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CHAPTER ONE

Introduction

The advent of expert systems may trace its roots back to the early 1950's and

the beginnings of artificial intelligence. John McCarthy first coined the phrase

"artificial intelligence" as scientists attempted to embody human-like intelligence in

computer programs. As opposed to conventional programming techniques, this new

approach strove to capture human reasoning capabilities in general problem solving

and to apply them to all problems. Eventually it was evident that a general problem

solving program was not applicable to all types of problems and another approach

was definitely needed. The early 70's found the answer. Instead of attempting to

capture all knowledge for all domains, researchers realized that even human experts

were limited to a narrow domain of expertise. Therefore, program's domains should

be limited. In this manner, the task of modelling a human expert's thought processes

would be simpler. This was the beginning of expert systems development.

Still a relatively new technology, expert systems have proven themselves capable

of meeting the challenge of a new frontier in computer science. But, in order to

further advance the field, we now need to start improving the development process of

expert systems. This paper wiU present a diagrammatical approach to the construc-

tion of expert systems that leads to a more structured knowledge base.



To begin with, the paper gives a brief overview of expert systems including

definitions, distinctive features, compositional makeup, and contrasts with conven-

tional programs. Then the paper discusses current development techniques of expert

systems including rapid prototyping, shells, and iterative development. Next, the

paper discusses the application of software engineering techniques and practices to

expert systems. A proposal for a diagrammatical approach to development is then

presented.



CHAPTER TWO

Expert System Overview

"An expert system is regarded as the embodiment within a computer of a

knowledge-based component, from an expert skill, in such a form that the system can

offer intelligent advice or make an intelligent decision about a processing function

[1]." That is, an expert system is a system which stores a human expert's knowledge

concerning a narrow problem domain and applies that knowledge towards the solution

of problems in that domain.

2.1 Distinctive Characteristics of an Expert System [l]

1) Expertise limited to a specific domain

2) Separation of the expert knowledge and the use of that knowledge

3) Explanatory facilities of its reasoning

4) Ability to reason with uncertain or judgmental data using fuzzy logic, baye-
sian methods, etc.

5) Typically expressed in heuristic rule form

2.2 Contrasts to Conventional Programming

These characteristics contrast expert systems with conventional programs.

Whereas, the data and algorithms form a conventional programming solution to prob-

lems, expert system's solutions are composed of knowledge and inference techniques to

apply that knowledge. Further, conventional programs are built from an ordered

sequence of unambiguous statements (an algorithm) where the control of statement



execution has to be precisely defined using sequential, conditional, or iterative struc-

tures. However, expert system programs are usually an unordered collection of rules

describing situations and corresponding actions to take if that situation occurs. Con-

trol is not specified in the program. Finally, conventional programs are designed to

produce correct and efficient results. Expert systems are modelled to follow a

human's thought processes and therefore expert systems may be erroneous or may not

produce the optimal solution.

2.3 Specialization of the Problem Domain

In the course of early expert system's development, researchers noticed the logi-

cal separation of an expert system into two parts. The first part, the inference

mechanisms, contained generalized heuristics that were applicable to different sys-

tems. The second part, the knowledge base, contained problem specific information

needed for the particular domain of interest where the problem solving power resides

in the possession of the knowledge derived from the expert. The general goal of the

expert system's implementation then became construction of the knowledge base,

using pre-existing inference procedures. This effectively narrowed the problem to

domain specific information. However, further refinement of the domain may be

needed to ensure a feasible system. In general, a human expert has expert knowledge

or reasoning capabilities in a limited scope or area. Similarly, an expert system can

only be effective in a narrow problem area.



For these types of systems, there are suitable and unsuitable problem domains.

Suitable Problem Domain Properties: [2]

1) Domain experts exist

2) Experts can articulate their methods

3) Experts agree on solutions

4) Task does not require common sense

5) Task requires only cognitive skills

6) Task is not poorly understood

7) Task is not too difficult

Unsuitable Problem Domains: [3]

1) Efficient algorithmic solutions exist

2) Tasks are sequential in nature

3) Tasks require precise flow of control

4) Extensive numerical approximations or calculations are required.

The above are merely guidelines and not necessarily strict rules to follow. There are

in fact uses for expert systems that fall outside of these guidelines. So, any problem

must be analyzed with regard to cost and benefit tradeoffs.

2.4 Building an Expert System

Once the problem area is defined, building an expert system is a process which

begins by extracting the expert's knowledge. A knowledge engineer is responsible for

this task. To build successful expert systems, we need human experts that can articu-

late their methods. Through interviews with the expert and/or observations of



his/her problem- solving abilities, the knowledge engineer must obtain a set of guide-

lines describing the expert's process of analyzing and solving the problem.

