
s» I

CLASSIFYING PROGRAM CHANGES
DURING SOFTWARE DEVELOPMENT

by

Yu-Hua Hsu

B.S., Central State University, 1984

A MASTER'S THESIS

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

Approved by:

Major Professor

TABLE OF CONTENTS *

cxloloa

.T4

Cl^SC Page

m?
LIST OF TABLES i

LIST OF FIGURES iv

ACKNOWLEDGMENTS vi

CHAPTER ONE . INTRODUCTION 1-1

CHAPTER TWO . DATA COLLECTION 2-1

2 . 1 SELECTION OF PROGRAMS TO BE ANALYZED 2-1

2 . 2 UTILITY PROGRAMS FOR DATA COLLECTION 2-2

2.2.1 COUNT 2-3

2.2.2 NESTING 2-3

2.2.3 TYPEPGM 2-4

2 . 3 MAIN PROGRAM FOR DATA COLLECTION 2-5

2.3.1 Calculating Occurrence of Statement

Types 2-8

2.3.2 Pretty-Printing a Program 2-9

2.3.3 Summing the Indentation Level 2-9

2.3.4 Finding the Differences 2-9

2.3.5 Extracting the Changed Statements 2-10

2 . 4 DISCUSSION 2-11

CHAPTER THREE. CLASSIFICATION OF PROGRAM CHANGES3-1

3 .

1

PRELIMINARY ANALYSIS 3-1

3 .

2

DETAILED ANALYSIS 3-3

Page

3.3 DISCUSSION OF THE CLASSIFICATION OF PEOGRAM

CHANGE PATTERNS 3-5

3.3.1 Debugging 3-5

3.3.2 Documentation 3-5

3.3.3 Correction 3-7

3.3.4 Pretty-Printing 3-8

3.3.5 Reconstruction 3-9

3.3.6 Removing Documentation 3-13

3.3.7 Removing Functionality 3-13

3.3.8 Adding Functionality 3-15

3.3.9 Removing Debugging 3-15

3.3.10 Redistribution 3-17

3.4 ADVANTAGES OF PROPOSED CLASSIFICATION 3-17

CHAPTER FOUR. CLASSIFICATION RULES 4-1

4 . 1 PROBIT 4-2

4.2 QUANTITATIVE STUDY ON THE CLASSIFICATION 4-4

4.2.1 Debugging 4-4

4.2.2 Documentation 4-6

4.2.3 Correction 4-7

4.2.4 Pretty-Printing 4-8

4.2.5 Reconstruction 4-8

4.2.6 Removing Documentation 4-9

4.2.7 Removing Functionality 4-10

4.2.8 Adding Functionality 4-11

P§3e

4.2.9 Removing Debugging 4-12

4.2.10 Redistribution 4-13

4 .

3

INTUITIVE RULES 4-14

4.4 EXAMPLE 4-17

4.4.1 Identifying Program Change Patterns4-18

4.4.2 Analyzing Program Changes 4-21

CHAPTER FIVE. CONCLUSIONS AND EXTENSIONS 5-1

LITERATURE CITED L-l

APPENDIX A. SOURCE CODE OF SAMPLEPR0GRAM1 A-l

APPENDIX B. SOURCE CODE OF SAMPLEPR0GRAM2 B-l

APPENDIX C. SOURCE CODE OF COUNT PROGRAM C-l

APPENDIX D. SOURCE CODE OF NESTING PROGRAM D-l

APPENDIX E. SOURCE CODE OF TYPEPGM PROGRAM E-l

APPENDIX F. SOURCE CODE OF CHANGES PROGRAM F-l

APPENDIX G. SOURCE CODE OF PICK PROGRAM G-l

APPENDIX H. SOURCE CODE OF SEP PROGRAM H-l

APPENDIX I. SOURCE CODE OF VERSION 1 OF EXAMPLE 1-1

APPENDIX J. SOURCE CODE OF VERSION 2 OF EXAMPLE J-l

APPENDIX K. SAMPLE OUTPUT FROM PROBIT FOR QUANTITATIVE

ANALYSIS OF DEBUGGING K-l

LIST OF TABLES

Page

CHAPTER 2.

Table 2.1 Results of COUNT program for

Sampl ePrograml 2-18

Table 2.2 Results of NESTING program for

Sampl eProgram2 2-19

Table 2.3 Results of TYPEPGM Program for

Sampl ePrograml 2-20

Table 2.4 Listing of Ma i n .resu I ts for

Sampl ePrograml and Samp I eProgram2 2-21

Table 2.5 Summary of the elapsed times for executing

the 64 pairs of programs and the average

sizes of respective pair of programs2-25

Table 2.6 Sample data represented in Excel; the data

reveal the difference between a pair of

programs 2-26

CHAPTER 3.

Table 3.1 Sample data collected for preliminary

analysis steps (1) and (2). Rows 1 to 23

are obtained from a pair of non-pretty-

printed program; rows 24-41 are from the

same pair of program after they are both

Page

pretty-printed 3-20

Table 3.2 Sample data collected for preliminary

analysis steps (3) and (4)
3-21

Table 3.3 The Classification of changes and

its description 3-22

CHAPTER 4.

Table 4.1 Increasing of OUTPUT statements between

two versions of a program 4-24

Table 4 . 2 Input data for PROBIT analysis of

Debugging . 4-25

Table 4.3 Increasing of COMMENT statements between

two versions of a program 4-26

Table 4.4 Result of PROBIT for quantitative

analysis of Documentation 4-27

Table 4.5 Data reflecting the activity of

Correction 4-28

Table 4.6 Result of PROBIT for quantitative

analysis of Correction 4-29

Table 4.7 Result of PROBIT for quantitative

analysis of Pretty-printing 4-30

Table 4.8 Data reflecting the activity of

Reconstruction 4-31

Table 4.9 Input data for PROBIT analysis of

Reconstruction 4-32

ii

Page

Table 4.10 Result of PROBIT for quantitative

analysis of Reconstruction 4-33

Table 4.11 Decreasing of COMMENT statements between

two versions of a program 4-34

Table 4.12 Result of PROBIT for quantitative

analysis of Removing documentation 4-35

Table 4.13 Data reflecting the activity of Removing

functionality 4-36

Table 4.14 Result of PROBIT for quantitative

analysis of Removing functionality 4-37

Table 4.15 Data reflecting the activity of Adding

functionality 4-38

Table 4.16 Result of PROBIT for quantitative

analysis of Adding documentation 4-39

Table 4.17 Decreasing of OUTPUT statements between

two versions of a program 4-40

Table 4.18 Result of PROBIT for quantitative

analysis of Removing debugging 4-41

Table 4.19 Data reflecting the activity of

Redistribution 4-42

Table 4.20 Input data for PROBIT analysis of

Redistribution 4-43

Table 4.21 Result of PROBIT for quantitative

analysis of Redistribution 4-44

iii

LIST OF FIGURES

Page

CHAPTER 2.

Figure 2.1 Data-flow diagram for the program

CHANGES 2-7

Figure 2.2 Program differences represented in a bar

chart in terms of various statement types

and lines of code 2-15

Figure 2.3 Program differences represented in a bar

chart in terms of normalized indentation

level 2-16

Figure 2.4 Program differences represented in a bar

chart in terms of various statement types

and lines of code; the programs was

pretty-printed before comparison 2-17

CHAPTER 3.

Figure 3.1 Sample program change data set belonging

to a program under debugging,

documentation and correction 3-6

Figure 3.2 Sample program change data set belonging

to a program under pretty-printing 3-10

Figure 3.3 Sample program change data set belonging

to a program under reconstruction 3-12

iv

Page

Figure 3.4 Sample program change data set belonging

to a program under removing documentation

and removing functionality 3-14

Figure 3.5 Sample program change data set belonging

to a program under adding functionality

and removing debugging 3-16

Figure 3.6 Sample program change data set belonging

to a program under redistribution 3-18

CHAPTER 4.

Figure 4.1 Graphic representation of the intuitive

rules to guide the use of the

classification in change analysis of

a program 4-15

Figure 4.2 Program differences represented in a bar

chart in terms of various statement types

and lines of code 4-19

Figure 4.3 Program differences represented in a bar

chart in terms of normalized indentation

level 4-20

Figure 4.4 Program differences represented in a bar

chart in terms of various statement types

and lines of code; the programs were

pretty-printed before comparison 4-22

v

ACKNOWLEDGMENTS

The author wishes to express her gratitute and sincere

thanks to Dr. David A. Gustafson for his continuous

guidance throughout the course of this research and

thesis. Thanks are also due to the members of the

advisory committee, Dr. Elizabeth A. Unger and Dr. Austin

C. Melton.

The author dedicates this work to her parents, Mr. and

Mrs. C. K. Hsu. Without their love and encouragement,

this work could never have been accomplished. Last but

not least, she thanks her husband, Yeewei Huang, for his

patience and suggestions.

vi

.

CHAPTER ONE

INTRODUCTION

Development is the central phase in the software

design life cycle; it absorbs at least 75 percent of the

cost of a piece of new software (program) [Pressmanl982]

.

Decisions made in this phase will ultimately affect the

success of the implementation and maintenance of the

software. In spite of the importance, the management of

software development is very difficult. Preset schedules

and completion dates for a software system can seldom be

kept. The quality of the system more often than not

becomes suspect as its size grows. These difficulties can

be attributed to the limited amount of historical data

available to guide a software manager in controlling the

progress of the software development project. Therefore,

the ability to identify and evaluate the historical data

of a program during its development phase is urgently

desired; it renders the manager of a software development

team able to not only monitor the quality of the program

but also regulate the software development cost and

schedule.

Traditionally, the quality of software development

can be monitored by the technique of complexity measures.

This technique tries to measure human factors that affect

software development. Two classical complexity measures

are McCabe's Complexity Measure [McCabel976] and

Halstead's metrics [Halstead 1977]. While both measures

are sophisticated and mathematically sound, neither

provides a vehicle for a quick estimation of the progress

of software development.

Dunsmore and Gannon [Dunsmorel977] had a very

different view on estimating software complexity. They

proposed a measure of complexity to be the number of

"program changes" that must be made from the initial

version of a program until it is in a final form. The

same concepts were found to be employed later in analyzing

the style of C programs [Berryl985] and in evaluating

software development [Weissl985]. Recently, Lanchbury

[Lanchburyl986] proposed a model to evaluate the progress

of a program during its development cycle. The model is

empirically oriented; it derives software code change

patterns from a successful project. The model aids a

software manager to monitor the change pattern of a

program.

The purpose of this work is to propose a change

classification and a set of intuitive rules for effective

evaluation of the program change patterns during software

development. The work is basically an extension of

Lanchbury 's work. It is important that a software manager

1-2

sees and interprets the pattern changes during software

development. The intuitive rules are designed to

facilitate the interpretation of those changes.

In addition to this chapter, this thesis contains 4

chapters. Chapter 2 delineates the nature of the program

change data selected to be analyzed and the procedures to

collect these data. Chapter 3 presents qualitatively the

process of classifying the program change data. This is

followed by a quantitative discussion of the

classification in Chapter 4. The discussion also leads to

the proposal of a set of intuitive rules for program

progress analysis using the pattern classification.

Concluding remarks and recommendation to future work are

given in the last chapter, Chapter 5.

1-3

CHAPTER TWO

DATA COLLECTION

The changes in a program, occurring during the

software development stage, can be analyzed based on

several types of data pertinent to the program. Measures

for determining the progress of the software development

are extracted from the analyzed results. A software

manager can use these measures to evaluate the progress of

a program during its development stage.

This chapter discusses the collection of data. The

nature of the sample programs under examination is

discussed in the first section. This is followed in the

second section by a description of some utility software

employed in this work. In the third section, the program

CHANGES is presented in detail. CHANGES takes a pair of

programs as the inputs and yields the file, ma i

n

. resu I ts

,

as the output; the output file contains data about the

differences between the input program pair. A discussion

on the organization of this data is given in the last

section.

2.1 SELECTION OF PROGRAMS TO BE ANALYZED

All the programs analyzed in the present work were

written in the programming language C in the Unix

2-1

environment. The programs were written by undergraduate

students in a fundamental software engineering class

(course number CMPSC541, one of the core courses in the

undergraduate curriculum in the Department of Computing

and Information Sciences at Kansas State University)

.

Software design methodologies were taught in the class.

Students were asked to design a program based on those

methodologies. Successive versions of the same program

were saved during the course of development; they served

as the sample programs.

A pair of programs, which are two different versions

of the same program, are selected for analysis; more than

sixty pairs of programs have been analyzed in this study.

Programs are paired based on their size and coding date.

Intuitively, two programs with the smallest differences in

size and coding dates are successive versions of a

program; they are grouped as a pair.

2.2 UTILITY PROGRAMS FOR DATA COLLECTION

Three utility programs, namely COUNT, NESTING,

TYPEPGM, were designed as C-shell programs in Unix; each

of these programs is a complex awk program. Awk is a Unix

data manipulation tool [Bournel987] ; it is a pattern

matching language and report generator. The three

2-2

programs are described individually in the following sub-

sections.

2.2.1 COUNT (usage: awk -f COUNT programf i I e)

COUNT counts the indentation levels for each line of

statement in a program. The input program must be in a

file designated by programf i I

e

. Programf i I e must be in a

pretty-print format; this can be achieved by preprocessing

programf i I e using the Unix command cb. The result of

COUNT is stored in a file, countflle. As an example,

Appendix A is a sample C program, named Samp I ePrograml ,

whose indentation levels are obtained by the utility

program COUNT and reproduced in Table 2.1. The source

code of COUNT is given in Appendix C.

2.2.2 NESTING (usage: awk -f NESTING countflle)

NESTING takes the output file of COUNT, designated by

countf 1 1 e , and yields the statistics of the indentation

levels of a program. The statistics are stored in an

output file; they include the total number and the

percentage of each indentation level. The latter is

calculated by

percentage of level N indentation
= (total number of level N indentation * 100)

/ total number of lines of code.

Moreover, the average indentation level of the count f 1 1

e

is defined as

2-3

indentation level
= (zero + one*2 + two*3 + three*4 + four*5

+ five*6 + six*7) * 100
/ total number of lines of code.

where zero, one, ..., represent the total numbers of

indentation level zero, one, ..., respectively. Table 2.2

illustrates the indentation statistics of Sampl eprograml

in which Zeroave denotes the percentage of level zero

indentation, Oneave denotes that of level one indentation,

etc. The source code of NESTING is given in Appendix D.

2.2.3 TYPEPGM (usage: awk -f TYPEPGM programf i I e)

TYPEPGM calculates the total number of occurrences of

each statement type in the program in the file,

programf i I

e

. Nineteen (19) statement types have been

defined. "For . .
.

" , "while . .
. " , and "if ..." are

examples of different statement types; a complete list of

statement types are shown in Table 2.3. The program can

be in either pretty-print format or any other free-style

format . The total number of statements in the program is

also recorded. Each line in the program is analyzed and

the type is recorded. The weight of the program is

calculated according to the following formula

[Gustafsonl985]

,

weight = 18.4 * count ["declaration"

]

+ 11.4 * count["if"]
+ 7.9 * count ["for"]
+ 8.5 * count ["while"]
+ 6.8 * count ["switch"]

2-4

+ 5.6 * count ["case"

]

+ 4.6 * count ["preprocessor"

]

+ 11.1 * count ["goto"]
+ 2.4 * count ["comment"

]

in which the weighting of each statement type is defined

based on the frequencies of change of individual statement

types. Note that only 9 out of the 19 statement types are

found in the formula above. This is based on the previous

research result which found that the remaining 10

statement types changed in negligible frequencies compared

to those listed. Subsequent research in the maintenance

phase (Anl987) has shown that the program weight is

correlated to changes during maintenance. The average

weight of an input program is also obtained in TYPEPGM; it

is calculated by [Gustafsonl985]

average weight = weight / total number of lines
of code

Table 2.3 gives the result of processing Samp I ePrograml

using TYPEPGM. The source codes of TYPEPGM are given in

Appendix E.

2.3 MAIN PROGRAM FOR DATA COLLECTION

A C-shell program, CHANGES, is constructed to combine

the utility programs described in the preceeding sections

with Unix data manipulation tools and C-shell commands in

collecting data for program change analysis. The data

manipulating tools in use are

2-5

diff find the differences between two files,

grep match patterns in a set of files, and

sed edit a stream.

The C-shell commands employed include:

echo echo a message.

cb beautify a program into an appropriate

indentation format.

More details on the Unix data manipulation tools and C-

shell commands can be found elsewhere (see, e.g., Bourne,

1987)

.

CHANGES takes two programs as inputs and generates an

output file containing information of individual input

files and of the differences between the input files. The

command

CHANGES program) program2

invokes the execution of the program CHANGES. Note that

for the best results program] and program! should be

chosen based on the criteria discussed in section 2.1.

Figure 2.1 depicts a data flow diagram of CHANGES whose

complete listing is given in Appendix F. The processes

found in the data flow diagram are

Calculating Occurrence of Statement Types,

Pretty-Printing a Program,

Summing the Indentation Level,

Finding the Differences, and

2-6

STATEMENTS
OF VERSION 1

main.results

STATEMENTS
OF VEfSION

STATEMENTS
CF VERSION

STATEMENTS
OF VERSION 2

STATMENTS
OF VEfSION 2

NUMBER OF
INDENTATION

Figure 2. 1 Data-flow diagram for the program CHANGES.

