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Chapter 1

1. The Problem

1.1 Introduction

Traditional computers have been based upon the Von-Neumann style of architecture which

consists of one processor, one memory space, and sequential, one at a time, execution of

instructions. Advances in technology have allowed significant increase in performance of

computers within the constraint of this design, however further increases are limited due to the

physical laws of nature. The speed of a circuit is a function of its physical length and the

minimal length of circuits is rapidly being reached.

Advances in VLSI technology have greatly reduced the cost of both processors and the memory

accessed by them; the financial constraint of hardware has been broken. Computers can now be

economically constructed of multiple processing elements with large amounts of memory. It

would appear that the only significant means to gain speed is through the exploitation of the

potential overlapping of operations possible through simultaneous use of multiple processors.

Various techniques such as vectoring and pipelining allow significant performance enhancement

through the simultaneous execution of multiple instructions but even this is not enough if the

programming languages remain essentially sequential.

Most languages in wide use today were developed within the constraints of Von-Neumann

architecture and were designed to execute in a sequential manner. While these are sufficient for

such machines, the advent of multi-processor complexes demands that they be exploited and thus

the trend seems to be towards the introduction of language primitives which allow for

concurrency of operation.
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The introduction of concurrency within imperative languages introduces a new set of difficulties

which arise primarily from the sequential origins of such languages. As an example, the access

permission to globally shared data by concurrently executing tasks can cause loss of control if

such permissions include the ability to update. The burden placed upon the programmer to

correctly control such data may be extreme and thus cause more effort to be placed on how a

program works rather than upon what it accomplishes [ALM85].

As stated by [GAN75]:

"Programming Languages should lead to

confidence in the correctness of

programs...language should contain features that

allow violations of a programmer's intentions to

be detected as errors."

If such a problem as stated above exists in the design of a language then neither of these goals

have been met; much of the current research in concurrent programming have them as an

underlying premise. The means to achieve them may differ dramatically; one language may

provide a rich set of synchronization primitives with a rigid definition for their use. while

another may attempt to shield the programmer from any knowledge of what concurrency will

occur.

1.2 Relevant Ideas from Current Research

Most existing concurrent programming languages are essentially sequentially imperative

languages with concurrency primitives built in; the ordering of the statements is critical. Control

of concurrency is achieved through various synchronization primitives. As an example

Concurrent Pascal [HAN75] uses monitors as the means to update global data areas; this

serializes their use. Various other structures such as queues constructed using monitors are used

as the means for ordering activities between the concurrent processes of a program.



CSP (Communicating Sequential Processes) as proposed by [HOA78] makes use of input and

output primitives as the basic communication between parallel sequential processes. Guarded

commands [DIJ75] are employed as the only sequential control structure; the successful execution

of a guard "stimulates" the guarded instructions to be executed. Failure of a guard will result in

the guarded command not being executed.

Object oriented languages such as CLU [LIS77] allow the programmer to think in terms of the

objects to be manipulated. Data abstraction provides a mechanism to define the objects into sets

of data objects, which may be atomic or aggregate, which carry with them information which

establishes the essence of what the objects represent. The language CLU implements this

concept through the use of "clusters" which couple with the objects the set of operations

permissible on them.

Explicit declaration of parallel arrays in ACTUS [PER79] allows the programmer to exploit the

power of vector processors without otherwise being overtly concerned with concurrency. This is

yet another example of data abstraction. A user effectively declares which elements will not

interfere with each other during an iterative manipulation and thus which iterations can proceed

in parallel.

In the language MULTTLISP [HAL85] the creation and synchronization of tasks is controlled

using the "future" construct. A "future" is a data abstraction which allows the use of an object

with an undetermined value to proceed in parallel with other executing tasks, one of which may

be actually computing the value. Once established the value is said to be "determined". Any

operation that needs to know the value of a future which is as yet undetermined will suspend,

but many operations such as assignment do not need the actual value. As a result a significant

amount of parallelism can occur through the declaration of futures. Coupled with futures are
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"delay" constructs which act like futures but explicitly delay the determination of the value until

such time as the value is required. This allows the language to indefinitely defer performing

activity unless that activity is really needed.

The concept of dataflow languages is not new [DEN72] but they have evolved slowly, perhaps

due to the tremendous advances in performance heretofore achieved on traditional Von

Neumann architecture. Dataflow languages essentially execute dataflow graphs [DAV82] where

the order of execution is entirely dependent upon the availability of data. A transition

(executable activity) occurs whenever all of its input data items (tokens) are available. Such a

transition is said to be "enabled" and its actual execution to being "fired". The flow of execution

is controlled entirely by the availability of tokens. As many enabled transitions can fire

simultaneously as can be scheduled with their ordering nondeterministic (and really irrelevant).