Most often, human experts can formalize their process of solution by the use of

heuristics of the form if-then. If some condition is met, then they perform certain

actions. Hayes-Roth has described four distinctive features of rules that follow [4].

1) they define a parallel decomposition of state transition behavior thereby
inducing a parallel decomposition of overall system state that simplifies

auditing and explanation.

2) they can simulate deduction and reasoning by expressing logical relation-

ships and definitional equivalences.

3) they can simulate subjective perception by relating signal data to higher
level pattern classes.

4) they can simulate subjective decision making by using conditional rules to

express heuristics.

A collection of these rules should detail the solution process. New heuristics will be

assimilated into the set of rules as the knowledge increases. One of the concerns at

this point should be the organization of the rules into logical units. We must insure

that the assimilation process does not fragment the system into an unorganized collec-

tion of rules where side-effects can flourish. As realized in software engineering, the

decomposition of a program into modules that have high cohesion and low coupling

greatly reduces the possibility of side-effects [5]. Without this structuring, several

problems can exist including inefficient operation, inaccurate operation due to side-

effects, and loss of maintainability.



Development of the physical system can now proceed. At present the most pre-

valent techniques are rapid prototyping [6] and reusability via shells. (The next

chapter will define and analyze these two techniques.) However, these techniques are

not conducive to structured design methodologies and often lead to incomplete, inac-

curate systems.

2.5 Architecture of Rule-based Expert Systems

The basic architecture of rule-based expert systems (production systems)

includes 3 parts: a set of facts, a set of rules, and an inference engine (See diagram 1).

The facts are the knowledge components that are initially known or inferred

throughout the process. The rules are problem specific conditional actions which

resemble if-then statements. If some set of conditions is met, then some action is

taken. The possible actions that can be taken are the modification, deletion, or addi-

tion of facts to the present fact memory. Together, these two components, the facts

and the rules, are collectively known as the knowledge base. The third component is

the inference engine which executes the rules. But before execution of a rule occurs,

the inference engine must decide which rule from the rule set to fire.

To describe the inference engine's activities in more detail, we can view it as a

three step process.
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KNOWLEDGE BASE

FACTS RULES

DOMAIN SPECIFIC INFORMATION

INFERENCE ENGINE

MATCH

SELECT

EXECUTE

GENERAL PROBLEM SOLVING ABILITIES

COMPONENTS OF AN EXPERT SYSTEM

DIAGRAM 1



Inference engine cycle

1) match step

2) selection step

3) execution step

In the first step of the process, the engine examines all of the rules satisfied by the

current facts and groups them together into what is known as the conflict set. The

conflict set consists of rules that have potential for execution. The second step of the

process takes the conflict set and selects one of the rules to be executed based upon a

conflict resolution strategy. The third step, performs the actions specified by the rule

which can modify the current fact memory. Due to the change in the fact memory, a

different conflict set will most likely occur for the next cycle of the process. Thus,

control in an expert system is not based upon any static control structures as in con-

ventional programming. It is driven by the facts and their modifications.

Once we have built the conflict set we need a strategy to select one rule to exe-

cute. A conflict resolution strategy utilizes a priority scheme to determine which rule

from the conflict set to select. Several methods are utilized in different expert system

languages. The following example is from the YAPS programming language which

examines the age of the facts as its basis of selection [7].
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YAPS Conflict Resolution Strategy

1) If a rule has already fired with a given set of facts, it will not fire

again unless one of those facts is refreshed.

2) For each rule in the conflict set, sort the ages of the facts into a list in

descending order.

3) Compare the first ages in the list for each rule and select the one with

the smallest age (the most recent fact). If a tie occurs, compare suc-

cessive ages in the lists. If a tie still exists and one list is longer than
the others, select that rule. Ties that remain unresolved result in a

random selection of a rule.

The rule is then executed, modifying the fact knowledge base. Continuing the infer-

ence engine cycle, a new conflict set is built from the match step and a new rule is

selected. This process continues until instructed to halt or there are no rules present

in the conflict set.

The two most common algorithms for inference engines are forward and back-

ward chaining. "In a forward chaining system, a rule is triggered when changes in

working memory data produce a situation that matches its antecedent component

[4]." Thus, every rule whose condition is met by the current facts is executed. This

can be very inefficient in that every rule of the system must have its conditions

evaluated even if its actions are not relevant to the current line of reasoning. "In a

backward chaining system, the rule based system begins with a goal and successively

examines any rules with matching consequent components [4]." That is to say, it will



concentrate the selection process on rules relevant to the current line of reasoning.

The efficiency here is that rules that will not contribute to this end are not executed.

An example of these two types of algorithms follow.

