PBUT levels are found in end-
stage kidney disease patients on hemodialysis (HD)21 because,
in addition to a disturbed kidney function, protein binding
hampers the removal of these PBUTs by dialysis.24–26
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In CKD, gut microbial community composition and
function are altered.27–34 Several uremia-related factors are at
play: (i) increased blood urea levels resulting in the influx of
circulating urea into the gut, where urea is hydrolyzed by
microbial ureases into ammonia. Subsequently, ammonia is
converted into ammonium hydroxide, which raises the luminal
pH; the remaining uremia-related factors are as follows: (ii)
colonic epithelial secretion of uric acid and oxalate as an
adaptive response to a decline in excretion by the kidney, (iii)
dietary restrictions of fiber to prevent hyperkalemia and fluid
overload, (iv) use of phosphate- and potassium-binders, (v)
malnutrition, and (vi) use of antibiotics.35 In turn, changes in
the gut environment and altered intestinal microbial compo-
sition could negatively affect CKD progression. Disrupted in-
testinal barrier structure caused by urea-derived ammonia and
ammonium hydroxide promotes translocation of bacterial
products and aggravates local and systemic inflammation in
CKD.36–38 The ensuing endotoxemia is a common feature in
CKD and one of the causes of systemic inflammation that
affects almost all CKD patients.35 In addition, in CKD, protein
assimilation is impaired in the upper gastrointestinal tract,39,40

which might contribute to malnutrition in CKD.41,42 More-
over, an impaired protein assimilation will result in an elevated
abundance of undigested proteins in the colon, which might
lead to an increase of p-cresol, indole, and IAA generation
upon microbial fermentation of AAAs.

Based on the altered microbial community composition
and function, and the elevated plasma uremic toxin levels in
CKD, it has been hypothesized that the generation of uremic
toxin precursors could change with CKD progression.43,44

However, to our knowledge, no comprehensive data are
available about the uremic toxin precursor levels in the gut
environment of CKD patients, or about the toxin-generating
capacity of gut microbiota. Therefore, this study was designed
to determine fecal levels of PBUTs and their precursors, in
parallel to plasma and urinary concentrations of PBUTs in
different stages of CKD. This allows estimating the potential
contribution of p-cresol, indole, and IAA generation by in-
testinal microbiota to the increased plasma PBUT levels in
different stages of CKD. Also, the possibility of an increased
influx into the gut due to the increased circulating PBUT
concentration was assessed.

RESULTS
Characteristics of the study population
Table 1 summarizes the characteristics of the study popula-
tion. Plasma cholesterol levels, urinary creatinine levels,
Bristol stool scale, fecal dry weight percentage, and intake of
antibiotics and/or probiotics did not differ among CKD
stages, whereas a positive association with CKD stage was
found for age, proteinuria, serum urea, creatinine, and
phosphorus, and a negative association for estimated
glomerular filtration rate. Groups did not match for gender,
intake of laxatives, and presence of diabetes, and plasma total
protein levels were significantly higher in the healthy control
group compared to all stages of CKD, but similar among CKD
Kidney International (2020) 97, 1230–1242
stages. In peritoneal dialysis (PD) patients, C-reactive protein
levels were higher, and urinary phosphorus and potassium
were lower, compared to CKD1 and CKD2, respectively. Fecal
dry weight percentage significantly correlated with Bristol
stool scale (P < 0.001, rs ¼ –0.579).

Fecal bacterial cell counts and intactness
The number of total, intact, and damaged bacterial cells did
not differ among CKD stages, or compared to the control. In
general, the number of damaged cells significantly exceeded
the number of intact cells (P < 0.05), except for CKD3,
CKD5, and PD (Figure 1).

Uremic metabolites in feces, plasma, and urine
Fecal concentrations of the AAAs and of their gut bacterial
fermentation metabolites p-cresol, indole, and IAA were
comparable among stages of CKD and compared to control
(Figure 2; Table 2). In addition, fecal PBUT levels were similar
among stages of CKD, but in a comparison of these fecal
PBUT levels with the respective plasma levels for the same
stages, significantly lower levels were found in feces (pCS:
–97.0%; pCG: –97.9%; IxS: –99.7%; IAA: –20.7%; P < 0.001).
Of note, molar fecal levels of tyrosine, phenylalanine, and p-
cresol were significantly higher compared to tryptophan and
indole, as were levels of pCS in comparison to IxS (all P <
0.05). Normalizing fecal metabolite concentrations to an
equal number of intact bacterial cells (1012 cells) did not
modify the results (Figure 3), except for pCS, for which
significantly lower values were found in CKD stages
compared to control, HD, and PD (P < 0.05; Figure 3).

For all quantified PBUTs, plasma levels were higher in
more advanced CKD (Figure 2; Table 2). Considering all
stages together, a correlation was observed between the pre-
cursors in the feces and their respective plasma PBUTs, except
for indole and IxS (Supplementary Table S1). More specif-
ically, in the total study cohort, a positive correlation was
found between fecal levels of tyrosine and phenylalanine and
fecal p-cresol (rs ¼ 0.212, P ¼ 0.008;rs ¼ 0.259, P ¼ 0.001,
respectively); between fecal p-cresol and plasma pCS (rs ¼
0.354, P < 0.001); and between fecal p-cresol and plasma
pCG (rs ¼ 0.234, P ¼ 0.004). Also, fecal levels of tryptophan
correlated with fecal indole (rs ¼ 0.427, P < 0.001) and fecal
IAA (rs ¼ 0.242, P ¼ 0.003). The highest number of signifi-
cant correlations was found in the CKD group not on dialysis,
whereas they were less prominent in the control and the
dialysis subgroups (Supplementary Table S1).

