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The Effect Factors of the Pile Integrity Test

CHAPTER 1

Introduction and Literature Review

INTRODUCTION

1. Background

With the developing of modern industry, the pile foundation is

used more widely and has gained popularity because of it's high

bearing capacity, low settlement and ability to carry dynamic loads.

Since the pile is a structure which is embedded in the soil, the inter-

action between the pile and soil makes the analysis very complex

both in theory and practice. In recent years a lot of research has

been done in pile technology and a lot has been achieved but many
problems still require solutions. The pile integrity test belongs to

such kind of problems.

Deep foundation elements require definitive and economical test

procedures that can be used shortly after or during construction to

evaluate their structural integrity. Driven piles may be damaged due

to high axial or bending stresses and bored augured piles may suffer

from poor concrete quality, or construction workmanship which may
create voids in the shaft. After installation the pile can be damaged

by large lateral movement such as those caused by heavy equipment,

slope failures or vibrations due to seismic or other activites. Vari-

ous papers and articles, Feld, (7) 1968; Baker and Khan, (2) 1971;

Reese and Wright, (19) 1977, report that at the presence of defects

or irregularities within drilled piles that are detrimental to the per

formance of the foundation system. These papers list twelve condi

tions that may lead to defective drilled piles.

1) Excess water at cold joints resulting in weak concrete.

2) Migration of water, washing out of cement, or segregation result-

ing in weak concrete at the top of the shaft.
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Side cave-in of soil resulting in contaminated concrete.

Surface cave-in of soil resulting in contaminated concrete.

Development of voids in the shaft.

Casing collapse.

Improperly poured tremie concrete.

Concrete poured into surface water.

Inadequate bell sizes

Inadequate bearing material

Squeeze in or necking of the shaft

Poor concrete delivered to the site.

Many methods have been developed for the quality control of piles

but none are satisfactory in engineering practices. Some are very

expensive, and some are not accurate. The need for further study

of the problem became obvious during the field observation of low-

strain testing of piling constructed by Berkel Construction Co. in

Cleveland, Ohio -and observed by the author in December of 19SS.

2. Purpose and Scope

In the United States bored piles are used widely and the low strain

integrity test is a simple, rapid, and inexpensive method for testing

the pile integrity. Unfortunately, this data is very difficult to analyse

since many factors effect the accuracy of the test.

The purpose of this study is to develop analytical analysis of the

low strain integrity test as applied to bored cast-in-place piling.

The scope of the study will consist of the development of a finite

element analytical procedure which can be used in computer analysis.

The analysis will concentrate on the effects of varying soil and pile

factors which, at the present time, have an unknown effect and thus

may aid in an accurate interpretation of the data.



LITERATURE REVIEW

Using the stress wave method to design pile is a new technology

field. The principle is based on one dimensional wave propagation.

In the last 20 years the theory developing very rapidly. The following

literature review includes the following areas: Models, Applications.

Tests and Computer Programs.

1. Analysis Models

St. Venant 1800 (24) was the first to analyse pile driving by using

the one dimensional wave propagation. He developed the differential

equation governing one dimensional wave propagation in an elastic

rod and its solution. He provided the basis for insight into wave

propagation problems but only for some limited boundary cases.

Isaacs 1931 (15) furthered the St. Venant 's work giving the theory

practical meaning specifically for the analysis of pile driving. Since

there are numerous difficulties in describing a real hammer-pile-soil

system, this effort had only limited success.

With the developing of the digital computer, a practical solution

of the wave equation became possible. Smith 1960 (22) developed

the original model using a mass-spring system. His work was one

of the very first applications of the digital computer in the solution-

of mechanics problems. This first model did not consider the effect

factors.

Hansen and Denver (3) developed the wave equation analysis of

pile considering the mantle reaction and unhomogenious pile (a pile

with a discontinuity in section area and/or material properties). This

model is not supported by accepted test data.

H. Van Koten et.al., (14) suggested a model consisting of a parallel

coupled spring and dashpot model schematizing the skin friction.

The solution was used to determine the skin friction and the tip

resistance. This model has been verified by little test data.

Y. K. Chow and I. M. Smith, (25) used a numerical model based on

the finite element method using three dimensional axisymmetric in

geometry, 8-node, quadratic isoparametric elements. Relative move-



ment between the pile and the soil driving during the driving process

is modeled using 6-node slip elements. At the boundaries, viscous

dash pots are introduced to enable the absorption of radialactivity

stress waves.

The usage of this concept is expensive so it isn't practical for

individual pile analysis. The paper considered only frictional soils,

but it can model other soil behavior and aid in understanding the

mechanics of pile driving.

D. Levacher and J. G. Siffert (5), used a model based on one

dimensional wave equation. The equation is solved by a finite differ-

ence method. Their studies showed the influence of the resistance of

the soil.

N. F. Febecker et.al., (17) presented a solution for dynamic non-

linear soil structure interaction problems by the finite element method.

Their studies show the displacement time-histories of pile to confirm

certain soil resistances.

All these numerical methods have been developed in recent years

and has opened the door to understanding the pile driving process

but they are far from perfect at this time, since the problem is so

very complicated.

2. Applications

a. Prediction of Bearing Capacity

The method is: To measure the pile top force and acceleration at

time t\ and t<i, then the static bearing capacity is

S = R-D
R - soil resistance

R = \{F{h) + F(t2 )} + %{V( ti )
- V(t2)}

t\ - some selected time during the blow

t2 = h + ^
D = JVtoe

J - damping constant

Vtoe = pile bottom velocity

Vtoe = 2V(ti) - ±'R



This method is widely used and there is an abundance of data

available for this procedure.

The accuracy of the indicated bearing capacity is well established

but depends on the availability of accurate soil data and a reliable

driving system.

b. Driveability

When all hammer-pile-soil parameters are given and the blow

count is known then the pile stress can be predicted. The difficulty

is the non-linear character of the soil. When blow counts are high

(over 120 blows/per foot), a small error in the capacity estimate will

produce a large change in the predicted blow count or vice versa.

c. Driving Stress

The driving stresses have been analysed by a number of differ-

ent methods. The results of these methods vary widely and most

of the methods are very sensitive to changes in the driving system

parameters.

d. Driving System Performance

The force and velocity can be recorded and displayed on an oscillo

scope (or on a computer's screen) and this visual display can be used

for system performance control.

e. Control of Integrity

There are two methods to determine pile intergrity; High Strain

and Low Strain Method.

The High Strain Method is best for longer pile where the soil

resistance become correspondingly larger and the damage is usually

in the lower part of the pile, but the cost is much higher. Testing

all piles for a large site is generally economically prohibitive since

the pile must be struck by large mass, generally requiring contractor

assistance and the vibration may effect other buildings which are

near the site.

Low Strain Integrity Testing is a simple, economical quick, and

reliable means for the structural integrity of all lands of bored piles



and can be accomplished shortly after construction of the pile. It

requires a high level of experience on the part of the engineer and

the analytical procedure needs to be studies and improved.

The author went to Cleveland, Ohio last December to observe and

study the Low Strain Test. The test was done by Goble Rausche

Likins and Associates, Inc. which has 12-year experience in this

field. It took almost 4 months to receive the test data. The results

are very difficult to analyse and this method needs to be further

studied and improved.

3. Test Equipment and Measurement Techniques

Although theoretical investigations concerning the propagation of

stress waves in elastic solids date back to the end of the nineteenth

century, it was only comparatively recent that technology became

sophisticated enough to allow comparisons between experimental ev-

idence and theory.

The first attempt to make dynamic stress measurement in pile

driving was made by Glanville et.al., in 1938 (10). Strain measure-

ments were made using piezoelectric force transducers on concrete

piles and recorded on an oscilloscope. In 1940, Shear and Focke

(21) performed ultrasonic velocity and wavelength measurements on

polycrystalline silver, nickel, and magnesium cylinders dusted with

lycopodium powder. The wavelength was determined by direct mea-

surement of the standing wave pattern produced on the coated rods

at resonance. By knowing the excitation frequency and resulting

wave length, it was possible to compute the phase velocity in the

cylinder. Shear and Focke concluded that the theoretical solution

was sufficiently accurate for prediction of material velocities, pro-

vided that the wavelength of the stress wave is several times greater

than the diameter of the rod.