Assume the current facts are:

Red Yellow Blue Black White

Assume the current rules are:

1) if Yellow and Blue then Green

2) if Black and White then Grey

3) if Green and Red then Orange

Forward chaining would initially place rules 1 and 2 into the conflict set. The select

step would select rule 1 or 2 based on the conflict resolution strategy. Let us assume

rule 1 is executed. This puts a new fact into the fact memory that is required by rule

3. Therefore, the next cycle will place rules 2 and 3 into the conflict set and execute

one of them. Finally, only one rule is left in the conflict set, selected, and executed.

Thus, forward chaining would result in execution of all three rules and a final set of

facts of:

Red Yellow Blue Black White Green Orange Grey

Backward chaining requires a goal that we are trying to achieve. For purposes of

example let us assume we want to establish the fact Orange. Rule 3 establishes the

goal Orange for us, but only if Green and Red are current facts. Red is already a
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fact. To achieve Green, we need to execute rule 1 using the current facts Yellow and

Blue. Therefore, only rules 1 and 3 are executed resulting in a final set of facts of:

Red Yellow Blue Black White Green Orange
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CHAPTER THREE

Analysis of Current Development Methods

Several different development approaches exist presently. However, they all are

rather ad hoc methods in which there is no set structuring of events in the process.

And often these events overlap throughout the development. Generically, develop-

ment consists of five steps [8].

Five steps in the development process

1) identification of the problem

2) logical design

3) requirements design

4) implementation

5) testing

Identification of the problem specifies the important goals of the system. Logical

design determines strategies to follow in solving the problem. Requirements design

formalizes the system's expectations between the end-user and the developer. Imple-

mentation develops a workable program that may include several prototypes. Testing

activities verify that the product works and can be relied on.

Although this generic classification exists, the steps are highly interdependent

and overlapping. Arguments prevail that expert system development cannot be com-

pared to conventional program development and that an iterative process for defining

the requirements is necessary. With this in mind, several developers insist that rapid
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prototyping is an effective way to establish development. This entails an iterative

process whereby goals constantly shift, designs are revised, and several attempts at

implementation are performed. Others insist that expert system tools such as shells

are the best way to go, eliminating the knowledge engineer's job and relying on

domain experts to supply the knowledge interactively. The next two sections will dis-

cuss each of these methods in more detail.

3.1 Rapid Prototyping

Rapid prototyping is a technique whereby a knowledge engineer proceeds to

implement part of the system when exact requirements for the whole system are not

yet established. "Recognizing this, one should build a prototype system fully expect-

ing to throw away virtually all this code and start again [8]." Therefore the process

of development exists in four stages: problem determination, initial prototype,

expanded prototype, and delivered system [9]. The problem determination phase con-

sists of realization of the feasibility of an expert system to solve a problem. Some

form of functional specification occurs, but again it may be incomplete. The initial

prototype phase is viewed as a quick method to prove the feasibility of the system

and to solidify the requirements. At this stage, the initial prototype may be

expanded iteratively to encompass the full scope needed and requires extensive

interaction with the experts. Finally, the delivery system results by optimizing the

prototype and refining the user interfaces.
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It is argued that with the new technology of expert systems, user's attitude

towards the new field is one of unbelief. Therefore, prototypes serve as the vehicle

driving user interest to the point of wanting more. This is simply a public relations

tool. However, knowledge engineers claim that prototypes give a better feel for the

requirements of the system when vague objectives are given them. With a partial,

up-and-running system, engineers can get more definitive interaction with the expert

indicating what is right and what is wrong.

Yet, iterative development with these prototypes may lead to a knowledge base

which is fragmented, where gaps in knowledge exist, and which may approach

unmanageable size. At this juncture, the system efficiency is down and may even be

unreliable, demanding redesign and reimplementation from the start [10]. While rapid

prototyping has its place for experimentation with unusual new problems, it cannot

effectively be utilized for development of large applications. As we have learned in

conventional programming practices, applying software engineering techniques pro-

duces consistently better results. To summarize, when applications remain unclear

between the expert and the knowledge engineer, then rapid prototyping may be a

valid option to obtain physical results that can be critiqued. However, when

specifications are clear and knowledge engineers gain maturity in approaching

development, feasibility is not the issue and concerns shift to cost effectiveness [10].
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3.2 Shells

Another method of development concerns the application of an expert system

shell with built-in tools for acquiring and representing the knowledge. "An expert-

system shell is an environment designed to support applications of a very similar

nature and represents an intermediate point between specific applications and

general-purpose knowledge engineering environments [8]." Since many tasks share

common frameworks of solution, shells may provide the correct environment for

expert system development for a new problem using a solution that worked for a pre-

vious problem. If so, work can be spent making the existing solution more efficient

rather then spending time in development. Or, if a user is inexperienced in expert

system development, this may provide an approach for development.