In the urine, for pCG/creatinine (pCG/Crea), a higher
ratio was observed in CKD3 and CKD5 compared to CKD1
(Table 2). The ratio of the other individual PBUTs/Crea, a
proxy of 24-hour urinary uremic toxin excretion, which in
equilibrated patients is likely to correspond to 24-hour gen-
eration, was similar among CKD stages and compared to
control. Of note, in the present cohort, the ratio of urinary
Urea/Crea, a proxy for protein intake, did not differ among
CKD stages, or in comparison to the control (Supplementary
Figure S1). With progression of CKD, the fractional kidney
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Table 1 | Study population characteristics

Characteristics Control CKD 1 CKD 2 CKD 3 CKD 4 CKD 5 HD PD P value

General
Number of subjects 14 14 23 44 23 10 16 11 N/A
Age (yr) 48 (24–84) 42 (22–69) 57 (21–83) 64 (26–86)a 69 (43–87)a,b 70 (37–87)a,b 74 (60–87)a–c 69 (50–84)a <0.001d

Gender (M/F) 4/10 7/7 13/10 29/15 17/6 7/3 14/2 10/1 0.012e

Health parameters
Body mass index (kg/m2) 22.7 � 3.0 25.6 � 3.0 25.5 � 4.2 27.9 � 5.0b 26.7 � 4.2 27.6 � 2.2 25.5 � 2.5 27.2 � 3.3 0.001f

eGFR (ml/min per 1.73 m2) 72.7 (62.1–88.7) 113.9 (97.7–123.2) 75.1 (65.8–79.3) 41.5 (35.7–55.1)a,c 22.6 (19.6–26.8)a–c 12.0 (10.2–13.5)a–c,g 6.0 (5.4–8.0)a–c,g 5.8 (3.5–8.8)a–c,g <0.001d

Diabetes 0 (0) 0 (0) 6 (26.1) 15 (34.1) 5 (21.7) 4 (40.0) 9 (56.3) 2 (18.2) 0.004e

Cause of kidney failure
ADPKD N/A 3 (21.4) 2 (8.7) 5 (11.4) 1 (4.4) 2 (20.0) 1 (6.3) 2 (18.2) N/A
Amyloidosis N/A 1 (7.1) 0 (0) 1 (2.3) 0 (0) 0 (0) 0 (0) 0 (0) N/A
Diabetic nephropathy N/A 0 (0) 1 (4.4) 4 (9.1) 2 (8.7) 2 (20.0) 9 (56.3) 1 (9.1) N/A
IgA nephropathy N/A 2 (14.3) 1 (4.4) 1 (2.3) 4 (17.4) 1 (10.0) 1 (6.3) 1 (9.1) N/A
Kidney cancer N/A 0 (0) 0 (0) 5 (11.4) 0 (0) 0 (0) 0 (0) 0 (0) N/A
Nephrotic syndrome N/A 1 (7.1) 4 (17.4) 2 (4.6) 1 (4.4) 0 (0) 2 (12.5) 2 (18.2) N/A
Renal infarction N/A 0 (0) 3 (13.0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) N/A
Renovascular disease N/A 0 (0) 3 (13.0) 13 (29.6) 6 (26.1) 2 (20.0) 3 (18.8) 2 (18.2) N/A
Others N/A 2 (14.3) 6 (26.1) 9 (20.5) 8 (34.8) 0 (0) 1 (6.3) 3 (27.3) N/A
Unknown N/A 5 (35.7) 4 (17.4) 4 (9.1) 2 (8.7) 3 (30.0) 1 (6.3) 0 (0) N/A

Blood parameters
Cholesterol (mg/dl) 220.9

(170.8–234.8)
163.0

(141.5–197.8)
182.0

(152.8–212.0)
185.0

(160.0–220.0)
182.5

(162.3–219.8)
151.0

(137.0–187.0)
170.5

(137.3–198.0)
229.0

(129.0–231.0)
0.200d

C-reactive protein (mg/l) 1.6 (0.7–2.9) 0.9 (0.4–2.9) 2.3 (0.7–5.6) 2.4 (1.5–4.2) 2.4 (1.1–7.0) 1.1 (0.4–3.9) 4.2 (1.7–12.4) 6.6 (3.1–14.1)a 0.011d

Creatinine (mg/dl) 1.0 (0.9–1.1) 0.7 (0.7–0.8) 1.0 (0.9–1.2) 1.6 (1.3–1.8)a,c 2.6 (2.1–3.1)a–c 4.3 (3.8–5.3) a–c,g 8.1 (5.9–9.0)a–c,g 9.1 (6.2–11.7)a–c,g <0.001d

Phosphorus (mmol/l) N/A 1.1 (0.9–1.2) 1.0 (0.9–1.2) 1.0 (0.8–1.1) 1.1 (1.0–1.3) 1.4 (1.3–1.5)c,g 1.3 (1.0–1.5)g N/A <0.001d

Total protein (g/l) 82.4 � 6.7 70.3 � 4.8b 68.6 � 3.8b 68.8 � 3.7b 70.6 � 4.3b 65.3 � 6.1b N/A 66.4 � 7.8b <0.001f

Urea (mg/dl) 28.1
(23.8–34.5)

28.0
(20.8–34.8)

34.5
(29.8–45.3)

56.5
(44.5–67.8)a,b

103.5
(79.3–114.0)a–c,g

136.5
(124.8–171.0)a–c,g

92.7
(82.7–119.7)a–c,g

125.0
(99.5–162.5)a–c,g

<0.001d

Urine parameters
Creatinine (mg/dl) 84.1 (65.0–132.7) 73.5 (39.4–94.5) 99.4 (65.0–152.5) 75.6 (53.1–110.2) 70.5 (39.6–98.1) 74.8 (58.2–97.8) N/A 46.2 (29.1–81.5) 0.173d