Further evidence supporting the accuracy of theoretical solution of

stress wave propagation was provided by Davies (4), (194S). Davies

devised a pressure bar similar in principle to the Hopkinson bar,

whereby continuous electronic measurements could be recorded if

the longitudinal displacement produced by a pressure pulse at the



free end of a cylindrical bar. Davies concluded from his experiments

that the velocities predicted in theory were in excellent agreement

with velocities measured in the pressure bar.

In about 1960 Michigan Department of Highway [13] used specially

designed force transducer to measure the force at the pile top and

also added a strain gage accelerometer on the transducer. The data

was recorded on a high speed oscillograph.

In 1964, Goble, Ransche and Likings (11)(18), began work in this

field and continued it for the next 12 years. During this time, mea-

surement techniques and equipment were developed and theoretical

studies were performed. At the beginning they used resistance strain

gages mounted directly on the wall of steel pipe piles. The resulting

signal was amplified by an AC amplifier and recorded on a high speed

oscillograph (2 m/s). Acceleration measurements were made using

high impedance quartz crystal accelerometers. The measurements

were good but it was difficult and time consuming to use. As de-

velopments occurred in electronics, the improvements were included

in the equipment. Force transducers were developed of low enough

weight that they can practically be brought to the job site. Strain

transducers were developed - light weight and reusable. Amplifiers

were developed using currents which are much easier to use. The

processing was developed from Analog tape signal to digital signal.

can be stored. Further analysis and plotting can be accomplished

using a minicomputer.

Steinbach and Vey (23), (1975) conducted a laboratory investiga-

tion by performing tests on a 31.5 in (80 cm) long aluminum bar that

was freely suspended horizontally. Steinbach and Vey found that the

velocity predicted in theory was approximately four percent greater

than the velocity measured in the aluminum.

Harrell and Stokoe (12), (1984) tested 4 drilled piles in Texas,

using digital recording equipment. The receivers were embedded
in the piles. These tests were designed to study the effects of the

cross-sectional area of defects on wave propagation measurements.

Usage of the wave attenuation is an important parameter in detecting



defective piers.

4. Computer Program

Computer programs have been developed by numerous groups.

The more important among these are;

a) The Raymond Company program (proprietary)

b) The TTI program which is similar to the Raymond Program and

not very different from Smith's original program.

c) The WEAP program which contains an accurate diesel hammer
model.

d) DIESEL- 1 by Rempe (proprietary)

e) DUKFOR, a program that is similar to the TTI program but it

contains a residual pile and soil stress analysis (proprietary)

f ) SWEAP, a combination of WEAP and DUKFOR (proprietary)



CHAPTER 2

Finite Element Method
(Two Dimensional Elasco-Dynamic Problems)

Governing Equations.

See Fig. 2.1, the plane in dynamic equilibrium at an instant in

time in two-dimensional Euclidean space.

1. Equilibrium.

Take a small element look at forces in x direction EFx = ma x

(Fig. 2.2)

-gx
\

x • Ay + <rx
\

x+Ax Ay

~Txy\y ' A.X + TX y\y+Ay ' Ax = pUx

divide by Ax and Ay:

&x\x+A.x " x\x . T~xy\y+Ay ^~xy\y

A^
+

A^ ~ pUx

dax drxy
Ax,Ay=>o ax ay

In y direction same we can got:

day drxy

p - density

u - displacement

u - velocity

ii - acceleration

If we use Indicial Notation

(7{jj = pili (2.1)

1) Indicials: i,j, k run over the values 1, . .
.

, nsd. two-dimensional

nsd = 2.



2) Differentiation denoted by a comma.

3) Repeated indicials imply cummation.

2. Strain-Displacement Relation.

u— displacement in the x direction

v— displacement in the y direction.

Normal strain (Fig. 2.3)

v /
U \x+Ax ~ u \x,y

ex = hm —! — "

x^o
\ Ax

du

dx
Zx =

Then;

Shear strain (Fig. 2.4)

dv

dv

ox
du

dy

the total change in angle is:

01 - #2 = <*x + a
y

engineering shear strain -yxy = ax + a
y
= || + f^

1
€xy — l^fxy

€H = o(
u

»'»i + u
i.*)- (

2 - 2 )

10



3. Stress-Strain Relation.

Hooke's law

ex = —[<tx - j((Ty)]

E - Young's Modulus.

7 - Posson's Ratio.

Use Lame's constant

G = —, r and A =
2(l + i/) (l + i/)(l-2i/)'

ax = 2Gex + \e

(j
y
= 2Gey + Ae

Combining the above three equations yields;

Gij = 2Geij + XeSij (2.3)

in which

6 €X ~J~ Cy "T" Cr CT^y 'XJ/

8{j is the Kronecker delta

1 1 2=J

4. Surface-Traction-Stress Relation.

See Fig. 2.5

Using the equihbrium in x direction. T,Fx = ma

1

2
Tx£ — axl cos 9 — (jxy£sm6 — p -(£ cos 6)(E sin (9)a.

n



dividing by £;

Tx = ax • cos# + crxy • sin.9 + p - -(£cos9)(sm9) a x

Taking a limit as I —

Tx = gx • cos 9 + axy • sin 9

in y direction then;

Ty
= axy • cos 9 + (j

y
- sin 9.

Since: cos 9 = nx sin 9 = n
y

. Combining the above we obtain;

Ti = (Tij • rij. (2.4)

5. Integrating over the body.

Using the above relations we can integrate over the body. Recall-

ing that

<7ijj = put (2.1)

(1) First multiply by an arbitrary weighting function (displace-

ment) that is zero at boundary conditions.

CTijjUi = pUiUi.

Then

J dijjUidn =
J^

pUiUida (2.5)

(2) Using fa((TijUi)jdtt = fa cr^^-ofo + fa VijUijdQ (2.5) becomes

JQ
(<TijUi)jdQ - JQ (JijUijda =

J^
piliUidQ. (2.6)

(3) Applying the divergence theorem to (2.6)

JQ fi,idn = JQ
fi,riidn

12



J GijUiTijdQ. - JQ GijUijdn =
J^

piliUida. (2.7)

(4) Applying surface traction TJ = a^rij into (2.7)

Js Tiiidn - JQ (7ijUijdQ = J^pUiUid^. (2.8)

(5) Use the symmetry of the stress tensor

<7{j UiJ CTj { 11 i j (JijUj^

i

2 ~ 2 2

1

Applying this to (2.8)

-
J^

cri; • ey • cfo + / Ti«j -ds =
J^

puiUi dQ (2.9)

6. Divide the Body into Elements and Integrate Over Each
Element.

At this point it's convenient to use matrix notation. The matrix

is indicated by
[ ], vector is indicated by '—

'.

For each element we assume the displacement to be functions of

the values at the nodes over that element;

u = [N]ua

then;

T = [JVIL

Ua is the nodal displacement

T_a is the nodal surface traction.

The strains follow the equation (2.2)

e = [B]Ua

13



The stress follow the Hooke's law

£ = [D]e_

Then;

\L TiUids -
J

<Tij<iijdn - Ja pUiUidaj =

I

£ {/ uTTds - J eJsda - / Pu
Tuda )

=

i

£ UiSwrmLfr -
jQ iS[B]

T[D]{B}uadQ
e=l

-
JQ
p£[N]T{N]rlada }

=

Ua is arbitrary and;

E {/5 [^]
T
[Ar]Z.^ -

/fl[S]
r[D][BK<in - /n /9[iV]

r
tiV]nadn }

=

(2.10)

7. Numerical Integration.

Up to now closed form integration has been used but this is difficult

with computers and it is more convenient to use numerical integra-

tion. It is thus more convenient to pursue the following course of

action;

(1) Choose an Element.

The choose six-noded triangle element is used. The reason is that

we want to study the discontinuity in the pile. This means we need

to develop an automatic remeshing scheme to move the crack tip.

In general, it is easier to mesh an arbitrary region using triangular

shapes than using quadrilateral shapes.

(2) "Natural" Coordinate System.

