
A DAG-BASED ALGORITHM FOR
DISTRIBUTED MUTUAL EXCLUSION

by

Mitchell L. Neilsen

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

Approved by:

Major Professor

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State Research Exchange

https://core.ac.uk/display/33361752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 HISTORY 3

2.1 Lamport's Algorithm 3

2.2 Ricart and Agrawala's Algorithm 5

2.3 Carvalho and Roucairol's Algorithm 5

2.4 Suzuki and Kasami's Algorithm 6

2.5 Singhal's Algorithm 7

2.6 Maekawa's Algorithm 8

2.7 Raymond's Algorithm 10

CHAPTER 3 OVERVIEW 13

3.1 Message Types 14

3.2 Variable Types 14

3.3 Example 16

CHAPTER 4 ALGORITHM 19

4.1 Algorithm 19

4.2 Complete Example 22

CHAPTERS PROOFS 27

5.1 Mutual Exclusion 27

5.2 Deadlock and Starvation Freedom 27

CHAPTER 6 PERFORMANCE ANALYSIS 34

6.1 Upper Bound 35

6.2 Average Bound 35

6.3 Synchronization Delay 35

6.4 Storage Overhead 37

CHAPTER 7 CONCLUSION 38

BIBLIOGRAPHY qq

ii



LIST OF FIGURES

Figure 1. Directed Acyclic Graph Structure 13

Figure 2. Example 17

Figure 3. Algorithm 20

Figure 4. State Transition Graph for Node I 21

Figure 5. Initialization Procedure 22

Figure 6. Complete Example 24

Figure 7. Case (1), (2), and (2c) in Lemma 2 30

Figure 8. Centrahzed Topology 34

iii



ACKNOWLEDGEMENTS

I am deeply grateful for having the opportunity to engage in research with

my Major Professor, Dr. Masaaki Mizuno. I was inspired by his willingness and

patience to work through every detail in our research. Working together, we were

able to produce some very nice research results.

I also want to thank my wife, Rebecca, and daughters, Anne and Beth, for

their patience and support during the development of this thesis.

iv



Chapter 1

INTRODUCTION

Many distributed mutual exclusion algorithms have been proposed [1, 2, 3, 4, 5,

6, 7, 8, 9]. These algorithms can be classified into two groups [8]. The algorithms

in the first group are token based [4, 5, 8, 9]. The possession of a system-wide

unique token gives a node the right to enter its critical section. The algorithms

in the second group are assertion based [1, 2, 3, 6, 7]. At any given time, the

assertion can only be true at one node; a node enters its critical section only after

the assertion becomes true.

This paper presents a token based algorithm which further improves on other

algorithms. The algorithm assumes a fully connected physical network and a

directed acyclic graph (dag) structured logical network. Using the best logical

topology, the maximum number of messages required is three. This is the same

performance exhibited by centralized schemes. Furthermore, the synchronization

delay is minimal, i.e., one message. A node or a token does not need to maintain

a queue of outstanding requests for mutual exclusion. Instead, the queue is main-

tained implicitly in a distributed manner and may be deduced by observing the

states of the nodes. Our algorithm requires very simple data structures; each node

maintains a few simple variables, and the token carries no data structure. This



is significantly less overhead compared with other distributed mutual exclusion

algorithms, where they maintain a queue or an array structure, either in every

node or within the token.

The history of distributed mutual exclusion algorithms and the quest for op-

timization in those algorithms is presented in Chapter 2. An informal description

of the algorithm is presented in Chapter 3. The detailed algorithm is presented in

Chapter 4, followed by a more complete example. Chapter 5 presents the proofs

of the correctness with respect to guaranteed mutual exclusion, deadlock freedom

and starvation freedom. Chapter 6 analyzes the performance of the algorithm.



Chapter 2

HISTORY

We assume that the system consists of A'^ nodes, which are uniquely numbered

from 1 to A'^. At any given time, each node can have at most one outstanding

request to enter its critical section. Physically, the nodes are fully connected by

a reliable network. Messages sent by the same node are not allowed to overtake

each other while in transit. •

2.1 Lamport's Algorithm

Lamport proposed one of the first distributed mutual exclusion algorithms [2].

The algorithm has two major components: the total ordering of messages and the

distribution of a queue over all nodes.

The total ordering is done by using logical clocks to generate sequence numbers

at each node. Between any two requests, the logical clock increments a node's

sequence number. All messages sent from node I are of the form {msg, c/, 7),

where msg is the message and c/ is the sequence number generated at node I.

On receipt of a message, a node increments its own sequence number to be larger

than the sequence number in the message. Hence, the receipt of a message always

(logically) comes after when it was sent. Two messages with the same sequence

3



number are ordered based on the unique integer values assigned to each node. A

total ordering is defined on messages by saying {msg, c/, 7) comes before (msg,

cj, J) if c/ < cj or (c/ = cj and / < J).

To distribute the queue, each node maintains a copy of the queue. The queue

generally holds the latest message received from each node. Messages are totally

ordered in the queue by sequence number as described above.