2-7

Extracting the Changed Statements. .

The function of each process is explained, respectively,

in each of the following sub-sections.

2.3.1 Calculating Occurrence of Statement Types

This process counts the total number of occurrences

of various types of statements in an input program by

using the utility program, TYPEPGM. The sed command is

used inside the process to perform a global stream editing

before TYPEPGM is executed. To be exact,

sed 's/'V " /g
•/)/) /g
s/{/ {/g'

substitute globally """ with " " " , "}" with "} " , and " {"

with " {". This assures that the key word of each

statement type would not be obscured by some leading or

trailing symbols. For example, a statement

(if (NF == 0) (if ...

will be transformed into

{ if (NF ==0) { if ...

where in the latter statement, the statement key word "if"

can be read clearly by TYPEPGM. In this process, the

input program pair are processed independently; the

results are saved in the ma I n . resu I ts file.

2-8

2.3.2 Pretty-Printing a Program

This process pretty-prints an input program by using

the Unix C-shell command, cb. Specifically, it employs

the command

cb <old-file> new-file.

Again, the input program pair are processed individually.

The output of this process, new-f i I e , is ready to be used

as an input for the utility program COUNT.

2.3.3 Summing the Indentation Level

This process uses two awk programs described in

section 2.2, namely, COUNT and NESTING. By executing

awk -f COUNT </ nput-program> | awk -f NESTING,

the process counts the indentation level for each line of

code and yields the statistics of the indentation levels

of the input program. The results of this process are

also saved in the file ma I n

.

resu I t s

.

2.3.4 Finding the Differences

This process finds the differences between two

versions of the same program by using Unix data

manipulation tools, diff and grep. The former finds the

differences between a pair of input files. For example,

diff -e programf i I el programf I I e2

2-9

lists lines that must be changed in programf i I el to bring

it into agreement with programf i I e2 . The option "-e"

renders the results be recorded in a script of a, c and d

commands where a means "statement added", c means

"statement changed", and d means "statement deleted";

these commands, when used in the Unix editor ed , will

recreate programf i I e2 from programf I I el . By piping the

results of dlff to grep, or more specifically,

diff -e programf i I el programf i

I

e2|grep '"[0-9]*.

The differences between programf i I el and programf i I e2 are

captured in a set of change indexes, each of which is a

line in the format of

line#[a|c]

or

linestart#,lineend#d

where the former implies some codes have been added after

line number line# or the specified line has been changed

in programf 1 1 el , and the latter implies that lines number

linestart# to lineend# have been deleted in programf i I el

.

The results of this step are not saved; instead, it is

directly piped to the following process.

2.3.5 Extracting the Changed Statements

This process has two inputs. One is a program, e.g.,

programf i I el ; the other is the change indexes of the

2-10

program. To facilitate the extraction of changed

statements from the input program based on the change

indexes, those indexes obtained via the process "Finding

the Difference" need to be pre-processed by the sed

command followed by an awk program. This awk program re-

presents each change index in a line expression of the

format

NR == NR# {print " [a| b| c |d] " , $0 ;i=l}

where NR# is the line number of the statement that has

been modified (added, blank, corrected, or deleted) . The

change indexes in their line expression format are

temporarily stored in the file, result. By executing

awk -f result programf i I el ,

all statements that have been modified will be collected,

while each statement is prefixed by an appropriate label,

a, c, or d. To complete the extraction of changed

statements, the prefixed statements are piped to another

awk program; this awk program singles out those statements

prefixed with c and stored them in a file, temp. Temp is

in turn processed by sed command, and the result is stored

in the file, final, which is the output of the process.

2.4 DISCUSSION

Sixty-four pairs of programs have been analyzed in

the present research; each pair of the programs belongs to

2-11

one of twelve different programs designed by eight teams.

After a pair of program is processed by CHANGES as

described in section 2.3, the results are appended to the

file, mai n. results. Table 2.4 is a sample listing of

mai

n

.resu Its which contains the results of analyzing one

pair of programs. (Source Codes for two programs are

given in Appendices A and B respectively.) Notice that

the listing is divided into four blocks separated by

double broken lines. The first block of data are

statistics for the first program of the program pair. The

second block of data are statistics for the second

program. The third block of data are statistics for the

changes found in the program pair with both programs being

pre-processed by the command cb. The fourth block of data

are statistics for the changes found in the program pair

without each program being pre-processed by the command

cb.

The elasped time for executing a pair of programs

depends on the average size of the program pair. The

larger the average size, the longer the elasped time.

Table 2.5 summarizes elapsed times for executing different

pairs of programs and the average sizes of respective pair

of programs.

The data obtained in the VAX Unix environment have

been transferred to an Apple Macintosh personal computer

2-12

for further analysis. Two awk programs, PICK and SEP,

were employed to facilitate the transferring. The former

strips off all descriptive part of the data and retains

only the file names, the count of each statement type, and

the count of each indentation level. The latter separates

data pertaining to different pairs of programs into

independent files. Appendices G and H are the source

codes for PICK and SEP, respectively.

Excel [Townsendl985] has been chosen on Macintosh as

the tool for organizing data for program change analysis;

it is a spreadsheet software package. Table 2.6 gives an

example of data represented in Excel . The Table can be

visualized to contain two blocks of data. The first block

of data, comprising those in columns A, B and C, are

direct representation of data transferred from VAX

environment. The second block of data, comprising those

in columns D, E and F, are the same as those in the first

block except WEIGHT, LOC (LINES OF CODE), TOTAL AVE, SUM,

ZERO SIX. The numbers of WEIGHT, LOC, SUM and TOTAL

AVE are normalized; the formulas to normalize WEIGHT and

TOTAL AVE are

normalized number of WEIGHT or TOTAL AVE
= (WEIGHT or TOTAL AVE) / 100

As an example, the data in cell 22E is calculated by

257.40002 / 100 = 2.57.

2-13

The formulas to normalize LOC and SUM are

normalized LOC
= LOC / 10

For example, the data in cell 23E is obtained by

104 / 10 = 10.4.

Recall that ZERO, ONE, . . . represent the total counts of

indentation level zero, one, . . . respectively; these

counts are normalized in the second block by the formula

normalized counts of indentation level N
= (total counts of indentation level N

/ Lines of codes) * 10

As an example, the data in cell 24E is calculated by

(41/104) * 10 = 3.94.

The data contained in the second block have been further

expressed in a bar-chart format; the results are

illustrated in Figures 2.2 to 2.4. All data collected by

means described in this chapter will be analyzed and

discussed in detail in the next chapter.

2-14

38-

36-

34-

28-

N

M 26-

E

R
24-

22-

N 20-
T

18-

12-

10-

VI Hi ION 1

VERSON2

n

1 £ d
SW C ' G I 8 I CO I AS I PR CO 81 ' RE ' IN OU FU DE ' DE ' WE
IT A O R NT SI EP MM AN TU PU TP NC CL FA K3

CH S T £ IN GN K> EN 'KL Ml T UT Tl AR III HT
E O A UE ME CE T IN ON AT T

It NT SS E O
OR N

WE
IG

HT

Figure 2.2 Program differences represented in a bar chart in terms of various statement types

and lines of code.

2-15

I VERSION 1

[]
VERSION 2

"

ZERO I ONE I TWO I THREE I FOUR FIVE I SK ' TOTAL I SUM I LOC
AVE

Figure 2.3 Program differences represented in a bar chart in terms of normalized indentation

level.

2-16

10-

PROGRAMS IN PRETTY PRINTED fORMAT

PROGRAMS NOT IN PRETTY PRINTED FORMAT

I ll I N
CO ' AS ' PR ' CO ' BL ' RE IN OU FU ' DE ' DE WE
NT SI EP MM AN TU PU TP NC CI FA IG

IN GN RO EN KL RN T UT Tl AR UL HT
UE ME CE T IN ON AT T

NT SS E 10

OR N

WE

Figure 2.4 Program differences represented in a bar chart in terms of various statement types

and lines of code.

2-17

Table 2. 1 Results of COUNT program for SamplePrograml.

statement statement statement
1-35 36 - 70 71 - 104

1
1 1

2

1 2

3

1 3

2

1 2

2 2

3

1 3

1 2

1

1

1 1

2 2

2 1

3 2

3 3

3 2

3 3

3 4

3 3

2 4

2 1

2 1

3 1

3 2

4 2

1
3 1

1 2 1

1 1 1
1

1 1

2-18

Table 2.2 Results of NESTING program for SamplePrograml.

Levels

:

ZERO 41

ONE 26

TOO 18

THREE 16
FOUR 3

FIVE
SIX

ZEROAVE = 39.423
ONEAVE = 25.000
TOOAVE = 17.308
THREEAVE = 15.385
FOURAVE = 2.885
FIVEAVE = 0.000
SIXAVE = 0.000
TOTAL AVE 217.308
SUM = 104
LINES OF CODE = 104
SUM/LINES : 1.000

2-19

Table 2.3 Results of TYPEPGM program for SamplePrograml

.

FOR 1

WHILE 3

IF 6

ELSE 5

SWITCH
CASE
GOTO
BREAK
CONTINUE
ASSIGNMENT 25

PREPROCESSOR 6

COMMENT 15

BLANKLINE 15

RETURN
INPUT
OUTPUT 10
FUNCTION 3

DECLARATION 5

DEFAULT

WEIGHT = 257.40002
LINES OF CODE = 104
WEIGHT/LINES = 2.475

2-20

Table 2.4 Listing of Main.results for SamplePrograml and SampleProgram2.

%*% This is start of analysis data
Sun Nov 8 16:03:56 CST 1987

File Name : SamplePrograml

FOR 1

WHILE 3

IF 6

ELSE 5

SWITCH
CASE
GOTO
BREAK
CONTINUE
ASSIGNMENT 25

PREPROCESSOR 6

COMMENT 15
BLANKLINE 15

RETURN
INPUT
OUTPUT 10
FUNCTION 3

DECLARATION 5

DEFAULT

WEIGHT = 257 .40002
LINES OF CODE = 104
WEIGHT/LINES : 2.475

Levels :

ZERO 41

ONE 26

TWO 18
THREE 16
FOUR 3

FIVE
SIX

ZEROAVE = 39 .423
ONEAVE = 25
TWOAVE = 17 .308
THREEAVE = 15 .385
FOURAVE 2. 885
FIVEAVE 0. 000
SIXAVE = 0. 000
TOTAL AVE = 217.308
SUM = 104
LINES OF CODE = 104
SUM/LINES : 1.000

2-21

File Name SampleProgram2

FOR 2

WHILE 3

IF 8

ELSE 7

SWITCH
CASE
GOTO
BREAK
CONTINUE
ASSIGNMENT 28

PREPROCESSOR 6

COMMENT 39
BLANKLINE 22

RETURN
INPUT
OUTPUT 10
FUNCTION 7

DECLARATION 5

DEFAULT

WEIGHT =

LINES OF CODE =

WEIGHT/LINES =

345.70001
120

2.88083

Levels

ZERO
ONE
TWO
THREE
FOUR
FIVE
SIX

49

27
19
13
12

1

ZEROAVE =

ONEAVE =

TWOAVE =

THREEAVE =

FOURAVE =

FIVEAVE =

SIXAVE =

TOTAL AVE
SUM =

LINES OF CODE
SUM/LINES :

40.496
22.314
15.702
10.744
9.917
0.826
0.000

229.752
121
121

1.000

2-22

File Name : changes.with.CB

FOR
WHILE
IF
ELSE
SWITCH
CASE
GOTO
BREAK
CONTINUE
ASSIGNMENT
PREPROCESSOR
COMMENT
BLANKLINE
RETURN
INPUT
OUTPUT
FUNCTION
DECLARATION
DEFAULT

1

3

1

1

13

5

1

4

2

1

WEIGHT = 75. 20000
LINES OF CODE = 37

WEIGHT/LINES - 2. 03243

Levels :

ZERO 7

ONE 16

TWO 9

TTJRRR 5

FOUR
FIVE
SIX

ZEROAVE - 18.919
ONEAVE = 43.243
TWOAVE = 24.324
THREEAVE = 13.514
FOURAVE = 0.000
FIVEAVE = 0.000
SIXAVE = 0.000
TOTAL AVE = 232.432
SUM = 37
LINES OF CODE = 37
SUM/LINES ' 1.000

2-23

File Name : changes .without.CB

FOR 1

WHILE 3

IF 2

ELSE 1

SWITCH
CASE
GOTO
BREAK
CONTINOE
ASSIGNMENT 14

PREPROCESSOR
COMMENT 5

BLANKLINE
RETURN
INPUT
OUTPUT 3

FUNCTION 2

DECLARATION 1

DEFAULT

WEIGHT 86 .60001

LINES OF OODE 39
WEIGHT/LINES 2 .22051

Sun Nov 8 16:05:10 CST 1987

2-24

Table 2.5 Summary of the elapsed times for executing the 64 pairs of programs and the

average sizes of respective pair of programs.

SET OF
PROGRAM 1A IB 1C 2 3 4 5 6 7 8 9 10 11 12

elapsed
t ime 7:35 6 :59 7:39 :43 1 :10 7 :40 :48 6 :43 3 :31 3 :39 1 :38 1 :20 1 :17 :53

size 435 423 431 27 56 439 63 769 105 82 195 42 134 52

elapsed
tine

6 :43 6:28 9 :53 :49 0:55 9 :26 :46 21:27 2:15 3 :42 3 :58 1 :00 1 :30 1 :15

size 433 435 452 59 56 446 68 1305 107 88 309 51 133 61

elapsed
t ime

8:42 8:14 6:13 :42 1 :40 4:18 :48 18 :46 5:43 2 :47 7 :15 1 :42 1 :16 1 :23

size 429 448 434 58 67 446 70 1795 110 106 412 82 140 87

elapsed
tine

8:26 0:41 2:06 7:28 :S0 11:27 3 :40 15:17 1 :42 1 :37 2:06

size 446 36 67 464 66 2216 116 436 80 163 112

elapsed
tine

8:59 34:34 1 :31 3:05 0:13 1:34

size 449 2413 118 424 58 12S

elapsed
tine

19:01 4:52 1 :14 1:22

size 1456 448 51 90

elapsed
tine 2 :54

s ize 472

2-25

Table 2.6 Sample data represented in Excel; the data reveal the difference between a pair of

programs.

A B C D E F

1 PI P2

2 FOR 1 2 FOR 1 2

3 WHILE 3 3 WHILE 3 3

4 IF <> 8 IF (. 8

5 ELSE 5 7 El .SE 5 7

6 SWITCH 1) SWITCH

7 CASE CASE

8 GOTO GOTO
9 BREAK 1) BREAK t)

10 CONTINUE CONTINUE

11 ASSIGNMENT 25 2« ASSIGNMENT 25 28

12 PREPROCESSOR 6 <) PREPROCESSOR 6

13 COMMENT 15 39 COMMENT 15 39

14 BLANKLINL 15 22 BLANKLINE 15 22

15 RETURN RETURN
16 INPUT INPUT

17 OUTPUT 10 10 OUTPUT 10 10

18 FUNCTION 3 7 FUNCTION 3 7

19 DECLARATION 5 5 DECLARATION 5 5

20 DEFAULT DEFAULT
21 WEIGHT 257.4 345.70 WEIGHT 2.57 3.46

22 LOC 104 120 LOC 10.4 12

23 WEIGHT/l.OC 2.88 2.48 WEIGHT/LOC 2.48 2.88

24 ZERO 41 49 ZERO 3.94 4.08

25 ONE 2(, 27 ONE 2.50 2.25

26 TWO IS 19 TWO 1.73 1.58

27 THREE 16 13 THREE 1.54 1.08

28 FOUR 3 12 FOUR 0.29 0.08

29 FIVE 1 FIVE

30 SIX SIX

31 ZEROAVE 39.42 40.50 TOTAL AVE 2.17 2.30

32 ONEAVE 25.00 22.31 SUM 10.4 12.1

33 TWOAVE 17.31 15.70 LOC 10.4 12.1

34 THREEAVT: 15.39 10.74 SUM/LOC 1 1

35 FOURAVE 2.89 9.92

36 FIVEAVE 0.83

37 SIXAVE

38 TOTAL AVE 217.31 229.75

39 SUM 104 121

40 l.OC 104 121

41 SUM/IOC 1 1

2-26

42 WITH WITHOUT
43 CB CB
44 FOR 1 1 FOR 1 1

45 WHILE 3 3 WHILE 3 3

46 II l 2 IF 1 2

47 else 1 else 1 1

48 SWITCH SWITCH

49 CASE CASE

50 GOTO n GOTO G

51 BREAK BREAK G

52 CONTINUE CONTINUE

53 ASSIGNMENT 13 14 ASSIGNMENT 13 14

54 PREPROCESSOR PREPROCESSOR

55 COMMENT 5 5 COMMENT 5 5

56 BLANKLINE 1 B1ANKLINE 1

57 RETURN RETURN

58 INPUT INPUT

59 OUTPUT 4 3 OUTPUT 4 3

60 FUNCTION j 2 FUNCTION 2 2

61 DECLARATION 1 1 DECLARATION 1 1

62 DEFAULT DEFAULT

63 WEIGHT 75.2 86.6 WEIGHT 0.75 0.87

64 LOC 37 39 LOC 3.7 3.9

65 WEIGHT/LOC 2.03 2.22 WEIGHT/LOC 2.03 2.22

66 ZERO 7 ZERO 1.89

67 ONE 16 ONE 4.32

68 TWO 9 TWO 2.43

69 THREE 5 THREE 1.35

70 FOUR FOUR

71 FIVE FIVE

72 SIX SIX

73 ZEROAVE 18.92

74 ONEAVE 43.24

75 TWOAVE 24.32

76 THREEAVE 13.51

77 FOURAVE
78 FIVEAVE

79 SIXAVE

80 TOTAL AVE 232.43

81 SUM 37

82 LOC 37

83 SUM/LOC 1

2-27

CHAPTER THREE

CLASSIFICATION OF PROGRAM CHANGES

The classification of program changes can help a

software manager in assessing the progress of a program.