Phosphorus (mmol/l) 12.9 (6.8–29.2) 13.4 (4.9–16.2) 14.2 (9.4–18.4) 11.3 (7.1–15.2) 9.4 (7.3–15.4) 12.4 (10.3–14.2) N/A 5.8 (3.9–9.0)c 0.049d

Potassium (mmol/l) 61.8 (33.2–98.8) 44.4 (28.9–81.9) 53.6 (40.8–81.7) 42.9 (27.1–70.6) 37.1 (21.4–43.2) 32.2 (25.2–36.9) N/A 23.5 (14.4–38.4)c 0.001d

Total protein (g/l) 0.06 (0.03–0.07) 0.04 (0.03–0.19) 0.08 (0.06–0.13) 0.13 (0.07–0.28) 0.21 (0.07–0.70)b 0.48 (0.31–2.18)a–c N/A 0.50 (0.16–3.17)b,c <0.001d

Fecal parameters
Bristol Stool Scale 4.0 (3.8–5.0) 4.5 (3.0–5.3) 4.0 (3.0–5.0) 4.0 (3.0–5.0) 4.0 (2.0–5.0) 4.0 (2.8–5.0) 3.5 (2.0–4.0) 3.0 (2.0–5.0) 0.582d

Dry weight (%) 0.27 � 0.05 0.25 � 0.10 0.26 � 0.07 0.28 � 0.08 0.30 � 0.11 0.28 � 0.08 0.29 � 0.08 0.30 � 0.09 0.568f

Medication/supplement
Antibiotics 0 (0) 2 (14) 1 (4) 2 (5) 4 (17) 2 (20) 1 (6) 0 (0) 0.345e

Laxatives 0 (0) 2 (14) 2 (9) 5 (11) 3 (13) 1 (10) 2 (13) 8 (72.7) <0.001e

Probiotics 2 (14) 0 (0) 2 (9) 1 (2) 2 (9) 2 (20) 1 (6) N/A 0.462e

ADPKD, autosomal dominant polycystic kidney disease; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; F, female; HD, hemodialysis; PD, peritoneal dialysis; M, male; N/A, not applicable.
aP # 0.05 vs. CKD1.
bP # 0.05 vs. the control group.
cP # 0.05 vs. CKD2.
dKruskal-Wallis test.
eChi-square test; P values obtained after Bonferroni correction.
fOne-way analysis of variance.
gP # 0.05 vs. CKD3.
Data are presented as mean � SD, median (25th–75th percentile), or n (%).
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Figure 1 | Median log10 number of the intact, damaged, and total bacterial cells in the fecal samples. Control (n ¼ 14), chronic kidney
disease (CKD)1 (n ¼ 14), CKD2 (n ¼ 23), CKD3 (n ¼ 44), CKD4 (n ¼ 23), CKD5 (n ¼ 10), hemodialysis (HD) (n ¼ 16), and peritoneal dialysis
(PD) (n ¼ 11). White dots: damaged cells; light gray dots: intact cells; dark gray dots: total cells. *P # 0.05; **P # 0.001. x, outlier.
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clearance of pCS decreased. Fractional kidney clearance of
pCG and IxS were significantly lower in CKD5 compared to
CKD2-3 and CKD2, respectively. In addition, an inverse
correlation was found between fractional kidney clearance
and decrease of kidney function for pCS, pCG, and IxS (P #
0.001). IxS and pCG had a significantly higher fractional
kidney clearance compared to the other PBUTs in CKD (P <
0.05; Figure 4).

Similar results were obtained when correlating fecal
PBUT-related metabolites, plasma PBUTs levels, and the ratio
of individual PBUTs/Crea with estimated glomerular filtration
rate as a continuous variable. Except for IAA/Crea where a
weak but significant correlation was obtained (rs ¼ 0.119; P ¼
0.031). Based on the median values of plasma pCS and IxS,
CKD patients were separated into 2 groups, i.e., high pCS and
low IxS plasma levels (n ¼ 13) versus low pCS and high IxS
plasma levels (n ¼13). Interestingly, fecal tryptophan and
Figure 2 | Concentrations (conc.) of p-cresyl sulfate–, indoxyl sulfate
(c,d) plasma, and (e,f) urine. Control (n ¼ 14), chronic kidney disease (
(n ¼ 10), hemodialysis (HD) (n ¼ 16), and peritoneal dialysis (PD) (n ¼ 11
control and CKD1; wP # 0.05 versus control and CKD1–2; #P # 0.05 ver
PBUT, protein-bound uremic toxin; x, outlier.

Kidney International (2020) 97, 1230–1242
indole levels were significantly higher in the patient group
with low pCS and high IxS plasma levels. In the same group, a
higher ratio of urinary IxS/Crea was observed, whereas a
higher ratio of urinary pCS/Crea was found in the patient
group with high pCS and low IxS serum levels
(Supplementary Figure S2).

Ex vivo p-cresol, indole, and IAA generation in feces
Anaerobic culture of fecal samples from controls, CKD1, and
CKD5 patients showed no difference in the ex vivo generation
of p-cresol, indole, and IAA at different time points of in-
cubation (P > 0.05; Figure 5). Tyrosine was significantly
decreased after a 48-hour incubation period compared to
baseline (P < 0.05), and metabolization of phenylalanine was
slower (72 hours, P < 0.05). The bacterial fermentation end
product, p-cresol, significantly increased after 48 hours (P <
0.05), which was more pronounced, but not significant, in
–, and indole-3-acetic acid–related metabolites in (a,b) feces,
CKD)1 (n ¼ 14), CKD2 (n ¼ 23), CKD3 (n ¼ 44), CKD4 (n ¼ 23), CKD5
). £P # 0.05 versus control; &P # 0.05 versus CKD1; §P # 0.05 versus
sus control, CKD1–2–3; ¼P # 0.05 versus control and CKD1–2–3–4.
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Table 2 | Fecal, plasma, and urine metabolite concentrations in the different study groups