In the algorithm, there are three different types of messages: REQUEST, AC-

KNOWLEDGE, and RELEASE. When a node wants to enter its critical section,

it sends a REQUEST message to all other nodes and inserts the request in its

own queue. Upon receipt of a REQUEST message, a node inserts the request in

its queue and sends an ACKNOWLEDGE message back to the node originating

the request. A node can enter its critical section when its request has the lowest

sequence number (highest priority) of any request in its queue and has received

messages, with higher sequence numbers, from all other nodes (this is the assertion

of the algorithm). When a node leaves its critical section, it sends a RELEASE

message to all other nodes. Upon receipt of a RELEASE message, a node replaces

the corresponding request from its queue with the RELEASE message. W^hen a

node receives an ACKNOWLEDGE message, the message is put in its queue only

if a REQUEST message from the node sending the message is not already in its

queue. Hence, a node does not have to send an ACKNOWLEDGE message if it

has sent a REQUEST message and has not received the corresponding RELEASE

message because the ACKNOWLEDGE message will be discarded. Since (iV - 1)

REQUEST messages, at most {N - 1) ACKNOWLEDGE messages, and (A^ - 1)

RELEASE messages are required, per critical section entry, a total of at most

3 * (A^ — 1) messages are required.

4



2.2 Ricart and Agrawala's Algorithm

By combining the ACKNOWLEDGE and RELEASE messages into a single RE-

PLY message, Ricart and Agrawala reduced the number of messages required per

critical section entry [6]. If a node wants to enter its critical section, it generates a

sequence number and sends a REQUEST message (including the sequence num-

ber) to all other nodes. Upon receipt of a REQUEST message, a determination

is made immediately to determine whether to send or defer a REPLY message.

If the node receiving the request wants to enter its critical section and has al-

ready requested with a lower sequence number (higher priority), then the REPLY

message is deferred until the node receiving the request leaves its critical section.

Otherwise, a REPLY message is sent back to the node originating the request

immediately. When a node has received a REPLY message back from all other

nodes, it may enter its critical section. Upon leaving its critical section, a node

sends a REPLY message to all nodes which it has deferred. Since (A^ - 1) RE-

QUEST messages and (A^ - 1) REPLY messages are required, per critical section

entry, a total of 2 * (A' - 1) messages are required.

2.3 Carvalho and Roucairol's Algorithm

By using a different definition of symmetry, Carvalho and Roucairol were able to

reduce the number of messages to be between and 2 * (A" - 1) [1]. Ricart and

Agrawala's definition of symmetry requires that any node wanting to enter its

critical section must inform every other node of its intention. However, a node,

which has received a REPLY message back from all other nodes, may enter its

critical section repeatedly until it receives a REQUEST message from another

node. Also, a node, wanting to enter its critical section again, needs to send

5



REQUEST messages only to the nodes from which it has received a request.

In this way, the number of messages required per critical section entry may be

reduced. The upper and lower bounds on the number of messages required may

be obtained.

2.4 Suzuki and Kasami's Algorithm

In response to Carvalho and Roucairol's algorithm, Ricart and Agrawala proposed

a token based algorithm [5] which is essentially the same as Suzuki and Kasami's

approach [9]. In particular, we present Ricart and Agrawala's approach. Initially,

one node holds an exphcit token. When a node wants to enter its critical section,

it checks to see if it is holding the token. If it is holding the token, it may

enter its critical section immediately. Otherwise, a REQUEST message (with a

sequence number) is sent to all other nodes. Each node maintains a queue of

outstanding requests. Upon receipt of a REQUEST message, a node puts the

request in its queue sorted by sequence number. When the node holding the

token no longer wants to use the token, it looks for the request with the smallest

sequence number in its queue and sends a PRIVILEGE message to pass the token.

Every time a request is satisfied, the sequence number is recorded on the token.

This makes it easy to determine if a request has been satisfied yet. A request

which has not yet been satisfied must have a sequence number larger than the one

recorded on the token. If a node is not holding the token, the algorithm requires

(A^ - 1) REQUEST messages and one PRIVILEGE message. Hence, either or

A^ messages are required per critical section entry.

6



2.5 Singhal's Algorithm

Based on Suzuki and Kasami's algorithm, Singhal proposed a heuristically-aided

algorithm that uses state information to more accurately guess the location of

the token [8]. Each node maintains state information on all other nodes. When a

node wants to enter its critical section, it uses a heuristic to guess which nodes are

probably holding the token, based on its state information. Then, a REQUEST

message is sent only to those nodes. A node can be in one of four different states:

(R) A node is requesting to enter its critical section.

(E) A node is executing in its critical section.
; _

(H) A node is holding the token and not requesting.

(N) A node is not requesting and not holding the token.

Each node maintains state vectors to store information about the state of each

node. In particular, information on the latest known state and highest known

sequence number is maintained. The REQUEST and PRIVILEGE messages used

for mutual exclusion are also used to pass state information.

Several possible heuristics exist. The one used in Singhal's algorithm is to send

REQUEST messages to all nodes in state (R); i.e. nodes which have recently sent

a request for the token.

As demand for critical section entry increases, the number of messages re-

quired, per critical section entry, approaches N. Hence the upper bound is the

same as the number of messages required in Suzuki and Kasami's algorithm.

7



2.6 Maekawa's Algorithm

Maekawa proposed another assertion based algorithm in which the number of

messages required is approximately c * \/N, where c is between 3 and 7 [3]^

The basic idea behind Maekawa's algorithm is that it is not necessary to obtain

permission from every other node. For each node /, it is necessary to predefine

a committee which includes node /, say 5/. Any two committees must have a

nonempty intersection; i.e. a node in common. If a node receives permission

to enter its critical section from all of its members, no other node may receive

permission from all of its committee members. The problem of finding a set of

committees is equivalent to finding a finite projective plane. If each committee

has K members, then K is minimized when the number of nodes N is given by

iV = A' * {K - 1) + 1. Hence, K « VN.

Every node maintains a queue of outstanding requests. When a node wants to

enter its critical section, it sends a REQUEST message (with a sequence number)

to every node in its committee and pretends to have received the REQUEST

message itself.

Upon receipt of the REQUEST message, the receiving node puts the request on

its queue, ordered by sequence number. A node returns a LOCKED message to the

requesting node and marks itself as locked, if it is not locked for another request.