Such a classification can be determined after data

concerning the changes of a program development are read

and the patterns are classified. While issues on the data

collection have been discussed in the previous chapter and

those on intuitive rules will be elaborated in the next

chapter, the process of classifying the program change

data will be studied in this chapter.

The first section of this chapter presents a

preliminary analysis of the program change data collected.

This is followed by a detailed analysis in the second

section. Classification of program change patterns based

on the results of the analysis is proposed in the third

section. The advantages of the proposed classification

types are discussed in the last section.

3.1 PRELIMINARY ANALYSIS

Three kinds of statistics were examined in the

preliminary analysis; they were

3-1

(1) the difference of the counts of each

statement type between a pair of non-pretty-

printed programs,

(2) the difference of the counts of each

indentation level between a pair of pretty-

printed programs,

(3) total number of statements for each type

which have been modified between a pair of

pretty-printed programs, and

(4) the number of statements for each type which

have been modified between a pair of non-

pretty-printed programs.

These statistics provide data to estimate qualitatively

the progress of a software development project.

As an example, the counts of each statement type for

a non-pretty-printed program pair and those of each

indentation level for a pretty-printed program pair are

reproduced in Table 3.1. From the Table, we observe that

on one hand the counts of two (out of nineteen) statement

types, namely, DECLARATION and OUTPUT, decrease from the

first version to the second version. On the other hand,

six statement types, namely, FOR, IF, ASSIGNMENT, COMMENT,

BLANKLINE, and FUNCTION, have their counts increase from

the first version to the second version. The counts of

the remaining eleven statement types are the same in the

3-2

two versions. These statistics reflect a poor design or

incomplete design specifications; they indicate a lack of

progress, so development would still be continuing

(Lanchburyl986)

.

Also in Table 3.1, the counts for the indentation

levels of ZERO, ONE, TWO, and THREE in the second version

are less than those in the first; the counts of the

remaining indentation levels in the second version are

greater than those in the first. The changes in the

counts of various indentation levels indicate an existence

of structural changes in the program.

Table 3 . 2 presents a set of sample data for

preliminary analyses (3) and (4). Data in column B were

obtained after two versions of a program have been

converted into appropriate indentation, i.e., pretty-

printing. Data in column C were obtained based on two

versions of a non-pretty-printed program. Comparing

column B with column C, we see that the data in the latter

are consistently greatly than those in the former. Such a

pattern typifies the changes of a piece of software

effected by pretty-printing.

3.2 DETAILED ANALYSIS

While the preliminary analyses are straightforward

and enable a quick estimate to the progress of software

3-3

development, they do not provide insight into the

progress. Nonetheless, it is worth mentioning that data

collected in the form of Tables 3.1 and 3.2 actually

contain more information than revealed in the preliminary

analyses. A detailed analysis at data may suggest that a

variety of activities can be emphasized during the

development of a program. For example, some development

may emphasize the enhancement which means that different

types of statements are added in a program; others may

emphasize the deletion which means that different types of

statements are removed from a program. In this work, ten

classes of program change patterns have been summarized to

embody most activities occurring in software development.

This classification of program change patterns is based on

a detailed analysis of data belonging to sixty-four pairs

of program; the patterns include:

(1) Debugging,

(2) Documentation,

(3) Correction,

(4) Pretty-printing,

(5) Reconstruction,

(6) Removing documentation,

(7) Removing functionality,

(8) Adding functionality,

(9) Removing debugging, and

3-4

(10) Redistribution.

The definition for each of the ten patterns can be found

in Table 3.3. Notice that more than one pattern may occur

when a program changes from a version to the next.

3.3 DISCUSSION ON THE CLASSIFICATION OF PROGRAM CHANGE

PATTERNS

Ten types of classification have been identified.

The characteristics for each type of patterns are

described in the following sub-sections.

3.3.1 Debugging

When a program is debugged, the counts of output

statements will be increased. The statements are added to

monitor the behavior of the program; they include

"putchar", "putc" , "printf", "fprintf", "printw" , "write",

"puts" and "fputs". Figure 3.1 gives a sample program

change data set belonging to a program under debugging.

In the Figure, we observe that a number of output

statements have been added to the second version of the

program.

3.3.2 Documentation

Documentation refers to adding comments to a program;

it makes the program more understandable. Needless to

3-5

34-

32-

30-

28-

26-

O 20-

| VERSION 1

|J VERSON2

•

Li E
CO AS ' PR I CO I BE I RE ' IN ' OU ' FU ' OE ' OE • WE
NT SI EP MM AN TU PU TP NC CL FA IG

IN GN RO EN KL RN T UT Tl AR UL HT.

UE ME CE T IN ON AT T
NT SS E O

OR N

WE
IG

Figure 3.1 Sample program change data set belonging to a program under debugging,

documentation and correction.

3-6

say, documentation results in an increase in the count of

the comment statements. For example, eight additional

comments have been added when the program changes from one

version to the next as depicted in Figure 3.1.

3.3.3 Correction

A program change pattern is categorized as that of

correction when the following conditions happen.

(1) Number of lines of code shows minor

difference between two successive versions

of the program.

(2) The counts of the control statements,

FUNCTION, DECLARATION and ASSIGNMENT show

minor changes between two successive

versions of the program. The control

statements includes FOR, WHILE, IF, ELSE,

SWITCH, CASE, GOTO, BREAK, RETURN and

CONTINUE.

The changes could be addition or deletion of a few lines

of code of various statement types, including control

statements, FUNCTION, DECLARATION and ASSIGNMENT.

A program change pattern of correction can be seen,

again, in Figure 3.1. In the Figure, we observe, among

other things, that one FOR statement has been deleted and

3-7

one IF statement added in the second version. The trivial

changes indicate that the program is under correction.

3.3.4 Pretty-Printing

A program is pretty printed when its codes are

displayed with proper spacing and indentation. The

purpose of pretty printing is to make the structure of a

program explicit.

Consider two versions of a program with a number of

statements properly indented in the second version but not

in the first, these statements are identified to be

changed between the two versions. Nonetheless, the

changes will become non-identifiable when both versions of

the program are converted into their respective pretty-

printed forms since pretty printing results in a unique

display of the program. The analysis leads us to propose

the following procedures to identify whether or not pretty

printing is imposed between two versions of a program.

(1) Find the differences between two successive

versions of the program based on the method

outlined in section 2.3.4.

(2) Repeat step (1) except that pretty printing

both versions of the programs before finding

the differences.

(3) Compare the results of steps (1) and (2).

3-8

(4) If the results from steps (1) and (2) are

identical, no pretty printing is involved in

developing the program from version one to

version two.

(5) If the results show a general trend of more

statements being different in step (1) than

those in step (2), we conclude that attempts

were made to pretty print the program in

version two.

A result of the analysis based on the proposed procedures

is demonstrated in Figure 3.2. In the Figure, the height

of a bar represents the degree of difference between two

successive versions of program. A bar with the label

"FOR" of the height of three means that three FOR

statements are different between the two versions. The

empty bars are obtained by step (1) while the solid ones

by step (2). The fact that most of the empty bars are

higher than the solid ones indicates that an attempt has

been made to put the second version of the program into a

properly indented format.

3.3.5 Reconstruction

In the preceding sub-section, we have shown that

proper indentations is capable of fully expressing the

"structure" of a program written in a structural

3-9

B 4-
E

C
o
u 3-

I PROGRAMS IN PRETTY PRINTED FORMA 1

["I PROGRAMS NOT IN PRETTY PRINTED FORMAT

Li
CO ' AS ' PR I CO I 8L I RE > IN ' OU ' FU ' DE DE I WE ' L

NT SI EP MM AN TU PU TP NC CI FA G O
IN GN RO EN Kl RN T UT Tl AR UL HT C

UE ME CE T IN ON AT T

NT SS E O
OR N

/L

OC

Figure 3.2 Sample program change data set belonging to a program under pretty-printing.

3-10

programming language such as C. When the structure of the

program is altered, i.e., when the program is

reconstructed, the alternation (reconstruction) manifests

itself in changes of the indentation patterns.

Let's consider the indentation patterns of two

successive versions of a program, assuming that the total

lines of code in the second version is greater than that

of the first by N. If the program has been

"reconstructed" from the first to the second version, we

should observe that the change in the count of indentation

level i is n. (i = to 6) with

(1) n.'s not showing a general trend of

increasing, and

(2) any of the n.'s in the second version being

significantly larger or smaller than the n.'s

in the first version.

Figure 3.3 depicts an example of reconstruction. In the

Figure, the lines of code of the second version increase.

According, we expect to see a general trend of increasing

in the counts of each indentation level in the second

version. However, we observe that the counts of

indentation levels 2, 3 and 4 decrease, and the counts of

indentation levels 0, 1,5 and 6 increase. The further

analysis tells us that the count of indentation level 3

3-11

Figure 3.3 Sample program change data set belonging to a program under reconstruction.

3-12

significantly decreases and the count of indentation level

6 significantly increases.

3.3.6 Removing Documentation

Removing documentation is the reverse process of that

described in section 3.3.2; it results in a decrease in

the count of the COMMENT statements. Figure 3.4 depicits

an example of removing documentation. In the Figure, we

observe that two COMMENTS are removed from the second

version of the program.

3.3.7 Removing Functionality

Removing functionality is concerned with the deletion

of control statements, FUNCTION, ASSIGNMENT, include-file

(PREPROCESSOR) and DECLARATION from a program.

Remembering the definition of correction, the removing

functionality is recognized when the lines of code have

significant changes between two successive versions of a

program.

In Figure 3.4, we find that the counts of FUNCTION

and DECLARATION in the first version are more than those

in the second version. This change pattern typifies the

process of removing functionality.

3-13

«6-

I

?

28-

26-

22-

14-

12-

10-

olMLiE I y U
CO AS I PR I CO I 81 I RE ' IN • OU ' FU ' OE • OE • WE '

^fr SI EP MM AN TU PU TP NC CL FA IG O IG
IN GN RO EN KL RN T OF Tl AR UL HT C HT
UE ME CE T IN ON AT T ,L

NT SS E
OR N

(X

Figure 3.4 Sample program change data set belonging to a program under removing
documentation and removing functionality.

3-14

3.3.8 Adding Functionality

The reverse process of "removing functionality" is

"adding functionality". This process involves the

addition of control statements, FUNCTION, ASSIGNMENT,

include-file (PREPROCESSOR) and DECLARATION. The same as

removing functionality, the addition of the mentioned

various type statements with significant changes of lines

of code on the second version of a program are typified as

adding functionality. An example showing the program

change pattern of adding functionality is illustrated in

Figure 3.5. In the Figure, we observe that the counts of

FUNCTION and DECLARATION increase in the second version of

the program.

3.3.9 Removing Debugging

When software development reaches its final stage,

those statements inserted for the purpose of debugging

need to be removed. A program change pattern reflecting

this process is called "Removing Debugging"; the pattern

shows a decrease in the OUTPUT statements between two

successive versions of the program. Figure 3.5 gives an

example of removing debugging. Ten output statements are

removed from the first version of program in this example.

3-15

140

CO AS PR I CO I Bl I RE ' IN ' OU ' FU I DE ' DE ' WE '

NT SI EP MM AN TU PU TP NC CL FA IG O IG

11 tt
«° EN ^ RN T UT Tl AR OL HT C HT

UE ME CE T IN ON AT T /l_
NT SS E 10

OR M
oc

Figure 3.5 Sample program change data set belonging to a program under adding
functionality and removing debugging.

3-16

3.3.10 Redistribution

Redistribution refers to changing include-file

(PREPROCESSOR) and FUNCTION. Specifically, a program is

recognized to be redistributed when either one of the

followings happens.

(1) One or more include-file (PREPROCESSOR) is

added in conjunction with one or more

FUNCTION being deleted.

(2) One or more include-file (PREPROCESSOR) is

deleted in conjunction with one or more

FUNCTION being added.

Figure 3.6 gives an example of redistribution. In the

Figure, we observe that the count of include-file

(PREPROCESSOR) decreases with simultaneous increases in

the count for FUNCTION. The observation tells us that

redistribution has taken place.

3.4 ADVANTAGES OF PROPOSED CLASSIFICATION

The advantages of this classification are outlined as

follows.

(1) Facilitate the identification of intuitive rules

for program change analysis. It is worth noting

that a myriad of changes can be made when a

program progresses from one version to the next.

To extract intuitive rules from the large amount

3-17

140-
VERSION 1

VERSION?

120-

90

80-

70-

60-

50-

40-

30-

20-

lJJC

n

A

i

i

ji

« n
CO I AS I PR ' CO I BL I RE IN ' OU fU DE ' DE ' WE
NT SI EP MM AN TU PU TP NC CL FA C
IN GN RO EN KL RN T UT Tl AR UL HT
UE ME CE T IN ON AT T

NT SS E O
OR N

Figure 3.6 Sample program change data set belonging to a program under redistribution.

3-18

of change data is almost impossible. The

proposed classification collects relevant data

in small groups. Extracting rules from each

group of limited amount of data is much easier.

(2) Enhance the reliability of program change

analysis. When only the relevant data are

collected in groups, the analysis based on each

small group is more "noise-free", i.e., each

step of analysis will not be influenced by

irrelevant data. Notice that Intuitive rules

derived by the noise-free analysis are more

reliable

.

(3) Render the progress of software development more

assessable. With program change data well

organized,' a technical or non-technical software

manager may be able to assess the progress of

the software development at a glance.

3-19

Table 3.1 Sample data collected for preliminary analysis steps (1) and (2). Rows 1 to 23 are
obtained from a pair of non-pretty-printed program; rows 24-41 are from the same
pair of program after they are both pretty-printed.

ABC
1 Version 1 Version 2

2 FOR 5 8

3 WHILE
4 IF 4 8
5 ELSE 1 1
6 SWITCH
7 CASE
8 GOTO
9 BREAK

10 CONTINUE
11 ASSIGNMENT 5 6
12 PREPROCESSOR 6 6

13 COMMENT 31 49
14 BLANKLINE 45 59
15 RETURN
16 INPUT
17 OUTPUT 4
18 FUNCTION 14 20
19 DECLARATION 4 3
20 DEFAULT
21 WEIGHT 2.61 3.55
22 LOC 14 18.4
23 WEIGHT/LOC 1.86 1.92
24 ZERO 5.57 5.27
25 ONE 1.5 0.82
26 TWO 0.36 0.27
27 THREE 0.57 0.43
28 FOUR 0.5 0.71
29 FIVE 0.36 0.65
30 SIX 1.14 2.17
38 TOTAL AVE 2.46 3.11
39 SUM 14 19
40 LOC 14 19
41 SUM/LOC 1 1

3-20

Table 3.2 Sample data collected for preliminary analysis steps (3) and (4).

A B C
1 WITH WITHOUT CB
2 FOR
3 WHILE
4 IF 2 3

5 ELSE 1

6 SWITCH
7 CASE
8 GOTO
9 BREAK

10 CONTINUE
11 ASSIGNMENT 1 3

12 PREPROCESSOR 1 1

13 COMMENT 4 5

14 BLANKLINE 1

15 RETURN
16 INPUT
17 OUTPUT
18 FUNCTION
19 DECLARATION 1 1

20 DEFAULT
21 WEIGHT .55 0.69
22 LOC ;L.4 1.9
23 WEIGHT/LOC 3 .96 3.64
24 ZERO 2 .86
25 ONE 1 .43
26 TWO .71
27 THREE 2 .14
28 FOUR .71
29 FIVE 1 .43
30 SIX .71
31 TOTAL AVE 3 .36
32 SUM :L.4
33 LOC 1.4
34 SUM/LOC 1

3-21

Table 3.3 Classification of changes and its description.

Debugging

Documentation

Correction

Pretty-printing

Reconstruction

Removing

documentation

Removing

functionality

Adding

functionality

Removing

debugging

Redistribution

DESCRIPTION

Output statements are added to monitorthe behavior of a program.

Comments are added in a program to render it more understandable.

Errors are corrected in a program.

Indenting statements are to reflect level of nesting.

The numberof indentation for each level does not display

the consistent with the trend of decreasing/increasing

of lines of code of a program.

Comments are removed from a program.

Function, assignment, declaration and preprocessor

are remved from a program.

Function, assignment, declaration and preprocessor

are added from a program.

Output statements are removed from a program.

This is to undo the debugging.

Removing function plus adding preprocessor;

adding Tunction plus removing preprocessor.

3-22

CHAPTER FOUR

CLASSIFICATION RULES

The changes of a program between two successive

versions are readily seen when the change pattern

classification, discussed in Chapter 3, are employed to

render the patterns of changes explicit. While

discussions in the previous chapter are qualitative in

nature, this chapter endeavors to shed light on the

quantitative aspect of the classification by using PROBIT

[Finneyl971] and propose a set of intuitive rules for

program progress analysis using the pattern

classification. PROBIT is a statistical procedure which

calculates maximum-likelihood estimates of the intercept,

slope, and natural (threshold) response rate for

biological assay data.