14



Using the natural coordinates, we can transform the original inte-

gral over the element in Cartesion space (close form) to an equivalent

integral in the natural coordinate space (numerical). A standard tri-

angular "natural" coordinate system is used, where each coordinate

(r, s,t) is the ratio of the perpendicular distance to the height of a

side. See Fig. 2.6.

Gauss

Point

Natural Coord. Weight

r s t

a 3/5 1/5 1/5 25/48

b 1/5 3/5 1/5 25/48

c 1/5 1/5 3/5 25/48

d 1/3 1/3 1/3 -27/48

These coordinates are symmetric with respect to the triangular

geometry. The relationship between them is

r+s+i= 1

(3) Shape Functions.

Quadratic shape functions are used. Table 2.1 gave these functions

and their derivatives.

Num. Shape

Functions

In terms of r and s

(
r + s+t = 1)

dN
dr

dN
ds

Nl 2r 2 — r 2r 2 -r 4r- 1

N2 2s 2 -s 2s 2 -s 4s - 1

N3 2t2 -t 2r2 + 2s 2 + 4rs - 3r - 3s + 1 4r + 4s - 3 4s + 4r - 3

N4 4rs 4rs 4s 4r

N5 4st 4s — 4rs — 4s 2 -4s 4 - 4r - 8s

N6 4tr 4r — Ars — 4r 2 4 - 4s - Sr -4r

(4) Strain-Displacement Relations.

See [B] in above equations.

E f[B}
T
[D][B]dQ =* [A']

e=l JU

15



u
V

€r =

€„ =

C J>7|-iy

AW + N2V2 +

<9y dx

' + Ar6^6

ex

£Xy J

6Ny
dx

^2
<9x

M*

dy
Ml

BNi dN, dN7

dy dx dy

dNz
dy

dNi
dx

4
B

(5) Jacobian.

Transfer to natural system.

dN*
dx

Ms
dy

Ms.
dy

Ms.
dy J

Ui

"1

V2

Uq

{ n J

M i

dr
&1
dr

r Ml ^

> ^^
^

>

dJV, dx dji dNi
ds L #5 ds J

I dy J

Jacobian.

(6) Numerical Integration.

•1 rl-s

Jn [B}
T [D][B}dQ = Jo J [B(r,s)}

T[D][B(r,s)]detJdrds

N N

i=ij=i

The computer can do these operations very effectively.

16



8. Interface Element.

(1) Six-Noded Surface Element.

In many situations we want to model contact between bodies. One

way to do that is to define an element having nodes on each body

where a force-displacement rule is specified between pairs of nodes.

Fig 2.7 shows the six noded interface element and its numbering,

Natural Coordinate, and weight is shown by the following:

Gauss

Point

Natural

Coord(s).

Weight

a 0.112702 5/18

b 0.5 8/18

c 0.88798 5/18

(2) Traction-Displacement Relation.

An "interface element" is a special case of surface tractions, where

the surface tractions are prescribed as a function of nodal displace-

ments. A typical multi-linear description of the normal traction for

modeling a process zone is shown in Fig. 2.8. The response is linear

in compression, but weakens after cracking.

(3) Geometry Relation.

See Fig. 2.9.

2xidL = (dx z + dyy-

ax = —as ay = —as
OS OS

dL =
2ldxy

+
(dy y

,ds J \ds t

J

dL Us)
dx _ , dx

ds

/j

t
» = p -Tl =

p -^Ij

17



(4) Numerical Integration.

J [N][N]dsT« = /^[Nfl^detJdsT,

= E Wsi)]
T
[N(si)] det JT^Wi

9. Axisymmetric Formulations.

(1) An axisymmetric model is used in the integrity evaluation

of bored piles by stress waves. Axisymmetric formulations are ex-

pressed in terms of cylindrical coordinates

r - the radial coordinate

z - the axial coordinate

(f>
- the circumferential coordinate

The basic hypothesis of axisymmetry is that all functions under

consideration are independent of 4>. That is, they are functions of r

and z only Thus three-dimensional problem classes are reduced to

two-dimensional ones.

(2) The axisymmetric formulation for pile vibration is almost iden-

tical to the two-dimensional case considered previously The only dif-

ference is that a factor of 2zr need to be included in each integrand of

the variational equation to account for the correct volumetric weight-

ing, e.g., 2zrdrdz replaces dxdy.

10. Dynamic Solution.

The explicit central difference approach is used. (Fig. 2.10)

un =
Un+ i_ - U n _x_

At
un+ i = un_i + At • u n

u„+i - un
u^ " "at-
un+ i

= u n + un+ i • i\t

18



From the current state and previous solution the future velocities

and displacements can be predicted.

11. Computer Program.

Input

Patron make the finite element mesh

1

Boundary and Initial Conditions

1

Initialize Mass Matrix and Stresses

t = * + At loop on all elements

No

i

Update velocities and displacement

1

Compute surface traction loads

I

Calculate strain

I

Calculate Stresses

1

Calculate internal nodal loads

1

Compute accelerations

1

Write plot and restart data

1

Check if finished

| Yes

Output

19



CHAPTER 3

Low Strain Integrity Testing of Bored Piles

1. The Background.

Up to now the basis for the low strain integrity testing has been

the linear one-dimensional wave equation.

One-dimensional wave equation.

The pile is assumed to be an elastic rod. (See Fig. 3.1.) It is

assumed that each cross section remains plane during motion and

the stress is uniform over the area. The stress on a transverse plane

II i i •
dax

7

at x is ax and the stress on a transverse plane at x+ax is cn+—

—

ax.
ox

According to Newton's second law,

UGX "V O 11

- axA + axA + -^dx • A = dx • A—r-r- (3.1)
dx gdt2 v '

dox 7 d2u
(3.2)

dx g dt2

u - the displacement of the element in the x direction

g - acceleration due to gravity

7 - unit weight

A - cross-section area.

According to Hooke's law: ax = E^ (3.3)

..,_._, ,
. . . dax y-,d

2u
in which h - Young s modulus then —— = £/ttt-

ox ox 1

7
Let the mass density p = — . Put 3.3 and p into 3.2

9

<9
2u d2u

E
dx~
2=PW

d2u _ EcPu d^u _ 2
d2

u

dt 2 " p dx 2
or

dt2 ~ p dx2

20



in which K2 = —

.

P
P

Vp is defined as the Longitudinal-wave-propagation velocity.

The solution to the wave equation developed for the infinite elastic

rod can be written in the form

u = f(Vp t + x) + h(Vpt-x) (3.4)

where / and h are arbitrary functions depending on the initial bound-

ary conditions (Timoshenko and Goodier, 1934, (24).

Boundary Conditions

The theory that has been developed is based on the stress wave

propagate in infinite elastic rods. However, drilled piles have finite

lengths and therefore, to apply the wave equation theory to the study

of drilled piles, boundary conditions must be imposed on the general

solution.

When an elastic rod of finite length is subjected to an impulse at

one end, a stress wave is generated that travels the length of the rod

at the velocity of Vp . As the vibrational wave reaches the end of the

rod, the stress wave is reflected. The nature of the wave reflection is

dependent on conditions at the end of the rod. Kolsky (1963), (26)

presents the theoretical study of wave propagation in finite rods by

applying various boundary conditions to the wave equation.

Though the piles are embedded in soil, the boundary conditions

are close to free end conditions.

From Equation (3.4) the displacement due to the incident wave is

represented by:

ui = f(Vp t + x)

u2 = h(V
p t - x)

The stresses will be:

E{f'(Vpt + x)-ti(Vpt-x)}
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Here f'(Vp t + x) is the differentiation of function / in x direction.

So f'(Vpt + x) is the strain in x direction.

At the free end of the rod the normal stress is zero, we get:

f(Vpt) - ti(Vpt) =

this states that the shape of the reflected wave is the same as that of

incident wave but is of the opposite sign. So a compression wave will

be reflected from the free end of a rod as a tension wave identical

magnitude and shape. Similarly, a tension wave propagating in an

elastic rod will be reflected from a free end as a compression wave of

the same magnitude and shape.