The LOCKED message corresponds the REPLY message in Ricart and Agrawala's

algorithm. If the node is locked for another request (has sent a LOCKED message)

and the sequence number of the request currently locked is smaller, then a FAIL

^In [3], Maekawa claimed that c is between 3 and 5. However, in [7], Sanders pointed out that
the algorithm may deadlock and that not all the required messages were counted. As suggested
in [7], the algorithm can easily be modified to be deadlock free, and with this modification c is
between 3 and 7.

'

8



message is returned to the requesting node. Otherwise, an INQUIRE message

is sent to the node originating the current locked request. In a modification

suggested by Sanders in [7] to prevent deadlock, a FAIL message is sent to any

node with a request in its queue with a larger sequence number, if one has not

already been sent.

Once a node receives a LOCKED message from each node in its committee,

it may enter its critical section. When a node leaves its critical section, it sends

a RELEASE message to each committee member. When a node receives a RE-

LEASE message, it removes the current locking request and locks itself for the

request with the lowest sequence number (highest priority) in its queue. If its

queue is empty, the node becomes unlocked.

If a node receives an INQUIRE message and will not be able to enter its

critical section, it sends a RELINQUISH message back to the inquiring node.

A node will not be able to enter its critical section if it has received a FAIL

message or has already sent a RELINQUISH message and has not received a new

LOCKED message. If a node can't immediately determine if it will be able to

enter its critical section (i.e, has only received some LOCKED messages), it simply

defers its response to the inquiring node until it can decide. When a RELINQUISH

message is received, the node marks itself as unlocked and the relinquished request

is returned to the request queue. The node proceeds as if a RELEASE message

had been received.

In the best case, approximately 3 * \/N messages are required per critical

section entry. Three sets of messages are sent: REQUEST, LOCKED, and RE-

LEASE.

In the worst case, seven sets of messages are exchanged: REQUEST, LOCKED

9



(this will be relinquished later), INQUIRE, RELINQUISH, FAIL, LOCKED, and

RELEASE. Thus, approximately 7*\/]V messages are required per critical section

entry.

2.7 Raymond's Algorithm

Recently, Raymond proposed a token based approach which assumes that the

network topology is an unrooted tree structure [4]. The number of messages

required by the algorithm depends on the topology of the tree. For the radiating

star topology, the number of messages is between four and 0{logNy. When a

node wants to enter its critical section and is not holding the token, it sends a

REQUEST message to the neighboring node on the path, in the logical structure,

to the node holding the token. The neighboring node forwards the request on the

path to the node holding the token. When the node holding the token leaves its

critical section, it sends the token back on the same path from which the request

came. As the token travels, each node forwarding the token sets its NEXT

variable to point to the neighboring node on the path to the token. Hence, the

directed tree structure is maintained and the NEXT variables always indicate

the direction in which the token is located.

Two types of messages are used: REQUEST and PRIVILEGE. Each node

maintains several variables:

• NEXT indicates the relative location of the token.

• USING indicates if a node is in its critical section.

• ASKED indicates if a REQUEST message has already been sent.

^This is, however, not the optimal topology, as we will show.

10



When a node wants to enter its critical section, it puts itself on its own queue

and checks to see if it is holding the token. If it is holding the token, it can enter its

critical section. Otherwise, it must send a REQUEST message to the neighboring

node indicated by its NEXT variable.

Upon receipt of a REQUEST message from a neighboring node X, the neigh-

boring node's request is put on the local request queue. If the node is holding the

token and node X's request is at the top of the queue, a PRIVILEGE message is

sent to node X to pass the token. Otherwise, a REQUEST message is forwarded

onto the node indicated by the NEXT variable. Since a single node may receive

several requests, the ASKED variable is used to ensure that only one outstand-

ing REQUEST message is forwarded on behalf of the request at the top of the

request queue. This reduces the number of messages required. Note, the only

time NEXT = self is when a node is holding the token.

If a node receives a PRIVILEGE message, it sets its NEXT variable to point

to itself and does the following. If the node's request is at the top of the request

queue, the request is dequeued and the node sets USING to true and enters

its critical section. When a node leaves its critical section, it sets USING to

false. Then, if the request queue is nonempty, the node holding the token sends a

PRIVILEGE message to the node in the request at the top of its queue, dequeues

the request, sets its NEXT variable to point to the neighboring node making the

request, and sets its ASKED variable to false.

Note, this is the first algorithm discussed which does not use sequence numbers

to order requests. Requests are ordered based on the order in which they are

received at an adjacent node.

The number of messages required, per critical section entry, is between and

11



2 * D, where D is the diameter of the logical structure. The upper bound is

attained when the node originating the request and the node holding the token

are at opposite ends of the longest path in the logical structure. In this case,

D REQUEST messages and D PRIVILEGE messages are required. The syn-

chronization delay (the number of sequential messages required between one node

leaving its critical section and another (waiting) node entering its critical section)

is at most D.

12



Chapter 3

OVERVIEW

Physically, these nodes are fully connected by a rehable network. Logically, they

are arranged in a dag structure with only one sink node^. The degree of each node

is at most one. We further impose that the structure of the graph is acyclic even

without considering the directions of the edges. An example is shown in Figure 1.

Figure 1. Directed Acyclic Graph Structure

^This assertion is temporarily violated when REQUEST messages (introduced below) are in
transition, as explained later in this section.

I

13

1



3.1 Message Types

Two types of messages, REQUEST and PRIVILEGE, are passed between nodes.