We commence this chapter by giving a justification of

using PROBIT as the tool for quantitative analysis of the

classification. This gives rise to the identification of

certain threshold values crucial in quantifying each type

of classification. The set of intuitive rules guiding the

use of the classification in change analysis of a program

is then presented. An example will be given to

demonstrate the applicability of the intuitive rules.

4-1

4.1 PROBIT

PROBIT [Finneyl971] is a statistical procedure

specialized for dose-response problems in bioassays . For

some stimulus-subject systems, measurement of a response

to the action of the stimulus is impossible or

impractical; all that can be done is to record whether or

not the subject manifests a certain reaction. The quantal

response so used can be death or any other easily

recognizable change in the subject. For example, an

insecticide (stimulus) may be assayed by assigning batches

of insects (subjects) to various doses and then analyzing

the relation between death-rate and dose. Note that each

subject can be used only once. An insect that has died

cannot be used again; even insects that are not dead may

have been affected by the stimulus that thereafter they

react differently from others not previously exposed to

the stimulus.

How to determine a threshold value for each type of

classification is basically a dose-response problem. The

analogy can be elaborated as follows by using the change

pattern class of debugging as an example:

1 . The dosage in this case is the number of output

statements showing up in a change pattern. The

goal is to determine a number (dose) beyond which

4-2

the change pattern can be classified as

debugging

.

A subject in this case is a change pattern

between two successive versions of a program. As

mentioned earlier, 64 pairs of programs have been

analyzed, i.e, 64 change patterns (subjects) can

be identified. A batch of subjects consists of

all change patterns with the same number of

output statements added. This definition

conforms with the requirement that all subjects

in a batch receive the same level of dose. For

example, all change patterns showing an increase

of 2 output statements will be grouped in one

batch and those showing an increase of 3 will be

grouped in another batch. Note that each change

pattern (like each insect) is unique in its own

right and each batch of change patterns can not

be reused.

A change pattern (subject), after closely

reviewed by a software engineer, will be

determine whether or not it responds to the dose.

The response is quantal . A positive response

means that the change pattern indeed belongs to

the class of debugging; a negative response means

that the change pattern does not belong to the

4-3

class of debugging although some output

statements were added.

The discussion above has explained the use of PROBIT

procedure for quantitative analysis of the classification.

4.2 QUANTITATIVE STUDY ON THE CLASSIFICATION

A quantitative description for each classification

is defined in this section. The PROBIT procedure in the

Statistical Analysis System [SAS1982] is employed to aid

the quantitative analysis.

4.2.1 Debugging

Twenty-three of the sixty-four sets of programs in

the current research have been observed to exhibit an

increase in output statements. The increase ranges from 1

to 32; a summary of the changes is given in Table 4.1. It

appears from the Table that the number of output

statements added for debugging is independent on the size

of the program. Further statistical analysis yields that

the sample correlation coefficient between the size of the

program and the number of output statements added for

debugging is 0.73, implying that the two quantities indeed

do not significantly correlate with each other.

To determine a threshold value for this type of

change pattern, the data in Table 4.1 is reorganized

4-4

according to the discussion in the preceding section and

tabulated in Table 4.2. Note that in the Table, data are

in the format of DOSE-SUBJECT-RESPONSE; they are ready for

PROBIT analysis. To read the Table, the 6th entry, for

example, means that 2 change patterns have been found to

experience an increase of 9 output statements; only one of

them are found to experience debugging. The SAS program

incorporating the PROBIT procedure along with the output

for this analysis is reproduced in Appendix K. The most

important information contained in the output is the table

listing the threshold dose along with the 95* fiducial

limits for different probability levels (see the last

table in Appendix K) . The 95* fiducial limits are

computed using a t value of 1.96 since the chi-square is

small. Note that in all the analyses in this study, the

chi-squares are small indicating that the linearity of the

data is good. However, it should be pointed out that the

width of 95* fiducial intervals can be very big as the

probability level increase. This is expected since human

factor in software development can be very stochastic; it

is extremely difficult to interpret to a high precision a

program change pattern. Note that in some extreme cases,

the 95* fiducial limits will be marked by a period (.) in

the SAS output

.

Based on the result, we can conclude that

4-5

if two successive versions of a program exhibit

an increase of more than 5 (23) lines of

output statements,

then there is a 50 (90) percent chance that the

program has experienced a change in terms of

debugging.

4.2.2 Documentation

Thirty-eight of the sixty-four sets of programs

analyzed in the current research have been observed to

possess an increase in comment statements. In these 38

sets of programs, a minimum of 1 and a maximum of 284

comments were added for the purpose of documentation.

Table 4.3 summarizes the change in the number of comment

statements in the 38 sets of programs. Notice that the

correlation coefficient between the size of the program

and the number of comments added for documentation is only

0.44, indicating strongly that the two quantities do not

correlate. The result of PROBIT analysis of this case is

given in Table 4.4, based on which we conclude that

if two successive versions of a program exhibit

an increase of more than 1 (16) lines of

COMMENT statements,

4-6

then there is a 50 (90) percent chance that the

program has experienced a change in terms of

documentat ion

.

4.2.3 Correction

In the current research, 16 of the 64 sets of

programs appear to possess this pattern of change, i.e.,

they have gone through some minor changes in FUNCTION,

DECLARATION, ASSIGNMENT and control statements. Table 4.5

gives a breakdown of the activities involved in those 16

sets of programs. Furthermore, the result of PROBIT

analysis of this case is shown in Table 4.6. Based on the

result, we conclude that

if number of lines of code exhibits less than

10 lines different between two successive

versions of a program

and two successive versions of a program exhibit

more than a total of 1 (4) lines of change

in FUNCTION, DECLARATION, ASSIGNMENT or

control statements,

then there is a 50 (90) percent chance that the

program has experienced, positively or

negatively, a change in terms of correction.

4-7

4.2.4 Pretty-Printing

The change of a program is significant in terms of

pretty-printing if certain percentage of changes in

statement types is caused by print-printing. The

threshold percentage has been identified by PROBIT, and

the result is presented in Table 4.7. Based on the

result, we conclude that

if M statement types are changed between two

successive versions of a program,

and N statement types are determined to have

gone through pretty-printing,

and N/M > 0.1 (0.7)

then there is a 50 (90) percent chance that the

program has experienced, positively or

negatively, a change in terms of pretty-

printing.

Detail procedures to obtain M and N can be found in

Section 3.3.4.

4.2.5 Reconstruction

The change of a program is significant in terms of

reconstruction if changes are found in more than certain

percentage of all indentation levels. In the current

research, 25 of the 64 sets of programs appears to have

gone through different degrees of reconstruction. Table

4-8

4.8 summarizes the activity of those 25 sets of programs.

In an attempt to determine the threshold value, input

data to PROBIT have been prepared (Table 4.9) based on

information contained in Table 4.8. However, the result

(Table 4.10) fail to yield a meaningful interpretation

the response decreases as the dose increases. The failure

can be attributed to the small and skew set of data found

in Table 4.9 — the only 3 non-100* and non-0* response

data sets are all of 50* response. While more data are

required before an analytical threshold value can be

identified, we define subjectively at this juncture that

if I is the highest indentation level in the

second version of a program,

and changes are found in J indentation levels,

and J/I > 1/2,

then the program has gone through, positively or

negatively, a change in terms of

reconstruction.

The threshold value of 1/2 in this case has been

determined based on a practitioner's experiences and

heuristics.

4.2.6 Removing Documentation

Nine of the sixty-four sets of programs analyzed in

the current research have been observed to have a decrease

4-9

in the comment statements. Table 4.11 summarizes the

change in the number of comment statements in these 9 sets

of programs. Notice in the Table that 4 of the 9 sets of

programs experienced removing documentation with a

decreasing in the lines of code; the remaining sets of

programs experienced removing documentation with an

increase in the lines of code. The correlation

coefficient between the size of the program and the number

of comments deleted is -0.097, indicating strongly that

the two quantities do not correlate. The result of PROBIT

analysis (Table 4.12) reveals that

if two successive versions of a program exhibit

a decrease of more than 2 (8) lines of

COMMENT statements,

then there is a 50 (90) percent chance that the

program has experienced a change in terms of

removing documentation.

4.2.7 Removing Functionality

In the current research, 16 of the 64 sets of

programs appear to possess this pattern of changes. Table

4.13 gives a detailed description of the change of these

16 sets of programs. It is interesting to note from the

Table that FOR and ASSIGNMENT are changed most frequently.

4-10

A PROBIT analysis on the data derived from the Table

yields that

if two successive versions of a program exhibit

a decrease of more than a total of 2 (27)

lines of FUNCTION, DECLARATION, ASSIGNMENT,

include-file (PREPROCESSOR) or control

statements

,

then there is a 50 (90) percent chance that the

program has experienced a change in terms of

removing functionality.

The result of PROBIT analysis for this case is summarized

in Table 4.14.

4.2.8 Adding Functionality

In the current research, 37 of the 64 sets of

programs appear to possess this pattern of changes. Table

4.15 shows a detail description of the changes in these 37

sets of programs. A PROBIT analysis on the data derived

from the Table yields that

if two successive versions of a program exhibit

addition of more than a total of 4 (18)

lines of FUNCTION, DECLARATION, ASSIGNMENT,

include-file (PREPROCESSOR) or control

statements

,

4-11

then there is a 50 (90) percent chance that the

program has experienced a change in terms of

adding functionality.

The result of PROBIT analysis for this case is summarized

in Table 4.16.

4.2.9 Removing Debugging

Twenty-two of the sixty-four sets of programs in the

current research have been observed to exhibit a decrease

in the output statement. The decrease ranges from 1 to

25. A summary of the change in output statements for all

the 22 sets of programs is given in Table 4.17. Observe

that the removal of output statements can occur regardless

of direction of change in the total lines of code.

Similar to the case of debugging, the size of the

program is found to be independent of the number of

statements deleted for removing debugging; the correlation

coefficient between the two quantities is merely 0.4186.

Using the PROBIT procedure, we conclude from the result

(Table 4.18) that

if two successive versions of a program exhibit

a decrease of more than 1 (10) OUTPUT

statement,

4-12

then there is a 50 (90) percent chance that the

program has experienced a change in terms of

removing debugging.

4.2.10 Redistribution

In current research, 11 of the 64 sets of programs

appear to possess this pattern of changes. Table 4.19

summarizes the activities of these 11 sets of programs in

terms of redistribution. From the Table, we obtain two

sets of data as described in Table 4.20. The result of

PROBIT analysis of data set (a) is given in Table 4.21; it

gives rise to the threshold values of using FUNCTION in a

quantitative definition of the change pattern of

redistribution. However, data set (b) is an invalid data

set for the PROBIT procedure. This is because that the

change patterns of the 11 sets of programs bear too much

similarity among them — 9 of them all have one

preprocessor removed. In the light of the partial

information attained, we define semi-subject ively that

if the changes in PREPROCESSOR and FUNCTION are

in opposite directions (the former increases

while the latter decreases or the other

round)

,

4-13

and two successive versions of a program exhibit

more than 3 lines of change in PREPROCESSOR

or 3 (45) lines of change in FUNCTION,

then there is a 50 (90) percent chance that the

program has gone through, positively or

negatively, a change in terms of

redistribution.

As in the case of reconstruction, the threshold value of 3

for PREPROCESSOR is determined based on the experiences

and heuristics of a practitioner.

4.3 INTUITIVE RULES

A set of intuitive rules is proposed to guide the use

of the classification in change analysis of a program.

The set of rules can be best understood by the graphic

representation depicted in Figure 4.1. Literally, the

Figure implies that in analyzing the change of a program,

a software analyzer should abide by the following rules.

(1) Focus on the pattern change in pretty-

printing. If the program is found to have

experienced a significant change in terms of

pretty-printing, then the analysis should be

halted. Otherwise, proceed with the

analysis

.

(2) Check the pattern change in terms of

4-14

REDISTRIBUTION

REMOVING
FUNCTIONALITY

REMOVING
DOCUMENTATION

REMOVING
DEBUGGING

PRETTY-PRINTING

CORRECTION

RECONSTRUCTION

ADDING
FUNCTIONALITY

DOCUMENTATION

DEBUGGING

Figure 4.1 Graphic representation of the intuitive rules to guide the use of the classification in

change analysis of a program.

4-15

redistribution and reconstruction

simultaneously. If the program is found to

not experience any significant change in

terms of both types of classification, then

proceed with the analysis. Otherwise, halt

the analysis.

(3) Examine the pattern change in correction. If

the program is found to have experienced a

significant change in terms of correction,

then the analysis should be halted.

Otherwise, proceed with the analysis.

(4) Concentrate on the pattern change in terms of

removing/adding functionality. If the

program is found to not experience any

significant change in terms of both types of

classification, then proceed with the

analysis. Otherwise, halt the analysis.

(5) Study the pattern change in terms of

removing/adding documentation. If the

program is found to not experience any

significant change in terms of both types of

classification, then proceed with the

analysis. Otherwise, halt the analysis.

(6) Direct final attention to the pattern change

in terms of removing/adding debugging.

4-16

The ordering of the rules is based on the previous

research on the weight of a program, i.e., the frequencies

of change of individual statement types [Gustafsonl985]

.

An example is given to demonstrate an application of the

intuitive rules in the following section.

4.4 EXAMPLE

Current example comprising two successive versions of

the C module "Recreate_Listing" developed by students in a

Software Engineering class; neither version is final. The

module, upon completion, accepts data array records and

counter arrays as inputs; it recreates and prints out a

list containing the index values of individual entity

names of the data arrays . The source codes of the two

versions of the module are given separately in Appendices

I and J; their sizes are 3824 and 6136 bytes,

respectively.

As a preparation for change analysis, both versions

of the module are used as inputs to the CHANGES program

(described in Section 2.3) yielding an output file,

ma i n . resu I ts . Data contained in the file ma i n .resu Its is

then processed by Excel on an Apple Macintosh to generate

change patterns between the two successive versions of the

module. Figures 4.2 to 4.4 are reproductions of those

change patterns. In the following sub-section,

4-17

classification of these patterns are discussed. Changes

analysis on the module will then be examined based on the

classification and the intuitive rules.

4.4.1 Identifying Program Change Patterns

Figure 4 . 2 contrasts the changes in terms of the

number of occurrence of each type of statement between the

two versions of the module. The solid bars are for the

first version and the empty ones for the second. The

pattern of changes in this Figure indicates that

redistribution, adding functionality and debugging have

occurred when the module "Recreate_Listing" progressed

between the two versions. First, the decrease in the

number of PREPROCESSOR in conjunction with the increase in

the number of FUNCTION indicate the existence of

redistribution. Secondly, the increases in the numbers of

IF, ASSIGNMENT and DECLARATION statements imply the

presence of adding functionality. Finally, the increase

in the number of OUTPUT statements suggests that debugging

was involved as the development of the module progressed.

Figure 4.3 compares the indentation levels between

the two versions of the module. Again, the solid bars are

for the first version and the empty ones for the second.

Note that the number of the ZERO indentation level in the

second version is actually greater than that in the first

4-18

31

20

19

18-

17-

16

15-

14-

13-

1

5-

3-

1-

VERSON 1

VERSPON2

F I WH I
I

I E ' SW I C ' G ' B ' CO I AS ' PR ' CO '
| RE ' IN ' OU ' FU '

I i i
IT

CM
SI EP MM
GN RO EN
ME CE T
NT SS

OR

TO PU TP NC
Of DE WE 1

ct. FA IG

AR UL HT c

Figure 4.2 Program differences represented in a bar chart in terms of various statement types

and lines of code.

4-19

N
u

M
B

E

R

O
F

| VERSION 1

] VERSION 2

ZERO ' ONE I TWO ' THREE I FOUR I FIVE I SK I TOTAL I SUM I LOC '

AVE

Figure 4.3 Program differences represented in a bar chart in terms of normalized iindentation

4-20

version, although the empty bar for the ZERO indentation

level is shorter than the solid one in the Figure. This

is due to the normalization scheme adopted (see Section

2.4). The consistent increases in the numbers of all

indentation levels conclude that reconstruction did not

happen in this case.

Figure 4.4 collates the differences between the two

versions of the module with and without pretty-printing.

The former are represented in solid bars and the latter in

empty bars. In the Figure, more differences in the FOR

and OUTPUT statements are detected between the two

versions of the module when they are not pretty-printed.

This hints of the occurrence of pretty-printing.

In summary, the change patterns exposited in Figures

4.2 to 4.4 lead us to conclude that redistribution, adding

functionality, debugging and pretty-printing are major

activities occur between the two versions. The quality of

the program need be analyzed; this is discussed in the

next sub-section.

4.4.2 Analyzing Program Changes

The significance of the change patterns identified in

the preceeding sub-section can be appreciated when they

are examined quantitatively and discussed in the context

of the newly proposed intuitives rules. The explanation

4-21

U-r

10

6-

5--

S-

1-.