Many companies now market expert system shells as tools for non-technical

users. However, these same companies would have people believe that the tools them-

selves are expert systems when in fact they are not. Additionally, we must remember

that producers often overstate the applicability of their products. Not all expert sys-

tems can be accomplished with one shell. Again this reverts to original AI approaches

to a general problem solver. Whereas tools such as shells can be extremely useful in

the production of similar products (such as the Emycin shell) or beneficial for rapid

prototype attempts, they are not panaceas. Some other restrictions with shells are 1)

they usually are not built to interact with other software products, 2) they typically
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use backward chaining techniques that may be unsuitable for some problems, 3) they

may only have one knowledge representation technique limiting the knowledge to that

structure, and 4) they do not address the problem of structuring rules in a logically

consistent manner.

3.3 Conclusions

"Experimental studies demonstrate that the methodology is more useful than its

accompanying tools [11]." While these methods have some practical usage in the new

field of expert systems, they are not conducive to structured design methodologies.

We need a structured approach to follow so that large scale development is not ham-

pered by bad design techniques.
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CHAPTER FOUR

Why Software Engineering Practices would be Beneficial to Expert Systems

Software engineering has brought programming-in-the-large considerable benefits

such as cost effectiveness of team management, more consistently maintainable sys-

tems, and more reliable systems. It took computer scientists years of research to

develop and validate such methodologies for procedural programming languages.

However, expert systems are still in the infancy stage and we have not yet developed

such techniques for them. Due to the contrasts between the two paradigms, we can-

not directly apply procedural programming methodologies to expert systems. There-

fore, we must proceed with attempts to develop an expert system development metho-

dology so that the same benefits achieved in conventional programming can be real-

ized in this new area as well.

4.1 Problems Impeding Expert System Solutions

"Developers often cite initial knowledge acquisition and large knowledge b

maintenance as problems impeding expert system solutions [12]." The first step i

building an expert system is acquiring the expertise required from a human expert.

The knowledge engineer must extract the solution or analysis process that the human

uses in solving the problem. But, the knowledge engineer must be careful not to

misinterpret the process which might result in an incorrect system. A methodology of

ase

in
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communication is needed to develop a clear, concise and correct understanding of the

process - no easy task. This is analogous to conventional program's requirements

analysis phase.

Since expert systems are still in the infancy stage, we have not approached the

serious question of maintenance once they are in operation. New requirements may

surface that will require updating the knowledge base or changing rule patterns.

Since knowledge is acquired incrementally, the system should be allowed to grow.

Proper requirements and documentation throughout the development process will

help the maintainer determine the effect of new rules added to the knowledge base.

4.2 An Empirical Study of a System Development

In a study for the Imperial Cancer Research Fund, Alvey, Myers, and Greaves

investigated augmentation of a expert system used in the diagnosis of leukemia [13].

The system was prototyped first using the Emycin shell. Then it was developed in

Prolog. The authors concluded four ideas essential for development of large scale

expert systems.

First, an expert system is not simply a collection of rules. Rules can be grouped

together when sharing a common focus and these must be consistent with one

another. Therefore, revisions must be concerned with rule groups and not individual

rules. This would correlate to modules in a conventional style program, where the

developers must insure the correct functioning of that module independently of
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others. Second, rule groups' design must insure that no gaps in the knowledge exist.

This is similar to conventional programs' integration testing procedures. Third, rules

that make conclusions based on the inability to conclude anything else, should be

avoided. "If there are any errors in the rules for proving the item, the system is liable

to give the wrong answer, but more importantly, the erroneous rules will escape detec-

tion [13]." Relating to conventional programs, this problem is analogous to faulty

logic. Fourth, extracting the expertise from the human expert is best done by

thoroughly defining the domain and then defining the rules concerning the domain. If

the knowledge is obtained bit by bit, then "a poorly coordinated collection of rules

and a poor representation of domain [13]" is likely to occur. Therefore, we need a

communication methodology between the knowledge engineer and the expert so that

extracting the expertise is accomplished in a thorough manner. Fifth, it is fairly com-

mon to misinterpret the expert during the interview process. This may cause the

knowledge engineer to proceed with wrong conceptions. Therefore, a review system is

needed to verify rules with the expert.

A similar conclusion was reached in software engineering with peer reviews of

design before implementation proceeded. Generally, the requirements and design are

shown as dataflow diagrams and/or hierarchical diagrams as a means to show the log-

ical structure of the system. In database design, an entity-relationship diagram is

produced so that the designer can verify operations with the customer before proceed-



- 21 -

ing with the physical design. Both of these examples use diagrammatical approaches.

If these proven methods have worked in other areas, they warrant research in the

expert system field.