When a node requests to enter its critical section, it initiates a REQUEST mes-

sage. A PRIVILEGE message represents the token; when a node receives a PRIV-

ILEGE message, it can enter its critical section.

3.2 Variable Types

Each node maintains three simple variables: a boolean variable HOLDING and

integer variables NEXT and FOLLOW. A logical dag structure indicates the

path along which a REQUEST message travels and is imposed by the NEXT

variables in the nodes. When a node initiates or receives a REQUEST message,

the node forwards it to the neighboring node pointed at by its NEXT variable

(unless the node is a sink, in which case its NEXT variable is 0; this case will be

explained below).

The FOLLOW variable indicates the node which will be granted mutual exclu-

sion after this node. When a node exits its critical section, it sends a PRIVILEGE

message to the node indicated by its FOLLOW variable and clears the variable,

unless its FOLLOW variable is 0. If its FOLLOW variable is 0, the node contin-

ues to hold the token. This case is explained below. By following the FOLLOW

variables in the system, the implicit waiting queue of the system can be deduced.

Semantically, a sink node in the system is (1) the last node in the implicit

waiting queue (i.e., its FOLLOW variable is 0), and (2) the last node in the path

along which a request travels (i.e., its NEXT variable is 0). When a sink node

receives a REQUEST message, it enqueues the request into the imphcit waiting

queue and becomes a non-sink. The node initiating the request becomes the new

14



sink since it is now the last node in the queue. The path must be changed in the

direction of the new sink. This procedure is done by the cooperation of the nodes

along the path in a distributed manner as follows:

• When a node initiates a new REQUEST message, it forwards the message to

its neighboring node indicated by its NEXT variable and sets its NEXT

variable to to become a new sink. It remains a sink until it receives a

subsequent request.

• When an intermediate (non-sink) node receives a REQUEST message from

a node X, it passes the message to the neighboring node indicated by its

NEXT variable. The node then sets its NEXT variable to X. Thus, if it

receives another request later, it forwards the request in the direction of the

new sink.

• When a sink node receives a REQUEST message from a node X, it sets

its FOLLOW variable to the identifier of the node initiating the request.

This corresponds to an enqueue operation. The node also sets its NEXT

variable to X to enter the path in the direction of the new sink. Note that

if a sink node holds the token but is not in its critical section (this state is

indicated by a boolean variable HOLDING) when it receives a request, it

immediately forwards the token to the node initiating the request.

Because of message delay, there may be more than one sink node in the system

while some requests are in transit. Assume that node X and node Y initiate

requests at about the same time. There may be at most three sink nodes while

the requests are in transit: node X, node Y and the current sink node. The current

sink becomes a non-sink when it receives one of the requests (assume it receives

15



a request from node X). Node X becomes a non-sink when it receives the request

from node Y ^. Eventually, node Y becomes the only sink node in the system.

The system is initialized so that one node possesses the token^, and in all

others, the NEXT variable is set to point to the neighbor which is on the path

to the node holding the token. A simple procedure for initializing the system is

shown later in Figure 5.

3.3 Example

Consider the example given in Figure 2. Node 5 holds the token initially. Let the

directed edges indicate the direction in which the NEXT variables are pointing.

The initial configuration is shown in Figure 2a. Suppose node 5 wants to enter its

critical section. Since the node holds the token, it can enter immediately. Now,

suppose node 3 wants to enter its critical section. It sends a REQUEST message

to node 4 and sets its NEXT variable to to become a new sink (refer to Figure

2b). Node 4 receives the request and sets its NEXT variable to point to node

3 and forwards the REQUEST message to node 5, on behalf of node 3 (refer to

Figure 2c). Node 5 receives the REQUEST message. Since node 5 is a sink node,

it sets its FOLLOW variable to point to node 3 and sets its NEXT variable to

point to node 4 to become a non-sink. When node 5 leaves its critical section, it

sends a PRIVILEGE message to the node indicated by its FOLLOW variable,

i.e., node 3 (refer to Figure 2d). Finally, node 3 receives the PRIVILEGE message

and enters its critical section (refer to Figure 2e).

^It is proved in section 4 that node X is guaranteed to receives a request from node Y if the
current sink receives a request from node X and there is no other requesting node in the system.

^This is the sink node, and its NEXT variable points to 0.

16



Figure 2a. Node 5 is holding the token.

Node 5 enters its critical section.

Figure 2b. Node 3 wants to enter its critical section.

Node 3 sends a REQUEST message to

node 4 and sets NEXT_3 = 0.

Figure 2c. Node 4 receives the request from node 3,

forwards a REQUEST message to node 5,

and sets NEXT_4 =3.

Figure 2d. Node 5 receives the request from node 4,

sets F0LL0W_5 = 3, and NEXT_5 = 4.

When node 5 leaves its crititcal section,

it sends a PRIVILEGE message to node 3.

Figure 2e. Node 3 receives the PRIVILEGE message

and enters its critical section.

Note: The shaded regions indicate the token holder.

Figure 2. Simple Example

17



Our algorithm is not fully distributed as defined by Ricart and Agrawala [6].

Instead, the algorithm, as in [3] and [4], is based on a surrogate mechanism, in

which a node asks other nodes to act on its behalf. Also, as in other token based

algorithms, it is not symmetric since a node is allowed to hold the token while not

actually using the resource. These issues are, however, a matter of definitions as

stated in [9]. Because of these characteristics, the number of messages required

per critical section entry is reduced significantly in our algorithm.

18



Chapter 4

ALGORITHM

4.1 Algorithm

The complete algorithm is shown in Figure 3. The diagram in Figure 4 shows

the state transition graph of each node. The initiaUzation procedure is shown in

Figure 5. There are two procedures at each node: PI and P2. PI is responsible

for making requests for entry into the critical section, and P2 is responsible for

processing request messages received from other nodes.