Metabolites Control CKD 1 CKD 2 CKD 3 CKD 4 CKD 5 HD PD P valuea

Feces (nmol/g wet feces)
Tyrosine 347.6

(261.5–500.3)
365.1

(223.0–536.0)
298.2

(234.1–421.1)
320.6

(215.2–428.2)
316.3

(200.7–495.2)
374.1

(263.3–489.2)
371.8

(221.7–564.4)
334.4

(269.4–397.6)
0.809

Phenylalanine 321.7
(218.8–463.4)

317.0
(190.9–494.6)

261.3
(205.3–396.4)

263.9
(205.4–397.8)

276.6
(176.1–469.9)

349.5
(260.4–443.6)

352.6
(231.6–591.8)

328.2
(228.1–345.0)

0.615

Tryptophan 63.3
(36.6–81.5)

70.1
(45.4–101.9)

54.1
(42.1–80.7)

54.9
(40.6–74.4)

53.2
(40.2–74.6)

61.8
(46.9–96.7)

57.6
(42.2–94.2)

52.7
(50.2–101.4)

0.919

p-Cresol 204.9
(129.1–342.0)

168.3
(79.9–305.0)

257.2
(191.4–429.6)

250.2
(187.9–433.2)

196.5
(164.7–288.3)

240.0
(166.8–565.1)

288.4
(190.8–469.3)

224.5
(134.2–352.9)

0.203

Indole 38.5
(23.8–58.7)

52.1
(23.1–124.9)

51.2
(25.2–115.6)

38.9
(21.1–72.7)

37.0
(12.4–82.0)

44.5
(15.9–122.3)

34.8
(16.6–67.8)

60.0
(46.1–143.5)

0.492

p-Cresyl sulfate (total) 9.89
(6.00–21.44)

7.54
(4.83–14.06)

4.99
(0.45–12.00)

6.76
(1.57–13.85)

6.18
(1.11–11.50)

5.06
(0.49–17.26)

5.44
(1.64–11.58)

6.42
(3.09–18.65)

0.544

p-Cresyl glucuronide (total) 0.19
(0.00–0.44)

0.15
(0.00–0.39)

0.09
(0.00–0.21)

0.16
(0.00–0.45)

0.19
(0.00–0.43)

0.13
(0.00–0.67)

0.00
(0.00–0.14)

0.12
(0.00–0.44)

0.322

Indoxyl sulfate (total) 0.19
(0.07–0.30)

0.08
(0.00–0.43)

0.17
(0.00–0.42)

0.25
(0.00–0.45)

0.35
(0.00–0.56)

0.23
(0.00–0.36)

0.20
(0.00–0.37)

0.00
(0.00–1.02)

0.734

Indole-3-acetic acid (total) 8.42
(3.37–21.10)

5.82
(4.17–8.83)

9.83
(7.86–25.21)

9.45
(5.02–16.15)

8.08
(4.36–14.14)

11.56
(6.48–28.16)

8.28
(4.76–33.36)

12.42
(4.90–41.87)

0.271

Plasma (mM)
p-Cresyl sulfate (total) 13.20

(6.85–19.71)
11.61

(5.88–19.28)
19.37

(11.15–24.17)
47.97

(31.99–69.40)b,c
69.63

(42.57–93.92)b–d
121.1

(85.9–215.1)b–e
164.9

(116.9–229.2)b–e
114.0

(81.8–154.1)b–d
<0.001

p-Cresyl glucuronide (total) 0.06
(0.04–0.11)

0.06
(0.01–0.11)

0.10
(0.05–0.21)

0.25
(0.16–0.51)

0.50
(0.20–0.62)b

1.73
(0.69–3.63)b–d

17.92
(5.86–39.92)b–f

2.09
(1.30–8.60)b–e

<0.001

Indoxyl sulfate (total) 2.79
(2.05–5.70)

3.34
(2.37–4.11)

4.57
(2.32–6.71)

7.50
(5.28–10.74)

12.71
(9.03–17.93)b–d

42.51
(19.60–50.49)b–e

96.01
(60.45–152.1)b–e

62.39
(32.21–135.6)b–e

<0.001

Indole-3-acetic acid (total) 1.45
(1.17–1.77)

1.73
(1.24–1.91)

1.79
(1.50–4.41)

3.02
(1.93–3.70)b

3.69
(2.10–5.48)b,c

5.56
(5.17–6.60)b,c

12.52
(5.80–18.86)b–e

6.98
(4.45–16.80)b–e

<0.001

Urine
[p-Cresyl sulfate]/[Crea] 0.074

(0.03–0.12)
0.048

(0.03–0.10)
0.065

(0.04–0.12)
0.098

(0.06–0.14)
0.088

(0.04–0.13)
0.077

(0.06–0.15)
N/A N/A 0.137

[p-Cresyl glucuronide]/[Crea] 0.004
(0.00–0.02)

0.003
(0.00–0.01)

0.008
(0.00–0.02)

0.016
(0.01–0.03)c

0.012
(0.01–0.03)

0.018
(0.01–0.05)c

N/A N/A 0.002

[Indoxyl sulfate]/[Crea] 0.050
(0.03–0.11)

0.051
(0.03–0.07)

0.052
(0.04–0.07)

0.055
(0.04–0.08)

0.046
(0.03–0.08)

0.067
(0.04–0.10)

N/A N/A 0.534

[Indole-3-acetic acid]/[Crea] 0.006
(0.00–0.01)

0.005
(0.00–0.01)

0.004
(0.00–0.01)

0.003
(0.00–0.01)

0.003
(0.00–0.01)

0.003
(0.00–0.01)