2. Field Test.

The compressive wave is created by the blow of a hand-held im-

pact hammer. If the pile is uniform the compression wave travels

unchanged and axially through the shaft from the pile top to the

pile tip and is reflected back to the top. The direction of travel is

identical with the direction of the particles motions in the compres-

sive waves but is opposite to that of the tensile waves. The travel

time of the wave is measured from the first maximum peak to the

peak of the pile tip reflection,

2L
T =

VP
L - the length of the pile.

If the pile isn't uniform, if there exists an irregularity in the pile

shaft, then when the downward traveling wave arrives at this point,

part of the wave is reflected up and part transmitted down, therefore

additional signals are recorded before the first reflection wave from

the pile tip.

A decrease in either area A or modulus E produces a tension reflec-

tion, an increase in either of these produces a compressive reflection.
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3. Equipment.

The basic test equipment for integrity testing are the impact de-

vice, receiver, recorder, signal conditioning, and the equipment for

the analysis and plotting.

Impact Device

In most cases a hand-held hammer is used.

Receiver

The piezoelectric accelerometers are used. These accelerometers

are of high natural frequency and sensitivity, for the acceleration of

the impact is low.

Recorder

A magnetic tape or a storage oscilloscope is used.

Signal Conditioning

Further analysis and plotting can be done by using a computer

and a variety of peripheral devices after analog-to-digital conversion

of the recorded signals.

The equipment must be capable of providing signals with fre-

quency of up to 5 kH2. It is desirable to integrate the acceleration

to velocity immediately. This is done by the Pile Driving Analyzer-

PDA.
The proceding see Fig. 3.2 and Fig. 3.3.

4. Test in Cleveland, Ohio
a. Pile data:

The pile's diameter is 12 in (0.3048 m)
The pile's length is 30 ft. (9.14 m)
Plain concrete pile with unconnned compressive strengths in the

range of 4000 psi.

b. Test process:

The whole test process is shown from Fig. 3.4 to Fig. 3.13.

The first step was the measurements in the field to locate the pile

(Fig. 3.4). Then the piles were bored (Figure 3.5) to excavate the
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bore holes. After completing the bore hole (Fig. 3.6), the concrete

was emplaced using a concrete mixer (Fig. 3.7) to form the pile

(Fig. 3.8). Fig. 3.9 shows the formed piles used for testing with the

surface of the piles mode smooth and planar for testing (Fig. 3.10).

The Honda generator was used as a power supply (Fig. 3.11). A
hand hammer was used to impact the pile (Fig. 3.12) producing the

wave. The PDA (pile dynamic analysis) and computer were used to

record and plot the test results (Fig. 3.13).
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CHAPTER 4

Results and Disscusions

Results from One-Dimension Wave Propagation Analysis.

PATRAN was used to mesh the pile as shown in Figure 4.1. The

pile's diameter was taken as 12 in. (0.3048 m) and the length as 30 ft.

(9.144 m), which is the same as the piles tested in Cleveland, Ohio.

The finite elements are shown in Figure 4.2. These are triangular

elements, 3.6 in (9.14 cm) in the Y direction and 3 in (7.62 cm) in

the X direction. An axisymmetric case is used. The displacement

boundary condition are shown in Figure 4.3. Along the central line

X direction is fixed and Y direction is free. The impulse is depicted

in Figure 4.4. The period of impulse should match the size of the

finite element.

The pile was assumed to have a Young's modulus of 57,000 y/j c

and a value of 4000 psi (27579/ciV/ra 2
) was used for the compressive

strength of the concrete. This results in a value of 3.64106
psi ( 124. S x

l06kN/m2
)

The unit weight of concrete accepted is 145 psf (6.94fciV/m 2
), then

the density of the concrete is 0.00022473 pci (6.22/cg/m 3
) and one-

dimension wave propagation, v = 0.

1. Pile without Defects:

a. Response at the Top of the Pile:

The response at the top of the pile is shown in Figure 4.5.

The first peak is caused directly by the impulse. The second peak

appears when the reflection from the bottom of the pile is received.

The impulse produces a compression wave traveling in the negative

Y-direction. When the wave arrives at the bottom of the pile, which

is a free end, the compression wave is reflected upward as a tension

wave traveling in the positive y-direction. When this wave arrives

at the top of the pile, the tension wave is again reflected as a com-

pression wave. The top of the pile is a crossover zone, in which two

waves pass each other. According to wave propagation, the particle

velocity in a tension wave is opposite to the direction of wave travel.
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but the particle velocity in a compression wave is in the direction of

wave travel. Since the compression and tension waves are traveling

in opposite directions at the top of the pile, the particle velocities

associated with both waves are additive and the particle velocity on

the top equals twice the particle velocity in either wave. The second

peak in Figure 4.5 is thus twice as the first peak.

b. Response at the Mid-Point of the Pile:

As shown in Figure 4.6 and Figure 4.7 the node number 255 is 5

ft (1.524 m) below the top and the node number 55 is 5 ft (1.524

m) above the pile tip. The first peak is a compression wave caused

by the impulse and the second peak is a tension wave reflected from

the bottom. Before the waves arrived and after the wave passed

the particle velocity is zero. After passing the crossover point, both

compression and tension waves return to their initial shape and mag-

nitude. The response at the down middle point is shown in Figure

4.7.

c. Response at the Bottom of the Pile:

The response at the bottom of the pile is shown in Figure 4.8. The

bottom of the pile is another crossover zone. The compression wave

is reflected as a tension wave. The particle velocity is again equal

twice as either wave.

2. Pile with Cracked Section:

The crack was assumed to be in the middle of the pile as shown

in Figure 4.9. The mesh of the crack is shown in Figure 4.10.

The response on the top of the pile is shown in Figure 4.11 The

first peak is caused by the impulse. The compression wave is reflected

by the crack as a tension wave. The tension wave is then reflected

to the top boundary as a compression wave forming a second peak.

The third peak is received when a part of the compression wave is

reflected from bottom to the top of the pile.

The response in the pile above the crack is shown in Figure 4.12.

The second peak is the first reflection of the wave from the crack and

the third peak is the second reflection from the crack. The response
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at the crack is shown in Figure 4.13. The second peak is received

by both: the part of the wave reflected at the crack and the part re

fleeted at the bottom.

The response in the pile below the crack is shown in Figure 4.14.

The third peak is reflected directly from the crack. The response at

the bottom of the pile is shown in Figure 4.15. The second peak is

the reflection from the crack.

3. Pile with Void:

The mesh of the void is shown in Figure 4.16. The void is 10.2 ft

(3.1 m) below the top of the pile. The cross-area of the void is equal

to one half the total area of the pile.

The response on the top of the pile is shown in Figure 4.17. The

first peak is caused by the impulse and the second peak is caused

by a reflection wave from the void. When the compression wave

meets the upside of the void, part of the wave is reflected upward

as a tension wave (the upside of the void is a free end) and part of

the wave is retracted downward as a compression wave. When the

compression wave meets the downside of the void, which is a fixed

end it's reflected as a compression wave. Thus the second peak has a

velocity in both positive Y direction and negative Y directions. The

third peak is caused by both the tension and the compression waves

reflection at the void boundary the second time.

The response at the upside of the void is shown in Figure 4.18. Re-

sponse at the downside of the void is shown in Figure 4.19. The first

peak appears when the compression wave produced by impulse passes

the void and the second peak is the reflection at the void boundary.

The third peak is the second reflection at the void boundary and the

fourth peak is the reflection that came from the bottom.

The response at the bottom of the pile is shown in Figure 4.20. The
first peak appears when the compression wave caused by the impulse

arrives at the bottom. The second and third peak are reflections from

the void.
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Result from Low Strain Integrity Test

1. Tests at Newark, New Jersey

The 24 drilled piles were tested in Newark, NJ using the low strain

integrity test method. The impact source is a hand held hammer
which weighed 10 lb (4.54 kg). The receiver is an accelerometer

which was placed on the top of the pile. The piles diameter was

18" (0.4572 m) and the piles length was 45 ft (13.716 m). The

surrounding soil conditions are shown in Figure 4.21 and 4.22.