Basically, diagrams can help us identify the structure of the rules during the

knowledge acquisition phase and can help us maintain this structure throughout the

lifecycle of an expert system. The proposed methodology in this paper will utilize a

diagrammatical view of the expert system to be verified with the expert before imple-

mentation proceeds. The next chapter introduces this diagrammatical approach for

depicting expert systems.
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CHAPTER FIVE

Diagrammatical Representation

From Hayes-Roth's set of features [4], we can visualize the rules in an expert sys-

tem as forming sets of rules whereby each set corresponds to some given activity. For

the system to fire rules in this set, the system must have at least one condition that is

common for all the rules in the set. If we think of this condition as a activity vari-

able, then Hayes-Roth's first distinction of a rule based system is simply the progres-

sion from activity to activity as the system moves towards a solution via the changing

activity variable. This is the basis for the activity diagram that follows. The activity

diagram shows the total possible activities that can occur in the system and shows the

possible flow of control from one activity to another. At the start of the system, it

must be in a start or beginning activity (1.3) that initializes the system to begin pro-

cessing. Eventually, the system will terminate execution and produce some results.

There may be many of these halt activities (1.4) that exist for various conclusions

reached or error conditions. Also, there are no restrictions that limit the effective

operating activity to one. This allows concurrency (1.2.2).

5.1 Activity Diagram Formalization

The activity diagram is mathematically a four-tuple (S, T, s, f) such that:

S is a set of activities



- 23 -

T is a set of transitions from activity to activity

s is the start activity for the system

f is the set of halt activities for the system

where s is an element of S and f is a subset of S.

The activity diagram is a labelled directed graph representing the various activities

and transitions in a production system. Nodes are the activities and directed arcs are

the transitions from one activity to another.

Activity Diagram :

1.1 Each activity is drawn as either an oval or a rectangle. An oval is used if

the newly instantiated activity makes a direct transition to another
activity. A rectangle is used if the newly instantiated activity may remain
in the current activity before a transition to another activity. Hereafter the

activity entity will refer to the activity drawn as either an oval or a rectan-

gle.

1.1.1 The name of the activity or condition for that activity is written

inside the entity.

1.1.2 Annotating the entity is the number of rules utilizing this activity if

known.

1.2 If a transition exists from activity i to activity j, it is drawn with a directed
arc.

1.2.1 If the transition occurs by disabling the current activity and ena-
bling the new activity, the arc is drawn with a solid line.

1.2.2 If the transition occurs without disabling the current activity, the
arc is drawn with a dashed line.

1.3 The start activity is distinguished by START as the name of the activity

(1.1.1) or by the word 'start' adjacent to the entity on the outside.

1.4 The termination activities are distinguished by double entities. Either dou-
ble ovals or double rectangles.
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5.2 Activity Diagram Example

For an example the problem selected was the card game hearts. In hearts, the

objective is to have the lowest score. When the game ends, the player with the lowest

point total wins. Points are accumulated each round by assigning one point for each

heart that a player has taken and thirteen points for the queen of spades. Therefore,

the objective is not to take the queen of spades or any hearts if at all possible. One

exception exists. If a player can manage to take every heart and the queen, then that

player is assigned no points for the round and every other player is assigned twenty-

six points. A complete set of rules for hearts may be found in Hoyle's famous book

[14].

Diagram 2 was created as the activity diagram for the system. At this point, it

may not be clearly differentiable as to which activities utilize direct or indirect transi-

tions. Therefore, ovals are used for all activities. As design continues, the difference

should become apparent and taken into account in revisions of the activity diagram.

One further note, activities in the initial activity diagram may be decomposed into

several activities during the design process on large systems. This can be accom-

plished by abstracting the process into subparts for the initial diagram and refining

individual parts as needed. However, such refinement should not be confused with

the rule decomposition that follows in the rule diagram.

From the activity diagram and using Hayes-Roth's fourth feature, the process of
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DIAGRAM 2
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decomposing the activities into individual rules can be achieved with the rule

diagram. The rule diagram will show the possible interaction between rules existing

in the system. Progression from one rule to another is decided by the inference

engine's conflict resolution policy, but can be directly influenced by the programmer.

If the programmer has in mind a direct ordering of the firing from one rule to another,

an explicit flow will exist between those two rules (2.2.1). This dictates changing the

activity variable from the one required for the first rule to that required by the

second rule. On the other hand, the programmer may not want to sequence the con-

trol but will leave that to the inference engine, relying on its conflict resolution stra-

tegy if several rules utilize the same activity variable. This is an indirect flow

between rules (2.2.2).

5.3 Rule Diagram Formalization

The Rule diagram is mathematically a five-tuple (R, C, T, s, f) such that:

R is a set of rules

C is a set of conditions

T is the transition function mapping R x C to R.

s is the start rule for the system

f is the set of halt rules for the system

where s is an element of R and f is a subset of R
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The rule diagram is a labelled directed graph representing the various rules and tran-

sitions in a production system. Nodes are the rules and directed arcs are the transi-

tions from one rule to another.

Rule Diagram :

2.1 Each rule is drawn as an oval.

2.1.1 The name of the rule is written inside the oval.

2.1.2 Annotating the oval is the number of conditions required for this

rule to fire if known.