PROGRAMS IN PRETTY
PRINTED FORMAT

PROGRAMS NOT IN

PRETTY PRINTED FORMAT

i i

_n

C I G ' B ' CO I AS PR CO BL RE IN OU ! FU DE DE WE
A O R NT SI EP MM AN TU PU TP NC CL FA IG

S T E IN GN RO EN Kl RN T UT Tl AR UL HT
E O A UE ME CE T IN ON AT T

K NT SS E 10

OR N

WE
K3

HT
/L

OC

Figure 4.4 Program differences represented in a bar chart in terms of various statement types

and lines of code; the programs were pretty-printed before comparison.

4-22

can be best understood with reference to Figure 4.1.

(1) The change pattern of pretty-printing is

examined. From Figure 4.4, seven statements

are changed between the two versions; two of

them are identified to have gone through

pretty-printing. The ratio of N/M is 2/7,

indicating that there exists a 75% chance

(see Table 4.6) for the program to have gone

through a significant change in terms of

pretty-printing. Considering the case when

a software development should be interrupted

only if we are 80% sure that the development

is abnormal, we should proceed the analysis.

(2) The change pattern of redistribution is

examined. From Figure 4.2, the number of

PREPROCESSOR decreases by 1 while the number

of FUNCTION increases by 29. Since more than

17 lines of change in FUNCTION are detected

(see Table 4.19 for the significance of the

threshold value of 17), we are at least 80%

sure that a significant change with respect

to redistribution exists. The quality of the

software is in doubt; the analysis should be

terminated.

4-23

Table 4.1 Increasing of OUTPUT statements between two versions of a program.

VERSION 1

lines of no of

code OUTPUT

VERSK3N2

lines of no .of

code OUTPUT

Average
sue

Increasing

ofOUTPUT

1 448 9 455 18 451 9

2 412 10 455 28 433 18

3 62 j 64 j 2 63 2

4 64 i 2 72 1 5 68 3

5 103 ! 11 107 j 19 105 8

6 15 39 2 27 2

7 424 13 453 16 438 3

8 438 3 453 4 445 1

9 148 j 241 i 1 194 1

10 377 i 1 447 j 20 412 19

11 94 ! 2 118 j 5 106 3

12 128 2 138 10 133 8

13 413 1125 3 769 3

14 1125 3 1485 j 8 130 5

15 1485 i 8 2104 i 32 1794 24

16 413 i 2498 j 32 1455 32

17 34 7 50 16 42 9

18 112 8 47 10 79 2

19 34 7 68 18 51 11

20 51 1 53 j 3 52 2

21 69 i 3 104 i 10 86 7

22 47 i 10
i

68 j 18 57 8

23 82 ! l 94 ! 2 88 '

CORRELATION COEFFICIENT -0.7348

4-24

Table 4.2 Input data for PROBIT analysis of Debugging.

DOSE

1 32
2 24
3 19
4 18
5 11
6 9

7 8

8 7

9 5

10 3

11 2

12 1

13

N RESPONSE

1 1

1 1

1 1

1 1

1

2 1

3 2

1 1

1

4 2

4 1

3

41

4-25

Table 4.3 Increasing of COMMENT statements between two versions of a program.

VERSION 1

lines of no. of
code COMMENT

VERSION2

lines of no of

code COMMENT

Average
size

Increasing

of COMMENT

1 431 6 438 41 434 35
2 438 j 41 427 j 45 432 4

3 431 6 427 45 429 39
4 433 j 3 437 j 46 435 43
5 437 ! 46 458 ! 189 447 143
6 413 j 6 458 189 435 183

7 448 ! 5 455 ! 46 451 41
8 412 5 455 46 433 41

9 431 1 46 452 I 184 441 138
10 64 22 72 25 68 3

11 107
i 18 107 26 107 8

12 106 24 113 32 109 8

13 55 12 79 48 67 36
14 55 11 79 48 67 37
15 15 13 59 24 37 11

16 453 ! 7 438 1 41 445 34

17 438 41 453 48 445 7

18 453 i 48 474 I 191 463 143
19 424 7 474 191 449 184
20 148 i 26 241 38 194 8

21 241 38
I

377 55 309 17

22 377 j 55 447 j 66 412 11

23 447 ! 66 424 67 435 1

24 424 67 424 68 424 1

25 424 ! 68 472 ! 123 448 55
26 141 29 184 49 162 20

27 47 1 68 (2 57 2

28 413 45 1125 139 769 94
29 1125 139 1485 181 1305 42
30 1485 181 2104 275 1794 94
31 2104 i 275 2328 325 2216 50
32 413 45 2498 329 1455 284
33 51 1 112 29 81 28
34 51 ! 53 ! 1 52 1

35 53 1 69 16 61 15

36 104 j 15 120 I 39 112 24
37 120 39 129 42 124 3

38 51 i 129 42 90 42

CORRELATION COEFFICIENT =04443 4-26

Table 4.4 Result of PROBIT for quantitative analysis of Documentation.

.01

.02

.03

.04

.05

.06

.07

.08

.09

.10

.15

.20

.25

.30

.35

.40

.45

.50
55
60
65
70

0. 75
0. 80
0. 85
0. 90
0. 91
0. 92
0. 93
0. 94
0. 95
0. 96
0. 97
0. 98
0. 99

PROBIT ANALYSIS ON DOSE
DOSE 95 PERCENT FIDUCIAL LIMITS

LOWER UPPER
0.00620648 0.00000000 0.2
0.01127852 0.00000000 0.3
0.01647545 0.00000000 0.4
0.02191030 0.00000000 0.4
0.02762861 0.00000000 0.5
0.03365733 0.00000000 0.5
0.04001656 0.00000000 0.6
0.04672365 0.00000000 0.6
0.05379485 0.00000000 0.7
0.06124619 0.00000000 0.8
0.10479359 0.00000000 1.0
0.16059017 0.00000000 1.3
0.23161256 0.00000000 1.6
0.32180129 0.00000000 2.0
0.43645257 0.00000000 2.4
0.58280540 0.00000000 2.8
0.77095668 0.00000000 3.4
1.01533637 0.00000000 4.1
1.33718011 0.00000001 5.0
1.76887162 0.00000021 6.3
2.36201597 0.00000446 8.2
3.20355436 0.00010671 11.5
4.45100179 0.00285048 19.1
6.41949590 0.07394092 50.3
9.83750916 1.00026825 511.3

16.83219814 4.22058317 59435.9
19.16369066 5.15367069 217351.9
22.06394066 6.20764355 916930.7
25.76202996 7.41705783 4584563.9
30.62952678 8.83913182 28319660.3
37.31306265 10.57008970 230781234.6
47.05129507 12.78260853 2769176875.2
62.57236442 15.82471467 59949523007.6
91.40452554 20.55097808 3653992392227.4

166.10176166 30.07277334 2452809210542120.0

4-27

Table 4.5 Data reflectig the activity of Correction.

F

R

w
H
1

L

E

1

F

E

L

S

E

sw
rr

CH

c
A
s

E

G

T

B

R

E

A
K

CO
NT
IN

UE

AS
SI

GN
ME
NT

RE
TU
RN

FU
NC
Tl

ON

DE
CL
AR
AT
O
N

T

T
A
L

1

2

+ 1 + 1 .1
3

4

4

14

_2 + 1 + 1

_1
.2 .1

_1 +2 .7 + 3 + 1

5

6

8 1

+3
5

1

6

+ 3 +2

+ 1

+4 +2

2

10

_1
+ 1 2

13

14
1

+ 1

.1 _1 4

16 .1 _2 _1 .4

4-28

Table 4.6 Result of PROBIT for quantitative analysis of Correction.

PROBABILITY

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.15
0.20
0.25
0.30
0.35
0.40

45
50
55
60
65

0.70
0.75
0.80
0.85
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

PROBIT ANALYSIS ON DOSE
DOSE 95 PE

0.11150498
LOW

0.14676349
0.17471297
0.19919418
0.22161661
0.24267929
0.26278796
0.28220275
0.30110245
0.31961652
0.40918897
0.49796445
0.58932682

#

0.68557383
0.78873887
0.90095162

#

1.02469095
1.16304948
1.32008982
1.50139481
1.71499611
1.97306844
2.29530379
2.71642701
3.30576874
4.23220962
4.49243800
4.79330578
5.14743551
5.57395772
6.10371266
6.79078119
7.74232225
9.21676148
2.13115403

1.

2.

2.

2.

2.

3.

3.

3.

4.

74922256
07677798
32312810
54892358
77624313
02257870
31128553
68865254
29788066

95 PERCENT FIDUCIAL LIMITS
UPPER

0.72822395
0.82456998
0.89289236
0.94845581
0.99655331
1.03971308
1.07936067
1.11638816
1.15139578
1.18480976
1.33686615
1.47672275
1.61418733
1.75578850
1.90784821
2.07858204
2.28140763
2.54354863
2.93984267
3.94117784

4-29

Table 4.7 Result of PROBIT for quantitative analysis of Pretty-printing.

PROBABILITY

.01

.02

.03

.04

.05

.06

.07

.08

.09

.10

.15

.20

.25

.30

.35

.40

.45
50
55
60
65
70

0. 75
0. 80
0. 85
0. 90
0. 91
0. 92
0. 93
0. 94
0. 95
0. 96
0. 97
0. 98
0. 99

PROBIT ANALYSIS ON DOSE
DOSE 95 PEF

T AMDr

0.00359507
LOWEF

0.00534399
0.00687219 •

0.00830356
0.00968507 •

0.01104060
0.01238436
0.01372576 !

0.01507146 ,

0.01642650
0.02346113
0.03114454
0.03971307
0.04939942
0.06047244
0.07326641
0.08821543
0.10590236
0.12713546
0.15307572
0.18546148
0.22703320
0.28240854
0.36010509
0.47803794
0.68275689 0. 18320956
0.74414212 0. 22122090
0.81709926 0. 24590687
0.90560228 0. 26828284
1.01582463 0. 29072952
1.15799995 0. 31478702
1.35066218 0. 34217866
1.63198366 0. 37566671
2.09867538 0. 42117163
3.11963954 0. 49765526

95 PERCENT FIDUCIAL LIMITS
UPPER

0.06292549
0.07275113
0.07986129
0.08573071
0.09087535
0.09554341
0.09987576
0.10396120
0.10786001
0.11161548
0.12917096
0.14613311
0.16384922
0.18370446
0.20806020
0.24337088

4-30

Table 4.8 Data relecting the activity of Reconstruction

level 1 2 3 4 5 "6
"

1 X X X X

2 X X X X X X X

3 X X X X X X
-

4 X X X X X X

5 X X X X -

6 X -

7 X X X X X X

8 X X X -

9 X -

10 X -

11 X _

12 X X X _

13 X _

14 X X X X -

15 X X X X

16 X X _

17 X
_

18 X X

19 X X

20 X X X

21 X _

22 X X
-

23 X _

24 X
_

25 X
-

x indicates the activity of reconstruction happening inthat level.

- indicates the highest indentation level in the second version of the program

4-31

Table 4.9 Input data for PROBIT analysis of Reconstruction.

DOSE RESPONSE

1 1/4 1

2 1/5 2 2

3 1/6 2 1

4 1/7 4 4

5 2/5 1 1

6 1/3 1 1

7 2/7 3 3

8 3/4 1

9 3/7 2 2

10 4/7 4 2

11 6/7 2 2

12 7/7 2 1

13 39

* Only 3 sets of data are of neither 100% nor 0% response;
moreover, all three sets of data are of 50% response.

4-32

Table 4.10 Result of PROBIT for quantitative analysis of Reconstruction.

PROBIT ANALYSIS ON DOSE
ROBABILITY DOSE 95 PER

LOWER
0.01 107.02127855 3.19345977
0.02 64.43615097 2.61281373
0.03 46.70147304 2.29890731
0.04 36.65770134 2.08698947
0.05 30.10380060 1.92848786
0.06 25.45716481 1.80263013
0.07 21.97701845 1.69867638
0.08 19.26666462 1.61037745
0.09 17.09305821 1.53378888
0.10 15.30967137 1.46626766
0.15 9.70147845 1.21437523
0.20 6.75106227 1.04203536
0.25 4.94630019 0.91069888
0.30 3.74079577 0.80373410
0.35 2.88766100 0.71229031
0.40 2.25877368 0.63080071
0.45 1.78100395 0.55498907
0.50 1.40959181 0.48032362
0.55 1.11563429 0.39857046
0.60 0.87965832
0.65 0.68808252
0.70 0.53115679 .

0.75 0.40170410 ,

0.80 0.29431651 .

0.85 0.20480889 .

0.90 0.12978391 •

0.91 0.11624304 •

0.92 0.10312886 .

0.93 0.09041031 .

0.94 0.07805068 .

0.95 0.06600326
0.96 0.05420277
0.97 0.04254575 .

0.98 0.03083594 .

0.99 0.01856593 m

95 PERCENT FIDUCIAL LIMITS
UPPER

36582117
33588262
30979057
28597182
26342504
24137926
21909146
19562651
16938581
13625452

4-33

Table 4.1 1 Decreasing of COMMENT statements between two versions of a program.

VERSION 1

lines of no of

code COMMENT

VERSON2

lines of no of

code COMMENT

Average
size

Decreasing

of COMMENT

1 413 i 6 433 j 3 423 3

2 107 26 106 24 106 2

3 66 j 12 65 | 11 55 1

4 140 31 128 29 134 2

5 34 5 50 1 42 4

6 112 i 29 47 j

i

79 29

7 34 5 68 2 51 3

8 69 i 16 104 i 15 86 1

9 3 ! 3 82 ! 2 82 1

CORRELATONCOEFFtCIENT =-0097

4-34

Table 4.12 Result of PROBIT for quantitative analysis of Removing documentation.

PROBABILITY

.01

.02

.03

.04

.05

.06

.07

.08

.09

.10

.15

.20

.25

.30

.35

.40

.45

.50
55
60
65

0. 70
0. 75
0. 80
0. 85
0. 90
0. 91
0. 92
0. 93
0. 94
0. 95
0. 96
0. 97
0. 98
0. 99

PROBIT ANALYSIS ON DOSE
DOSE 95 PE1

0.13030754
LOWEI

0.17775860
0.21646897
0.25105154
0.28321788
0.31382343
0.34336805
0.37217437
0.40046572
0.42840516
0.56639627
0.70712877
0.85542583
1.01492749
1.18916239
1.38207456
1.59845569
1.84445561
2.12831455
2.46152892
2.86085107
3.35197985
3.97698593
4.81102824
6.00642465
7.94111938
8.49515025
9.14092096
9.90778395

10.84054333
12.01201172
13.55106821
15.71595481
19.13840772
26.10759590

1.

2.

2.

2.

2.

2.

2.

3.

3.

3.

3.

4.

70248914
12566036
54177023
63795270
74215642
85698878
98619432
13551855
31454916
54127628
85630633
39075496

95 PERCENT FIDUCIAL LIMITS
UPPER

0.80370316
0.91427178

99479347
06197710
12166640
17669897
22872196
27881655
32776572
37618831
62847301
96506841

4-35

>
o
E
a>

cr

o

ca

Q
n

a;

CO

i-O*- < -1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 c\j -^ c\j i^> to •«-« oo c\j °
;JJ

;«H «-i th -cm -lO

uj _i ce t- -, iH ! . c\j . .r>». rH.csj

i i i i i i i i i i i i i i i

u- Z H- Q
i i i ^ i i i

*~
'

i

*""
' i i

""
i i i i i

""

cc (_ a:
| j | | | | | | | | | | | | |

H
i 1 1 i 1 1 1 i i i 1 1 1 1 1

CQ.O UJ Ul c
0- UJ C£ VJ l/> O

1 r~i 1 1 f-t ' 1 Kf j
1 fH 1 (i-i 1

05- '2 ' «-• -CM • -I" • tH.

i i i i i i i i i i i i i i i

<D£z!±!

acu<^

OO i- O

U < bO Ul

£*5

Ui -J in LU
1 1 1 1 1

«-<
1 1 1 |00 1 1 1 1 1 1

— u.
'.*-*. !oo 1

5 I — _I UJ
H • • «-l • «-l •

u-qo: CM JCM j JCNJ j CVJ JCO j i i «-l
j JCNJ i «-H

j
j j j

«-l

i i i i i i i i i j i i i i i

^ j~ jco |* \«, jco jr. joo jo, j2 jS |2 J2 j2 jS j2
i i i i ! i i i i ! 1 i i i i

4-36

Table 4.14 Result of PROBIT for quantitative analysis of Removing functionality.

PROBIT ANALYSIS ON DOSE
PROBABILITY DOSE 95 PER

0.01 0.02395598
bUWCiK

0.02 0.04071631 m

0.03 0.05700605 m

0.04 0.07342869 #

0.05 0.09021888 #

0.06 0.10750231 m

0.07 0.12536044 m

0.08 0.14385356 m

0.09 0.16303094 #

0.10 0.18293583 .

0.15 0.29473461 ,

0.20 0.43057952 •

0.25 0.59605259 .

0.30 0.79820524 •

0.35 1.04626445 .

0.40 1.35258011 .

0.45 1.73404900 #

0.50 2.21436417 .

0.55 2.82772210 .

0.60 3.62522608 .

0.65 4.68658635 .

0.70 6.14304244 .

