
THE DESIGN AND IMPLEMENTATION OF A 16-BIT,
LOW-POWER, HIGH PERFORMANCE, MICROPROCESSOR BASED

DIGITAL SIGNAL PROCESSING UNIT/

by

Michael D. Gaches

B. S., Kansas State University, 1984

MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1987

Approved by:

Major Professor

A11ED7 3Dbfl3D

TABLE OF CONTENTS

Page
1.0 Introduction 1

X
2.0 Processor Description 4

2 .

1

Chip Description 4
2.2 Processor Architecture 5

2.2.1 Executive Entry Table 5
2.2.2 Memory Addressing 6
2.2.3 Executive and User Process State

Tables 7
2.2.4 Executive and User Stacks 9
2.2.5 Task Scheduling and Context Switching 13

2.3 External Processor Interrupts 15

2.3.1 Processor Reset 15
2.3.2 Bus Error Interrupts 16
2.3.3 Nonmaskable and Maskable Interrupts 17

2.4 Exceptions 18
2.5 Processor Data Types and Addressing

Information 19

2.5.1 Boolean Data 19
2.5.2 Character Data 19
2.5.3 Integer Data 19
2.5.4 Fractional Data 20
2.5.5 Floating Point Data 20

2.6 Addressing Modes 21
2.7 Bus Interface 21
2.8 Bus Timing 25

3.0 System Description 28

3.1 Design Considerations and Constraints 29
3.2 Hardware Description 30

3.2.1 Clock, Reset and Set-up Select 31
3.2.2 Synchronous-vs-Asynchronous Bus

Protocol 36
3.2.3 System Decoding 38
3.2.4 ROM System Interface 40
3.2.5 RAM System Interface 42

3.3 8-bit Port and Test I/O 44
3.4 Alarm Outputs 45
3.5 ADC Interface 45

ii

Page
3.6 System Software Description 47

4.0 System Performance 49

4.1 System Power Consumption 49

4.2 System Throughput 50
4.3 System Compatibility 51

5.0 Concluding Remarks 52

Acknowledgements 53

References 54

Appendices

Appendix A: CMOS-vs-SOS/CMOS Versions of the Advanced
Architecture Microprocessor (AAMP) 55

Appendix B: Parts List and Board Layout 59

Appendix C: "Stripped Down" AAMP Signal Processing
Unit 62

Appendix D: Widrow Adaptive Linear Predictor
Algorithm Listing 67

iii

LIST OF FIGURES

Page
Figure 1. Memory Addressing Format 7

Figure 2. Executive and User PSD Tables 8

Figure 3. Process Stack 11

Figure 4. Procedure Call Operation 12

Figure 5. Procedure Return Operation 13

Figure 6. AAMP Bus Timing 23

Figure 7. CMOS and TTL, Speed-vs-Power 31

Figure 8. System Block Diagram 32

Figure 9. System Schematic 33

Figure 10. External Oscillator 34

Figure 11. Transfer Acknowledge (XAK) Generation 37

Figure 12. EPROM Bus Timing 41

Figure 13. RAM Bus Timing 43

Figure Bl. AAMP Signal Processing Unit Board Layout 61

Figure CI. "Stripped Down" AAMP Signal Processing Unit 64

iv

LIST OF TABLES

Page
Table l. Executive Entry Table 6

Table 2. Data Transfer Timing Parameters 24

Table 3. Memory Speed-vs-Set-up Select 35

Table 4. Read/Write Bus Cycle Time-vs-Set-up Select 37

Table 5. System Memory Map 39

Table 6. System Executive Entry Table 48

Table 7. System Power Consumption 49

Table 8. System Throughput 51

Table Al. Pin-out Changes to the AAMP 56

Table CI. "Stripped Down" AAMP System Memory Map 65

1. Introduction

The purpose of this thesis is to present the design and

implementation of a low-power, high-performance,

microcomputer-based system for signal processing

applications. The processor chosen for this project is

Rockwell International's Advanced Architecture Microprocessor

or simply AAMP. This research is sponsored by Sandia

National Laboratories and is part of an ongoing evaluation of

the AAMP by the Department of Electrical and Computer

Engineering at Kansas State University. Previous research

conducted at Kansas State University on the AAMP includes a
1

software and instruction set evaluation by Kenneth Albin and
2

an overall hardware evaluation by Gary Mauersberger . This

thesis is not meant to duplicate the research accomplished by

Mr. Albin and Mr. Mauersberger but is meant to build on their

work by incorporating the AAMP into a specific system design.

This design utilizes the AAMP as a central processing unit

for an ADC based intruder detection system. The system which

is currently being used by Sandia is based on an 8086

microprocessor

.

The AAMP is an evolving product from Rockwell

International. The processor's architecture and instruction

set have evolved from Rockwell's CAPS processor line and as

technology has changed so has the AAMP. The implementation

of the AAMP used in previous research conducted at Kansas

1

State was a CMOS on sapphire substrate process which yielded

a high speed device with low power consumption. The problem

with this implementation was its extreme cost, making its use

in a high volume product unreasonable. Rockwell has tried to

remedy this problem by introducing the AAMP in a new Bulk

CMOS process package. This change is expected to reduce the

AAMP's cost by a factor of about 10. Along with the

production process change, several internal architectural

changes have been made which alter the processor's operation.

This improved version of the AAMP processor was used in the

design of the system discussed in this thesis, but due to

production delays the original version of the processor was

used in the actual construction of the processing unit.

Sandia provided a set of general system specifications

as well as a complete schematic of the 8086 system currently

being used. Desired improvements were outlined but the new

system's input/output specifications and software

organization was to remain as close to those of the existing

system as possible. In addition to the system described in

this report, Sandia asked for a "stripped down" version of

the system which reguired a reduced amount of memory and I/O

hardware. This system was to reduce power consumption to an

absolute minimum while mantaining the processor's high speed.

Because this stripped down system is essentially the same as

the one dealt with in this report its discussion will be left

to an appendix.

System goals and specifications are detailed as follows:

1. Minimize power consumption to meet the requirement
of battery operation over long periods of time.

2. Minimize chip count to meet restrictions
placed on board size.

3. Maximize processor throughput to meet a sampling
requirement of two channels of data, each at 128
samples per second.

4. System should be able to run standard signal
processing algorithms in either fixed or floating
point implementations which reside in ROM.

5. If possible, the system's input/output and memory
map should be identical to the existing 8086 based
system to minimize software changes and to ease
system testing.

2.0 MICROPROCESSOR DESCRIPTION

INTRODUCTION

The purpose of this section is to provide a brief

description of the Advanced Architecture Microprocessor

(AAMP) . This section will cover the hardware and software

features of the AAMP which are important for its application

to this project and which, in general, set the AAMP apart

from other processors. Except where noted, all information

will pertain to the Bulk CMOS version of the AAMP. This

material is intended as an introduction/supplement to the

existing literature available on the AAMP and hence will not

be exhaustive.

2.1 CHIP DESCRIPTION

The AAMP is a high-performance, 16-bit, single chip

microprocessor. It is implemented in two-micron Bulk CMOS

and housed in a 68-pin, square pin-grid array package. The

AAMP's distinguishing features besides its low-power

consumption and high speed (up to 20MHz clock) , are its stack

oriented architecture and its support of high-level language

constructs such as nested, recursive procedures, real-time

multitasking, dynamic memory allocation, task state saving,

context switching and procedure parameter passage. The AAMP

uses non-multiplexed address and data buses and all inputs

and outputs are both TTL and CMOS compatible. The AAMP

incorporates separate executive and user address spaces, each

of which can have separate code and data environments. A

total of 64M words of memory can be addressed by the 24

address lines, the executive/user line and the code/data

line.

The AAMP is designed for real-time, embedded computer

applications and, with this in mind, response - times to

processor interrupts have been optimized with the functions

of task state saving, context switching and interrupt handler

initialization being performed automatically. Both maskable

and nonmaskable interrupts are provided to increase processor

flexibility. Also to increase throughput, on-chip multiply

and divide are provided and arithimetic can be carried out

with integer, fractional or floating point data types.

2.2 PROCESSOR ARCHITECTURE

The AAMP architecture supports two operating modes,

executive and user. The executive mode is intended for

processor initialization, interrupt and trap handling, task

scheduling and other operating system functions. Only one

executive task may be defined, but any number of user tasks

may exist. In addition to the executive task's procedures,

three executive data structures are defined by the processor

architecture, the executive entry table, the executive

process state descriptor (EXEC PSD) , and the user process

state descriptor (USER PSD)

.

2.2.1 EXECUTIVE ENTRY TABLE

The executive entry table contains the initial executive

stack pointers and address offsets (entry points) for

initialization, interrupt, trap and execption handling

routines (see Table 1) . The table must reside in ROM at word

locations $000000 thru $000008. An address offset referred

to as a pointer (PTR) is a word offset. An address offset

referred to as a procedure ID (PROCID) is a byte offset, in

which case the equivalent word address is obtained by right

shifting the PROCID one bit. The right most bit determines

which byte (one equals high byte, zero equals low byte) of

the corresponding word address starts the procedure. If a

particular program does not exist, for instance if there is

no bus error routine, a zero stored in the appropriate

location will inform the processor. The executive entry

table will be discussed in more detail as the processor

function associated with each of the pointers is discussed.