The test record for the pile 41 is shown in Figure 4.23. The reflec-

tion depth is equal to; (compression wave velocity * reflection arrival

time)/2.

b = (Vp * t)/2

Assuming Vp = 12,000 fps (3657.6 m/s)

The first reflection arrival was at t = 4.7 ms. Then 6 = 12, 000 x

4.7/2 = 28 ft (8.13 m) which is the depth of reflection from defect.

The second reflection arrival was at t = 26 ms thus, b = 12, 000 x

7.6/2 = 46 ft (14.02 m) which is the estimated length of a pile.

The test record for pile 47 is shown in Figure 4.24 the reflector

depth calculations are the same as that for pile 41. The first reflection

came from a defect at a depth of 16 ft (4.88 m) and the second

reflection came from the tip of the pile at depth 46 ft (14.02 m).

The test record for pile 50 is shown in Figure 4.25. The first

reflection came from a defect at a depth of 10 ft (3.048 m) and the

second reflection came from tip of pile at depth 49 ft. (14.94 m).

The test record for pile 125 is shown in Figure 4.26 which was a

pile without defects. The deflection came from tip of pile at depth

47 ft. (14.33 m).

The test record for pile 128 is shown in Figure 4.27. The first

reflection came from a defect at a depth of 16 ft (4.88 m) and the

second reflection came from tip of pile at depth 43 ft (13.11 m).

The test record for pile 130 is shown in Figure 4.28 which was

a pile without defects. The reflection came from the tip of pile at

depth 46 ft (14.02 m).
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From these results we can see the reflection peaks are less clear

than those obtained from the theory. The ones chosen were felt to

be the best curves from the lot of test data. Most of the curves were

impossible to interpret, see Figure 4.29.

2. Test at Houston, Texas:

The test location is shown in Figure 4.30. The surrounding soil

conditions are show in Figure 4.31. The pile dimensions are show in

Figure 4.32 to be; 2.5 ft (0.762 m) in diameter and 50 ft (15.24 m) in

length. Pile A is a sound pile and pile B has a defect at middle which

has a 1/4 section of the cross sectional area. Pile C has a defect at

the middle which reduces the cross sectional area by a half. Pile D
has defect at middle which interupts the whole cross-area. The test

records are shown in the following figures;

Pile A see Figure 4.33

Pile B see Figure 4.34

Pile C see Figure 4.35 and Figure 4.36

Pile D see Figure 4.37

Wave propagation measurements on pile A used a velocity trans-

ducer (natural frequency of 8-Hz) as the surface receiver. The test

was generated using a 15 lb (6.8 kg) drop hammer. The receiver

output was filtered at 2.5 kHz low pass.

Wave propagation measurement on pile B and D made use of an

accelerometer surface receiver and a drop hammer source, and was

filtered at 1.8 kHz low pass.

Wave propagation measurements on pile C used two sources: one

is drop hammer 15 lb (6.8 kg) the output see Figure 4.35 and the

other is hand hammer 5 lb (2.3 kg) the output see Figure 4.36. The
accelerometer was used as a surface receiver and it was filtered at

2-kHz low pass.

From these test results, we can see that:

a. Test measurements using a velocity transducer as the surface

receiver proved to be less successful.
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b. Test output using a lighter hand hammer as the impact source

proved to be less successful.

c. With smaller defect cross-area the reflection peak from the defect

is smaller.

3. Test at Cleveland, Ohio:

Integrity tests were performed on 136 auger cast piles. The testing

is performed by affixing a high sensitivity accelerometer to the pile

top and then striking the pile with a hand held hammer. Other

hardware used were an accelerometer power supply, amplifier, and a

portable computer capable of converting analog data to digital form.

The acceleration record created from each hammer impact was

integrated to velocity and displayed on the PC console and digitally

stored for later reprocessing.

An amplification routine is used to amplify wave reflections which

are weak due to pile and soil damping.

The output is the average of several records to separate the effects

of random noise.

The stress wave speed for all piles was assumed to be 12,500 ft/s.

The piles tested were 12 in. (0.3048 m) diameter auger cast con-

crete piles with a designed length of 30 ft. (9.14 m).

The subsurface conditions can be generally described as variable

soils which include fill (upper 5 ft.), medium dense silts, loose to

firms sands and soft to very stiff clays.

The test record for pile Al.EAST (see Figure 4.38) indicates a

sound pile. The length is 32 ft. (9.75 m).

The test record for pile Cl.EAST (see Figure 4.39) indicates that

the pile has a crack at the 5 ft. (1.5 m) level.

The test record for pile El.EAST (see Figure 4.40) indicates that

there is a 15% area reduction at 8 ft. (2.4 m).

The test record for pile A4.3A (see Figure 4.41) indicates that

there are reductions in pile diameter at 6 ft. (1.8 m) and 10 ft.

(3.048 m). From these test results we can see after the first peak

caused by hammer impact that the signal received at the top travels
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downward. The amplification routine is helpful, otherwise the second

peak reflected from the bottom of the pile would be very weak.

Questions raised by these data are:

1. The differences between the results from theory and test?

2. Which factors effected these differences?

These questions are addressed in Chapter V.
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CHAPTER 5

Analysis

The Propagation of Stress Wave in Pile-Soil System.

Since the pile is embedded in soil, the propagation of stress wave

in a pile is different from the propagation of stress wave in a rod.

First examining the wave propagation in an elastic infinite medium
suitable equations can be derived.

1. Wave Propagation in an Elastic Infinite Medium.
The wave propagation was described in Chapter 2. Using equilib-

rium of force and Newton's second law in #,?/, z directions. We can

get

d2u dax drxy drxz
pW =^ +^ + ^7 (5 ~ la)

g =^ +^ +^ (

._
lb)

at 1 ox ay az

d2w drzx drzy dcr2

dt 2 dx dy dz

in which u,v , and w are displacements in the x, y, and z directions,

respectively. The relationship between strain and stress for elastic

medium:

crx = Ae + 2Gex rxy = ryx = Gjxy (5 - 2a)

ay
= \e + 2Gey

ryz = rzy = Gjyz (5 - 2b)

gz = Ae + 2Gez rzx = rxz = Gjzx (5 - 2c)

G = 2(rb)
(5 " 3a)
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A =(T7^h^ (5 " 3b)

in which

v - Poisson's ratio

A, G - Lame's constants

and G is the shear modulus

6 = €x + €y + €z .

The relationship between strains and displacements

du

dx

dv du
7xy =

d^
+
d^

(5--4a)

dv dw dv
lyz ~ dy

+
dz

(5--4b)

dw

dz

du dw

dz dx
(5--4c)

The relationship between rotations and displacements

2UX

dw dv

dy dz
(5--5a)

2ZJy
du dw

dz dx
(5--5b)

2uJ2
dv du

dx dy
(5-- 5c)

Where uJx ,cJy , and u z are rotations about x, y, and z axes respec-

tively.

Substituting (5-2), (5-3), (5-4), and (5-5) into (5-1), we get

^ =(A+G)£ +Gv2u (5 - 6a)

^ =(A+G)
c|

+Gv2y (5_6b)
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p^ =(A+G)S +Gv2u
'

(5_6c)

where V 2
is the Laplacian operator in Cartesian coordinates:

r2 Id2 d2 d2

V' = hnr +^ +
dx2 dy2 dz 2

)

There are two solutions for the above equation. One solution de-

scribes the propagation of an irrational wave while the other de-

scribes the propagation of a wave of pure rotation. Differentiating

eqs. (5-6) with respect to x, y and z respectively and adding all three

expressions together, we get:

a2? ,. 72_

'a*
using

= {X + 2G)V z
e (5-7)

v
2

c
= 5-8

P

which is exactly the form of wave eqs.

fjl
= vl^e •

(5 - 9)

Substituting (5-3) into (5-8) we get the velocity of compression waves

in the infinite medium

v
2

P
= _„.\\,r n _, (5-io).2., E(l-u)

p(l + i/)(l - 2i/)

The other solution of the equations for motion can be obtained by

differentiating eq. (5-6b) with respect to z and eq. (5-6c) with re-

spect to y and then ehminating e by subtracting these two equations

we get

d2 (dw dv\ __o fdw dv\

using eq. (5-5a) we get:
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d2
uj x 2_

P m2
= GV Ua

v2 = ,s
\

G
P

d2Ux - V 2V 2n

(5-12)
Ol"

using

(5 - 13)

(5-14)

This is the exact wave form equation also, so vs is the velocity of

shear wave.