N/A N/A 0.238

CKD, chronic kidney disease; Crea, creatinine; HD, hemodialysis; N/A, not applicable; PD, peritoneal dialysis.
aKruskal-Wallis test; P values obtained after Bonferroni correction.
bP # 0.05 vs. the control group.
cP # 0.05 vs. CKD1.
dP # 0.05 vs. CKD2.
eP # 0.05 vs. CKD3.
fP # 0.05 vs. CKD4.
Data are presented as median (25th–75th percentile).
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Figure 3 | Fecal concentrations (conc.) of p-cresol, p-cresyl sulfate (pCS), p-cresyl glucuronide (pCG), indole, indoxyl sulfate (IxS), and
indole-3-acetic acid (IAA) normalized to an equal number of intact bacterial cells. Control (n ¼ 14), chronic kidney disease (CKD)1 (n ¼
14), CKD2 (n ¼ 23), CKD3 (n ¼ 44), CKD4 (n ¼ 23), CKD5 (n ¼ 10), hemodialysis (HD) (n ¼ 16), and peritoneal dialysis (PD) (n ¼ 11). *P # 0.05
versus control;

ˇ

P # 0.05 versus CKD1–2–3–4. x, outlier.
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CKD5 compared to control and CKD1. A significant decrease
of tryptophan was reached after 48 hours (P < 0.05), with a
significant increase of indole after 24 hours and 48 hours for,
respectively, the control and CKD1, and CKD5. In addition, a
minor increase of IAA was found after 48 hours and 24 hours
for, respectively, the control and CKD5, and CKD1 (Figure 5).
Figure 4 | Fractional kidney clearance of p-cresyl sulfate (pCS), p-cre
acid (IAA) per chronic kidney disease (CKD) stage. *P # 0.05. x, outlie
CKD5 (n ¼ 10). Gray square: correlation with Spearman’s rank test (rs) b
spearman’s rank test between fractional kidney clearance and estimated
0.366, all P # 0.001.

Kidney International (2020) 97, 1230–1242
After extended incubation for 7 days, no differences in p-
cresol, indole, or IAA generation from CKD1 and CKD5 fecal
samples were observed (P < 0.05). However, a higher abso-
lute amount of indole was found after 7 days versus baseline
in both CKD groups (P < 0.05), whereas this was not sig-
nificant for p-cresol, probably due to the high interpatient
syl glucuronide (pCG), indoxyl sulfate (IxS), and indole-3-acetic
r. CKD1 (n ¼ 14), CKD2 (n ¼ 23), CKD3 (n ¼ 44), CKD4 (n ¼ 23), and
etween fractional kidney clearance and CKD. Correlation with
glomerular filtration rate: pCS rs ¼ 0.311, pCG rs ¼ 0.331, and IxS rs ¼
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Figure 5 | p-Cresol, indole, and indole-3-acetic acid generation of controls, chronic kidney disease (CKD)1, and CKD5 fecal samples
cultured up to 72 hours. Data are presented as median and 95% confidence interval. Right y-axis: median concentration in mM; left y-axis:
median concentration in nmol/g feces. -, tyrosine (black); C, phenylalanine (dark gray); :, p-cresol (gray); ,, tryptophan (black); D, indole
(dark gray); >, indole-3-acetic acid (gray). Control (n ¼ 6), CKD1 (n ¼ 6), and CKD5 (n ¼ 5). �P < 0.05 versus baseline; *P < 0.05 versus 0 and 6
hours of incubation;

ˇ

P < 0.05 versus 0, 6, and 12 hours of incubation; wP < 0.05 versus 0, 6, 12, and 24 hours of incubation; §P < 0.05 versus
12 hours of incubation; #P < 0.05 versus 6 and 12 hours of incubation; &P < 0.05 versus 6 hours of incubation.
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variability. For IAA, a higher absolute amount was found in
CKD5 after 7 days compared to baseline (P ¼ 0.028;
Supplementary Figure S3).

DISCUSSION
The main purpose of this study was to quantify fecal, plasma,
and urine concentrations of PBUT-related metabolites in
different stages of CKD, and to estimate the contribution of
intestinal generation to increased individual plasma PBUT
levels in CKD. In addition, potential influx of circulating
PBUTs into the gut was assessed.

So far, intestinal generation of PBUT precursor metabo-
lites has not been thoroughly investigated in CKD patients. In
addition to impaired kidney function, an increase in intestinal
generation of PBUT precursor metabolites could contribute
to the increased plasma PBUT levels in CKD. In case of
comparable fecal precursor metabolite levels between the
different stages of CKD, next to a higher intestinal generation,
an increase in gut permeability could be an assumed hypo-
thetical explanation, but this possibility was practically ruled
out by our current results. In fecal samples from our cohort,
absolute levels of the AAAs and their metabolites p-cresol,
indole, and IAA were not significantly different among CKD
stages. Even when normalizing to an equal number of viable
bacterial cells, no differences were observed. In plasma, the
individual PBUT levels increased with progressive stages of
CKD, whereas the urinary levels did not change. The urinary
PBUT/Crea ratios of pCS, IxS, and IAA, a proxy for colonic
generation,45 did not change with progressive stages of CKD.
Also ex vivo, bacterial generation of p-cresol, indole, and IAA
was not different in fecal samples from controls, CKD1, and
CKD5. These results indicate that, in the present CKD cohort,
bacterial generation of p-cresol and indole does not seem to
contribute to the increase in plasma PBUT levels. Moreover,
the fractional kidney clearance of pCS, pCG, and IxS decreases
1236
with CKD progression, indicating that plasma PBUT accu-
mulation is probably mainly due to a decline in kidney
function, whereby overall solute removal seems more
deranged than creatinine removal, suggesting a role for
tubular dysfunction on top of glomerular filtration rate.
Finally, there is no net increased influx of PBUTs into the gut
lumen with increasing plasma concentrations. However, the
presence of very low fecal PBUT levels might be due to
transport of the elevated circulating levels of PBUTs into the
gut lumen via colonic epithelial transporter proteins (e.g.,
Mdr1a/Pgp), which are expressed at the apical surface of
enterocytes. This transporter protein has been shown to cause
efflux of drugs from enterocytes back into the intestinal
lumen.46 Another potential option is local intestinal pro-
duction of pCS, as the ratio of fecal pCS/IxS is markedly
higher than the same ratio in plasma. However, this is un-
likely, given that no pCS could be detected in the ex vivo
experiments next to p-cresol generation (data not shown).