Table 1

Executive Entry Table

Address Description
(hex)
000000 Continuation Status Pointer (PTR)
000001 Initial EXEC. Stack Limit (PTR)
000002 Initial EXEC. Top-of-Stack (TOS) (PTR)
000003 Initialization Procedure ID (PROCID)
000004 Bus Error Interrupt (PROCID)
000005 Nonmaskable Interrupt (PROCID)
000006 Maskable Interrupt (PROCID)
000007 Trap (PROCID)
000008 EXEC. Exception (PROCID)

2.2.2 MEMORY ADDRESSING

Before process state descriptor tables are described a

little explanation about the AAMP's addressing scheme is

needed. The AAMP supports two separate memory address spaces

for code and data. These spaces are maintained by the use of

two pointers, one to code (CENV) and one to data (DENY).

Thus there exist two memory environments, code and data.

Memory addresses are generated by concatenating an

environment pointer with a 16-bit offset, either the program

counter (PC) or a data environment offset pointer. Program

instructions are 8 bits long and memory is fetched in 16-bit

words so to find the correct byte offset the program counter

is shifted one bit to the right. This leaves 9 bits for the

CENV pointer while with a 16-bit offset the DENV pointer is

limited to 8 bits (see Figure 1) . With the given length of

environment pointers a maximum of 512 unique code

environments, each 64K bytes long and 256 unique data

environments, each 64K words long, can be defined. This

gives an addressability of 32M bytes of program memory and

16M words of data memory. In addition to a separation of

code and data environments, executive and user memory is also

separated. Because of this the actual addressability of the

processor is doubled to 64M bytes of program space and 32M

words of data space.

Instruction Address =
22 15 14,

CENV PC

23 16 15
Data Address DENV 1 OFFSET |

Figure 1 Memory Addressing Format

2.2.3 EXECUTIVE AND USER PROCESS STATE DESCRIPTORS

Each task, executive and user, has a process state

descriptor table associated with it. A USER-PSD is used for

initialization of the user task, as well as for saving the

current state if the task is suspended due to an interrupt or

a trap. A PSD table contains information defining the task's

stack limit (SKLM) , current top-of-stack (TOS) , the current

local environment pointer (LENV) , the code and data

environment pointers (CENV and DENV) assigned to the task,

and the current value of the task's program counter (PC).

User and executive PSD tables are shown in Figure 2.

Executive Stack
and PSD table

Initial
Exec
TOS >

User PSD table

USER-PSD-PTR

EXEC-SKLM

EXEC-TOS

EXEC-LENV

EXEC-DENV

EXEC-PC

EXEC-CENV

INT-ENABLE-STAT

EXEC-ERROR-CODE

SKLM

TOS

LENV

DENV

PC

CENV

TASK-CENV

EXCEPTION-PROCID

EXCEPTION-CENV

Figure 2 Executive and User PSD Tables

A user can define an exception handling routine for a

user task by setting the exception code environment

(EXCEPTION-CENV) and exception procedure identifier

(EXCEPTION-PROCID) entries in the task's PSD table. The

8

executive task's PSD table differs from a user task's PSD in

that the executive PSD takes the initial values for executive

stack limit, top-of-stack and PROCID from the executive entry

table. In addition, the state of the maskable interrupt

flip-flop and an executive error code are saved in the event

of a non-recoverable execution error. The executive PSD

table is located one word above the bottom of the executive

process stack and a user PSD table can be located anywhere

within data environment zero (DENV=0) , see Figure 1.

2.2.4 EXECUTIVE AND USER STACKS

The executive task and each user task has associated

with it an area in memory called a process stack. The

process stack is composed of local environments which provide

work area for each procedure called within the task. Each

procedure stack contains a stack mark for procedure state

saving and return linkage, a local accumulator stack area for

operand and pointer manipulation and the local environment in

which local variables and arguments for return to a calling

routine are kept. The local environment and the accumulator

stack area provide for a dynamically allocated working

storage area called a stack frame for each procedure. The

pointers TOS and LENV from the task's PSD table are used to

locate the active accumulator stack and local environment

areas. As each procedure is called the new active stack

frame is placed on top of the calling procedure's stack

frame. See Figure 3.

When a procedure wishes to CALL another procedure the

9

current procedure first pushes any arguments to be passed on

to the top of its own accumulator stack area followed by the

address of the procedure to call (PROCID) . The first word of

the called procedure is called the procedure header and

contains the number of words to be allocated to the new local

environment. The CPU can now finish setting up the new

procedures stack frame. The procedure call operation can be

seen in Figure 4 which shows the stack before and after a

procedure call. RETURN from the called procedure is

accomplished by first pushing any arguments to return on top

of the local accumulator stack and then pushing the number of

words to deallocate from the current local environment.

Figure 5 shows the stack before and after a RETURN

instruction.

10

TOS > SO
f

Accumulator
Stack
Area

t

/ V

SI
S2

PC t
Stack
Mark

*

Active
CENV Stack

PROCID Area
LENV

_j

Local Variables
&

Arguments
•
•

•
•

f
Local

Environment

1 r

Prior
Accumulator
Stack Area

J

ca:
Procc

{

Prior
Stack Mark Lling

Prior
Local

Environment

Stack
Frame

Figure 3 Process Stack

11

Current Procedure's Stack
(immediately before call)

TOS

Current
Task's
Stack
Frame

Procedure Header
j= Number of Local

Variables

Resulting Process Stack
(after call)

LENV-

_PROCI_D_
N

Arguments

Caller's
Accumulator
Variables

Prior
Caller's

Stack Mark

Caller's
Local

Environment

TOS

LENV

>
Caller's

Stack Mark

J
Local

Variables

N
Arguments

Caller's
Accumulator
Variables

Prior
Caller's
Stack Mark

Caller's
Local

Environment

c-1

Figure 4 Procedure CALL Operation

Caller's
Stack
Frame

12

Current Procedure's Stack
(before RETURN)

TOS-

LENV-

_ _ J + N
Values To
Be Returned

Caller's
Stack Mark

*-<

V

J
Local

Variables
N

Arguments

Caller's
Accumulator
Variables

Prior
Caller's

Stack Mark

Caller's
Local

Environment
•
•

•

Calling Procedure's Stack
(after RETURN)

TOS

Caller's
Stack
Frame

LENV-

Returned
Values

Caller's
Accumulator
Variables

Prior
Caller's
Stack Mark

Caller's
Local

Environment

Figure 5 Procedure RETURN Operation

2.2.5 TASK SCHEDULING AND CONTEXT SWITCHING

As previously stated, the AAMP can execute tasks in

either executive or user mode. Executive mode is solely

responsable for processor initialization and task scheduling.

Normally, upon a system reset, the executive performs all

required system initialization and passes control to a user

task. This context switch is accomplished by what is termed

an outer procedure return. When a RETURN instruction is

encountered while in the outermost executive procedure, the

13

pointer to the user task's process state descriptor table is

read from the initial executive top-of-stack location (INIT-

EXEC-TOS) . The user PSD table contains the information

neccessary to initiate execution of the user task. Besides

initiating a user task the executive can also restart a task

that was interrupted due to an interrupt or trap operation.

When the user task is finished another outer procedure

return via the RETURN instruction can be performed. Upon

return to the executive, the executive trap handler schedules

the next user task to execute. The executive trap handler

can be invoked from user mode in one of several ways. If the

return is from a normal user task termination a trap number

of zero will be passed back to the executive trap handler and

the next user task's PSD table pointer can be put onto the

executive initial TOS. A context switch from user mode to

executive mode can also be initiated by either a processor or

user generated trap. A processor trap will result from

nonrecoverable errors such as illegal instructions in the

user program, user stack overflows and user stack underflows.

In such a case, the processor suspends execution of the user

task, updates the user's PSD table, places a trap number (0-

7) corresponding to the error on top of the executive stack

and forces a context switch to the executive trap handler.

User traps, numbers (8-65,535), are generated by the user

software. The user program simply places the trap number on

top of the user stack and executes a TRAP instruction. The

user task is suspended and the trap number is passed to the

14

executive trap handler which uses it to decide upon a course

of action. If no trap handler is defined (PROCID equal to

zero) the processor will stop execution and store an

executive error code of 13 in the executive PSD table. To

continue the processor must be reset.

When trap handling is complete, the executive trap

handler is responsible for executing a return from its outer

procedure. If the executive executed the trap, the trap

handler return is treated as a normal procedure return and

resumes execution of the executive task. If a user task

generated the trap, the trap handler return is treated as an

outer procedure return from the executive and will cause a

context switch back to user mode to continue execution of the

scheduled user task.

2.3 EXTERNAL PROCESSOR INTERRUPTS

There are four types of interrupts which can alter the

normal execution of the processor. These interrupts, in

order of priority, are Reset, Bus Error, Nonmaskable

Interrupt, and Maskable interrupt.

2.3.1 PROCESSOR RESET

The reset interrupt is used for processor initialization

and allows for both cold starts and warm starts. When reset

is asserted, the processor stops what it is doing and sets

the code and data environment pointers to zero. It then

checks the value of the continuation status pointer located

in the executive entry table. If the continuation status

pointer is zero a cold start is indicated. If the

15

continuation status pointer is nonzero a warm start is

indicated.

In the case of a cold start, the processor uses the

initial executive top-of-stack and initial executive stack

limit to define the executive process stack. . The initial

executive procedure identifier is then used to point to the

location for initialization to begin.

In the case of a warm start, The processor uses the

continuation status pointer to point to the location of the

continuation status word. If the continuation status word is

zero, the processor continues with a cold restart. If the

continuation status word is not zero, a warm start is

performed by the processor by returning to the state saved in

the executive PSD table. Execution resumes at the byte

address given by the saved executive program counter.