2.2 Flows from rule i to rule j are drawn with a uni-directional arc.

2.2.1 If an explicit flow exists, the arc is drawn with a solid line. An expli-

cit flow from rule i to rule j exists if rule i adds a condition required
by rule j.

2.2.1.1 If the rule is conditional on a test, then the arc is labelled

with a name reflecting the test.

2.2.2 If an implicit flow exists, the arc is drawn with a broken line. An
implicit flow from rule i to rule j exists if rule i and j require the
same state value and rule j has the next highest priority for firing

after rule i.

2.3 The start rule is distinguished by START as the name of the rule (1.1.1) or
by the word 'start' adjacent to the oval on the outside.

2.4 The termination rules are distinguished by double ovals.

5.4 Rule Diagram Example

Using the example, we will decompose the "re-evaluate lead strategy" activity

into three rule diagrams (diagrams 3a, 3b, and 3c). Each entity represents a rule.

The conditions for the rules are labelled on the arcs. Decomposition of the activity

into rules can proceed by focusing attention just on the concept at hand. This
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method eliminates the need to constantly keep the whole concept in mind. This par-

ticular activity was decomposed into 22 rules. In order to clearly show these rules, the

diagram is split into three parts. Therefore, connections are needed between rules in

different diagrams. Connections are facilitated by the use of a numbering system,

where arcs are aligned via matching numbers across diagrams.

As various activities are decomposed into rule diagrams, we may notice the same

rule appearing in more than one activity. Just as conventional programming may use

the same function in another part of the program, rules may be utilized more than

once. Therefore, a complete rule diagram would show this rule once with the different

transitions connected to it. But, separate rule diagrams could show the rule in the

context of each activity decomposition. Above all, the concept behind the activity

decomposition is to structure activities into subparts and then to build the subparts

from rule sets.

5.5 Clarification of Activity Diagram Subpart 1.2

Subpart 1.2 of the activity diagram formalization nullifies the typical state tran-

sition diagram restriction limiting the effective operating state to one. State transi-

tion diagrams functionally map a state i to a state j based on the input received while

in state i. This mapping is a one-to-one function. Although there may be many pos-

sible transitions to different states, only one is allowed to be taken terminating the

current state as it leaves.
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DIAGRAM 3A



- 30

QUEEN NOT PLAYED AND NO POSSIBILITY

CHECK \ QUEEN NOT PLAYED AND POSSIBILITYX OPPONENT]
QUEEN PLAYED AND POSSIBILITYJAKE ALL

QUEEN PLAYED AND NO POSSIBILITY

HAVE HEARTS AND POSSIBILITY

NO HEARTS OR NO POSSIBILfTY

LEAD

PLAY

BEST
SUIT

LEAD

TAKE
QUEEN

HAVE A OR K SPADES AND POSSIBILITY

NO SPADES OR NO POSSIBILITY

PLAY
HIGH

.SPADE

LEAD

DIAGRAM 3B



- 31 -

DIAGRAM 3C



However, there may exist times in expert systems where we wish to leave the

current activity without disabling it. This can occur in a production system where

activity i makes a transition to activity j without removing i's activity variable.

Therefore, there are effectively two live activities in the system. Propagation of this

effect will result in multiple active activities in the system. This may be beneficial if

we want to return to a previous activity after performing another activity in the tran-

sition path. For example, suppose we have a system designed to detect and correct

flow variations in a series of interconnected pipes. The monitoring activity may dis-

cover a flow interruption occurring. It therefore implements the tracker activity to

pinpoint the problem and the correction activity to fix the problem. If the flow

interruption ceases during the tracker activity, the tracker activity should be discon-

tinued with control returning to the monitor.

Another benefit from this approach is the allowable introduction of concurrency.

Expert systems can achieve great benefits from concurrency in allowing multiple

activities to occur simultaneously. Such applications are needed in space technology

and process monitoring. This diagrammatical approach can represent such systems.

5.6 Development of Diagrammatical Approach

This diagrammatical approach was developed by examining several systems and

attempting to graphically depict the systems. The activity transition diagram seemed

to best represent the components of the system, although other graphical approaches



- 33 -

were examined. For completeness, this section includes several of the systems

diagrammed with a discussion of the structure of each system. However, as the sys-

tems are student or faculty projects, they will be labelled discretely for purposes of

anonymity. Activity diagrams will be indicated by the suffix A after the diagram

number. Rule diagrams will be indicated by the suffix B after the diagram number.

For clarity in the connection of arcs, one node which branches to many other nodes

will be drawn with a single line exiting the node eventually breaking into several

arrows. This indicates several arcs from the one node to each of the other nodes.