0.75 8.22646987 2.24033975
0.80 11.38792836 3.19656253
0.85 16.63669120 4.26226337
0.90 26.80398156 5.72511159
0.91 30.07655233 6.11252324
0.92 34.08611333 6.55190307
0.93 39.11448321 7.05932424
0.94 45.61212236 7.65889260
0.95 54.35013947 8.38906047
0.96 66.77783194 9.31649800
0.97 86.01558798 10.57161076
0.98 120.42861238 12.46387882
0.99 204.68411661 16.06642642

95 PERCENT FIDUCIAL LIMITS
UPPER

0.40045266
0.51378816
0.60324999
0.68177921
0.75409786
0.82255650
0.88853750
0.95294891
1.01643884
1.07950239
1.40084269
1.75940050
2.20105839
2.82142270
3.94918746

4-37

Table 4. 15 Data reflecting the activity of Adding functionality.

f

R

w
H
1

I

f

1

f

E

L

S

E

sw
tT

CH

C
A
s

E

G
O
T

s
R
E

A
K

CO
NT
IN

UE

AS
SI

GN
ME
NT

PR
£P
RO
CE
SS

OR

RE
TU
RN

FU
NC
Tl

ON

OE
CL
AR
AT
IO

N

T

O
T

A
L

1
.....

14 s 19

2 4 6

S 4 9

4 1 3 1 17 3 25

1 2 4 3 10

2 3 7 5 17

3 1 IS 4 23

7 5 12

1 1

10 1 3 2 5 1 5 3 20

11 3 4 1 6 14

12 3 4 7

13 1 3 2 5 1 5 3 20

1 3 1 IS 4 24
1 2 7 2 12

16 1 2 3 8 6 20

4 2 9 2 2
r

26 18 13 76

18 6 10 1 4 17 I 45

20~

" 22~

4 7 1 6 14 S 37

6

4 4

1 S 12

8

3 3 1 8 15
23 4 4

24

"is
' 26~

~
2
7~

4 14 21 7 3 79 47 37 12

3 12 IS 6 39 50 9 33
2 2

8 8 4 20

"It"

1 5 3 10 22

4 4 6 1 15
30 8 8 6 1 23

2 1 9 2 2 1 17

2 2 3 4 12

34

1 10 1 12

2 3 2 3 22 1 7 1 41

36

48 19 3 164 164 71 521
1 2 3

2 4 6

4-38

Table 4.16 Result of PROBIT for quantitative analysis of Adding functionality.

PROBIT ANALYSIS ON DOSE
PROBABILITY DOSE 95 PERCENT FIDUCIAL LIMITS

LOWER UPPER
0.01 0.26808408 0.00000001 1.47812955
0.02 0.36936075 0.00000004 1.77241290
0.03 0.45264301 0.00000013 1.99015161
0.04 0.52745363 0.00000031 2.17232077
0.05 0.59733604 0.00000063 2.33345832
0.06 0.66406487 0.00000117 2.48061574
0.07 0.72867910 0.00000201 2.61781631
0.08 0.79185061 0.00000326 2.74760260
0.09 0.85404564 0.00000507 2.87170005
0.10 0.91560541 0.00000759 2.99134348
0.15 1.22139833 0.00004039 3.54881858
0.20 1.53575437 0.00015210 4.07659075
0.25 1.86918974 0.00047309 4.60437314
0.30 2.22989200 0.00130673 5.15190852
0.35 2.62599173 0.00333845 5.73730363
0.40 3.06672228 0.00809516 6.38150063
0.45 3.56341526 0.01896681 7.11295625
0.50 4.13071118 0.04350960 7.97527760
0.55 4.78832064 0.09869916 9.04281925
0.60 5.56384743 0.22288519 10.45760469
0.65 6.49764989 0.50170866 12.53017326
0.70 7.65183912 1.11350679 16.06254945
0.75 9.12843382 2.34594831 23.56311870
0.80 11.11035412 4.37163329 44.42163783
0.85 13.96986914 6.93743229 121.08893896
0.90 18.63551121 9.92407412 534.47594844
0.91 19.97876234 10.62048345 779.42474703
0.92 21.54797205 11.37624164 1180.08747554
0.93 23.41603453 12.21193568 1870.80595601
0.94 25.69443971 13.15786387 3144.17898370
0.95 28.56478380 14.26138255 5710.10150025
0.96 32.34933628 15.60288038 11564.99302784
0.97 37.69587611 17.33606657 27682.34437384
0.98 46.19541944 19.81618926 88886.38417365
0.99 63.64710283 24.23088995 564320.95848118

4-39

Table 4.17 Decreasing of OUTPUT statements between two versions of a program.

VERSION 1

lines of no of

code OUTPUT

VERSK3N2

lines of no of

code OUTPUT

Average
size

Decreasing

of OUTPUT

1 432 25 438 3 435 22

2 438 3 427 432 3

3 431 j 25 427 j 429 25

4 433 j 11 437 i 1 435 10

5 437 j 1 458 j 447 1

6 413 11 458 435 11

7 412 10 450 9 431 1

8 72 5
i

67 j 2 69 3

9 67 i 2 65 j 66 2

10 106 i 19 113 j 109 19

11 82 ! 2 82 ! 1 82 1

12 59 2 57 58 2

13 453 16 438 3 448 13

14 453 4 474 3 463 1

15 424 i 13 474 i 3 449 10

16 447 j 20 424 j 1

i

435 19

17 140 ! 4 128 ! 2 134 2

18 141 10 184 162 10

19 118 5 114 2 116 3

20 51 16 112 8 81 8

21 120 i 10 129 i 124 10

22 51 j 1 129 i 90 1

CORRELATONCOEFFICIENT =0.4186

4-40

Table 4.18 Result of PROBIT for quantitative analysis of Removing debugging.

PROBIT ANALYSIS ON DOSE
PROBABILITY DOSE 95 PERCENT FIDUCIAL LIMITS

LOWER UPPER
0.01 0.00987305 0.24106379
0.02 0.01665264 0.31012384
0.03 0.02320211 0.36431487
0.04 0.02977738 0.41155477
0.05 0.03647776 0.45472663
0.06 0.04335614 0.49525537
0.07 0.05044645 0.53396770
0.08 0.05777351 0.57139492
0.09 0.06535732 0.60790426
0.10 0.07321522 0.64376403
0.15 0.11715101 0.81925989
0.20 0.17021341 0.99807044
0.25 0.23452432 1.18948229
0.30 0.31274365 1.40222998
0.35 0.40833837 1.64746143
0.40 0.52593629 1.94230557
0.45 0.67185443 2.31725434
0.50 0.85493131 2.83633204
0.55 1.08789571 3.67134794
0.60 1.38972642 5.58354746
0.65 1.78995562 1

0.70 2.33708203 .

0.75 3.11655334 •

0.80 4.29406555 •

0.85 6.23902032 1. 36525446 •

0.90 9.98300049 3. 01750086 •

0.91 11.18325487 3. 36149229 m

0.92 12.65125828 3. 73474799 .

0.93 14.48878139 4. 15060798 m

0.94 16.85822524 4. 62788362 •

0.95 20.03707294 5. 19562959 ^

0.96 24.54573128 5. 90343461 •

0.97 31.50177217 6. 84766259 •

0.98 43.89139787 8. 25673647 •

0.99 74.03059791 10. 92480081 •

4-41

Table 4.19 Data reflecting the activity of Redistribution.

PREPROCESSOR FUNCTION

1 1 + 2

2 - 1 +6

3 - 1 + 7

4 - 1 +9

5 - 1 + 7

6 - 1 + 7

7 - 1 +3

8 .2 + 16

9 +3 _1

10 _1 + 1

11 _1 +4

4-42

Table 4.20 Input data for PROBIT analysis of Redistribution.

dose*

15
9

7

5

3

1

(a)
CTION

N response

1 1

1 1

3 1

1 1

2 1

3 1

53

dose**

3

2

1

PR]
(b)

CPROCESSOE i

* N res ponse

1

1

9

53

1

1

4

* Only odd levels of dose are adopted here. The dose of level
one designates that one to two FUNCTIONS have been changed
between versions, the dose of level three designates that
three to four FUNCTIONS have been change, etc.

** The negative signs are dropped from Table 4.19. The dose of
level three designates that three PREPROCESSORS have been
changed; the change can be in the positive or the negative
direction.

4-43

Table 4.21 Result of PROBIT for quantitative analysis of Redistribution.

PROBIT ANALYSIS ON DOSE
PROBABILITY DOSE 95 PERCENT FIDUCIAL LIMITS

LOWER UPPER
0.01 0.01972508 0.67262515
0.02 0.03537278 0.84156771
0.03 0.05123919 0.97293020
0.04 0.06771205 1.08724836
0.05 0.08494580 1.19196457
0.06 0.10302922 1.29077852
0.07 0.12202613 1.38587420
0.08 0.14198960 1.47870054
0.09 0.16296802 1.57031014
0.10 0.18500803 1.66152904
0.15 0.31280264 2.13434947
0.20 0.47483315 2.69705785
0.25 0.67928979 3.52061375
0.30 0.93693942 .

0.35 1.26218787 •

0.40 1.67464902 •

0.45 2.20157775
0.50 2.88177827
0.55 3.77213387 •

0.60 4.95903671 •

0.65 6.57956410 •

0.70 8.86358907 •

0.75 12.22548334 •

0.80 17.48960860 3 35368468 •

0.85 26.54915551 4 77313522 •

0.90 44.88802984 6. 41999307 •

0.91 50.95874648 6. 83526977 •

0.92 58.48770418 7. 29963746 •

0.93 68.05629157 7. 82864452 *

0.94 80.60476406 8. 44532285
0.95 97.76405682 9. 18603696 •

0.96 122.64650271 10. 11324035 m

0.97 162.07604704 11. 34788431
0.98 234.77502165 13. 17366686 •

0.99 421.01958619 16. 55821929 •

4-44

CHAPTER FIVE

CONCLUSIONS AND EXTENSIONS

A classification of program change patterns and a set

of intuitive rules for effective evaluation of the program

change patterns have been proposed. First, data

concerning the pattern change between two successive

versions of a program are identified and collected. Based

on these data, certain criteria are derived to classify

the change patterns. This has given rise to the ten

classes of program change patterns. Further quantitative

study on the classification yields the set of intuitive

rules. The classification and the rules have been

demonstrated to be capable of facilitating the program

change analysis, enhancing the reliability of program

change analysis and rendering the progress of software

development more assessable. In summary, the proposed

technique can help a software manager analyze the progress

of a program during software development stage.

Extensions of the current research may include:

(1) Collecting and analyzing more change patterns

between program sets. More data will lead to

better statistical results. This is

especially needed in the cases of

RECONSTRUCTION and REDISTRIBUTION.

5-1

(2) Refining the definition of the change pattern

Debugging. A statement of the type output

statements (defined in Section 3.3.1) may be

added for the purposes other than debugging.

The content of the output statement need be

taken into consideration in determining if it

is for debugging.

(3) Identifying the average time required for a

program to progress from one version to the

next. It appears that the time may be

dependent on the types of the change patterns

involved.

(4) Extending the analysis to predict the

progress of a program during its development.

While this work has been aimed at determining

the quality of a software development at its

present state based on the historical data,

attempts can be made to extend the analysis

to predict the quality of the program when

continuing development is compulsory.

5-2

LITERATURE CITED

[Berryl985] Berry, R. E. and B. A. E. Meekings, A Style
Analysis of C Programs, Communications of the ACM, Vol.
28, No. 1, Jan. 1985, pp. 80-88.

[Bournel987] Bourne, Stephen R. , The Unix System V
Environment, Addison-Wesley Publishing Company, 1987.

[Dunsmorel977] Dunsmore, Hubert E. and John D. Gannon,
Experiemntal Investigation of Programming Complexity,
16th Annual Technical Symposium, June 2, 1977, pp. 117-
125.

[Finneyl971] Finney, D. J., Statistical Methods in
Biological Assay, Second Edition, London, Griffin Press,
1971.

[Gustafsonl985] Gustafson, David A., Austin C. Melton and
Chyuan Samuel Hsieh, An Analysis of Software Changes
During Maintenance and Enhancement , Proceedings of
Conference on Software Maintenance, Nov. 11-13, 1985,
pp. 92-95.

[Halsteadl977] Halstead, M. , Elements of Software Science,
North Holland, 1977.

[Kyungl987] Kyung, Hee An, David A. Gustafson and Austin
C. Melton, A Model for Software Maintenance, Proceedings
of Conference on Software Maintenance, Sept. 21-24,
1987, pp. 57-62.

[Lanchburyl986] Lanchbury, Mary Lou A., A Model of
Successful Patterns of Progress During the Integration
of Software, Master Thesis, Department of Computing and
Information Sciences, Kansas Statement University, 1986.

[McCabel976] McCabe , Thomas J., A Complexity Measure, IEEE
Transactions on Software Engineering, Vol. Se-2, No. 4,
Dec. 1976, pp. 308-320.

[Pressmanl982] Pressman, Roger S., Software Engineering: a
Practitioner's Approach, McGraw-Hill Book Company, 1982.

[SAS1982] SAS User's Guide: Statistics, SAS Institute
Inc., 1982, pp. 287-292.

[Townsendl985] Townsend, Carl, Mastering EXCEL, SYBEX,
Berkeley, CA, 1985.

L-l

[Weissl985] Weiss, David M. and Victor R. Basili,
Evaluating Software Development by Analysis of Changes:
Some Data from the Software Engineering Laboratory, IEEE
Transactions on Software Engineering, Vol. SE-11, No. 2,

Feb. 1985, pp. 157-168.

L-2

APPENDIX A

SOURCE CODE OF SAMPLEPROGRAM1

/* */

/* Procedure : SyntaxCheck Last Revision : 4/30/86 */

/* •/

/* Programmer : Monte L. Hall */

/*

/* Description : This module accepts an EntityName which consists of all */

/* those characters found after the colon on one line as distinguished */

/* in the Read Data module. This EntityName string is tested for a null */

/* string, an oversized string(one that is over 15 characters long), and */

/* for embedded blanks within the EntityName. A ConditionCode is passed */

/* out indicating which error occurred; or if no error occurred, a */

/* ConditionCode is passed out indicating such. */

/* •/

/***#***************/

#include </usrb/cs340/ldb/project/define.h >

#include < ctype.h >
#define NoEntityNameCode 2

#define TooLongEntityName Code 1

#define BlanksInEnlilyNameCode 8

#define OK_Code

Syntax_Check(EntityName,ConditionCode)

char * EntityName;

int *ConditionCode;

char *ch;

int j, i = 0, 1 = 0, Ch_Count = U,

Space = 0, Flag = 0, Error = 0;

char Temp[MAX_STR_LEN];

ch = EntityName;

printf("\nln Syntaxcheck");

printf("\nBefore isspace and ch is: %s",ch[I|);

while (isspace(ch|Ij) !
=

1 = 1 + 1;

j = i;

printf("\nAfter isspace and ch is: %s",ch|I]);

while (ch[I| ! = '\0' && ch|I| ! = '\n' && ch|Ij ! = '\t' && Space = = 0)

A-l

if(ch(I

{

|
! = " &.&. Space = = 0)

ChCount = ChCount + I;

Tempfi| = ch[l];

i = i + 1;

}

else

{

1 = 1 + 1;

Flag - 1;

printf("\nReading characters");

prinif("\nRead a space after characters");

if(Flag = = 1)

Space = 1;

1 = 1 + 1;

}

while (iscntrl(ch|I|) !=()&& ch[I| ! = '\n'

&& ch[I] ! = '\t' && ch[I| ! = '\0' && Error = = 0)

{

if(ch(Il= = ")

(

prinlf("\nReading spaces after all characters");

1 = 1 + 1;

}

else

{

printf("\aError occurred);

Error = 1;

}

if (Error = = 1)

*ConditionCode = BlanksInEntityNameCode;

else

if (Ch Count = = 0)

*ConditionCode = NoEntityNarneCode;

else

if(Ch_Count > MAX_STR LEN - 1)

*ConditionCode = TooLongEntityName Code;

else

*CondilionCode = OKCode;
printf("\nConditionCode in SC = %d",*ConditionCode);

for (i = 0; iAXSTR LEN -
1 ; + + i)

{

EntityName[i] = chfjj;

J =
J + i;

}

A-2

EnlityName|MAX_STR_LEN- 1| = '\0';

printf("\nENTITY NAME IS: %s",EntityName);

prinlf("\nLeaving SyntaxCheck");

A-3

APPENDIX B

SOURCE CODE OF SAMPLEPROGRAM2

/' •/

/* Procedure : SyntaxCheck Last Revision : 5/05/86 */

/* */

/* Programmer : Monte L. Hall "l

I* 7
/* Description : This module accepts an EnlityName which consists of all */

/* those characters found after the colon on one line as distinguished */

/* in the ReadDala module. This EnlityName string is tested for a null */

/* string, an oversized string(one that is over MAX STR LEN characters */

/* long), and for embedded blanks within the EnlityName. A Condition- */

/* Code is passed out indicating which error occurred; or if no error */

/* occurred, a ConditionCode is passed out indicating such. */

/* *l

#include </usrb/cs340/ldb/project/define.h >

#include <ct ype.h>

#define NoEntityNameCode 2

#define TooLongEntityNameCode 1

#define BlanksInEntityNameCode 8

#define OK Code

Syntax_Check(EntityName,ConditionCode)

char *EntityName;

int *ConditionCode;

char *ch;

int i = 0, 1 = 0, ChCounl = 0, /* initialize indices, counters */

Space = 0, Flag = 0, Error = 0, /* and booleans */

Null = 0;

char TempiMAX STRLEN];

ch = EntityName;

printf("\nln Synlaxcheck");

printf("\nENTITY NAME is: %s",EntityName);

for(i = 0;i< = MAX STR LEN; + +i)