2.3.2 BUS ERROR INTERRUPTS

The bus error interrupt allows an external device to

terminate a bus transfer. This interrupt can be used to

alert the processor to events such as a user trying to access

executive data structures or a device which does not respond

when addressed. When a bus error interrupt is asserted in

place of a normal transfer acknowledge it is recognized

immediately. The current bus transaction is terminated and

if the processor was in an executive task the processor is

halted. Only a cold restart will get the processor running

again.

If the bus error occurred while a user task was being

16

executed the processor will update the user task's PSD table

and do a context switch to executive mode. Once in executive

mode, execution is passed to the bus error handler procedure

defined in the executive entry table. If the BUS-ERROR-

PROCID is zero the processor is halted. The handling of the

bus error is left entirely to the bus error handler software,

this allows for maximum flexibility in the system

integration. When the bus error routine is finished a

context switch back to the desired user task can be made and

the task can continue.

2.3.3 NONMASKABLE AND MASKABLE INTERRUPTS

The processor has both nonmaskable and maskable

interrupts to keep abreast of external events. Nonmaskable

interrupts are reserved for the event with the highest system

priority, such as low power detection, and cannot be masked

by the software. Maskable interrupts are used for signaling

the processor of all other external events that require

processor attention. These interrupts are only recognized

after the current instruction is complete. When a maskable

interrupt is recognized, the current task is suspended, its

state saved in its PSD table, and if the active task was in

user mode a context switch is made to executive mode.

Neither interrupt is allowed during context switches.

As with bus error interrupts, maskable and nonmaskable

interrupt processing is left entirely up to the software.

Upon entering executive mode the appropriate routine pointer

will be obtained from the executive entry table and execution

17

will pass to that routine. If the desired interrupt' s PROCID

is zero the processor will halt. When interrupt processing

is complete the processor can return to the desired user task

by an outer procedure return.

An important difference between maskable and nonmaskable

interrupts is the detection scheme used by the processor.

The nonmaskable interrupt is edge sensitive which suits it to

interrupts with short duration and events which need

immediate service. The maskable interrupt is level sensitive

and is enabled in the software by the INTE instruction. Care

must be taken to insure that the INT pin remains high until

the interrupt is serviced. Also, the INT pin must return low

before further interrupts are enabled or recursive interrupts

will occur.

2 . 4 EXCEPTIONS

Exceptions are processor detected events that are the

result of the currently executing program. Exceptions are

generated by arithmetic instructions which result in

undefined results or by user generated EXCEPT instructions.

Exceptions are handled by the current task and process stack.

Each user task can define its own exception handling

procedures which are defined in its PSD table. If no

exception routine is defined (PROCID equal to zero) then the

processor will handle the exception automatically. An

example of an exception is division by zero. The user can

define the way in which to handle this situation or the

processor will substitute a default value. In this case all

18

ones will be the default result of the computation. In

addition to the defined AAMP exceptions, each task can define

three of its own exceptions which are generated by executing

an EXCEPT instruction with the corresponding exception

number.

2.5 PROCESSOR DATA TYPES AND ADDRESSING INFORMATION

Data types supported by the AAMP include boolean,

character (byte), integer, fractional, and floating point.

2.5.1 BOOLEAN DATA

Boolean operands are used in conjunction with relational

and conditional instructions and are allocated a full 16-bit

word. Only the least significant bit is used. If this bit

is a zero, the operand's value is false. If the bit is a

one, the operand's value is true.

2.5.2 CHARACTER DATA

Character data, such as ASCII characters, can be stored

in packed byte format where two 8-bit characters can be

stored in each 16-bit word. Addressing mode instructions are

included to access both upper or lower byte data.

2.5.3 INTEGER DATA

Integer data can be represented in single precision (one

word) , and double precision (two word) formats. In each

case, the most significant bit (bit 15) , of the most

significant word, is the sign bit (zero for positive and one

for negative) . In double precision, the second word is the

most significant word and contains the sign bit. The range

for single precision integers is -32,768 to +32,767. For

19

double precision integers the range is -2,147,483,648 to

+2,147,483,647.

2.5.4 FRACTIONAL DATA

Fractional data can also be represented in one or two

words and the sign bit is the same as with integer data. The

range of values that can be represented with fractional data

is -1 to (l-(2**-15)) for single precision data and -1 to (l-

(2**-31)) for double precision data.

2.5.5 FLOATING POINT DATA

Floating point data consist of two parts, a mantissa

which represents the significant digits of the data, and an

exponent that gives the data the proper magnitude. The

mantissa is an unsigned, normalized fraction so that the most

significant bit is always a one, except for the value zero in

which all bits are zero. By normalizing the mantissa the

sign bit (MSB) is in effect hidden thus allowing for 24 bits

of precision in the mantissa in a two-word, single precision

floating point number and 40 bits of precision in the three-

word, double precision floating point number. The remaining

8 bits are for the exponent. The most significant bit is the

sign bit, one for positive and zero for negative, and the

remaining 7 bits are its integer value in excess 128

notation. This is the same as two's complement form with the

sign bit flipped. The range for single and double precision

floating point numbers is the same. The largest value which

can be represented is +/- 1.7014 E+38. The smallest value

which can be represented is +/- 2.9387 E-39. The difference

20

between single and double precision formats is the level of

precison which can be attained in the representation.

2.6 ADDRESSING MODES

The AAMP uses four basic types of addressing: universal,

global, indexed and local. Data is accessed in single,

double and triple word formats. All data manipulation takes

place within the accumulator area of the active stack frame.

The addressing modes reference or place data on top of the

stack and assign or remove data from the top of the stack and

are designed to efficiently support data structures such as

arrays and records used in modern high-level languages. For

a detailed explanation of AAMP addressing modes the reader is

directed to the AAMP Architecture Reference Manual and to the

work by Kenneth Albin.

2.7 BUS INTERFACE

The bus interface architecture of the AAMP is intended

to be both fast and flexible. In systems with many devices

of varying speeds the AAMP's asynchronous, handshaking

enables the processor to communicate with slow and fast

devices alike by the use of a transfer request (XRQ)

generated by the processor and a transfer acknowledge (XAK)

generated by the selected device when it is ready to respond.

In large systems which may have many master and slave devices

on the bus the AAMP provides for a bus request (BR) output

signal to ask for the use of the bus and a bus grant (65)

input signal which is applied to the AAMP when the bus is

available.

21

On the other hand, if the AAMP is being used in a small,

dedicated system with high speed memory and devices, a

simplified bus structure may be used. In this case, since

access to the bus is assured, XRQ and XAK, as well as Sr and

B5 may be tied together thus insuring the fastest response of

the system to a bus transaction. Since even in a small

system there may be some discrepancy between the speeds of

the fastest and slowest devices the AAMP incorporates a set-

up select feature which forces the processor to wait a

prescribed length of time at the beginning of the bus cycle

to allow the slowest device in the system to ready itself.

There are several other signals which need to be

discussed before a more indepth look at bus timing is

undertaken. See the bus timing diagram of Figure 6 and the

timing parameters of Table 2. The transfer error interrupt

(XER) signal is a means for the AAMP to detect memory access

violations and non-responding devices. External memory

management hardware can assert the XER signal when illegal

access is attempted to memory or other system resources. A

hardware error can be detected by a timing circuit which will

trip the interrupt if an addressed device does not respond

within a fixed amount of time. When XER is asserted the

processor aborts the current bus cycle, suspends the current

task and jumps to the executive bus error handling routine.

If the bus error occurs during an executive task the

processor is halted. Often used by memory management

hardware, in conjunction with the bus error signal, the

22

Clock

n

l-T-l

n_riJT_rLjaj^n_rLn_rLn.
r

re

ADR.E/U, C/I5

XRQ

XAK

K/W

DATA (read)

R/W

DATA (write)

1

I

< VALID

I Ta

I

l-Ts — |—

c

VALID

READ Timing

I

|-Tv-I-Td-I

-cz VALID

IS

I- Th-|
I

>

>4

1_
>-

XER

WRITE Timing

Figure 6 AAMP Bus Timing

23

Table 2

Data Transfer Timing Parameters

T Oscillator period at YO input
MIN
50ns

MAX

Ta Set-up time from BS low, XAK and
XER low, A23-A00 valid, R/W, C/D
and E/0 valid to the assertion
of XRQ high.

S1,S0=0,0
-0,1
-1,0
-1,1

IT
2T
3T
4T

Th Hold time from the negation of XRQ (low) to
any change in A23-A00, R/W, E/U, C/D and
D15-D00 during a write. Hold time from
negation of XRQ to the negation of BG (low)
during a read.

IT

Ts Allowable data skew from the reception of XAK
high to the validity of data (D15-D00) as an
input

.

IT

Tw Write control set-up time from R/W going high
to the enabling of D15-D00 as an output.

IT

Td Write data set-up time from
D15-D00 valid to the assertion
of XRQ high.

S1,S0=0,0
-0,1
-1,0
-1,1

0T
IT
2T
3T

NOTE: In synchronous mode with a single master (the AAMP) , EG
would follow BR and XAK would follow XRQ.

24

code/data (C/D) and executive/user (E/U) status lines can be

used to enforce protection and access rights to memory and

I/O devices. The output enable (OlT) line is used to

disconnect AAMP from the system bus. When asserted it will

place in a high-impedance state all address, data and bus

interface control pins. If the AAMP is the only master on

the bus, or if external drivers are used on the address, data

and bus control lines, the GE pin may be grounded to

permanently enable the AAMP inputs and outputs. The final

bus control line is one which is incorporated in one way or

another on almost all processors. The read/write (R/W) line

is used to indicate whether the data are coming from or going

to the AAMP during any particular bus cycle. Unlike many

processors, the K/W line on the AAMP cannot be used as a

read/write pulse to external devices. The E/W line, on the

AAMP, is only valid during the time period that the address

lines are valid and thus it must be used in conjunction with

the XRQ signal to generate read/write pulses for external

devices

.