We assume that the REQUEST message is of the form REQUEST(X, F),

where X denotes the adjacent node from which the request came and Y denotes

the node where the request originated. Each node executes procedures PI and

P2 in local mutual exclusion. The only exception is that a node does not have to

execute in mutual exclusion while waiting for a PRIVILEGE message to arrive or

while in its critical section.

19



const

I = node identifier

var

HOLDING : boolean;

NEXT, FOLLOW : integer;

procedure PI; (* node I wants to enter its critical section *)

begin

if (not HOLDING) then
begin

send REQUEST(I,I) to NEXT;
NEXT := 0;

wait until PRIVILEGE message is received;

end;

HOLDING := false;

critical section

if (FOLLOW ^ 0) then
begin

send PRIVILEGE message to FOLLOW;
FOLLOW := 0;

end;

else HOLDING := true;

end;

procedure P2; (* node I received REQUEST(X,Y) from X *)

begin

if (NEXT = 0) then (* node I is a sink*)

begin

if HOLDING then

begin

send PRIVILEGE message to Y;

HOLDING := false;

end;

else FOLLOW := Y;

end;

else send REQUEST(I,Y) to NEXT;
NEXT := X;

end;

Figure 3. Algorithm

20



Note: The shaded regions Indicate a sink, state (NEXT_I = 0).

STATES:

N Node I is not requesting and not holding the token.

R Node I is requesting the token, but has not

received a subsequent request for the token.

R F Node I is requesting the token, and has received

a subsequent request for the token.

E Node I is executing in its critical section and has

not received a subsequent request for the token.

E F Node I is executing in its critical section and has

received a subsequent request for the token.

H Node I is holding the token and has received

no requests for the token.

TRANSITIONS:

1 Node I sends a REQUEST(I,I ) message to NEXT_I

.

Node I sets NEXT_I = 0.

2 Node I receives a REOUEST(X,Y) message from node X.

Node I sets NEXT_I = X and FOLLOW_I = Y.

3 Node I receives a REQUEST(X,Y) message from node X.

Node I sends a REQUEST(I,Y) message to NEXT_I,

and sets NEXT_I = X.

4 Node I receives a PRIVILEGE message.

Node I can enter its critical section.

5 Node I leaves its critical section. Node I sets HOLDING = true.

6 Node I enters its critical section. Node I sets HOLDING = false.

7 Node I leaves its critical section. Node I sends a PRIVILEGE

message to FOLLOW_I, and sets FOLLOW_I = 0.

6 Node I receives a REOUEST(X,Y) message.

Node I sets NEXT_I = X, HOLDING = false, and sends a

^^^^RIVILEG^nessag^o nod^^^^^^^^^^^^^^^^^_

Figure 4. State Transition Graph for Node I

21



procedure INIT; (* node I wants to initialize *)

begin

if (holding the token) then

begin

HOLDING := true;

NEXT := 0; (* the node is a sink *)

FOLLOW := 0;

send INITIALIZE(I) message to all neighboring nodes;

end;

else

begin

wait for INITIALIZE(J) message to arrive from node J;

HOLDING := false;

NEXT := J;

FOLLOW := 0;

send INITIALIZE(I) message to all neighboring nodes,

except J;

end;

end

Figure 5. Initiahzation Procedure

4.2 Complete Example

We now give a complete example in Figure 6. A subscript is used to denote the

value of a variable at node /; i.e., HOLDINGi, NEXTi, and FOLLOWi denote

the values of HOLDING, NEXT and FOLLOW at node /.

1. Initially node 3 is holding the token and is not in its critical section. All

nodes have been initiahzed as shown in Figure 6a.

2. Node 3 wants to enter its critical section. Node 3 sets HOLDING^ - false

and enters its critical section.

3. Node 2 wants to enter its critical section, so node 2 sends a REQUEST(2,2)

message to node 3 and sets NEXT2 = to become a sink (refer to Figure

6b).

22



4. Node 3 receives a REQUEST(2,2) message from node 2. Since node 3 is a

sink and in its critical section, it saves the request by setting FOLLOW3 = 2.

Node 3 then sets NEXT3 = 2 and becomes a non-sink (refer to Figure 6c).

5. Node 1 wants to enter its critical section, so node 1 sends a REQUEST(1,1)

message to node 2 and sets NEXTi = to become a sink.

6. Node 5 wants to enter its critical section, so node 5 sends a REQUEST(5,5)

message to node 2 and sets NEXT^ = to become a sink (refer to Figure

6d).

7. Node 2 receives a REQUEST(1,1) message from node 1. Since node 2 is

a sink, it saves the request by setting FOLLOW2 = 1. Node 2 also sets

NEXT2 = 1 and becomes a non-sink (refer to Figure 6e).

8. Node 2 receives a REQUEST(5,5) message from node 5. Since node 2 has

already reset its NEXT variable to 1, this request is processed by sending a

REQUEST(2,5) message to node 1 and setting NEXT2 = 5 (refer to Figure

6f).

9. Node 1 receives a REQUEST(2,5) message from node 2. Since node 1 a

sink, it saves the request by setting FOLLOWi = 5. Node 1 also sets

NEXTi = 2 and becomes a non-sink (refer to Figure 6g). Note that the

global waiting queue of the system at this point consists of 2, 1, 5. This is

easily known by following the FOLLOW values starting from the current

token holder, node 3.

10. Node 3 leaves its critical section, sends a PRIVILEGE message to node 2,

and sets FOLLOW3 = (refer to Figure 6h).