To our knowledge, no comprehensive report in CKD pa-
tients, covering all stages of CKD, on levels of PBUTs and
their precursors in feces and plasma, as well as in urine, is
currently available, and the existing data diverge. Our findings
are comparable to the results of Fukuuchi et al., who observed
no difference in fecal p-cresol and indole levels when
comparing HD to CKD patients. In the latter study, gas
chromatography was used to quantify compounds in feces.29

Hida et al., also using gas chromatography, found higher fecal
p-cresol levels in HD compared to controls.34 Moreover, a
fecal metabolome study, using gas chromatography–mass
spectrometry, also observed higher levels of p-cresol and
indole in HD compared to controls. However, when in the
latter study the fecal metabolite profiles of these HD patients
were compared with those of their household contacts, who
were on the same diet, no differences were observed.14 In the
same study, fecal metabolite levels of p-cresol and indole did
Kidney International (2020) 97, 1230–1242
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not differ in 5/6 nephrectomized rats compared to sham-
operated rats,14 whereas in another animal study, higher p-
cresol and indole levels were observed in 5/6 nephrectomized
rats versus sham-operated rats.47 The combined results in
the study of Poesen et al. indirectly suggested that a change
in colonic microbial metabolism in CKD is largely attrib-
utable to diet and less to a loss of kidney function.14 Similar
results were found in an animal study by Mishima et al., in
which pCS and IxS were quantified by capillary electropho-
resis time-of-flight mass spectrometry in germ-free (GF) and
specific pathogen–free (SPF) mice with and without kidney
failure.13 Fecal and urinary concentrations of pCS and IxS
were not different between SPF-control mice compared to
SPF–kidney failure mice and were not at all detected in GF-
control and GF–kidney failure mice. Unfortunately, the latter
study did not report fecal levels of p-cresol and indole.13 In
the present study, the levels of cresolic compounds are
higher in feces and plasma than those of indolic compounds,
as also observed in previous studies in CKD, HD, and
controls,14,29 and for pCS versus IxS in SPF-control and
SPF–kidney failure mice.13

Several studies have reported changes in gut microbial
composition in CKD.27–34 However, if this is the case, our
results suggest that these changes do not affect the genera-
tion of p-cresol, indole, and IAA, even in more advanced
stages of CKD. In addition, our ex vivo experiments revealed
no differences in generation by fecal bacteria from controls,
CKD1, and CKD5, whereas at different stages of CKD, no
changes in the urinary PBUT/Crea ratios were observed,
again suggesting unaltered in vivo colonic generation of pCS,
IxS, and IAA in CKD.48,49 Only for urinary pCG/Crea, a
higher ratio was observed in patients with advanced CKD,
but this likely can be attributed to increased glucuronidation
in patients with advanced CKD as reported by Poesen et al.45

Overall, the present results suggest that increased accumu-
lation of PBUTs in plasma of CKD patients is not due to an
increase of bacterial generation of p-cresol, indole, and IAA.
Nevertheless, consistent with our previous findings,50 but
irrespective of kidney function, some patients do seem to
generate more of some specific PBUT precursors than
others, as shown by our findings comparing patients with
low pCS and high IxS to those with high pCS and low IxS
plasma levels.

In the present study, no differences in fecal AAA, or of the
precursor metabolites p-cresol, indole, and IAA, were
observed among different stages of CKD, likely because of an
absence of major differences in dietary protein intake, as also
suggested by the unaltered urinary urea/creatinine ratio over
all CKD stages versus controls. Although normalization to
urinary creatinine might be skewed if muscle mass is lost with
progression of CKD,51 the current approach avoids errors
from incorrect 24-hour urine collection and/or dietary recall.

A decreased fractional kidney clearance was observed in
the later stages of CKD (not on dialysis) for pCS, pCG, and
IxS, with the highest fractional kidney clearance for IxS and
pCG. These results correspond to those from the study of
Kidney International (2020) 97, 1230–1242
Poesen et al., in which a 3-fold higher kidney clearance was
found for IxS compared to pCS in CKD1 to CKD5 based on a
24-hour urine collection.52 In normal conditions, PBUTs are
excreted into the urine by glomerular filtration and by organic
anion and cation transporters present in the kidney tubular
cells (tubular filtration).53–55 A decreased fractional kidney
clearance suggests that tubular clearance is proportionally
more affected than glomerular filtration. The fact that the
fractional kidney clearance of IAA did not change with CKD
progression could be due to a higher transport rate compared
to the other PBUTs, which has been demonstrated for
erythrocytes56 but, to our knowledge, not for tubular cells.