2.8 BUS TIMING

One significant difference between the SOS version of

the AAMP and the Bulk CMOS version is the synchronization of

XRQ. The SOS version divides its external clock by two to

yield the clock for XRQ synchronization. The Bulk CMOS

version uses the external clock frequency for synchronization

and thus bus cycle times will be reduced somewhat.

A bus cycle is initiated by the processor bringing BR

25

low on the rising edge of the system clock (Figure 6) . Data

transfer timing will not begin until XAK, B5 and XER have

been low for a minimum time of Ta (see Table 2 Data Transfer

Timing Parameters). Address lines A23-A00, R/W, E/U and C/D

become valid when BG is received and will remain valid a

minimum time of Ta before data transfer timing begins. The

time interval Ta is a function of the set-up values (SO, SI)

and is meant to allow address decoding and device selection

time to take place. Data transfer timing begins when the

processor asserts (raises) XRQ. In the case of a data write,

valid data will have been on the data lines for a period of

not less that Td. When XAK is received high, the AAMP begins

termination of the bus cycle. It waits a minimum of two

clock cycles for a write and four clock cycles for a read

before lowering XRQ, synchronized to the rising edge of the

clock. The lowering of XRQ signals the external device that

the data transfer is complete and the AAMP allows for at

least one clock cycle of data hold time on the data lines

before they are brought to the high impedance state. In the

case of a data read, valid data need not be present on the

bus until one clock period after the AAMP receives XAK from

the external device. Also no data hold time is required

between the processor's lowering of XRQ and the removal of

data from the bus. Thus the external device can take as long

as it needs to read or write data to the bus when operating

in the asynchronous mode.

In the synchronous mode, bus timing proceeds the same as

26

in asynchronous mode with the exception that now XAK is tied

to XRQ. In the case of a data write, data is still put out

on the bus for a time of Td before XRQ is asserted, but now

when XRQ is asserted XAK is asserted also and the device now

has a fixed amount of time to read the data from the bus. In

the case of a data read, XRQ is still delayed by Ta, but when

XRQ is asserted the device has a maximum of one clock cycle

to have good data on the bus for the processor to read. When

using the synchronous mode the designer is in effect saying

that he knows that all of his devices will always be able to

read and write data from and to the bus fast enough for the

processor. For a closer look at the synchronous mode timing

diagrams the reader is referred to Sections 3.2.4 and 3.2.5

and Figures 12 and 13.

27

3.0 SYSTEM DESCRIPTION

INTRODUCTION

The design of this Advanced Architecture Microprocessor

(AAMP) based Signal Processing Unit has undergone several

major revisions. The system was initially designed to use a

new Bulk CMOS version of the AAMP. This version was to

retain the SOS version's high speed and low power consumption

while at the same time be much less expensive and incorporate

several design changes. A comparison of the two processors

appears in Appendix A. The Bulk CMOS AAMP was to be

available by late June, 1985. By late July it became

apparent that due to difficulties with the Bulk CMOS process

the new AAMP might not become available until after this

project was to be finished. A design change was made to use

the original SOS/CMOS part. This change was minor, mostly

consisting of drawing up new timing specifications and making

sure the memory interface would work for the SOS part.

In late August 1985 an additional set of hardware

specifications was received from Sandia. These

specifications included an 8-bit parallel input port and nine

additional address decode outputs. As will be detailed

later, the addition of the outputs necessitated a change from

the use of asynchronous bus protocol to synchronous bus

protocol and a major design revision ensued. The final

system, described here, uses the original SOS/CMOS AAMP and

synchronous data transfers. This system meets all design

28

specifications as outlined in the introduction. It is still

hoped that the new AAMP chip will become available and to

that end an appendix has been added which specifies all

changes that must be made to the system in order to use the

new AAMP.

3.1 DESIGN CONSIDERATIONS AND CONSTRAINTS

As with any system design, a number of design goals and

constraints were specified for this system. These

specifications are detailed as follows:

1) The system is space limited to a single 4" X 7"
multilayer board.

2) Total power consumption for the entire system (15-bit
bipolar ADC, digital controller and AAMP signal
processing unit) is limited to 750mW. The existing
ADC and controller consume approximately 40mW so
roughly 700mW is the power limit for the AAMP system.

3) Running the standard signal processing algorithms
defined by Sandia, the system should be able to
process two channels of data, each at 128 samples per
second.

4) The system is to have identical input/output hardware
to the existing 8086 based system and if possible
should retain the 8086 's memory map. This will reduce
the number of changes that will have to be made to the
system test sets at Sandia.

To meet the above requirements the system was designed

to contain ROM, static RAM, an 8-bit parallel input port,

additional decoder to generate address decode outputs and a

16-bit parallel port to receive data from the 15-bit bipolar

ADC. To meet the need for high speed and low power

consumption CMOS devices were used throughout the entire

system, with all parts except processor and memories being 74

series high speed CMOS (HC) parts. For extended temperature

29

range usage, 54HC series parts can be used. The HC family of

components possesses both the high speed and the very low

power consumption needed for this project. Figure 7 shows a

graph of CMOS and LS-TTL power consumption-vs-frequency. It

might appear that at the system operating frequency of 20MHz

the power advantage of the CMOS parts might be lost, but it

must be kept in mind that none of the gates external to the

AAMP itself operate at this frequency. The maximum frequency

actually seen by any gate outside the AAMP is on the order of

2 MHz. Another desirable trait of the CMOS family is its

high noise immunity. Since this system will probably be used

in the field, in a possibly hostile environment, this

attribute is a distinct advantage.

The last and perhaps overriding reason to use the CMOS

devices is that the AAMP has a fanout of only 1 TTL load.

This necessitates the use of buffers between the AAMP and its

associated logic. Since board space as well as power

consumption is at a premium, the use of CMOS devices will

eliminate the need for these buffers. CMOS-to-CMOS and thus

AAMP-to-CMOS fanout is only limited by the switching speed

required, since each additional gate adds capacitance to the

line, reducing its maximum switching speed.

3.2 HARDWARE DESCRIPTION

Wire wrap techniques were used throughout the system

construction. The system was built on a 4.5" by 6.0" piece

of per fboard. A block diagram and detailed system

schematic appear in Figures 8 and 9, respectively. As is the

30

usual practice, a despiking capacitor was added between power

and ground for each I.e. These capacitors are not shown on

the schematic, but appear on the parts list in Appendix B.

100

E

X 10

a.

v>

5
0.1 =

o

0.01 -

TEST CONDITIONS

vCc - sv
Ta - 2S#C
CL » SO pF

LSO0 LS00
(4 GATES (1 GATE)

MC/HCT00
(4 GATES)

HC/HCT00
(1 GATE)

1 ' "' ' i»" ' '"I ' ' "i i ii ii

100 1K 10K 100K 1M

FREQUENCY (Hz)

10M 100M

Figure 7 CMOS and LS-TTL Power Consumption-vs-Frequency

A twenty pin edge connector connects the system to the 15-bit

ADC. In actual use another connector would be used to

interface the system to the host computer or alarm device.

The system is broken up into the following sections,

each of which will be discussed: clock, reset and set-up

select, system decoding, read-only memory, random-access

memory, ADC interface, 8-bit port and test I/O, alarm outputs

and system performance. In addition, a section on

synchronous-vs-asynchronous bus protocols is included.

3.2.1 CLOCK, RESET AND SET-UP SELECT

The 20MHz processor clock can be obtained from either an

external clock oscillator connected to input pin Y0 or a

31

crystal oscillator connected between YO and Yl (see

schematic, Figure 9). In the latter case, the clock is

generated by the AAMP's on-chip oscillator. The early system

designs used an external oscillator as shown in Figure 10.

Use of an external oscillator is indicated when the processor

clock is needed in other parts of the system. Since the

final system design does not use the processor clock, the

external oscillator was replaced by a crystal. This change

resulted in a power savings of 76 mW and the two inverters

which were part of the oscillator were eliminated.

CLOCK
RESET
SET-UP SELECT

V ii
ADVANCED
ARCHITECTURE
MICROPROCESSOR

AAMP

DATA

ADDRESS

CONTROL=3

READ-ONLY
MEMORY

A II A

SELECT

SELECT
AND
CONTROL

II
ALARM
OUTPUTS

RANDOM
ACCESS
MEMORYAAA

ADC
INTERFACE

Figure 8 System Block Diagram

32

p

§

o
CO

S
p
w
>1
03

CTN

•H

' 2"
4

4 *

3
- =

5 ^ -

5 I * ~

5 ^
-

s ^ if

? a J

? *
-

j

i =
-

9
*

*

S
3 ^

' I

?(

4
T

5 i
3 "I'll

53s-**

1 i V

33

^>

22pF

1MOHM
-AAA/

20MHZ

IC04

YO

1 2
22pF

Figure 10 External oscillator circuitry

The system's reset circuitry is shown in Figure 9.

Switch 3 (SW3) provides for a manual reset. R12 and CI

provide a high pulse on the Reset line when the input to

inverter U7F is lowered by a manual, power-up or externally

generated system reset. A system reset forces a cold start

(continuation status pointer equal $0000) and the Alarml and

Alarm2 outputs are cleared. The processor reads in the

Executive Entry Table from ROM, as explained in Section

2.2.1, and execution is passed to the Executive

initialization procedure. Since only one task is being

performed, the programs execute entirely in executive mode.