23



11. Node 2 receives the PRIVILEGE message, enters and leaves its critical sec-

tion. It then sends a PRIVILEGE message to node 1, and sets FOLLOW2 =

(refer to 6(i)).

12. Node 1 receives the PRIVILEGE message, enters and leaves its critical sec-

tion. It then sends a PRIVILEGE message to node 5, and sets FOLLOW-^ =

(refer to Figure 6j).

13. Node 5 receives the PRIVILEGE message, enters and leaves its critical sec-

tion. It then sets HOLDING^ = true and waits for a request (refer to

Figure 6k).

Figure 6a. Node 3 is holding the token.

Figure 6b. Node 3 enters its critical section.

Node 2 sends a request to node 3.

I 1 2 3 4 5 6

HOLDINGJ f f t f f f

NEXT_I 2 3 3 2 4

FOLLOWS

I 1 2 3 4 5 6

HOLDING-! f f f f f f

NEXTJ 2 3 2 4

FOLLOWJf

I 1 2 3 4 5 6

HOLDINGS f f f f f f

NEXT_I 2 2 3 2 4

FOLLOWS 2

Figure 6c. Node 3 processes a request from node 2,

sets F0LL0W_3 = 2, and NEXT_3 = 2.

24



I 1 2 3 4 5 6

HOLDING-! f f f f f f

NEXT_I 2 3 4

FOLLOW_I 2

Figure 6d. Nodes 1 and 5 send requests to node 2.

Figure 6e. Node 2 processes a request from node 1,

setsF0LL0W_2 = 1, and NEXT_2 = 1.

I 1 2 3 4 5 6

HOLDING-! f f f f f f

NEXT_! 1 2 3 4

FOLLOW_I 1 2

I 1 2 3 4 5 6

HOLDING-! f f f f f f

NEXT_! 5 2 3 4

FOLLOWJ 1 2

Figure 6f . Node 2 processes a request from node 5,

sends a request to node 1, and sets NEXT_2 = 5

I 1 2 3 4 5 6

HOLDING_I f f f f f f

NEXT_I 2 5 2 3 4

FOLLOW-! 5 1 2

Figure 6g. Node 1 processes a request from node 2,

sets FOLLOW- 1 = 5, and NEXT_1 = 2.

25



I 1 2 3 4 5 6

HOLDING.! f f f f f f

NEXT_I 2 5 2 3 4

FOLLOW_I 5 1

Figure 6h. Node 3 leaves its critical section and
sends a PRIVILEGE message to node 2.

Figure 6i. Node 2 enters and leaves its critical section

and sends a PRIVILEGE message to node 1.

Figure 6j. Node 1 enters and leaves its critical section

and sends a PRIVILEGE message to node 5-

I 1 2 3 4 5 6

HOLDINGJ f f f f f f

NEXT_I 2 5 2 3 4

FOLLOWJ

I 1 2 3 4 5 6

HOLDING-! f f f f f f

NEXT_I 2 5 2 3 4

FOLLOW_I

I 1 2 3 4 5 6

HOLDING-! f f f f t f

NEXTJ 2 5 2 3 4

FOLLOWJ

Figure 6k. Node 5 enters and leaves its critical

section and sets H0LDING_5 = true.

Figure 6. Complete Example

26



Chapter 5

PROOFS

5.1 Mutual Exclusion

In any token-based scheme, possession of the token gives a node the exclusive

privilege to enter its critical section. Initially, there is exactly one node holding

the token. A node holding the token can pass the token to another node by sending

a PRIVILEGE message and setting HOLDING to false. Thus, there can be at

most one node holding the token. Since possession of the token is necessary for a

node to enter its critical section, mutual exclusion is guaranteed.

5.2 Deadlock and Starvation Freedom

We first recall a few assumptions:

1. A node can have at most one outstanding request to enter its critical section

at any given time. We do not allow multiple requests from a single node.

Hence, N nodes can have at most N-1 outstanding requests.

2. The initial logical structure is acycHc without considering the directions of

the edges. Sending a PRIVILEGE message does not change the graph. Since

forwarding a REQUEST message simply changes the direction of an edge, it

27



does not change the acyclic shape of the graph. Thus, the acyclic structure

is always preserved.

3. Initially, exactly one node is possessing the token and in all others, NEXT

is initialized to point to the neighboring node which is on the path to the

node holding the token.

Let G be the directed acychc graph (dag) defined by G = {V,E), where

V = {1,2, • • •
,
A^} and £; = {{x,y)\x,y E V andy = NEXT^}.

Lemma 1: If NEXTj = 0, for some I in V, then either node I is holding

the token and has not received a request from another node since receiving the

token, or node / has requested the token on its own behalf and has not received

a subsequent request for the token.

Proof: This is a direct consequence of the initial configuration and the algorithm.

In the state transition graph, shown in Figure 4, the shaded regions indicate a

sink state, i.e., NEXTi = 0. States E and H indicate that the node is holding

the token, and has not received a subsequent request. State R indicates that the

node has requested the token on its own behalf and has not received a subsequent

request for the token.

Lemma 2: At any point in time, every node / in V is on a path, of length less

than N, to a node J in V, such that NEXTj = (i.e. there exists a sequence

h{= /), ^2, • •
, Im{= J) of nodes in V, such that 1 < m < A^, /j = /, = J, and

NEXTi^ = 4+1 for = 1, 2, • • • , m - 1, and NEXTj = 0).