Temp[i) = '

';

i =0;
printf("\nBefore isspace and ch is: %s",ch|I|);

B-l

while (isspace(ch[I |) ! = 0) /* strip off initial blanks in EntityName */

1 = 1+1;

if(iscntrl(ch|I|) = = 0&&(ch|ll!= >'))

I

printf("\nAfter isspacc and ch is: %s",ch(I]);

while (ch[lj ! = '\0' && ch[I] ! = '\n' && ch[l) ! = '\l' && Space = =

&& (iscnlrl(ch|i| = = 0))

{ /* continue until eol or space encountered */

if(ch|I]!= "&& Space = = 0)

{

ChCount = ChCount + 1;

Temp[i] = ch[I] /* store EntityName w/o initial blanks */

i = i + 1;

1 = 1 + 1;

Flag = 1; /* reading characters */

printf("\nReading characters");

}
/* end inner if */

else

{ /* read a space */

printf("\nRead a space after characters");

if (Flag = = 1) /* read a space after characters? */

Space = 1; /* turn flag on */

1 = 1 + 1;

} /* end else*/

} I* end while */

while(iscntrl(ch[l|) = = &&ch[I]!= '\n'

&& chfl] ! = '\t' &.& ch[I| ! = '\0' && Error = = 0)

{ /* continue until eol or error occurs */

if (ch[I] = = ") /* read a space after characters */

1 = 1 + 1;

else /* blanks between characters */

Error = 1; /* set flag */

}
/* end while */

} /* end outer if */

else

Null = 1;

/* set ConditionCode */

if (Error = = 1)

*ConditionCode = BlanksInEntityNameCode;

else

B-2

if (ChCount = = 0)

*ConditionCode = NoEntityNameCodc;

else

if(Ch_Count MAX STR LEN - 1)

*CondilionCode = TooLongEntityNameCode;

else

*CondilionCode = OKCode;
printff\nConditionCode in SC = %d",*ConditionCode);

printf("\nTEMP IS: %s",Temp);

if (Null = = 0)

{

for (i = 0; iAXSTRLEN - 1; + +i) /* copy entity name w/o initial */

EntityName(i) = Tempfi]; /* blanks in Temp back into */

I* EntityName */

EntityNamefMAXSTRLEN -
1 1 = '\0';

} /*endif*/

else

EntityNamejO] = '\0';

printf("\nENT!TY NAME after loop IS: %s",EntityName);

printf("\nLeaving SynlaxCheck");

} /* end SyntaxCheck module */

B-3

APPENDIX C

SOURCE CODE OF COUNT PROGRAM

BEGIN {}

{count = 0}

/ {count = 1}

/ {count = 2}

/ {count = 3}

/ {count = 4}

/ {count = 5}

/ {count = 6}

print count}

C-i

APPENDIX D

SOURCE CODE OF NESTING PROGRAM

"main.results"

\n" > "main. results"

> "main.results"

>"main.results"

> "main.results"

> "main.results"

BEGIN
{
printf "Levels: \n" >

printf"

one = t)

two =

three =

four =

five =

six =

sum = }

AV {zero = zero + 1}

III {one = one + 1}

121 {two = two + 1}

III {three = three + 1}

/4/{four = four + 1}

/5/{five = five + 1}

161 {six = six + 1}

END { printf "zero %6d\n", zero

printf "one %6d\n", one

printf "two %6d\n", two

printf "three %6d\n", three

printf "four %6d\n", four > "main.results"

printf "five %6d\n", five > "main.results"

printf "six %6d\n", six > "main.results"

printf"-— \n" > "main.results"

zeroave = (zero * 100) / NR
printf "ZERO % = %5.3f\n", zeroave > "main.results"

oneave = (one • 100) / NR
printf "ONE %= %5.3f\n", oneave > "main.results"

twoave = (two * 100) / NR
printf "TWO % = %5.3f\n", twoave > "main.results"

threeave = (three * 100) / NR
printf "THREE % = %5.3f\n", threeave > "main.results"

fourave = (four * 100) / NR
printf "FOUR % %5.3f\n", fourave > "main.results"

fiveave = (five * 100) / NR
printf "FIVE % = %5.3f\n", fiveave > "main.results"

sixave = (six * 100) / NR
printf "SIX %= %5.3f\n", sixave > "main.results"

average = 100 * (zero + one*2 + two*3 + three*4) ,'NR

average + = 100 * (four*5 + five*6 + six*7) / NR
printPTOTAL AVERAGE = %5.3f\n",average > "main.results"

sum = zero + one + two -I- three + four + five + six

printf "SUM = %10d\n", sum > "main.results"

printf "LINES OF CODE = %10d\n", NR > "main.results"

printf'SUM/LINES : %10.3f\n",(sum/NR)> "main.results"

printf"- \n" > "main.results" }

D-l

APPENDIX E

SOURCE CODE OF TYPEPGM PROGRAM

BEGIN { CommentSw - 0; StringSw = 0; LineNumber = }

{

#
process all the number of fields in the current record.

#
i = 1

if(NF = = 0)

{ counl["blanklines"] + +

LineNumber = NR
}

else { while (i < = NF)

{ if (CommentSw = = 1)

{ if (Si ~ /*\//) CommentSw =

else
{

if ((Si ~ /VUV) && ($i
!

~ /V) && (Si I = "/"))

{ CommentSw = 1

countfcomments"] + +

if (Si ~ /*\//) CommentSw =

}

else
{

if (StringSw = = 1)

{if($i~/\7) StringSw =

}

else {

if($i~/\7)

{ StringSw = 1

if($i~/\"\)/) StringSw =

}

else {

if ((($1
~

/\:/) 1 1
($2 ~

/\:/)) && (Si = = $1))

{ if ($1 ~ /default/) countfdefault"] + + # ... default

else if ($1 ! = "case") count["labels"] + + # ... labels

}

if (Si " A(/)

{ NoOfElement = split($i, Array, "(")

count["functions"| =

count["functions"] + NoOfElement - 1

for (k = 1; k NoOfElement; k + +

)

{ if(Array|kl= = "if")

{count["if] + + count|"functions"]--}

else if (Array(k |
= = "for")

{count["for"] + +
countf'assignments"]—

count["functions"]-

}

else if (Array[k] = = "while")

{count|"while"| + +

E-L

count]"functions"]-

}

else if (Array[kj = = "switch")

{countf'switch"] + +

counlffunctions"]--

}

else if (Array[k] = = "return")

{counlfreturn"] + +

count|"functions"]--

)

else if ((Array(k] = = "gelchar")
1

1

(Array[k] = - "getc"))

{count["input"j + +
count["functions"]--

}

else if ((Arrayfk] = = "scanf")
| |

(Array[k] = = "fscanf'))

{count["input"] + +

countf'functions"]--

}

elseif((Array[k] -- "gets") ||

(Array[k] = = "fgets"))

{count["input"j + +
count["functions"]-

}

else if ((Array|k| = = "gefw")
1

1

(Array[k] = = "read"))

{count["input"]+ +
count["functions"]-

}

else if ((Array[k| = = "pulchar")
| |

(Arrayfk] = = "putc"))

{countfoutput"] + +

count("functions"]~

}

else if ((Arrayfk] = = "printf)
1

1

(Array(k] = = "fprintf))

(count["output"] + +
count["functions"]-

}

else if ((Array[k] = = "printw")
1

1

Array[k] = = "write"))

(countfoutput"] + -r

count["functions"]—

}

else if ((Array[k| = "puts"|
| |

(Array[k] = = "fputs")

{countfoutput"] + +
count["functions"]—

E-2

} # end'if ($i ~
/\(/)'

if($i~/\ = /)

{ if (($i
!

" /\! =/) && (Si !
~

/\ = =/) && ($i !' A = /))

{count["assignmenls"|+ +

}end'if($i'/\=/)'

if ($i = = "int") countf'declarations"] + +

else if ($i = = "float") countf'declarations"] + +

else if ($i = = "double") count["declaralions"'| + +

else if ($i = = "struct) count|'declarations") + +

else if ($i = = "register") countf'declarations"] + +

else if ($i = = "static") count["declarations"] + +

else if ($i = = "char") countf'declarations"] + +

else if ($i = = "if) {count["if'] + + count ["functions"]--}

else if ($i = = "for")

{counl["for"| + +

countf'assignments"]--

counl["functions"]-

}

else if ($i = = "while")

{count["whiIe"] + + countffunctions"]--}

else if ($i = = "switch")

{counl|"switch"]+ + count|"funclions"]--}

else if (($i = = "return")
1 1

($i = = "return;"))

{count["return"] + +

if (($i = = "return") && ($(i + 1)
~

/\(/)

{ count["functions"]-
}

}

else if (($i = = "getchar")
| |

(Si = = "getc"))

{count|"input"]+ + count["functions"]-}

else if (($i = = "scanf")
1 1

($i = = "fscanf*))

{count["input"] + + count["functions"]-}

else if ((Si = = "gets")
1 1

(Si = = "fgets"))

{countf'input"] + + count["functions"]-}

else if ((Si = = "getw")
1 1

(Si = = "read"))

{count["input"J + + count["functions"]~}

else if ((Si = = "putchar")
1 1

($i = = "putc"))

{countf'output"] + + count["functions"]--}

else if ((Si = = "printf) 1 1
(Si - - "fprintf'))

{countf'output"] -t- + count["functions"]~]

else if ((Si = = "printw")
| |

(Si = = "write"))

{count["output"]+ + count["functions"]--}

else if (($i = = "puts")
1 1

(Si = = "fputs"))

{count["outpul"|-t- + count["functions"]-}

else if (Si = = "else") count["else"] + +

else if (Si ~ A#/) count["preprocessor"] + +
else if (Si = = "case") count["case"] + +

else if (Si = = "goto") countf'goto"] + +
else if ((Si = = "break")

| |

(Si = = "break;"))

count["break"] + +

else if ((Si = = "continue")
1 1

(Si = = "continue;")

E-3

countf'continue"] + +

LineNumber = NR
+ +i

END

%10d\n", count["else"J

%10d\n", count["switch"

"CASE
"GOTO
"BREAK

> > "main. results";

> > "main. results";

> > "main.results";

> > "main. results";

> > "main. results";

" \n" > > "main. results";

"FOR %10d\n",count["for"] >> "main.results";

"WHILE %10d\n", count("while"] >> "main.results";

"IF %10d\n", count["if'] >> "main.results";

"ELSE

"SWITCH
%10d\n", count["case"|

%10d\n", count["goto")

%10d\n",count|"break"]

"CONTINUE %10d\n", count["continue"| "main.results";

"ASSIGNMENT %10d\n", count["assignments"| > "main.results";

"PREPROCESSOR %10d\n",count["preprocessor") >> "main.results";

"COMMENT %10d\n", count["comments"] > > "main.results";

"BLANKLINE %10d\n", count["blanklines"| >> "main.results";

"RETURN %10d\n", countfreturn"] >> "main.results";

"INPUT %10d\n", countf'input"] > > "main.results";

"OUTPUT %10d\n", countf'output"] > > "main.results";

"FUNCTION %10d\n",count["functions"] > 'main.results";

"DECLARATION %10d\n", count["declarations"] > > "main.results";

"DEFAULT %10d\n", count|"default"] >> "main.results"

print

print

print

print

print

print

print

print

print

print

print

print

print

print

print

print

print

print

print

print

#
calculate the weights

#
weights = 18.4 * countfdeclarations"] + 11.4 * count["if]

weights + = 7.9 * count("for"j + 8.5 * count["while"|

weights + = 6.8 * countfswitch") + 5.6 * count["case"J

weights + = 4.6 * count["preprocessor"] + 11.1 * counlfgoto"]

weights + = 2.4 * count|"comments")

printf " \n" > > "main.results"

printf "WEIGHT/LINES = %10.5f\n", (weights/NR) > "main.results";

printf "WEIGHT = %10.5f\n", weights >> "main.results"

printf "LINES OF CODE = %10d\n", NR >> "main.results";

printf" \n" > > "main.results";

E-4

APPENDIX F

SOURCE CODE OF CHANGES PROGRAM

echo "%*% This is start of data collection'' > > main. results

date > > main.results
****** Pretty-Printing a Program ******

cb

<$l>l.cb

cb

<$2> 2.cb

****** Calculating Occurrence of Statement Types ******

echo "= =" >> main. results

echo "File Name :
" $1 > > main. results

sedW " /g

s/}/} /g

s/{/{/g'$l
I

awk-fTYPEPGM
****** Summing the Indentation Level ******

awk -fCOUNT l.cb
|
awk -f NESTING

****** Calculating Occurrence of Statement Types ******

echo "==============================">> main.results

echo "File Name :
" $2 > > main.results

sed 's/7 " /g

s/}/} /g

s/{/{/g'$2|

awk-fTYPEPGM
****** Summing the Indentation Level ******

awk -fCOUNT 2.cb
|
awk -f NESTING

****** Finding the Differences ******

diff -e l.cb 2.cb
|

grep '
* [0-9]'

|

****** Extracting the Changed Statements ******

sed's/V/g

s/a/ a /g

s/c/c/g

s/d/d/g'
|

awk'

BEGIN {printf "BEGIN {i = 0}\n"}

NF==2{if($2 -- V)
{printf "NR = = %d {print \"a\",$0 ;i = l}\n",$l

printf "NR = = %d {print \"b\",$0 ;i = l}\n",($l + 1) }

else {printf "NR= = %d {print \"%s\",$0 ;i = l}\n",$l,$2 }}

NF= =3 {for (j =$1U< =$2y + +

)

printf "NR = = %d {print \"%s\",$0 ;i = l}\n",j,$3}

END{}' result

awk -f result l.cb
|

awk' /~c/ {print $0 > "temp"
}'

sed 's/c / /g

s/{/ {/g

s/}/} /g

s/"/"/g' temp > final

****** Calculating Occurrence of Statement Types ******

F-l

echo"==============================">> main. results

echo "File Name :
" changes.with.TAB > > main. results

awk-fTYPEPGM final

****** Summing the Indentation Level ******

awk -fCOUNT final
|
awk -f NESTING

rm l.cb 2.cb result temp final

****** Finding the Differences ******

diff-el2 Igrep'^O-O]'
|

****** Extracting the Changed Statements ******

sed 's/V /g

s/a/ a /g

s/c/ c /g

s/d/ d /g'
|

awk

'

BEGIN {printf "BEGIN {i = 0}\n"}

NF==2{if($2 = = "a")

{printf "NR = = %d {print \"a\",$0 ;i = l}\n",$l

printf "NR== %d {print \"bV,$0 ;i= l}\n",($l + 1) }

else {printf "NR= = %d {print \"%s\",$0 ;i = l}\n",$l,$2 }}

NF= =3{for(j = $l;j< =$2j+ +)
printf"NR= = %d {print \"%s\",$0 ;i = l}\n"j,$3}

END{}' result

awk -f result $1
|

awk'

/^c/ {print $0 > "temp" }'

sed 's/c / /g

s/{/ {/g

s/}/} /g

s/7 " /g' temp > final

****** Calculating Occurrence of Statements Types ******

echo "= =">> main.results

echo "File Name :" changes.without.TAB > > main. results

awk-fTYPEPGM final

rm result temp final

echo "%%% This is end of data collection" > > main.results

F-2

APPENDIX G

SOURCE CODE OF PICK PROGRAM

BEGIN {}

{

if ($1 - = "%*%") print $1 > 'pick.file"

if (($NF ! = "1987") && ($1 !
~ A =/) &&

($1 !
~ /\-/) && ($1 ! = "Levels") && ($1 !

~ /\'

&& (NF ! = 0) && ($NF ! - "data"))

print $NF > "pick.file"

}

CM

APPENDIX H

SOURCE CODE OF SEP PROGRAM

BEGIN {no = 0;flag=l}

{

if ($1 -- "%*%')

{+ +no
flag = 1

}

if (($1 !
~ /\with/) && ($1 !