To conserve power and chip count, no switch debouncing was

performed on the manual reset switch. It was shown that the

multiple resets which occur due to the switch bounce do not

affect normal processor function. When the bounce stops the

last reset received will proceed normally and program

execution will begin. Also, under normal operating

34

conditions, most system resets will be generated externally

and received over the system reset line which is a TTL

generated signal.

The set-up select lines SO and SI can be set by two

switches to one of four settings. As detailed in Table 2,

changing the set-up values changes the delay between the

processor's address and R/w lines being valid and the

assertion of Transfer Request. Thus, the select setting

changes the bus cycle length so it can be custom tailored to

the speed of the memory and I/O devices being used, see Table

3 for Bulk CMOS AAMP values. The optimum set-up for the

memories used (150 nS EPROM and 100ns static RAM) was found

to be SI, SO = 0,1. This setting results in a read cycle time

of 500nS and a write cycle time of 550nS (10T and 11T

respectfully, where T is one clock cycle, 50nS.)

Table 3

Max I/O Read/Write response times-vs-set-up select

1,S0 Read time Write time
(nS) (nS)

0,0 100 300
0,1 150 300
1,0 200 350
1,1 250 . 350

Very little information about the use of the set-up

inputs was available. The hardware reference manual

indicates that the set-up inputs should be hard wired to

either a "1" or a "0". The set-up select circuitry
6

schematic showed that great care must be taken if the set-up

35

is changed while the processor is running. A little

experimentation showed that the set-up time could be changed

while the processor was running and although it was never

implemented, one of the schemes considered to speed up the

system involved changing the set-up depending on the speed of

the device being accessed. It should be noted that the

effect of changing the set-up on overall processor operation

was not investigated. Rockwell was not contacted to verify

proper operation of the AAMP under these conditions since

this speed-up scheme was not implemented.

3.2.2 SYNCHRONOUS-VS-ASYNCHRONOUS BUS PROTOCOL

The AAMP can transfer data either synchronously or

asynchronously, depending upon how the Transfer Acknowledge

(XAK) input signal is generated. If Transfer Request (XRQ)

is tied directly to XAK, the system is in synchronous mode.

The bus cycle length now only depends on the set-up value and

whether the bus cycle is a read cycle or a write cycle. See

Table 4 for Bulk CMOS AAMP values. Asynchronous transfer

mode is in effect when XAK is generated external to the

processor. The internal processor clock will be halted until

the processor receives the XAK signal. Once received, the

processor clock is restarted and the bus cycle continues as

in synchronous mode, subject only to the set-up value and

cycle type.

36

Table 4

Read/Write bus cycle length-vs-set-up select

SI, so

0,0
0,1
1,0
1,1

Bus cycle length (T-50nS)
Read Write

8T 8T
9T 8T
10T 9T
11T 9T

Each transfer scheme has its advantages and both schemes

were tried as the system design evolved. The asynchronous

transfer mode is the most versatile of the two data transfer

schemes. A delay of XAK appropriate for each device in the

system is generated by the simple circuit shown in Figure 11.

It is readily apparent from the figure that as the number of

devices increases, the amount of hardware needed to generate

XAK increases substantially. When several decoded outputs

were added to the system the change to the synchronous

transfer mode was indicated to hold chip count to a minimum.

select o

SELECT 1

SELECT J

SELECT 3

XAK

SHIFT IE6ISTEI

Figure 11 XAK Generation Circuit

37

The synchronous transfer mode requires no external logic

to generate XAK. When the processor requests a transfer

(XRQ) an XAK is obtained immediately, the processor clock is

not halted, and the bus cycle continues normally. In this

mode the set-up value is set so that enough delay in the bus

cycle is introduced to allow the slowest device time to

respond to a read or write operation, see Table 3. The AAMP

will run its fastest in synchronous mode with the set-up at

zero (SI, SO 0,0). When byte oriented static RAMS and

EPROMs become available with access times on the order of 50-

75nS the system's performance can be optimized by reducing

the current set-up value of SI, SO = 0,1 to SI, SO 0,0. The

savings on each bus cycle will amount to 50nS.

3.2.3 SYSTEM DECODING

Two 74HC138 3-to-8 decoders were used for system

decoding. Besides ROM and RAM, system devices include a 16-

bit ADC input port and to conform to the existing 8086 system

implementation an 8-bit input port, 7 one-bit outputs which

are simply address decodes and two alarm outputs. The system

memory map is shown in Table 5. All device addresses are the

same as those for the 8086 system except that the locations

of ROM and RAM have been switched. This change was necessary

due to the fact that the AAMP always initializes itself by

reading from locations $0000 to $0008. These locations

contain basic system parameters which must be available upon

power-up (see Table 1 for details on the AAMP's Executive

Entry Table) so the ROM had to be located at address zero.

38

Table 5

System Memory Map

Address (Hex) Purpose

0000-1FFF ROM
2000-2FFF ADR1
3000-3FFF ADR2
4000-4FFF 8-bit test port

4000-40FF DAC1
4100-41FF DAC2
4200-42FF DAC3
4300-43FF DAC4
4400-44FF WDT
4600-46FF ALARM1
4700-47FF ALARM2

5000-5FFF 16-bit ADC port
6000-7FFF RAM
8000-FFFF Unused

Comments

Executive Program Memory
Only on read cycle
Only on read cycle
Read only
Only on write cycle
Only on write cycle
Only on write cycle
Only on write cycle
Active high
Active high
Active high

Variable and Data storage

The first decoder (U9, see Figure 9) is enabled whenever

there is an active Bus Request (Er in the low state) . The

second decoder, U12, is enabled only during a write (R/W line

high) to addresses between $4000 and $4FFF. This enable is

generated by the inverter and AND gate (U7A and U6D)

connected to decoder 2's active high enable. The AND gates

(U6B and C) used on the decoder outputs corresponding to ROM

and RAM addresses allow for 8K by 16 bits of ROM and 8K by

16 bits of RAM to be accessed by the system software. The

8086 based system had 4K ROM and 4K RAM, but had left space

in the memory map for the 8K blocks. The two AND gates used

in this addressing scheme were leftover gates and thus became

an economical way to expand the memory and not alter the

memory map.

Since the AAMP is the only device controlling the bus

the BR and BG lines have been tied together. This allows the

39

AAMP to respond immediately to a bus request. Also, since

the AAMP is the only bus master and all software is running

in the Executive mode with no memory partitioning, the other

bus control lines have been left unused or tied to their

inactive state (E/U, C/D, LB, HB, HLD and XER.) In this

implementation the interrupt lines were also left unused.

Depending on the system's actual use in the field the NMI

interrupt would probably see use as a low supply/battery

voltage detector, but since many of the details of the

system's use were not made available by Sandia, IRQ and NMI

were not used.

3.2.4 ROM SYSTEM INTERFACE

Read-only memory is required by the AAMP to store the

Executive Entry Table and programs necessary to initialize

the system upon power-up. ROM consisted of two CMOS EPROMs

(UV erasable and electrically programmable read-only

memories) which yield a memory space comprised of 8192 16-bit

words. The EPROMs used were Hitachi's 27C64G-15 which have a

maximum access time of 150nS.

The EPROM interface as shown by the system schematic in

Figure 9 consists simply of AND gate U6B and OR gate U10A.

The EPROMs (U4 and U5) are selected only when BG is low,

address lines A12, A13 and A14 are "000" or "001" and the

processor is initiating a read cycle, R/W in the low state.

The EPROM' s output is enabled at the same time the chip is

enabled. This simplified interface and will not cause a

problem as long as the EPROM has good data at its outputs

40

when the processor enables its data bus. This simple

interface also guards the EPROM against unintentional writes

since the chips are only enabled during a read cycle. Bus

timing for the EPROM with the set-up select at S1,S0=0,1

appears in Figure 12. It should be noted that the timing

diagrams shown here and for the other devices reflect the use

of the SOS AAMP which was used in the system implementation

and not the Bulk CMOS AAMP used for the discussion on bus

timing in the processor architecture section. Of special

note is the additional clock cycle needed for the

synchronization of XAK to the 10MHZ clock. See the

discussion of SOS/CMOS AAMP and Bulk CMOS AAMP differences in

Appendix A. As can be seen from the timing diagram the read

cycle time is 10T or 500nS.

20 MHz

10 MHz

IK & BE

CE & OT

_r

K/W

XRQ & XAK

DATA OUT
(worst case)

T=50nS

VALID DATA

j~~l

>
XAK sync CPU Read

to 10MHz Clk

Figure 12 EPROM Bus Timing

41

3.2.5 RAM SYSTEM INTERFACE

Random access memory is used to store variables by the

system software. The memory devices selected were Hitachi

8Kx8-bit, low-power, CMOS static RAMS, HM6264LP-10. These

RAMs have a maximum access time of lOOnS and are identified

in the system schematic as U2 and U3. Total RAM storage

available to the system is 8192, 16-bit words which reside at

the top of memory space. See Table 5 for memory map.

The RAMs are selected whenever there is a bus request

and address lines A14, A13 and A12 are "110" or "111". The

RAM data outputs are enabled whenever there is a read

operation regardless of whether the RAMs are selected or not.

This is allowed because if the chips are not selected the

outputs remain in the high-impedance "off" state regardless

of the other control signals. In like manner, a write enable

is generated anytime there is a transfer request and the

processor is in a write cycle by AND gate U6A and inverter

U7C. Several gates are saved by making the RAM's output

enable (0"E) and write enable (RE) "dumb" and controlling

whether the RAMs are on the bus or not with only the chip

enable. The timing diagram for the RAMs with a set-up select

of Si, S 0=0,1 is shown in Figure 13. The read and write cycle

times are 10T (500nS) and 11T (550nS) respectively.