2. Wave Propagation in a Semi-Infinite Elastic Half Space.

Since piles are supported on the soil, the boundary conditions

approximating this situation are those of a semi-infinite half space.

If the medium is assumed homogeneous, isotropic and elastic, it is

found that there are two types of body waves - the compression

wave and the shear wave. In an elastic half space, it will be seen

that another wave, the Rayleigh wave appears. The motion of a

Rayleigh wave is confined to a zone near the boundary of the half

space. The solution for this wave was first obtained by Rayleigh

(1885) and later described in detail by Lamb (1904).

The half space can be defined as a xy plane with z assumed positive

in the downward direction (Fig. 5.1). For a plane wave traveling in

the x direction, particle displacement is independent of y direction

du dw
dy dy

and v = 0. Then, if the body force is neglected, we get the equations

same with (5-6a) and (5-6c).

(A + G)g + GV2« = p^ (5 -6a)

(X + G)^ + GV2w = p^- (5 -6c)
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u and w can be written in terms of two potential functions $ and ip:

d^ dip .

u = ^ +
a7

(5 ~ 15a)

d$ dib
w = —-^- 5 - 15b)

dz dx

The dilatation 6 of the wave defined by u and w is:

du dw d (d$ dip\ d (d$ dvj\

dx dz dx \dx dz J dz \dz dxj
= V 2$

and the rotation 2uJy in the x — z plane is

du dw d (d$ dip\ d (d§ dip\

dz dx dz \dx dz J dx \dz dx J

= vV-

Now it can be seen.that the potential functions <£ and ip have been

chosen such that <£ is associated with dilatation of the medium and

ip associated with rotation of the medium.

Substituting (5-15) into (5-6a) and (5-6b) we get:

(5- 16a)

4(£K (£)-<»«)^«-4<^
(5 - 16b)

Eqs. (5-16) are satisfied if

d^ f\ + 2G\^ ,
2

dt2
V^ = w;V^ (5 -17a)
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^ = (£) VV = v]V^ (5 - 17b)

(5-17) are wave motion eqs. Assuming a solution for a sinusoidal

wave traveling in the positive x-direction, expressions for <£ and ip

can be expressed as:

$ = F(z) exp[i(ut - Nx)] (5 - 18a)

i\> = G(z) exp[i(ut - Nx)] (5 - 18b)

The functions F(z) and G(z) describe the variation in amplitude of

the wave as a function of depth and N is the wave number denned

Li

where L is the wave length. Substituting (5-18) into (5-17) and

rearranging we get

F"(z) - (n2 - ~j F(z) = (5 - 19a)

u
2'

G"(z)- iN2 -^\G(z) = (5 --19b)

where F"(z) and G"(z) are derivatives with respect to z. If

9
2 = I TV

2 - 4 I
(5 -20a)2 _ ^'

9

4i
2 _ LJ

v 2
s

Eqs. (5-19) can be rewritten as

F"(z) - q
2F(z) =0 (5 -21a)

G"(z) - s
2G(z) = (5 -21b)
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The solutions of eqs. (5-21) are

F(z) = Ai exp(-qz) + B x exp(qz) (5 - 22a)

G(z) = A2 exp(-S2) + B2 exp(sz) (5 - 22b)

A solution that allows the amplitude of the wave to become infinite

with depth cannot be tolerated; therefore

Bi = B2 =

Then eqs. (5-18) becomes

$ = A\ exp[-qz + i(ut - Nx)) (5 - 23a)

tp = A2 exp[-sz + i(ut - Nx)] (5 - 23b)

Boundary conditions: No stress at the surface of the half-space

z = — crz = and rzx =

therefore at surface

az = Xe + 2Ge z = Xe + 2G^- = (5 - 24a)
az

_ _ (dw du\ n , m n „ .

Trl = G7..I = G (_ + _)=0 (5 -24b)

Using the definitions of u and w and the solutions for <£ and ifi

from eqs. (5-23), (5-24) can be written

°z\z=o = Ai[(A + 2G)q2 - XN2
}
- 2iA2GNs = (5 - 25a)

tzx
\
z=0 = 2iAiNq + A2 (s

2 + N2
) = (5 - 25b)

Rearranging eqs. (5-25)
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Ai (A + 2G)g2 - XN2

A2 2iGNs

Ai 2qiN

-1 =

A2 (s 2 + N2
)

adding (5-26b) to (5-26a) we get

+ 1 =

(A + 2G)q2 - XN2 2qiN

2iGNs

Cross-multiplying eqs. (5-27) we get

+ N2

(5 - 26a)

(5 - 26b)

(5-27)

AqGsN) = (s
2 + N2

)[(X + 2G)q2 - XN2

]
(5 - 28)

Squaring both sides of eqs. (5-28) and substituting (5-20) into

(5-28) we get

'2 7vr216G ZN' N' -

[(A + 2G) (n2 -
|J)

- \N2

]

2[N2 + (n2 - £)]

dividing through by G2N S
, we get

v:
(5-29)

16 1-
w

v 2N2
1- LJ

4

v 2N2
2- A + 2G' w

v 2N2
2- lj

2 \2

Recalling we define

v 2N2

(5 - 30)

*r 27r
i r 27rN = —- then L = —.

L N
Let £# and VR be the wave length and velocity, respectively, of the

surface wave, then also

VR = 2ttVr = 2tt

f lj NLR = -± =
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therefore,

cj
2

UJ
2

Let AT and a be defined such that

-2= A and -j- aiiT
K
S

V p

Then

CJ
2 nR ~2 t-2

yiM2 y2
p p

u 2 Vl

= -§ = a zK l
(5 - 31a)

y2N2 V2
= -£ = K' (5 - 31b)

a2 _ JV _ _L. - u - i^i^
( 5 _ 3ic)

V2 - A+2G ~
A + 2G

P p

Substituting eqs. (5-31) into (5-30)

A

16(1 - a2K2
)(l - K2

) =(2- \a2lA (2 - K2
)

2
(5 - 32)

a2

After expansion and rearrangement

A'
6 - SAT

4 + (24 - 16a2
)A'

2 + 16(a 2 - 1) = (5 - 33)

Eq. (5-32) can be considered a cubic equation in A"2 and real

valued solutions can be found for given values of u. The quantity A"

represents a ratio between the velocity of the surface wave and the

velocity of the shear wave.

For v = 0.5 VR = 0.9553V*.

For v = 0.25 VR = 0.9194V,.

3. The Noise of the Surface Wave
The mesh of the soil-pile interaction system is shown in Figure

5.2. The basic problem is the way in which the elastic half space
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should be considered. The real system is infinite but the ability for

calculation by the computer is limited. An assumption from soil

mechanics and foundation design is used here. The assumption is

that the effect of the soil to the pile is limited in the range of 2D (D

is pile's diameter.)

The impulse and boundary condition are the same as for a single

pile. The remesh of soil material properties is based on real materi-

als and the soil surrounding the pile is clay. The Young's modulus

is about 1250 ksf (59850ftiV/m 2
) and the density is about 90 pcf

(14.14Aj.FiV/ra 3
). The real soil is layered from top to bottom of pile

and the different soil layers have different properties. Since the effect

of the surface wave is desired a homogeneous model is used but it

isn't a one dimension model, so Poisson's ratio is considered. The

Poisson's ratio of the pile is 0.15 and the soil Poisson's ratio is 0.25.

All the data for the soil are the average taken from tables 5.1, 5.2

and 5.3.

The response at the top of the pile is shown in Fig. 5.3. It is more

close to the test result of the response on a single sound pile (see

Figure 4.28).

The effectiveness of the surface wave is reduced with depth. The

response at the depth of 5' is shown in Fig. 5.4. The noise of the

surface wave almost disappears at this depth. The test data from

Houston, Texas gives the same conclusion. The response received by

the accelerometers, which were embedded below the 5' depth, is only

slightly effected by the surface wave noise.