Flow cytometry, a single-cell enumeration technology, is
an upcoming technique to quantify bacterial cells and identify
the composition of bacterial populations.57 For the first time,
this technique was used to determine the total, intact, and
damaged bacterial cell count in a CKD patient cohort, for
which no comprehensive data on the total abundance of
gastrointestinal bacterial cells are available. In the present
study, a higher abundance of damaged cells in comparison
with intact cells was found in controls and all CKD stages
apart from CKD5. In addition, no changes among progressive
CKD stages were observed. Similar results were found in a
culture-based study comparing HD and controls.34 However,
in other studies, using quantitative polymerase chain reaction
and culture, a decrease in total fecal bacteria was found in
CKD, non-dialyzed and dialyzed patients with end-stage
kidney disease compared to controls.29,58,59

Even if the present data indicate that the increase of plasma
levels of intestinally generated PBUTs is mainly the conse-
quence of kidney dysfunction and not of a change in fecal
microbial generation, the gut bacteria remain an important
potential target when considering novel therapies to prevent
uremic toxin accumulation. Changes in diet could be a po-
tential option to reduce uremic toxin levels, as shown in
previous studies,60–66 and as indirectly suggested by the study
of Poesen et al., which indicated that dietary intake is the
most important determinant of uremic toxin precursor gen-
eration.14 However, protein restriction also has the potential
to induce protein energy wasting. On the other hand, several
animal47,67,68 and human34,69–77 studies demonstrated favor-
able effects on cresol and indole metabolism by administra-
tion of pre-, pro-, and synbiotics, although most of these
studies demonstrated an impact on only one of the 2 targets.
Recently, our group demonstrated that, in HD, high pCS
levels are associated with a completely different gut micro-
biota composition than high IxS levels.50 The dissociation in
the generation between indoles and cresols goes along with an
apparent disconnection in physiologic impact. Indole, being
at the origin of the toxic compound IxS, might not be un-
equivocally detrimental. Indole itself acts as an intercellular
signal molecule and contributes to several biological func-
tions.78 Moreover, indole upregulates gene expression of gut
epithelial cell junctions and modulates pro- and anti-
inflammatory gene expression in intestinal epithelial cells,
resulting in maintenance of the host-microbe homeostasis at
1237



Figure 6 | Experimental overview. (a) In vivo analysis; (b) ex vivo analysis. �The fecal samples from control subjects were not used for ex vivo
culture for 7 days; *the number of fecal samples from chronic kidney disease (CKD)5 patients used for ex vivo culture up to 72 hours was 5. AAA,
aromatic amino acids; HPLC, high-performance liquid chromatography; IAA, indole-3-acetic acid; IxS, indoxyl sulfate; pCG, p-cresyl glucuronide;
pCS, p-cresyl sulfate; UPLC, ultra-performance liquid chromatography.
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the mucosal surface.16,79 In contrast, no such effects have
been described for the cresols, and the mother compound, p-
cresol, is a strong inhibitor of biological functions.80–87

Therefore, it might be necessary to reduce the toxicity of
the 2 groups by different approaches, and for that matter,
different bacterial origins of generation may be an asset rather
than an obstacle. Primary focus on the reduction of the
generation of p-cresol might be desirable.

A first shortcoming of this study is the lack of dietary recall
and specific information on the protein intake of the CKD
patients and the controls. However, neither the ratio of uri-
nary urea over creatinine, a proxy for protein intake, nor the
absolute urinary urea levels (data not shown) changed with
progression of CKD, or in comparison to the control group.
Second, a difference in the proportion of patients with dia-
betes was observed among the different stages of CKD. It is
known that diabetes influences gut microbial composition
and function.88,89 However, in our dataset, no differences
were found between the fecal and plasma levels and the ratio
of individual urinary PBUT/Crea when comparing patients
from each CKD stage with and without diabetes, assuming
that the presence of diabetes has no effect on the intestinal
generation capacity in CKD.
1238
In conclusion, the present study offers a comprehensive
analysis of the cresols and indoles concentrations in feces,
plasma, and urine in different stages of CKD and in healthy
volunteers. In this cohort, differences in plasma PBUTs levels
between different stages of CKD cannot be explained by
differences in bacterial generation rates of p-cresol, indole,
and IAA in the gut. Moreover, degree of urinary PBUT
excretion also did not alter with CKD progression, suggesting
that retention by an impaired kidney function, of which the
tubular filtration seems more affected than the glomerular
filtration, is the main contributor to the plasma PBUT level
increase. In addition, there is no net increase in influx of
PBUTs into the gut lumen.
METHODS
Study population and sample collection
In total, 14 healthy controls, 114 non-dialyzed CKD (stage1–5), 16
HD, and 8 PD patients were recruited at the Nephrology Unit of the
Ghent University Hospital, Belgium. Three PD patients were
recruited from the Antwerp University Hospital, Belgium
(Figure 6a). Exclusion criteria were active infection (C-reactive
protein >20 mg/L), immunosuppressive therapy, body mass index >
35 kg/m2, inflammatory bowel disease, active malignancy,
Kidney International (2020) 97, 1230–1242
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cardiovascular event in the past 3 months, pregnancy, trans-
plantation, use of non-steroidal anti-inflammatory drugs within the
past month, vascular access problems for HD, and age <18 years.
Before inclusion, all patients and controls gave written informed
consent. CKD patients were categorized into subgroups according to
estimated glomerular filtration rate, using the Chronic Kidney Dis-
ease Epidemiology Collaboration (CKD-EPI)–creatinine equation, as
recommended by the National Kidney Foundation Kidney Disease
Outcomes Quality Initiative (KDOQI). The local ethics committee
(Ref2010/033,B67020107926 and Ref2012/603,B670201214999)
approved the study.

From each participant, a blood, urine and fecal sample was
collected in parallel (Figure 6a). Blood from controls, CKD, and PD
patients was collected in K2EDTA tubes (Vacutainer Tubes, Becton
Dickinson, Franklin Lakes, NJ) after antecubital venipuncture with a
butterfly needle. Blood from HD patients was collected from the
vascular access prior to the mid-week dialysis session. Plasma was
obtained after 10 minutes of centrifugation at 2095 g, aliquoted, and
stored at -80 �C. A spot urine sample was collected from the control
and CKD1–5 subgroups. Urine was centrifuged for 10 minutes at
754 g, and the supernatant was aliquoted and stored at –80 �C. Upon
collection, fecal samples were stored on an ice pack and processed
within approximately 6 hours. Samples were aliquoted per 1 g after
determination of the Bristol stool scale (a visual scale of the aspect of
stool, from hard [1] to liquid [7]90) and stored at –80 �C. Upon
batch analysis, fecal samples were thawed and divided into two 0.5-g
feces aliquots.