~
/\//) && ($1 ! = "%*%"))

{

print $0 > no

+ +flag

}

if (flag ! = 1)

{if(($i - /\withy)
1 1

($i ~
/\//))

print "\n" no

}

}

HI

APPENDIX I

SOURCE CODE OF VERSION 1 OF EXAMPLE

I*

/* Procedure : Recreate Listing Last Revision

:

*

/•

/* Programmer : Mike McClure *

I*

I* Description : This module accepts the data array record and the *

/* counter arrayas inputs. It reads the index value '

/* of each entity name of the data array and recreates *

/* the listing asit was originally read in. This module '

/* then printsthe listing. The module append error is
*

/* called by this module. *

/*

^******* + ******* + ******** + .f + + ******************** *************************

#include <stdio.h>

#include < /usrb/cs340/ldb/project/structure.h >
#include < /usrb/cs340/ldb/project/counter.h >

#define begin {

#define end }

#define inc + +

#define EQ = =

#define NE !
=

#define LE < =

#defme AND &&
#define NULL 70'

RecreateListing (DataRecordArray, fp)

struc datarec *Data_Record_Array;

begin /* outer loop of data structure */

int Lj,k; /* looping variables */

FILE *fp;

for (i=0; Data_Record_Array[i].Procedure|0] NE NULL AND
i LE MAX_STRUC_ARR - 1; inc i)

fprintf (fp,"\n PROCEDURE : %s",Data_Record Array|ij.Procedure[j]);

if (Data_Record_Array[i].Booleanl[j] > 0)

AppendError;

begin /* loping through procedure arrays */

for =0; j LE MAX FLD ARR-1; inc j)

begin

fprintf (fp,"\n CALLS : %s",Data_Record_Array[i].Calls[j]);

+ + Calls;

end

if (Data_Record_Array[i].Boolean2[j] > 0)

Append Error;

for (j =0; j LE MAX STRUC_ARR -1; inc j)

fprintf(fp,"\n EXTERNAL INPUT : %s",Data_Record_Array|i|.Exl_lnput[j|);

if (Data Record Array[i].Boolean3[j] 0)

Append Error;

for (j =0: j LE MAX_STRUC_ARR-1; inc j)

begin

fprintf (fp,"\n INPUT GLOBAL : %s",Data_Record_Array[i].Input_Global[j|);

+ +GIobals;

end

if (Data_Record_Array(i].Boolean4[j] 0)

Append_Error;

for (j =0; j LE MAX STRUCARR-1; inc j)

fprintf (fp,"\n INPUT PARAMETER : %s",Data_Record Array|i|.Input_Parameter[j]);

if(Data_Record_Arrayli].Boolean5(jl 0)

AppendError;

for (j =0; j LE MAX STRUC_ARR-1; incj)

fprintf (fp,"\n EXTERNAL OUTPUT : %s\Data_Record_Array[i].Ext_Output[j]);

if (DataRecord Array(iJ.Boolean6[jj 0)

AppendError;

for (j=0;j LE MAX_STRUC_ARR-1; incj)

begin

fprintf (fp,"\nOUTPUT_GLOBAL : %s",Data_Record_Array[i].Output_global[j]);

+ +Globals;

end

if (DataRecord Array[i].Boolean7[j| 0)

AppendError;

for (j =0; j LE MAX STRUC_ARR-1; incj)

fprintf(fp,"\nOUTPUT_PARAMETER:%s",Data_Record_Array[i].Output_parameter[j]);

If (Data_Record_Array[i].Boolean8[j] 0)

AppendError;

for (j =0; j LE MAX STRUC_ARR-1; incj)

fprintf (fp,"\n ILLEGAL : %s",Data_Record_Array[i].Illegal(j]);

If (Data_Record_Array[i].Boolean9(j] 0)

AppendError;

for (j =0; j LE MAX_STRUC_ARR-1; incj)

fprintf (fp,"\n IGNORED : %s",Data_Record_Array|i].Ignored[j]);

end

1-2

APPENDIX J

SOURCE CODE OF VERSION 2 OF EXAMPLE

/* */

/* Procedure : Recreate Listing Last Revision : 4-30-86 mm */

/* */

/* Programmer : Mike McClure */

/* •/

/* Description : This module accepts the data array record and the */

/* counter arrayas inputs. It reads the index value */

/* of each entity name of the data array and recreates */

/* the listing asit was originally read in. This module */

/* then printsthe listing. The module append error is */

/* called by this module. */

/* */

#include <stdio.h>

#include < /usrb/cs340/ldb/project/structure.h >
#include </usrb/cs340/ldb/project/counter.h >
#define begin {

#define end }

#define inc + +

#define EQ - =

#define NE !
=

#define LE< =

#define AND &&

Recreate_Listing(Counter_Array,Data_Record_Array)

struct datarec *Data RecordArray;

rec *Counter_Array;

begin /* outer loop of data structure */

int i,j; /* looping variables */

FILE *fp, *fopen();

fp = fopen("final_report","a");

printf("\n I am in reclist & befor for loop start\n");

for (i = 0; Data_Record_Array[i].Procedure[0] NE '\0' AND
i LE MAX_STRUC_ARR - 1; inc i)

begin /* looping through procedure arrays */

printf("I am in 1st for loop for structure array\n");

fprintf(fp,>7");

fprintf(fp,>7");

fprintf (fp,"\nPROCEDURE : %s",Data_Record_Array|il.Procedure);

.1-1

if (Data_Record_Array[i].Booleanl 0)

{
"

fclose(fp);

Append Error(Counter Array,&Data_Record_Array|
i

] .Boolean 1)

;

fp = fopen("final report","a");

}

for(j =0J LE MAX FLDARR-1 AND
Data_Record_Array[i].Calls[j][0] NE '\0'; inc j)

begin

printf("\n I am in field loop array\n");

fprintf(fp,"\n CALLS : %s",Data_Record_Array[i|.Calls[j]);

if (Data Record_Array[ij.Boolean2(j] 0)

{

fclose(fp);

Append_Error(Counter_Array,&DataRecordArray [i] . Boolean2[j
|)

;

fp = fopen("final report'V'a");

}

inc Counter_Array[12].value;

end

for(j =0j LE MAX STRUC_ARR -1 AND
DataRecord Array[iJ.Ext_input[j][0] NE '\0'; inc j)

begin

fprintf(fp,"\n EXTINPUT : %sn

)Data_Record_Array[i].Ext_input(j|);

if (Data_Record_Array[i|.Boolean3(j] 0)

{

fclose(fp);

Append_Error(Counter_Array,&Data_Record_Array[i|.Boolean3[j]);

fp = fopen ("final_report","a")

}

end

for =0; j LE MAX_STRUC_ARR-1 AND
Data_Record_Array[i].Input_global[j][0] NE '\0'; incj)

begin

fprinlf (fp,"\n INPUT_GLOBAL : %s",Data_Record_Array[i].Input_global[j]);

if (Data_Record_Array[i].Boolean4fj] 0)

{

fclose(fp);

Append_Error(Counter_Array,&Data_Record_Array[i] . Boolean4(j])

;

fp = fopen ("final_report","a");

inc Counter_Array[ll].value;

end

for =0; j LE MAX_STRUC_ARR-1 AND
Data_Record_Array[i].Input_parameter[j][0] NE '\0';inc j)

begin

fprintf(fp,"\nINPUT_VALUE:%s",Data_Record_Array[i].Inpul_parameter(j]);

if (Data_Record_Array[i].Boolean5(j] 0)

<

fclose(fp);

Append_Error(Counter_Array,&Data Record Array[i].Boolean5[j]);

fp = fopen ("fmal_report","a");

}

end

for 0=0; j LE MAX_STRUC_ARR-1 AND
Data Record_Array[i).Ext_output[j][0] NE '\0';inc j)

begin

fprintf(fp,"\nEXTERNAL_OUTPUT:%sn
,Data_Record_Array|i].Ext_output|j|);

if (Dala_Record_Array[i].Boolean6(j] 0)

{

fclose(fp);

Append_Error(Counter_Array,&Data_Record_Array[i].Boolean6[j|);

fp = fopen ("final_report","a");

}

end

for = 0; j LE MAX_STRUC_ARR-1 AND
Data_Record_Array[il.Output_global[j](0] NE '\0';incj)

begin

fprintf(fp,"\nOUTPUT_GLOBAL:%s",Data_Record_Array[i].Output_global|j]);

if (Data_Record_Array[i].Boolean7[j] 0)

{
'

fclose(fp);

Append_Error(Counter_Array,&Data Record_Array[i].Boolean7[j]);

fp = fopen ("final_report",V);

}

inc Counter_Array[llJ.value;

end

for (j = 0;j LE MAX STRUCARR-1 AND
Data_Record_Array[i].Output_parameter(j][0] NE '\0';inc j)

begin

fprintf(fp,"\nOUTPUT_NO:%s"
)Data_Record_Array[i].Output_parameterfj]);

if (Data_Record_Array[i].Boolean8[j] 0)

{

fclose(fp);

Append_Error(Counter_Array,&Data_Record_Array[i].Boolean8[j|);

fp = fopen ("final report","a"); } end

for (j =0; j LE MAX STRUC_ARR -1 AND
Data_Record_Array[iJ.Illegal[j][0] NE '\0';inc j)

begin

fprintf (fp,"\n Illegal : %s",Data_Record_Array(iJ.Illegal[j|);

if (Data_Record_Array[i].Boolean9[jl 0)

{

fclose(fp);

Append_Error(Counter_Array,&Data_Record_Array[i].Boolean9[j]);

fp = fopen ("final_report","a");

1

J-3

end

for (j = 0; j LE MAX STRUC_ARR-1 AND
Data_Record_Array|i].Ignored|j][0] NE '\0';inc j)

fprintf (fp, "\n Ignored : %s", DataRecord Array[i].Ignorcd(j|);

end

fclose(fp);

end

.14

APPENDIX K

SAMPLE OUTPUT FROM PROBIT FOR QUANTITATIVE ANALYSIS OF DEBUGGING

1 SAS(R) LOG OS SAS 5.16 OS/MVT JOB VM185600 STEP
SUBMIT PROC SAS 18:56 WEDNESDAY, APRIL 6, 1988

NOTE: COPYRIGHT (C) 1984,1986 SAS INSTITUTE INC., CARY, N.C. 27511,
U.S.A.
NOTE: THE JOB VM185600 HAS BEEN RUN UNDER RELEASE 5.16 OF SAS AT KANSAS
STATE UNIVERSITY (03010001).

NOTE: SAS OPTIONS SPECIFIED ARE:
NOINCLUDE NOGRAPHICS SORT=4

NOTE: SAS 5.16 has replaced SAS 82.3.

1 OPTIONS LS=72;
2 DATA;
3 INPUT DOSE N RESPONSE;
4 CARDS;

NOTE: DATA SET WORK.DATA1 HAS 13 OBSERVATIONS AND 3 VARIABLES. 680 OBS/T
RK
NOTE: THE DATA STATEMENT USED 0.20 SECONDS AND 372K.

18
19 PROC PRINT;
20 VAR DOSE N RESPONSE;
NOTE: THE PROCEDURE PRINT USED 0.25 SECONDS AND 422K

AND PRINTED PAGE 1.

21 PROC PROBIT LOG10;
22 VAR DOSE N RESPONSE;
NOTE: THE PROCEDURE PROBIT USED 0.54 SECONDS AND 420K

AND PRINTED PAGES 2 TO 6

.

NOTE: SAS USED 422K MEMORY.

NOTE: SAS INSTITUTE INC.
SAS CIRCLE
PO BOX 8000
CARY, N.C. 27511-8000

K-l

SAS 1

18:56 WEDNESDAY, APRIL 6, 1988
OBS DOSE N RESPONSE

1 1

1 1

1 1

1 1

1

2 1

3 2

1 1

1

4 2

4 1

3

13 41

1 32

2 24

3 19

4 18

5 11

6 9

7 8

8 7

9 5

10 3

11 2

12 1

K-2

SAS 2

18:56 WEDNESDAY, APRIL 6, 1988
PROBIT ANALYSIS ON LOGIO(DOSE)

ITERATION

1

2

3
4

INTERCEPT SLOPE MU SIGMA

4.19764739
3.66586399
3.58409386
3.58208644
3.58208523

1.

1,

1.

1,

1

.12527653

.86023043

.97505921

.97790611

.97790783

0,

.71302706

.71718858

.71689301

.71687607

.71687606

0..88867045
.53756781
.50631393
.50558517
.50558473

COVARIANCE MATRIX
INTERCEPT SLOPE

INTERCEPT
SLOPE

0.39202706
-0.44235206

-0.44235206
0.64162248

COVARIANCE MATRIX
MU SIGMA

MD
SIGMA

0.02237685
0.00227606

0.00227606
0.04192329

CHI-SQ = 6.1631 WITH 10 DF PROB > CHI-SQ = 0.8014

NOTE: SINCE THE CHI-SQUARE IS SMALL (P > 0.10), FIDUCIAL
LIMITS WILL BE COMPUTED USING A T VALUE OF 1.96 .

K-3

PROBIT

10 +

9 +

8 +

7 +

SAS 3
18:56 WEDNESDAY, APRIL 6, 1988

PROBIT ANALYSIS ON LOGIO(DOSE)

X XX X X

6 +

5 +

4 +

3 +

2 +.

1 +

+ X
+ +

LD01 LD05
-0.459 -0.115

X X

LD25 LD50 LD75 LD95 LD99
0.376 0.717 1.058 1.548 1.893

LOGIO(DOSE)

K-4

PROBABILITY

1.0 +

0.9 +

SAS 4
18:56 WEDNESDAY, APRIL 6, 1988

PROBIT ANALYSIS ON LOGIO(DOSE)

0.8 +

0.7 +

0.6 +

0.5 +

0.4 +

0.3 +

0.2 +

0.1 +

o-o + X XX
+ + + + +.

LD01 LD05 LD25 LD50 LD75
-0.459 -0.115 0.376 0.717 1.058

XX X X

+ +

LD95 LD99
1.548 1.893

LOGIO(DOSE)

K-5

SAS
5

„„„„„ 18:56 WEDNESDAY, APRIL 6, 1988PROBIT ANALYSIS ON LOGIO(DOSE)

PROBABILITY

0.01
0.02
.03
.04

05
06
07
08
09
10
15
20
25
30
35
40

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

LOGIO(DOSE)

-0.45928991
-0.32146803
-0.23402447
-0.16824409
-0.11473682
-0.06919373
-0.02926135
0.00649333
.03901078
06894315
19287116
29136521
.37586434
45174716
52206391
58878763

0.65334360
0.71687606
0.78040852
0.84496448
0.91168820
0.98200495
1.05788778
1.14238690
1.24088095
1.36480896
1.39474133
1.42725878
1,46301347
1.50294585
1.54848894
1.60199620
1.66777659
1.75522015
1.89304202

95 PERCENT
LOWER

-4.92685122
-4.26477822
-3.84563565
-3.53095349
-3.27547273
-3.05843356
-2.86850248
-2.69878239
-2.54475000
-2.40327159
-1.82167412
-1.36666280
-0.98505006
-0.65387609
-0.36300645
-0.10959796
0.10498151
0.27931762
0.41652275
0.52466424
0.61309224
0.68962129
0.76016205
0.82955995
0.90293269
0.98829210
1.00811672
1.02938413
1.05248274
1.07796964
1.10669008
1.14002741
1.18050666
1.23361420
1.31606856

FIDUCIAL LIMITS
UPPER

0.09547234
0.17849658
0.23209431
0.27303627
0.30682829
0.33600569
0.36195838
0.38553646
0.40730102
0.42764398
0.51603026
0.59350078
0.66871004
0.74777635
0.83705548
0.94437098
1.07879615
1.24793134
1.45419751
1.69506067
1.96735667
2.27097637
2.61067589
2.99810000
3.45720910
4.04183343
4.18383019
4.33835972
4.50855928
4.69895615
4.91645229
5.17238774
5.48753260
5.90716537
6.56980824

K-6

SAS 6
18:56 WEDNESDAY, APRIL 6, 1988PROBIT ANALYSIS ON LOGIO(DOSE)

PROBABILITY DOSE

0.01 0.34730425
0.02 0.47701492
0.03 0.58341223
0.04 0.67882200
0.05 0.76782664
0.06 0.85271964
0.07 0.93484293
0.08 1.01506378
0.09 1.09398353
0.10 1.17204194
0.15 1.55908991
0.20 1.95598361
0.25 2.37609794
0.30 2.82974411
0.35 3.32708512
0.40 3.87960607
0.45 4.50135846
0.50 5.21045989
0.55 6.03126645
0.60 6.99784766
0.65 8.15996323
0.70 9.59411565
0.75 11.42583048
0.80 13.87991806
0.85 17.41329485
0.90 23.16375491
0.91 24.81654571
0.92 26.74599656
0.93 29.04112710
0.94 31.83800505
0.95 35.35810134
0.96 39.99412541
0.97 46.53466462
0.98 56.91413614
0.99 78.17034381

95 PERCENT
LOWER

0.00001183
0.00005435
0.00014268
0.00029447
0.00053031
0.00087411
0.00135362
0.00200086
0.00285266
0.00395119
0.01507738
0.04298701
0.10350229
0.22188294
0.43350444
0.77696604
1.27344885
1.90246913
2.60929243
3.34706570
4.10291234
4.89351910
5.75654690
6.75398276
7.99710297
9.73401698

10.18865176
10.70000878
11.28451091
11.96656871
12.78468643
13.80471374 1
15.15328058 3
17.12435399 8

20.70468193 37

FIDUCIAL LIMITS
UPPER

1.24586889
1.50833072
1.70645292
1.87515109
2.02688118
2.16773250
2.30122125
2.42960940
2.55447124
2.67697296
3.28118154
3.92193848
4.66347916
5.59469418
6.87156210
8.79773713

11.98936417
17.69829150
28.45755029
49.55194094
92.75912967

186.62781588
408.01477870
995.63464374

2865.55731738
11011.16909866
15269.68899306
21795.14307647
32252.19550293
49998.40542578
82499.68400879
48726.29000454
07278.80195588
07542.47142539
13712.13215244

K-7

CLASSIFYING PROGRAM CHANGES
DURING SOFTWARE DEVELOPMENT

by

Yu-Hua Hsu

B.S., Central State University, 1984

AN ABSTRACT OF A MASTER'S THESIS

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

ABSTRACT

The historical data of a program collected during its

development phase contain important information regarding

the activities of the software development. This work

proposes, both qualitatively and quantitatively, a program

change pattern classification and a set of intuitive rules

for effective evaluation of the changes during software

development. It is important that a software manager sees

and interprets the pattern changes during software

development. The intuitive rules are designed to

facilitate the analysis of those changes; the results can

be used to aid the software manager in evaluating the

software development.