42

20 MHz

10 MHz

W & IC

CTT

XRQ & XAK

W

~i

RAM DATA
(worst case)

M & IE

TST

K/W& OT

XRQ & XAK

W

DATA OUT

~L

< VALID DATA

I
XAK sync CPU Read

to 10MHz Clk

Write cycle-

< VALID DATA

>

>

Figure 13 RAM Bus Timing

43

3.3 8-BIT PORT AND TEST I/O

To keep the system compatible with the existing 8086

system used by Sandia, an 8-bit input port and seven system

test lines were incorporated into the system design. Owing

to the nature of this system, Sandia did not give details as

to the use of the port and test lines, therefore little was

done with them except to verify that they were functional.

The 8-bit input port consisted of a 74HC373 octal 3-

state noninverting d-type latch, U8. The input lines to this

port were pulled-up to 5 volts using 22k ohm resistors, R2-

R9. This insures that the port will be compatible with TTL

output levels. An octal SPST switch, SW2 , was used to set

the inputs to a known state for test purposes. The system

memory map, Table 5, shows that the port is addressed anytime

there is a Read from any location in the range of $4000-

$4FFF. OR gate U10D is used to combine the correct address

decode and the R~/W line enable the port's output only during

a Read cycle. Bus timing constraints for the port are the

same as for the EPROMs. As tested, the data were already

present and latched when a read cycle occurred so no timing

considerations were involved in port testing.

The seven system test lines are simply generated by

address decodes from decoders U9 and U12 . Table 5 shows the

address ranges given to each line. Each of the test lines is

really an output that is strobed low when addressed. The

length of the pulse is the same as the bus cycle length or

500nS for both read and write cycles. The first two test

44

lines, ADR1 ($2000-$2FFF) and AT5R2 ($3000-$3FFF) , are read

cycle only outputs. OR gates U10B and U10C insure that only

on a read cycle will ADR1 and ADR2 be strobed. The remaining

five test lines and their addresses are: DAC1 ($4000-$40FF)

,

DAC2 ($4100-$41FF) , DXC3 ($4200-$42FF) , T5SU3 ($4300-$43FF)

and WDT ($4400-$44FF) . These lines occupy the same address

space as the 8-bit input port but inverter U7A and AND gate

U6D insure that decoder U12 and thus these test lines are

only enabled on write cycles. The pulse timing of these

lines is the same as for the ADR1 and ADR2 test lines. All

of the test lines except WDT are considered active low. The

WDT line is considered active high.

3.4 ALARM OUTPUTS

The alarm outputs are used to signal the outside world

that the system has detected an intruder. The alarms consist

of two J-K flip-flops, U13A and U13B, corresponding to the

two channels of sensor data. The flip-flops are set up as

on-off toggles. ALARM1 is triggered by a write to addresses

$4600-$46FF. ALARM2 is triggered by a write to addresses

$4700-$47FF (see Table 5) . An alarm stays active until a

system reset is received or until the alarm address is

written to again. Upon power-up the alarms are initialized

to the no alarm state by the reset line.

3.5 ADC INTERFACE

The analog-to-digital converter communicates with the

AAMP through a 20-pin, dual-in-line connector, PI, (see

Figure 9). This connector provides for 15 bits of data, a

45

data ready signal from the ADC and two latch enables to

select which channel of data is selected to be read by the

AAMP. The ADC port is memory mapped into locations $5000-

$5FFF and is made read-only by the combination of the address

decode and the R/W line by OR gate U11A. Inverter U7B and OR

gates U11B and U11C combine to allow channel one data to be

accessed by reading from even addresses and channel two data

to be accessed by reading from odd addresses.

The procedure for reading the ADC's data consists of

several steps. The AAMP's signal processing program enters a

polling routine where the Data Ready signal (bit 15) is

continuously sampled. This is done by reading channel one

(even addresses) which enables the ADC's channel one output

latch and also enables tri-state buffer, U14, allowing the

ADC's Data Ready signal onto the AAMP's data bus. If the

Data Ready signal is high then the data read from channel one

is valid and the AAMP can proceed to read channel two's data

(odd addresses) . The speed of the 15-bit ADC considered for

this implementation was such that little or no wait was

expected in the polling routine, thus system performance will

not suffer and other schemes such as interrupt service

routines can be avoided. It should be noted that the ADC

interface was not implemented, but the design was discussed

with Professor Lenhert (major professor) and Jeff Bradly who

was conducting testing of the 15-bit ADC for Sandia. No

problems were seen with the implementation.

46

3.6 SYSTEM SOFTWARE DESCRIPTION

The main purpose of this project was to implement the

AAMP Digital Signal Processing Unit in minimal hardware while

maintaining maximum system throughput. Since most of the

software groundwork was laid by Ken Albin and Gary

Mauersberger in their respective Theses, the software

implementation for this project was kept simple. The

Standard Fixed-Point Widrow Adaptive Linear Predictor

Algorithm, as coded by Mr. Mauersberger, was chosen as the

signal processing algorithm because of its high execution

speed as compared to the floating point version and the

Widrow' s acceptance by Sandia.

Since there was only one task to perform all software

was run in the Executive mode with Code and Data pointers

equal to zero. Therefore the leading two zeros in the

Executive Entry Table (Table 6) and the Widrow listing

(Appendix D) have been ommitted. Because interrupts were not

used and because the processor was constantly monitored on a

logic analyzer none of the routines provided for by the

Executive Entry Table (Bus Error Interrupt, Maskable,

Nonmaskable Interrupts, Trap and Exception) were implemented.

In a system out in the field most of these routines would be

needed to protect the system from hardware and software

errors such as low-power conditions and arithmetic overflow

and underflow.

47

Address Dat
(hex)
0000 0000
0001 7F00
0002 7FF0
0003 0020
0004 0000
0005 0000
0006 0000
0007 0000
0008 0000

Table 6

System Executive Entry Table

Description

Continuation Status Pointer (PTR)

Initial EXEC. Stack Limit (PTR)
Initial EXEC. Top-of-Stack (TOS)
Widrow Procedure ID (PROCID)
Bus Error Interrupt (PROCID)
Nonmaskable Interrupt (PROCID)
Maskable Interrupt (PROCID)
Trap (PROCID)
EXEC. Exception (PROCID)

(PTR)

Upon reset the system reads the Executive Entry Table

from ROM, sets up the Executive Process State Descriptor

Table and Executive Stack (see sections 2.2.3 and 2.2.4) and

transfers control to the Widrow signal processing program.

If an error occurs in the program or in the hardware that

requires the service of one of the Executive Entry Table

routines the processor will halt since none of these programs

exist as defined by a zero in their PROCID.

48

4.0 SYSTEM PERFORMANCE

System performance is measured by how well the system

goals are met. These goals can be divided into three areas:

1) system power consumption, 2) system throughput and 3)

compatibility to existing system used by Sandia. Each of

these three areas will be addressed.

4.1 SYSTEM POWER CONSUMPTION

System power consumption data was taken with the Widrow

signal processing program running in an infinite loop and

appears in Table 7. Data were taken at three different set-

up select settings to see how bus cycle length affected the

power consumption. Power consumption when the processor was

reset was also recorded.

Table 7

System Power Consumption (at 20 MHz)

Set-up Select
(SI, SO)

0,1
1,0
1,1

Reset

Power Consumption
with external
oscillator

248. OmW
245. 5mW
236. OmW

110. OmW

Power Consumption
without external
oscillator

171. 5mW
168. 5mW
169. OmW

32. OmW

The goal for the entire signal processing system (AAMP

signal processing unit and 15-bit bipolar ADC) was set at

7 5 OmW. The ADC under consideration uses approximately 4 OmW.

Therefore the AAMP and ADC together consume about 212mW or

72% under the specification (Si, so =0,1 and no external

49

oscillator) . In addition, these values can be seen as a

worst case figure for two reasons: 1) as will be shown in the

next section the AAMP does not need to be run as fast as 20-

MHZ to meet system performance specifications and 2) smaller

than 8K byte ROMs and RAMs could be used saving a

considerable amount of power.

In addition to low-power consumption the system's

objectives were also to minimize part count and limit board

space. By simplifying the memory interface and using

existing, unused gates to implement functions instead of

additional chips, i.e. using a spare inverter and AND gate

instead of a NAND gate, part count was minimized. The board

size was specified to be a 4" by 7" multilayer board. Since

the wire wrap layout was on a 4.5" by 6" board with extra

room left over, a board layout was not attempted. Considering

the low number of parts involved, no problem meeting this

specification was foreseen.

4.2 SYSTEM THROUGHPUT

To measure maximum system throughput the Widrow signal

processing software was run in an infinite loop with no wait

states for data (ADC) input. A counter was tied to the ADC

latch enable and a maximum samples/sec was obtained. Again

data were taken for all applicable set-up select states. As

is plainly shown in Table 8 the system specification of

sampling two channels data at 128 samples/sec is easily met.

The minimum number of samples/sec needed is 2*128 samples/sec

or 256 samples/sec.

50

Table 8

System Throughput

Set-up Select Samples/sec
(SI, SO)

0,1 869
1.0 780
1.1 706

4.3 SYSTEM COMPATIBILITY

As stated in the system specifications, the AAMP system

is to be as close to the existing 8086 system as possible

with respect to I/O configuration and memory map. This goal

was satisfied with the exception of the location of the ROM

and RAM in the memory space. The 8086 system located ROM at

the top of memory and RAM at the bottom, but due to the fact

that the AAMP requires its Executive Entry Table to be in

locations 0-8 in memory, the ROM and RAM locations were

switched on the AAMP system. This change should cause a

minimal amount of change in Sandia's system and software test

procedures

.