Fecal dry weight measurement
One fecal aliquot (0.5 g) was used to determine dry weight after
lyophilization with a laboratory freeze dryer (VaCo 5, Zirbus, Bad
Grund/Harz, Germany; Figure 6a). Before and after lyophilization,
the weight of the vials was measured to determine dry and wet
weight.

Determination of uremic metabolites in feces, plasma, and
urine
Plasma and urinary creatinine (113 Da), phosphorus (31 Da), urea
(60 Da), and protein content were determined by standard labora-
tory methods in the routine laboratory of the Ghent University
Hospital, Belgium. In the fecal suspension, total concentrations of
tyrosine (181 Da), phenylalanine (165 Da), tryptophan (204 Da),
p-cresol (108 Da) and indole (117 Da) were measured with high-
performance liquid chromatography, omitting the heat denatur-
ation step (Supplementary Methods). In fecal suspension, plasma
and urine, total concentrations of pCS (187 Da), pCG (284 Da), IxS
(213 Da), and IAA (175 Da) were measured with ultra-performance
liquid chromatography [ (Supplementary Methods), and for HD
patients as previously described.91,92

The individual PBUT concentrations in the spot urine samples
were normalized to creatinine concentration (formula 1). The ratio
of urinary urea over creatinine was calculated, and considered as a
proxy for protein intake (formula 2). Fractional kidney clearance of
PBUTs was determined according to formula 3:

½urinary PBUT�
½urinary creatinine�; (1)

½urinary urea�
½urinary creatinine�; (2)
Kidney International (2020) 97, 1230–1242
½urinary PBUT� � ½serum creatinine�
½urinary creatinine� � ½plasma PBUT�: (3)

Fecal bacterial cell counts and intactness
To determine the total, intact, and damaged bacterial cell count, flow
cytometric analysis was performed on the fecal suspension super-
natant (Supplementary Methods). Samples were 1000 times diluted
with filtered phosphate-buffered saline, intact/damaged stained, and
incubated for 13 minutes at 37 �C (Supplementary Methods).
Samples were analyzed with a 3-laser BD FACSVerse flow cytometer
(Becton Dickinson, San Jose, CA), equipped with a flow sensor for
volumetric counting as previously described.93,94

Ex vivo p-cresol, indole, and IAA generation
From the collected fecal samples, samples were randomly selected
from the controls, CKD1, and CKD5 patients. These samples were
used for ex vivo anaerobic culture at 37 �C up to 72 hours and for 7
days in a Yeast Casitone Fatty Acid Glucose (YCFAG) broth me-
dium,95 supplemented with AAAs (Figure 6b; Supplementary
Methods). Concentrations of AAAs, p-cresol, indole, and IAA were
quantified with ultra/high-performance liquid chromatography
before and after 6, 12, 24, 48, and 72 hours and 7 days of incubation.
Prior to ultra/high-performance liquid chromatography analysis,
broth medium was centrifuged for 30 minutes at 10,000 g, sterilized
with a 0.22-mm filter (Millex-GV syringe filter unit with poly-
vinylidene diflouride membrane, Millipore Merck, Darmstadt, Ger-
many) and stored at –80 �C.
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SUPPLEMENTARY MATERIAL
Supplementary File (Word)
Supplementary Methods. (U)HPLC specifications, YCFAG broth
medium composition, fecal suspension preparation, flow cytometry
solutions compositions, and statistical analysis.
Table S1. Correlations between protein-bound uremic toxin-related
metabolites. Data are presented as Spearman’s rho correlation. CKD,
chronic kidney disease; HD, hemodialysis; IAA, indole-3-acetic acid;
IxS, indoxyl sulfate; N/A, not applicable; pCG, p-cresyl glucuronide;
pCS, p-cresyl sulfate; PD, peritoneal dialysis; Phe, phenylalanine; Tyr,
tyrosine; Trp, tryptophan. Gray: P # 0.05; þP ¼ 0.051.
Figure S1. Urinary [urea]/[creatinine] per CKD stage. x: outlier; control
(n ¼ 14); CKD1 (n ¼ 14); CKD2 (n ¼ 23); CKD3 (n ¼ 44); CKD4 (n ¼ 23);
CKD5 (n ¼ 10); CKD, chronic kidney disease.
Figure S2. (A) Fecal PBUT precursor metabolite levels and (B) ratio of
urinary protein-bound uremic toxins to creatinine, in patients with
high p-cresyl sulfate and low indoxyl sulfate, and low p-cresyl sulfate
and high indoxyl sulfate serum levels. Crea, creatinine; Ind, indole; IxS,
indoxyl sulfate; PBUT, protein-bound uremic toxin; pC, p-cresol; pCS,
p-cresyl sulfate; Phe, phenylanine; Trp, tryptophan; Tyr, tyrosine.
pCShigh/IxSlow (n ¼ 13); pCSlow/IxShigh (n ¼ 13); *P < 0.05; x:
outlier.
Figure S3. p-Cresol, indole, and IAA generation of CKD1 and CKD5
fecal samples cultured for 7 days. Data presented as median and 95%
CI. Right y-axis: median concentration in mM; left y-axis: median
concentration in nmol/g feces. 0: measurement before incubation; 7:
measurement after 7 days of anaerobic incubation. -: tyrosine
(black); C: phenylalanine (dark gray); :: p-cresol (gray); ,:
tryptophan (black); D: indole (dark gray); >: Indole-3-acetic acid
(gray); CKD1 (n ¼ 6); CKD5 (n ¼ 6); *P < 0.05 versus baseline. CKD,
chronic kidney disease.
Supplementary References.
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