The existing noise of the surface wave presented the response at

the top of the soil-pile interaction system with greater complexity

than the response on the single pile since the attenuation has not

been considered yet. Considering the attenuation the reflection re-

ceived at the top of the pile may be very weak since the wave energy

is dissipated by the frictional resistance and radiation.

The existing of the surface wave in an elastic half space is the one

important reason to make a difference between the field test results

and one-dimensional wave propagation theory.
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4. The Effect of Soil

a. Unhomogeneous

The real soil medium is not homogeneous which is assumed in the

theory but rather it is usually layered. It has been shown that elastic

waves will be at least partially reflected at an interface between two

media, and if horizontal layering occurs in a half-space (as shown in

Fig. 5.5) some energy originating at the surface and traveling into

the half-space will return to the surface. If more than one interface

exists, waves may be reflected back to the surface from each layer

interface.

These reflections and refractions can make the records very com-

plex, but fortunately the P-wave propagation velocity in soil is much

less than it is in concrete. Thus the reflection from the bottom of

the pile arrives at the top of the pile much earlier than those which

come from soil as shown in Table 5.4. The response at the top of

the pile soil medium that is meshed using different layers is shown

in Fig. 5.6. Comparing Fig. 5.6 with Fig. 5.3 we can see that they

are similar.

b. The Friction Between Pile and Soil

When waves propagate in a rod, the compression wave is reflected

at the bottom of the rod as a tension wave with the same magnitude

according to theory. The real situation of wave propagation in a

pile-soil system is different since there is friction between the pile

surface and the soil and this friction reduces the wave energy. The

reflection that is received at the top of the pile is thus, much smaller

then that computed by the theory.

The Cracker Program doesn't consider the friction between the

pile surface and soil but this has proved to be an important factor

which effects the accuracy of the test.

A principle which is often used in structural mechanics is used

here. Separate the pile from the pile-soil system. Then the inter-

action between pile and soil acts on the pile side surface as a shear

stress (see Figure 5.7).

The shear stress along the pile surface is to model the friction.
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The mesh is shown in Fig. 5.8.

The response on the top of pile with uniform shear stress 0.005

lb/in2 (0.0344 kN/m2
) along the side surface is shown in Fig. 5.9.

The response on the top of the pile with uniform shear stress 0.01

lb/in2 (0.06S95 kN/m2
) along the side surface is shown in Fig. 5.10.

The response on the top of pile with uniform shear stress 0.05

lb/in2 (0.344 kN/m2
) along the side surface is shown in Fig. 5.11.

The response on the top of the pile with different shear stress along

the side surface is shown in Fig. 5.12.

Comparing these Figures we can see: a) that with increasing fric-

tion, the magnitude of the reflection is reduced, b) different soil layer

has different coefficient of friction, which effects the response on the

top of the pile.

5. The effect of defect cross area

The mesh for four different defect cross area pile models are shown

in the following figures;

Pile with 1/4 defect cross area - see Fig. 5.13

Pile with 1/2 defect cross area - see Fig. 5.14

Pile with 3/4 defect cross area - see Fig. 5.15

Pile with whole defect cross area - see Fig. 5.16

The pile's diameter is 18 in. (0.4752 m), the piles length is 45 ft.

(13.716 m), which is the same as the test pile in Texas.

The response on the top of the pile with 1/4 defect cross area is

shown in Fig. 5.17. The peak of the reflection came from defeat

(second peak) is equal to 1/2 of peak caused by impulse (first peak).

The response on the top of the pile with 1/2 defect cross area is

shown in Fig. 5.18. The .peak of the reflection came from defect

(second peak) is equal to the peak caused by impulse (first peak).

The response on the top of the pile with 3/4 defect cross area is

shown in Fig. 5.19. The peak of the reflection came from defect

(second peak) is equal to 3/2 of the peak caused by impulse (first

peak).
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The response on the top of the pile with whole defect cross area

is shown in Fig. 5.20. The peak of the reflection came from defect

(second peak) is equal to two of the peaks caused by impulse (first

peak). According to the theory the response returning from a defect

to the top of the pile is proportional to the defect cross area.

According to the test data (in Texas), the received reflection on the

top of the pile with 1/2 defect cross area is equal to that coming from

a pile with an interruption in the entire cross section. The received

reflection at the top of the pile with a 1/4 defect cross area is unclear.

This indicated that the defect cross sectional area is another factor

which effects the accurate of the test.

6. Continuous Medium
Estimating P-wave velocity is important when testing the pile in-

tegrity. After knowing P-wave velocity and the receiving time then

the length of the pile can be known according to the one dimension
•2 .. E
P p-

modulus of elasticity Ec can be computed:

wave propagation theory VI = —
. According to concrete theory the

Ec = 33W
c

L5
v7c (ACI Code)

(Wc = 90tol55pcf)

Ec = 57000^ (Wc = 145pc/)

Ec = (40, OOOVT'e 4- 1, 000, 000) (WC/145)
L5

)

(Based on recent research

at Cornell University)

These values are based upon the assumptions that the concrete

compressive strength is the range of 4000 psi (27.6MPa/m2
) and

the unit weight Wc is 145 pcf (22.78/ciV/ra3
). (These are typical

data for concrete.)

Then Vp = 10600 ft/s (3231 m/s).

According to some test measurements shown on Table 5.5 and Ta-

ble 5.6. The measured P-wave velocity is greater then the calculated

P-wave velocity. This difference from that of the theory is due to the

one dimension wave propagation and the real pile is in a half-space
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medium.

a. Poisson's Ratio

When waves propagate in a infinite continuous or half-space medium

and then the P-wave velocity is computed the Poisson's Ratio must

be considered by formula (5-10).

VP =
E (I-*)

^p(l + i/)(l-2i/)

Using v = 0.15, Vp = 11920 ft/s (3411 m/s) the results are closer

to the measurements.

b. P-wave velocity is increased with the depth

When waves propagate in soil the velocity of wave is not a con-

stant. Some data test from China done by the author is shown in

Fig. 5.21 and Fig. 5.22. These curves shown the shear wave velocity

is increased with increases in depth. Since there is relationship be-

tween shear wave velocity and compression wave velocity we assume

that the compression wave velocity is increased with the depth. For

soil it's easy explain since the soil properties E, v are changed with

the depth with E generally increasing with depth. But the concrete

properties should be constant, then the question is why is the p-

wave velocity increased with the depth, as shown in the test data

at Houston, Texas, (see table 5.7). Since the piles are embedded

in soil there is interaction between pile and soil. When the elastic

modulus of the soil is increased then the combined P-wave velocity

is increased. This also explains increased measured velocity as com-

pared to the computed velocity. Fig. 5.21 and Fig. 5.22 shows that

the increase is not linear. The details and the reason need further

studies.
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CHAPTER 6

Conclusions and Recommendations

1. The principle for low strain pile integrity test is technically cor-

rect. It is based on the one dimension wave propagation and has

been proven by both the Finite Element Method analysis and by

field testing. It is a simple economical and rapid test procedure

which increases its practical usage.

2. There are however, factors which effect the accuracy of the test

results. The most important factors are: the noises of surface

waves and the friction between the pile's side surface and the

soil.

3. The surfaces waves extend to depths of no more than 5 feet (1.52

m) below the surface of the ground. Two methods could be used

to avoid this disturbance. One is embedment of the receiver

below a depth of 5 ft. (1.52 m) and the second method would be

by usage of a filter. This method requires a very careful selection

of the frequency of the filter.

4. The friction effects the magnitude of reflection received on the

top of the pile. Amplification equipment can be used to increase

this signal. Piles are surrounded by soil with high friction coef-

ficients dampen the wave and greatly weaken the reflections. In

these soils high strain pile integrity test is recommendated.

5. For estimating the P-wave propagation velocity prior to testing

it's recommended that the formula which is used for wave propa-

gate in continuous medium be used. Since it agrees more closely

to the field measurements.