51

5 . CONCLUSIONS

The AAMP based signal processing unit proved to be an

exceptionally easy to design and high performing

microprocessor based system. All system design objectives

were met and in the important category of power consumption

the AAMP based system performed remarkably well. The

nonmultiplexed address and data busses along with the

synchronous or asynchronous bus protocols makes the AAMP easy

to interface into a system and reduces part count. The user,

in arranging system hardware and software, is provided

maximum flexibility by the AAMP.

The only problems encountered in system development

concerned how to minimize system hardware while providing

adequate protection for system resources. This problem was

easy to solve by virtue of the easy interface with todays

modern static RAMs and EPROMs.

The high level language orientation of the AAMP combined

with the hardware implementation of math functions such as

floating point multiply and divide make the AAMP a natural

choice for signal processing implementations and when the

Bulk CMOS version of the AAMP becomes generally available its

use in many high performance applications will establish it

as a major microprocessor to contend with processors such as

the 80286 and 68000.

52

Acknowledgements

This research was sponsored by the Base and Installation

Security Systems Program Office, Electronics Systems Division

of the Air Force Systems Command, Hanscom Air Force Base, MA

01731 through the Engineering Division 5238, Sandia National

Laboratories, Albuquerque, New Mexico.

I would like to give special thanks to Dr. Donald H.

Lenhert for his seemingly infinite patience with me as I

worked my way into the Engineering profession. Thanks are

also extended to Dr. M.S. P. Lucas and Dr. Maarten van Swaay

for serving as committee members and to my wife who thought

this would probably never end but stuck with me nonetheless.

53

References
1
Kenneth L. Albin, "An Evaluation of Rockwell's Advanced

Architecture Microprocessor for Digital Signal Processing
Applications" (MS Thesis, Kansas State University, 1984).

2
Gary S. Mauersberger, "The Design and Hardware

Evaluation of an Advanced 16-bit, Low-power, High-performance
Microcomputing System for Digital Signal Processing"
(MS Thesis, Kansas State University, 1985)

.

3

AAMP Hardware Reference Manual, Rockwell
International , 1984

.

4
AAMP Architecture Reference Manual , Rockwell

International , 1984

.

5
QMOS High-Speed CMOS Logic ICs , RCA, 1983, pg 18.

6
Dave W. Best, "Design of an Advanced Architecture

Microprocessor" (MS Thesis, Iowa State University, 1984),
pp 109-110.

54

Appendix A

CMOS-vs-SOS/CMOS Versions of the
Advanced Architecture Micropressor (AAMP)

55

CMOS-vs-SOS/CMOS Versions of the
Advanced Architecture Microprocessor (AAMP)

The two-micron SOS/CMOS version of the AAMP used in the

implementation of this project is currently being phased out

in favor of a Bulk CMOS version. The Bulk CMOS version is

not pin-for-pin compatible with the SOS/CMOS version. Table

Al lists pinout changes. In addition to the functional

changes, several internal timing changes were also made. The

importance of these changes to this project is the effect

they will have on system implementation with the new

processor. After the pin changes are outlined, any

modifications that would be required to the system

implementation will be discussed.

Table Al

Pin-out Changes to the AAMP

iction Bulk CMOS Function

VDD
GND
SOUT*
L/S*

SCLK*
SIN*
NC
NC

GND

Denotes a pin that is used for device testing only.
Not connected during normal use.

NC Not connected. Do not connect these pins.

Pin Number sos/cmos :

Fl NC
L2 NC
L7 NC
K7 NC
K9 NC

L10 NC
Kll HLD
Hll HB
H10 Eb
A5 NC

*

56

As can be seen in the table, several additional

functions have been added to the AAMP by using pins that were

previously unused. Four test pins have been added, but these

pins are only used for testing the AAMP itself. The

processor hold function (HLD) and the high-byte, low-byte

indicators (HTJ and TB) have been deleted in the new version

of the AAMP. These pins were not used in this implementation

so no changes are necessary. The low-byte indicator has been

changed into an output enable (61) . This input allows the

Bulk CMOS AAMP to bring its address, data and control busses

into a high impedance state making it much easier to

interface the AAMP into multiple master systems. In this

system, the AAMP is the only bus user, so the 51 (LB on

SOS/CMOS AAMP) pin will have to be tied to ground instead of

open as it is in the present implementation. The other pin

changes that will require attention are the addition of

another power pin (VDD pin Fl) and two additional ground pins

(A5 and L2) . These pins are not connected in the present

system so they will have to be tied to the appropriate logic

level

.

Several other changes have been incorporated into the

Bulk CMOS AAMP. A built in 50nS hold time after XRQ goes

"low" for addess, data, E/W, E/U and C/D has been added. In

the present SOS version of the AAMP the hold line (HLD) could

be controlled by external devices to accomplish this same

purpose. Transfer acknowledge synchronization has also been

changed. Synchronization will be to the 20 MHz clock for the

57

new version instead of the 10 MHz clock in the SOS/CMOS

version. These changes will act to reduce bus transfer cycle

times. Although this system was originally designed to

operate with the Bulk CMOS AAMP it is readily evident from

the above discussion and the EPROM bus timing diagram of

Figure 12 that the 150nS EPROMs used in this implementation

would not be fast enough. A switch to 120nS or faster EPROMs

would be needed to use the Bulk CMOS AAMP with a set-up

select (0,1)

.

To make the Bulk CMOS AAMP easier to interface into

larger systems the fanout of each output pin has been

increased. As of this writing the exact fanout has not been

determined. Both the SOS and Bulk CMOS versions of the AAMP

are TTL compatible.

Overall, very few changes in system implementation will

be necessary to adapt the system to the new Bulk CMOS version

of the AAMP. Except for a slightly increased power

consumption in the new version, the changes can be seen as

improvements to the existing chip design and in many systems

will make implementation much easier.

58

Appendix B

Parts List and Board Layout

59

AAMP Signal Processing Unit
Parts List

Description

lOuF 25V Tantalum capacitor
1M ohm 5% 1/4W carbon resistor
47K ohm 5% 1/4W carbon resistor
22K ohm 5% 1/4W carbon resistor
3.3K ohm 5% 1/4W carbon resistor
RE-AL-INC Quad SPST dip switch
CTS Octal SPST dip switch
ALCO SPST momentary push switch
Advanced Architecture uP
8K by 8-bit Static RAM
8K by 8-bit Static RAM
8K by 8-bit EPROM
8K by 8-bit EPROM
Quad two-input AND gate
Hex inverter
Octal transparent latch
3-to-8 line decoder
Quad two-input OR gate
Quad two-input OR gate
3-to-8 line decoder
Dual J-K Flip-Flop with Reset
Quad 3-state Noninverting buffer
20MHz crystal
20-pin wire wrap edge connector
0.01 uF despiking caracitor
Banana Jacks
4.5"X6" perf board

between Vcc (5V) and ground.

All I.C.'s installed in wire wrap sockets not
incorporated into parts list.

Reference Part Number

CI UNKNOWN
Rl UNKNOWN

R2-R9 UNKNOWN
R10-R11 UNKNOWN

R12 UNKNOWN
SW1 UNKNOWN
SW2 206-8-730
SW3 AP1C24
Ul AAMP
U2 HM6264LP-10
U3 HM6264LP-10
U4 HM27C64G-15
U5 HM27C64G-15
U6 MC74HC08N
U7 SN74HC04N
U8 MC74HC373N
U9 MC74HC138N
U10 MC74HC32N
Ull MC74HC32N
U12 MC74HC138N
U13 MC74HC73N
U14 MC74HC125N
XTL 07XTL20.00HH
PI 52-1120-50

(14 parts) A5C103K
(2 parts) UNKNOWN
(1 part)

Notes: Desr>iking capacito

60

Figure Bl

AAMP Signal Processing Unit
Board Layout

[10
I IR11

E
SWl

©5V

U1

U9

& U12

XTL

6ND n
20 D=

SW3

U2

U4

U7

U13

U14

P1

R2

R9 ' '

U6

U8

V V

SV2
d~od n
D DDD

U3

U5

U10

U11

61

Appendix C

"Stripped Down" AAMP
Signal Processing Unit

62

"Stripped Down" AAMP Signal Processing Unit

The "stripped down" AAMP Signal Processing Unit is the

result of Sandia wanting an AAMP based system with a minimum

of "bells" and "whistles". Basic system requirements are the

same as for the larger system but the I/O requirements were

greatly reduced. The over-riding goal of this project was to

design a system with absolute minimum power requirements and

board space. To this end, the only system requirements were

that the system still process two channels of data, at 128

samples/sec and provide an alarm output for each channel.

Memory space could be minimized and the system clock speed

could be reduced to the minimum consistent with system

requirements.

The system schematic appears in Figure CI. As the

schematic shows, the reduction of required I/O greatly

reduces the amount of hardware needed to make the system

work. Only one "glue" chip is needed to interface the AAMP

to the system memory. The memory interfacing scheme is the

same one used in the larger system, but the choice of smaller

memory devices (2KX8 bits static RAM and 4KX8 bits ROM)

requires only one decoder output to utilize the full memory

space. The two latches shown are actually on the ADC board

and are enabled directly by the system decoder allowing ADC

data onto the AAMP's data bus. The alarm outputs are

implemented the same as before with the only difference being

their location in the memory map, see Table CI. To reduce

part count further, the set-up select inputs were hard-wired

63

ooodooo

5 s

^ffffffi

5?

mm
*i

s >

E O o a 1 D o i

= ?