Diagrams 4A and 4B represent a system that has not yet been completed and

has difficulty terminating in a large state-space search. The system consists of 11

activities and 24 rules. Activities A through D set up the menu system and initializa-

tion activities. The inference process then begins at activity E. From here activities

J, I, and F allow a network of transitions either returning to the menu on a successful

completion or back to each other via activity G. From diagram 4B, we can see the

decomposition of activities J, I, and F into 5 rules each. However, these rules contain

a large number of conditions for that rule to fire. A more suitable approach would be

to structure the network transitions better and to limit rules to a smaller number of

conditions. If a rule's conditions exceeds some limit, the activity from which the rule

was formed probably could have been further refined into subactivities requiring more

rules, yet fewer conditions on those rules.



- 34 -

Diagrams 5A and 5B represent a component of a large system consisting of 16

activities and 24 rules. This system was included because of several unique discussion

points. First, it allows iteration to continue in a structured way through a network of

decisions as opposed to the previous example. Second, it shows the possibility of one

rule utilized in different activities. For example, diagram 5B's rule R can be fired

from three different activities. Third, the rules were designed using lisp conditionals

in the consequent section of the rules to set up its transition to another rule. There-

fore, most of the rules in the decision structure require only one condition, the

activity variable. If the system was accomplished using the consequent section to set

only the activity variable, a difference would be noticeable in the diagrams with rules

showing more conditions. However, it solidifies the applicability of the diagrammati-

cal method to variations of the rule-based approach.

A quantitative look at these two examples can use the arc to node ratio to meas-

ure the complexity of the system. A further refinement of this could include only the

main part of the process as opposed to including the initial menu set-up. Diagram

4A's main section consists of activities E through J. Diagram 4B's main section con-

sists of rules E through X. Diagram 5A's main section consists of activities C through

P. Diagram 5B's main section consists of rules A through J, N, and P through S.

The following table indicates the results of these two evaluations.



All parts Main Section

Diagram nodes arcs ratio nodes arcs ratk

4A 11 19 1.7 6 11 1.8

4B 24 53 2.2 19 47 2.5

5A 16 27 1.7 14 24 1.7

5B 19 28 1.5 15 21 1.4

From this, diagram 5 has a lower ratio in the rule diagram which becomes more

pronounced when evaluating the main section of the system. This indicates a cleaner

design than diagram 4. A feasible argument at this point might indicate that diagram

4 was a more complex process than diagram 5, therefore it should have a higher ratio.

However, this was not the case. In fact, diagram 5 represents a very complex task

that was handled in a clean, well structured manner. Diagram 4 represents a concep-

tually easier task. Therefore, complexity of the process is not an issue. Diagram 5's

program works, while diagram 4's program is not functioning. Structure of the pro-

cess is the main concern. The diagrams can help us evaluate this structuring of the

process.

Although the development of the diagrammatical method initially was formu-

lated from examining existing systems, the previous discussion has substantiated its

usefulness to evaluate system designs with regard to their structural complexity. The

next step to ensure viability is to apply the approach to a development project. The

main benefit in so doing should be the ability of using the diagrams to interact with

the expert in structuring the knowledge base. The next chapter proposes a
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development methodology for production systems using the diagrammatical method.
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CHAPTER SIX

A Development Methodology for Production Systems

This proposal for a development methodology is geared toward production sys-

tems which are rule-based expert systems.

Steps in the Development Process

1) problem selection

2) requirements analysis

3) requirements specification

4) expert review

5) implementation

6) validation and verification

6.1 Problem Selection

Problem selection concerns the practicality of an expert system for a particular

problem. Some example characteristics of problems suitable and unsuitable for expert

system utilization were presented in section two of this paper. Reiterating, in order

to extract their expertise, human domain experts must exist and they must be able to

articulate their methods. If multiple experts are consulted for the system, they must

agree on the solution process so that conflicting rules are not developed. The task

must require only cognitive skills, must not be poorly understood, and must not be

too difficult. If the experts do not thoroughly understand the solution process or it

takes them weeks to solve it, then most likely an expert system will not capable of the
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problem.

6.2 Requirements Analysis

This stage of development centers on defining the problem domain, acquiring the

expertise to solve the problem, and specifying the appropriate system end results such

as user interfaces, performance bounds, and validation criteria [5]. Through several

interviews and/or observations of the expert, the knowledge engineer begins to formu-

late a high level logical view of the expert system preferably using the diagrammatical

approach presented in the previous section. Upon preliminary designs, the engineer

should review the plan with the expert for feedback of misconceptions and/or places

for improvement. The expert should take an active part in creating the diagram so

that clear, concise, and accurate details of the problem and the solution may be

worked out.