6. The wave velocity propagated in a continuous medium is not a

constant. It increases with the depth and the increase is non-

linear. The reason and the details need to be further studied.
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7. The magnitude of reflection at the top of the pile is also pro-

portional to the defect cross sectional area. When the defect is

small it is very difficult to interpret the reflected signals and thus

to discover the defect.
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Typical range of values for the static stress-strain

modulus E, for selected soils

Field values depend on stress history, water content, density, etc.

E,

Soil ksf Mpa

Clay

Very soft 50-250 2-15

Soft 100-500 5-25

Medium 300-1000 15-50

Hard 1000-2000 50-100

Sandy 500-5000 25-250

Glacial till

Loose ;0O-3200 10-150

Dense 3000-15000 150-720

Very dense 10000-30000 500-1440

Loess 300-1200 15-60

Sand

Silty 150-450 5-20

Loose 200-500 10-25

Dense 1000-1700 50-81

Sand and gravel

Loose 1000-3000 50-150

Dense 2000-4000 100-200

Shale 3000-300000 150-5000

Silt 40-«X) 2-20

Table 5.1

Values or value ranges for Poisson's ratio a

Type of soil H

Clay, saturated 0.4-0.5

Gay, unsaturated 0.1-0.3

Sandy clay 0.2-0.3

Silt 0.3-0.35

Sand, gravelly sand -0.1-1.00

commonly used 0.3-0.4

Rock 0.1-0.4 (depends somewhat on

type of rock)

Loess 0.1-0.3

Ice 0.36

Concrete 0.15

Table 5.2
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Table 5 3TypicaJ values of void ratios and dry unit weights for granular soils

Void ratio*

Dry unit weight y^

Minimum Maxinturn

Soil type Maximum Minimum lb/ft
1 1 kN/m • lb/ft

3 kN/m J

Gravel 0.6 0.3 103 16 127 20

Coarse 0.75 0.35 95 15 123 19

sand

Fine sand 0.85 0.4 90 14 118 19

Standard 0.8 0.5 92 14 110 17

Ottawa

sand

Gravelly 0.7 0.2 97 15 138 22

sand

Silty sand 1 0.4 83 13 118 19

Silty sand 0.85 0.15 90 14 144 23

and

gravel

Table 5 • 4 Velocities of Compression Waves v
e
and Shear Waves u,f

Soil p,kg x s
:/cm4

oc ,m/s o.-m/s

Moist clay 1.8 x I0
-4 1500* 150

Loess at natural moisture 1.67 x 10"* 800 160

Dense sand and gravel 1.70 x 10"* 480 250

Fine-grained sand 1.65 x 10
-4 300 tto

Medium-grained sand 1.65 x 10
-4 550 160

Medium-sized gravel 1.8 x 10
-4 750 180

t Alter Barkan (1962).

I This value is close to the velocity of wave propagauon in water.
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Compression Wave Velocity

ft/sec m/sec

Above 15,000

12,000 to 15,000

10,000 to 12,000

7,000 to 10,000

Below 7,000

Above 4570

3660 to 4570

3050 to 3660

2133 to 3050

Below 2130

General Conditions

Excellent

Good

Questionable

Poor

Very Poor

Table 5.5 Compression Wave velocity (Malhotra, 1976)

P-Wave Velocity,
fps

E, psi** General Condition

Above 13,500

10,800 to 13,500

9,000 to 10,800

6,300 to 9,000

Below 6,300

5.90

3.77 to 5.90

2.62 to 3.77

1.28 to 2.62

1.28

Excellent

Good

Questionable

Poor

Very Poor

*Assuming wavelength is greater than two times diameter of pier
**Assuming of concrete equals 150 pcf

Table 5.6 Compression Wave Velocity (Harrell , 1984)

58



Compression Wave Velocity
Receiver ft/sec
Depth Direct Interval

10 13,510 13,700

20 13,610 13,330

30 13,510 14,290

40 13,700

Avg. 13,580

Table 5.7 Compression Wave Velocity vs. Depth
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Fi». 3.4 Pile Location

Fig. 3.5 Boring of the Piles
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Fi<^. 3.7 Concrete Emplacement

Fig. 3.6 The Excavated Bore Hole after Completion
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Fig 3.8 Concrete Mixer Used to form Pile

Fig 3.9 Test Piles
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Fig. 3.10 Preparing the Surface of the Pile
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Fig. 3.12 Impacting the pilpile

Fig 3.13 Electronic Pile Test Equipment
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Fig. 4.9 Crack Position
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Fig. 5.1 Coordinate Convention for Elastic Half-Space
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734 FOUNDATION ANALYSIS AND DESIGN

Embedment
|
In point bearing

in I soil stratum and/or stratified soils

, wsj-w
This stratum defines

L
y
case I. case 2, and case 3

for Table 16-3

In any stratum

P» = A,f,

\ A, = perimeter x AL
Li
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1

l_

r
1

H-pile

[.; ',/.

Minimum

Square or rectangle

s,

p~

(a)

Pipe with or

without concrete

<*>

(a) General development of pile capacity in either single or stratified soil mass: also pile senmcrri

defined, (b) Qualitative zone of interest for ultimate point capacity.

Fig. 5.7 Shear Stress Acts Along the

Side Surface of a Pile

121



/

h

s
X

a

I

Fig. 5. 8 Mesh of Shear Stres

122



NODE NUMBER 255
o

X

. 000-

>
I—
I—

I

CJ

o -0 . 200+

tu

>

>" -0 . 400-[-

-0 . 600-1-

. 020 . 040 . 060

TIME

0.084

rfxlO

0.100

-1

Fig. 5.9 Responce on the Top of the Pile with Uniform

Shear Stress 0.005. lb/in
2

( . 3 44. O /M
2

)

along the side surface

123



NODE NUMBER 255
0.200T

-0 . 600-1-

Fig. 5.10 Responce on the Top of the Pile with Unifori
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Fig. 5.17 Responce on the Top of the Pile with 1/4

Defect in the Cross Sectional Area

131



NODE NUMBER 255
o

X

I—

CJ.

o

LU

>

0.200--

-0.200

-0.400--

0»100

Fig. 5.13 Responce on the Top of the Pile with 1 2

Defect in the Cross Sectional Area

132



o
X

NODE NUMBER 255
0.200

>
I—
I—

i

cj

o

LU

>

-0.400--

0\l00

-0 . 600^

Fig. 5.19 Responce on the Top of Che Pile with 3/

Defect in the Cross Sectional Area

133



©^ NODE NUMBER 255

0.000

>

O
-0 . 200

LU

>-

-0.400--

-0.600--

00<j) 0.020 O.OMO » 0.060 0.080

I
TIME

m
'0. 100

(xiO
-1

Fig. 5. 20 Responce on the Top of the Pile with Whole

Defect in the Cross Sectional Area

134



/OO fzH 140 160 /SO ZOO 220 Vs

4

6

8

I0\

IZ

14

16

IB

20

21

24

26

28>

50

32

CM/szJL)

TtfCM)

Fig. 5.21 Velocity of Shear Wave vs. Dep.h

( Up- Down Hole Method )

135



fOQ 120 140 /60 'SO 200 220 2&Q Vj

8

to

12

'4

/6

IQ-

20-

22-

24-

26-

28-

30-

52

\H(Ml

<.*/s*jz)

Fig. 5.22 Velocity of Shear Wave vs. Depth

( Cross Hole Method )

136



THE EFFECT FACTORS OF THE PILE INTEGRITY TEST

by

Xiaoming Zhu

B.S. Tongzi University, 1982

M.S. Tongzi University, 1985

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

19S9



ABSTRACT

This paper applied the Finite Element Method to analyse the low

starin pile integrity test, which is based on one-dimension wave prop-

agation theory.

Meshing different pile-soil system, including load conditions, bound-

ary conditions, material properties and changed cross-section area,

the calculated results from two-dimension finite element methods are

obtained by using CRACKER computer program.

The calculated results were compared with the test results from

Ohio, New Jersey and Texas. Analysing the wave propagation, it

was found that the surface wave noise and the friction between pile

and soil are the most important effect factors. This explains the

difference between the theory and the field test results of the piles.

The wave velocity in the pile-soil system was found not to be a

constant. A suggested formula is given in this paper which is closer

to the measured wave velocity.