28



Proof: Initially, this is true. The only time the path from node / to a sink node

changes is when:

1. a node for some jin{l,2,--,m — 1}, wants to enter its critical section,

sends a REQUEST(/j, /j) message to /j+i, and sets NEXTj^ — (refer to

Figure 7a), or

2. a node Ij, for somej in {1, 2, • • •
,
m}, receives a REQUEST(A'p, Xi) message

from a neighboring node Xp, where Xp ^ 1^ for all G {1, 2, • • •
,
m}, which

has been forwarded on the path Xi,X2, • • ,Xp (refer to Figure 7b).

We will consider the two cases separately.

1. In this case, NEXTj^ = 0. So the lemma is trivially satisfied. The sequence

/i, /2, • • • , /j is a path from node / to node Ij, where NEXTj^ = and

j <m < N.

2. In this case, E becomes E - {(/j,/j+i)} U {{Ij,Xp)}. Now, we have only

three cases to consider:

2a. no node on the path Xp, • • •
, Xi has received a subsequent request, or

2b. a node Xq on the path Xp, - ,Xi wants to enter its critical section,

sends a REQUEST(X„ X,) message to Xg.i, and sets NEXTx, = 0,

or

2c. a node X, on the path Xp, • • •
, Xi receives a REQUEST(Fr, Yi )

message

from a neighboring node Yr not on the path (refer to Figure 7c).

29



Figure 7a. Node I _j is a sink.

Figure 7b. Node receives a REQUEST(X_p,X_l) message.

Figure 7c. Node X_q receives a REQUEST(Y_r,y_l) message.

Figure 7. Case (1), (2), and (2c) in Lemma 2

30



We consider the three cases separately.

2a. The sequence A, • • •
, IjiXp, • ,Xi satisfies the lemma. Note, due to

the acyclic logical stucture imposed on the nodes, p + j < N.

2b. Case 2b is considered to be the same as case 1, if the sequence

A5 i hi^pi ' -^9' " ' iX\

is viewed as the sequence /i, • • • , where Ij is viewed as Xq. Thus,

the lemma holds.

2c. Case 2c is considered to be the same as case 2, if the sequence

hl' " flj, Xp, • ,Xq, - • ,Xi

is viewed as the sequence /i, - • • ,7^, where Ij is viewed as Xq. This

reduces to either case 2a, 2b or 2c. In the former two cases, the lemma

holds. In case 2c, since there are N nodes, it may recur at most (N-1)

times and eventually reaches case 2a or 2b. Thus, the lemma holds.

Theorem 1: The algorithm is deadlock free.

Proof: The only time a node I sets NEXTi = is when it is initially holding

the token or has requested the token, but has not received a subsequent request

for the token. In either node will save at most one subsequent request for

the token by setting its FOLLOW variable to point to the node originating the

request. If more requests are received, they will simply be forwarded.

By lemma 2, every node I is always on a path of length less than N, to a node

J, such that NEXTJ = 0. Suppose there are 1 < A: < requests for the token

from nodes A, • • • ,7^. Also, suppose Ij is holding the token.

31



If j ^ {!,•••,/:} then the request which reaches node Ij first will be granted

first. All nodes are arranged in an acyclic graph. Since all requests are forwarded

to a node X where X G {/i, • • •
, /^.}, or to node Ij, at least one request must be

forwarded to node Ij. Otherwise, all k recjuests are forwarded to the k requesting

nodes; this means we have a cycle. Without loss of generality, we may assume

that the request from node I; is received by node Ii-^-i,i = 1,2, — 1, after

node /j+i has already requested, and the request from node 1^ is received by

node Ij (i.e. renumber the nodes if necessary). Then each of the nodes will set

FOLLOWi-^^ = li. Naturally, node Ik will receive the token first. Then the token

will be forwarded in the order h —
> h-i ^ /i and each of the requests will

be satisfied.

Similarly, if j e {l,---,k}, the theorem holds. Since Ij holds the token,

it enters its critical section and then the above argument apphes. Therefore,

deadlock cannot occur.

Theorem 2: The algorithm is starvation free. ^

Proof: By our preceding argument, the only time starvation could occur is if

a small group of nodes are allowed to retain possession of the token while other

nodes have requested the token.

Suppose node I wants to enter its critical section and sends a REQUEST(I,I)

message to NEXTj. By Lemma 2, any request is guaranteed to reach a sink node

in less than N messages. Once a request reaches a sink node, it will be immediately

served (if the sink node holds the token), or stored in the FOLLOW variable and

be eventually served. This is because of the total ordering of requests given by the

FOLLOW variables in the preceding argument. When a node J leaves its critical

32



section it must send the token to FOLLOWj if FOLLOWj ^ 0. Therefore, the

algorithm is starvation free.

33



Chapter 6

PERFORMANCE ANALYSIS

As in Raymond's algorithm, the performance of the algorithm depends on the

logical topology of the dag structure. The worst topology, in terms of the number

of messages required per critical section entry, is a straight hue, as shown in

Figure 2. In [4], they indicate that the best topology is a radiating star formation.

However, the best topology is what we call a centralized topology, with one node

in the center and all other nodes as leaf nodes (refer to Figure 8).

Figure t. Centralized Topology

In the following discussion, we define the diameter D of the topology to be

the length of the longest path.

34



6.1 Upper Bound

The upper bound is equal to {D + I) messages per critical section entry. This

occurs when a requesting node and a sink node are at opposite ends of the longest

path: D messages for the request to travel to the sink and one message for the

token to be sent back to the requesting node. Thus, in the straight line topology,

the upper bound is N, where N is the number of nodes in the system. In the

best topology, the upper bound is 3, since the diameter of the centralized topology

is 2. Note that this is the same as the performance of a centralized mutual

exclusion algorithm, where one REQUEST message, one GRANT message and

one RELEASE message are required.