Using the previous example of the card game hearts, diagram 2 was created as

the initial activity diagram. However, suppose diagram 6 was created instead. This

design is clearly inferior to the previous design. Several important steps have been

left out of the design. The expert and knowledge engineer should recognize the fallacy

of the design and reconstruct the diagram. It is essential to clearly define the process

in such a way that both the expert and the knowledge engineer can visualize the sys-

tem using the diagrammatical approach before attempting further development.



DIAGRAM 6
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6.3 Requirements Specification

Once the requirements analysis phase has been completed, the requirements of

the project should be specified in order to completely and formally describe the

requested system. This proposal should include the complete set of diagrams, the

knowledge representation structure to be utilized, the set of facts relevant, functional

descriptions, interface specifications, and validation criteria.

6.4 Expert Review

Again to stress the importance of clarity and accuracy of the approach to the

problem, the expert involved in the interview phase and other experts if available

should review the requirements specification before implementation begins. Similar to

peer reviews for large scale conventional projects, these reviews should address con-

cerns such as achievability of proposed solution, ease of future maintainability, alter-

native approaches, and technical accuracy.

6.5 Implementation

The implementation phase of development centers on selecting the appropriate

language for the problem and actually coding a working solution to the problem.

6.6 Validation and Verification

Verification of the implemented expert system ensures that the system functions

as specified in the requirements phase. Given test cases, it performs within an
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acceptable level as the human expert would. This of course encourages use of the

expert again to verify that given the same set of data, both the human and the expert

system come to the same conclusion.

Validation of the expert system ensures that it meets the needs of the user for

whom it was designed. Will the expert system handle the typical cases occurring in

the user's environment? Will it degrade gracefully as it reaches its limits of inference?

Will it require extensive training to operate or is it self-explanatory through the user

interfaces? Questions like these must be answered before the system is installed for

the user.

6.7 Conclusions

As a final comment, the management of this process is a highly complex activity.

As argued by Cupello and Mighelevich [15], if expert systems do not presently exist in

the company, that technology should be acquired by the following steps:

1) the development managers should be technically trained with the appropri-
ate AI background and have proven managerial skills.

2) the managers should report directly to an executive capable of funding and
direction decisions for the company.

3) accumulation of personnel should be approached by training the best com-
puter scientists in the company in AI techniques.
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CHAPTER SEVEN

Conclusions and Future Work

This paper has presented a methodology of development for expert systems

based on a logical diagrammatical design. Similar design diagrams have proven their

advantages for preliminary designs in other areas. For example, conventional pro-

gramming utilizes dataflow and hierarchical diagrams in development. Database

designers utilize entity/relationship diagrams. Rather than using technical

specifications and equipment, the graphical approach is more readily understandable

for non-technical personnel. Thus, both the designer and the customer can communi-

cate on common ground.

Most of the current literature agrees that a major problem exists in systems

characterized as event driven [16]. "Examples include telephones, communication net-

works, computer operating systems, avionics ... " and expert systems. Attempting to

solve this problem, graphical approach methods such as petri nets, sequence diagrams,

temporal logic, and statecharts, "a higraph-based extension of standard state-

transition diagrams," have been used. Statecharts were developed to overcome the

non-refinement aspects of state diagrams, to allow a notation for concurrency, and to

restructure the drawing of the same transition occurring in several states.

However, stepwise refinement of the expert system development is possible using

the activity and rule diagrams presented. The activity and rule diagrams more clearly
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enhance expert system development through a step- wise refinement of the system into

the activities and the rules decomposed from the activities. Harel's method can be

used as a means of clarifying some system diagrams.

If the field of expert systems is to advance, an improved development methodol-

ogy must be employed. The diagrammatical approach presented in this paper is a

valid option. A framework of development can be built based on this approach.

Once we have established expert systems as a science, we can further study and

improve the techniques involved. The diagrammatical approach is the first step.

Future research considerations may focus on the applicability of other software

engineering techniques to the diagrams and expert system development. An interest-

ing idea is the study of applying McCabe's complexity measures to the diagrams as a

basis for judging complexity and reliability of the system. Another idea is the possi-

bility of constructing test sets from the diagrams.

Empirical tests will be needed to further study expert systems development and

its role in computer science. Expert systems show promise as a viable alternative

paradigm to be considered. But, we must standardize the development process so

that correct, efficient, and reliable systems can be produced in a cost effective manner.
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ABSTRACT

This thesis presents a diagrammatical approach to the development of rule-based

expert systems. Expert systems have proven themselves useful in commercial environ-

ments, but, the development process needs to be improved. The method presented in

this thesis utilizes an activity diagram to represent the various activities and transi-

tions among the activities in the system. Decomposition of the activities can be per-

formed to produce the rules and transitions among the rules. This diagrammatical

approach produces a structured knowledge base that is easier to understand, main-

tain, and enhance than an unstructured knowledge base. This approach also supports

a development methodology that may lead to the same advantages such as those real-

ized in conventional programming using software engineering techniques.