^^^Mi^iiiMiiiiigBaaa^B

HOP

Sim
Hi-

^
sA

itiMJ

iH' 1

c
D
tP
c
•H
in

tn

0)

u
o
u

10

c

•H
w

s
c

a
TS
0)

ft
a
u

w

u

u

-H
Cm

64

to SI, SO = 0,0 and the manual reset was removed.

Table CI

"Stripped Down" AAMP System Memory Map

Address (Hex) Purpose

0000-07FF ROM
1000-1FFF ADC
2000-2FFF ADC
3000-4FFF UNUSED
5000-5FFF ALARM1
6000-6FFF ALARM2
7000-7FFF RAM
8000-FFFF UNUSED

Comments

Executive Program Memory
Channel 1 latch enable
Channel 2 latch enable

Channel l's alarm output
Channel 2's alarm output
Variable and Data storage

PERFORMANCE

Due to time constraints this system was never actually

tested. To determine the lower limit on operating frequency

various crystals were tried on the large system and a 4MHz

operating frequency was found to be about as slow as the

system could run and still be able to sample two channels of

data at 128 samples/sec. To estimate power requirements, the

large system was run at this lower speed (4MHz) and

unnecessary chips were removed. The savings in power

afforded by smaller, slower ROMs and RAMs was estimated and

the resulting power estimate was 80-100mW.

CONCLUSION

The "Stripped Down" AAMP Signal Processing Unit looks as

if it fulfills all of its design goals. The basic operation

has been throughly tested with the larger system and there

seems to be room for improvement in the already low power

consumption figure by switching to even smaller memories,

such as 2KX8-bit ROMs. This system, with only nine IC's,

65

could probably be put on the ADC board thus saving a great

deal of expense while making the system smaller and more

reliable.

66

Appendix D

Widrow Adaptive Linear Predictive Algorithm
Listing

67

Widrow Adaptive Linear Predictor Algorithm Listing

This appendix contains the object code listing for the

Standard Fixed-Point Widrow Adaptive Linear Predictor

Algorithm. The program resides in Executive space and the

reader is referred to the Executive Entry Table (Table 6) for

processor set-up. For a better understanding of the Widrow

Algorithm the reader is -referred to the work done by Mr.

Albin and Mr. Mausersberger. The comment section of the

listing outlines the algorithm as given by Mr. Mauersbeger in

his thesis.

Address Contents Opcode Instruction Comments

1020 0036 0036 Procedure header
1021 4410 10 LIT4A.0

44 ASNSL.4 q =
1022 5C11 11 LIT4A.1

355C ASNSLE k = 1

1023 1E35 351E REFSLE get k
1024 1835 1018 LIT8
1025 EC10 EC GR is k > 16?
1026 1D5B 1D5B SKIPNZ X jump to $1035 if true
1027 1E10 10

351E
LIT4A.0
REFSLE

1028 1435 14 LIT4A.4
1029 A653 53 LOCL

A6 ASNSX b-array(k) =
102A 1E10 10

351E
LIT4A.0
REFSLE

102B 1835 1418 LIT8
102C 5314 53 LOCL
102D 10A6 A6

10
ASNSX
LIT4A.0

f-array (k) =

102E 351E 351E REFSLE
102F 2418 2418 LIT8
1030 A653 53 LOCL

A6 ASNSX e-array(k)
1031 351E 351E REFSLE get k
1032 E411 11 LIT4A.1

E4 ADD -

1033 355C 355C ASNSLE k «= k + 1

1034 2319 2319 LIT8N
1035 1C59 59 SKIP jump to $1023

68

1036 6000 60001C REFSI get DAC data at $6000
1037 1041 41 ASNSL.l f - DAC data

DO REFSX get b-array(k)
1041 1835 351E REFSLE
1042 5314 1418

53
LIT8
LOCL

1043 F9D0 DO
F9

REFSX
MPY

get f-array(k)

1044 42E4 E4 ADD
42 ASNSL.2 g - g + b-array(k) *

f-array(k)
1045 351E 351E REFSLE get k
1046 E411 11

E4
LIT4A.1
ADD

1047 355C 35D0 REFSX get b-array(k)
1041 1835 351E REFSLE
1042 5314 1418

53
LIT8
LOCL

1043 F9D0 DO
F9

REFSX
MPY

get f-array (k)

1044 42E4 E4 ADD
42 ASNSL.2 g - g + b-array(k) *

f-array (k)

1045 351E 351E REFSLE get k
1046 E411 11

E4
LIT4A.1
ADD

1047 355C 355C ASNSLE k = k + 1
1048 1E19 1E19 LIT8N
1049 0159 59 SKIP jump to $103F

01 REFSL.l get f
104A E502 02

E5
REFSL.2
SUB

get g

104B 1143 43
11

ASNSL.3
LIT4A.1

e = f - g

104C 355C 355C ASNSLE k = l

104D 351E 351E REFSLE get k
104E 1018 1018 LIT8
104F 5BEC EC GR is k > 16?
1050 1A24 245B SKIPNZ I jump t $1067 if true
1051 7C00 7C001A LIT16 u = 0.98675
1052 351E 351E REFSLE
1053 5314 14

53
LIT4A.4
LOCL

1054 F9D0 DO
F9

REFSX
MPY

get b-array(k)

1055 001A 04001A LIT16 v = 0.03125
1056 0304 03 REFSL.3 get e
1057 1EF9 F9 MPY
1058 1835 351E REFSLE
1059 5314 1418

53
LIT8
LOCL

105A F9D0 DO
F9

REFSX
MPY

get f-array(k)

105B 1EE4 E4 ADD

69

105C 1435 351E
14

REFSLE
LIT4A.4

105D A653 53 LOCL
A6 ASNSX b-array(k) » u *

b-array(k) + v *

e * f-array(k)
105E 351E 351E REFSLE get k
105F E411 11

E4
LIT4A.1
ADD

1060 355C 355C ASNSLE k = k + 1

1061 2A19 2A19 LIT8N
1062 0359 59 SKIP jump to $1052

03 REFSL.3 get e
1063 B814 14

B8
LIT4A.4
ARS

1064 436A 6A DUP
43 ASNSL.3 • - e / 16

1065 1E04 04 REFSL.4 get g
1066 E534 341E

E5
REFSLE
SUB

get e-array(16)

1067 44E4 E4 ADD
44 ASNSL.4 q m g - e-array(16) + e

1068 0404 04 REFSL.4 get g
04 REFSL.4 get g

1069 54F9 F9 MPY q * q
106A 5001 500154 ASNSI output result, for test

only
106B 2F20 20

2F

LIT4B.0

LIT4B.F

dummy statement, no
effect

106C 355C 355C ASNSLE k = 15
106D 351E 351E REFSLE get k
106E EB10 10 LIT4A.0

EB EQ is k = 0?
106F 215B 215B SKIPNZ I jump to $1089 if true
1070 351E 351E REFSLE
1071 2418 2418 LIT8
1072 D053 53 LOCL

DO REFSX get e-array(k)
1073 351E 351E REFSLE
1074 2518 2518 LIT8
1075 A653 53 LOCL

A6 ASNSX e-array(k + 1) =

e-array(k)
1076 351E 351E REFSLE
1077 1418 1418 LIT8
1078 D053 53 LOCL

DO REFSX get f-array (k)
1079 351E 351E REFSLE
107A 1518 1518 LIT8
107B A653 53 LOCL

A6 ASNSX f-array(k + 1) =
f-array(k)

107C 351E 351E REFSLE get k

70

107D E511

107E 355C
107F 2619
1080 0359

1081 255C
1082 5C01
1083 1915

1084 599E
1085 3618
1086 005F

11 LIT4A.1
E5 SUB

355C ASNSLE k «= k - 1
2619 LIT8N

59 SKIP jump to $1076
03 REFSL.3 get e

255C ASNSLE e-array(l) « e
01 REFSL.l get f

155C ASNSLE f-array(l) « f
9E19 LIT8N

59 SKIP jump to $1035
3618 LIT8

5F RETURN procedure end

Local Variable Memory Map

Local Environment Offset Variable

1 f
2 g
3 e
4 q
5 - 14 b-array
15 - 24 f-array
25 - 34 e-array
35 k

71

THE DESIGN AND IMPLEMENTATION OF A 16-BIT,
LOW-POWER, HIGH-PERFORMANCE, MICROPROCESSOR BASED

DIGITAL SIGNAL PROCESSING UNIT

by

Michael D. Gaches

B. S., Kansas State University, 1984

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY
Manhattan , Kansas

1987

This thesis is a design and implementation of a low-

power, high-performance microprocessor based system for

signal processing applications using Rockwell International's

Advanced Architecture Microprocessor (AAMP) . This work is

part of an ongoing program by the Electrical and Computer

Engineering Department at Kansas State University to evaluate

low-power, high-performance microprocessors.

The AAMP is a 16-bit, CMOS processor which operates from

a 20MHz clock. The instruction set and architecture are well

suited for the use of high level languages. Features include

double precision, floating-point arithmetic, hardware

multiply and divide and extensive support for procedure

handling, context switching and task management.

This thesis covers the AAMP's operating characteristics,

the development of the microprocessor system and the

evaluation of the system's performance in relation to a set

of system specifications intended to yield a system with

extremely low power consumption (suitable for battery

operation) , high system throughput and minimal real estate

and part count. Standard signal processing algorithms

previously evaluated on the AAMP will be used to measure

system throughput and power consumption will be monitored at

various processing speeds. A system that has reduced input,

output and memory requirements will then be designed in the

hope of creating a system that is even smaller and lower in

power consumption but still retains the specified system

throughput.