For comparison, other algorithms have the following upper bounds:

• Lamport's algorithm : 3 * (A^ — 1)

• Ricart and Agrawala's algorithm : 2 * (A^ — 1)

• Carvalho and Roucairol's algorithm : 2 * (A' — 1)

• Suzuki and Kasami's algorithm^ : A^

• Singhal's algorithm : A^

• Maekawa's algorithm : 7 * y/N

• Raymond's algorithm : 2 * D (i.e., 4 in a centralized topology)

6.2 Average Bound

We analyze the average performance for the best topology. If the requesting

node holds the token, it requires no messages. If the token is being held by a

'This algorithm is essentially the same as Ricart and Agrawala's algorithm [5].

35



leaf node, then on the average 3 - messages per critical section entry are

required. This is calculated as follows: The other (iV - 2) leaf nodes require

3 messages (refer to section 5.1). The center node requires 2 messages: one

REQUEST message and one PRIVILEGE message. Therefore, the average is

((A^ - 2) * 3 -f 1 * 2)IN = 3 -

If the token is being held by the center node, then only 2 — 2/iV messages are

required: ((A'^— 1)*2+1*0)/A'^ = 2 — 2/N). We assume that at any given time each

node has an equal hkehhood of holding the token. There are [N— l) leaf nodes and

one center node; therefore, on the average, {{N— 1)*{3— 4/N)+ \*{2— 2/N))/N =

3 — 5/N + 2/N'^ messages are required per critical section entry. In the centralized

scheme, on the average, (3 — 3/A'^) messages per critical section entry are required'^.

Both methods approach 3 messages per critical section entry as A'^ approaches

infinity. Under heavy demand, the performance is about the same, i.e., at most

three messages per critical section entry.

6.3 Synchronization Delay

Synchronization delay is the maximum number of sequential messages required

after a node / leaves its critical section before a node J can enter its critical

section. We assume that the request from node J is to be processed next and

node J is blocked waiting for node / to complete its critical section. In this case,

FOLLOWj = J and node J will be passed the token immediately after node /

leaves its critical section. Since only one PRIVILEGE message needs to be passed,

the synchronization delay is minimal, i.e., one message. This is even better than

a centrahzed scheme in which the synchronization delay is two: one RELEASE

-\Ve assume that a control node may request to enter its critical section. In which case, it

requires no message. Thus, (3 - 3/N) messages are required: ((A'' - 1) 3 + 1 * 0)/N.

36



and one GRANT message.

Other token based algorithms have the following synchronization delays:

• Suzuki and Kasami's algorithm : 1

• Singhal's algorithm : 1

• Raymond's algorithm : D.

6.4 Storage Overhead

Each node maintains three simple variables. A REQUEST message carries two

integer variables, and a PRIVILEGE message needs no data structure. This is

significantly less overhead compared with other distributed mutual exclusion al-

gorithms, where they maintain an array structure or a waiting queue of requesting

nodes, either in every node or within the token.

37



Chapter 7

CONCLUSION

This paper presented a token based algorithm for distributed mutual exclusion

which assumes a fully connected physical network and a dag structured logical

network. The algorithm imposes very little storage overhead on each node and

message.

In the centralized topology, the algorithm attains comparable performance to

centralized schemes. On the average, about three messages are required per crit-

ical section entry in both schemes. However, our scheme reduces the amount of

synchronization delay to one message compared with two messages in centralized

schemes.

38



Bibliography

[1] S. F. Carvalho and G. Roucairol. On mutual exclusion in computer networks.

Communications of the ACM, 26(2):146-147, 1983.

[2] L. Lamport. Time, clocks and ordering of events in distributed systems. Com-
munications of the ACM, 21(7):558-564, 1978.

[3] M. Maekawa. A \//V algorithm for mutual exclusion in decentralized systems.

ACM Transactions on Computer Systems, 3(2):145-159, 1985.

[4] K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM
Transactions on Computer Systems, 7(l):61-77, 1989.

[5] G. Ricart and A. K. Agrawala. Author's response to 'on mutual exclusion

in computer networks' by Carvalho and Roucairol. Communications of the

ACM, 26(2):147-148, 1983.

[6] G. Ricart and A. K. Agrawala. An optimal algorithm for mutual exclusion in

computer networks. Communications of the ACM, 24(1):9-17, 1981.

[7] B. Sanders. The information structure of distributed mutual exclusion algo-

rithms. ACM Transactions on Computer Systems, 5(3):284-299, 1987.

[8] M. Singhal. A heuristically-aided algorithm for mutual exclusion in distributed

systems. IEEE Transactions on Computers, 38(5):651-662, 1989.

[9] I. Suzuki and T. Kasami. A distributed mutual exclusion algorithm. ACM
Transactions on Computer Systems, 3(4):344-349, 1985.

39



A DAG-BASED ALGORITHM FOR
DISTRIBUTED MUTUAL EXCLUSION

by

Mitchell L. Neilsen

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989



Abstract

The paper presents a token based distributed mutual exclusion algorithm. The al-

gorithm assumes a fully connected reliable physical network and a directed acyclic

graph (dag) structured logical network.

The number of messages required to provide mutual exclusion is dependent on

the logical topology of the nodes. Using the best topology, the algorithm attains

comparable performance to a centralized mutual exclusion algorithm; i.e., three

messages per critical section entry. It also achieves minimal synchronization delay.

In our algorithm, no node or message explicitly holds a waiting queue of pend-

ing requests. The queue is maintained implicitly in a distributed fashion among

nodes; at any given time, the queue may be constructed by observing the states

of the nodes. As a result, the algorithm imposes very little storage overhead; each

site maintains only a few simple variables, and the token carries no data structure.