The inherent parallelism is discovered when the dataflow graph is constructed, at compile time,

without overt attention being placed on it by the programmer. The programmer is freed to

consider the problem at hand rather than upon how it gets accomplished.

The ability to access and modify global data areas, or, in other words, "side effects", is the bane

of concurrency. Most, if not all, languages designed for parallel execution make provision to

control or eliminate global update. The concept of single assignment [COM76] eliminates side

effects by never allowing a value to change once it has been set. New instantiations of data are

created whenever a value needs to change. As a result data is passed by value rather than by

reference. The language SISAL developed for the Manchester Dataflow Computer [GUR85] is

an example of a language which employs single assignment. Tokens consist of data as well as a

tag which identifies it and these actually migrate about within the system depending upon

locality of execution. Execution occurs when all input tokens are available and their tags are



consistent. Upon execution a new token is created; thus data items are never modified.

Another example of a language employing the concept of single assignment is VAL [MCG82]. It

uses a functional notation which prevents procedures from altering the program environment

other than through their result. All data is passed by value.

1.3 The Goal of This Paper

The ACM model [UNG78] forms a basis for a language which employs the data flow principle.

It is intrinsically concurrent, that is to say the programmer need have tittle if any conscious

concern about the ordering of statements. Like CLU, objects are abstracted into a form which

defines their usage. Both material and the "actions" which act upon the material are considered

objects.

While basically driven by dataflow, control can be achieved through the use of stimulation and

termination conditions, which together act much like guards. The success of a stimulation

condition will enable a request (an "action" object to be executed) to fire but failure of the

stimulation condition will not prevent it from being fired in the future. The success of a

termination condition will absolutely terminate any associated request whether or not enabled.

The ACM model supports the notion of "partialing" which allows a request to become enabled

before all of its material list is available. This feature corresponds closely to the "future"

construct in MULTILISP. However there is no direct corresponding support for the "delay"

construct although, through the use of stimulation conditions, this can be accomplished.

In the discussion of parallel processing and in dataflow languages in particular, the subject of

granularity is often raised. Coarse-grained languages have substantial blocks of sequentially

executed code running in parallel whereas fine-grained languages attempt to maximize
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parallelism down to the smallest level. There are positives and negatives to each style: Coarse-

grained languages are easier to implement and fit well with networks of processors, each with its

own private memory store. Fine-grained languages require hardware designed to support them

but may eventually provide the greater increase in processing speed. The level of optimal

granularity is open to debate [GAJ85] and by and large depends upon the intended use and the

architecture of the system. As the grain size decreases, more and more overhead is required for

the scheduling and synchronization of the parallel fragments. For high performance maximal

parallelism with the lowest possible overhead is desired. In general, it can be stated that

languages based upon the data flow contain the potential for fine granularity. Since ACM is a

dataflow model it contains the potential for fine granularity; however, its realization would

require significant effort with hardware support that is unavailable at this time.

It is the intent of this work to extend the model to increase its flexibility and follow that with a

proposal for implementation of a subset at an extremely coarse granularity level. It is more

important, at this time, to concentrate on the language itself rather than upon its performance.

1 .4 Summary of Contents

In this chapter an informal presentation of the problem being addressed was presented. This was

followed by an overview of key ideas relating to the research area of parallel processing with

particular emphasis on ideas being addressed within the paper. These ideas cover data

abstraction, object orientation, control flow, and data flow. Following this was a brief

description of the ACM model and how it relates to both the problem and the key ideas

presented from current research. Chapter 2 will present a much more detailed look at the ACM

model. In Chapter 3 several extensions will be presented for inclusion in the model to increase

its flexibility. Chapter 4 will discuss the syntax and informal semantics of an implementation
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with a description of limitations placed on the implementation. This may or may not contain

extensions to the model presented in Chapter 3. Chapter 5 will discuss the actual

implementation of the material presented in Chapter 4. Finally, Chapter 6 will summarize the

accomplishments achieved, what was and was not included, and suggested directions for future

research.
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Chapter 2 •>

2. The ACM model

2.1 Overview of the Model

The ACM model forms the foundation for an intrinsically concurrent prototype language where

statements are executed in any order when the minimal requirements for their execution can be

satisfied. These conditions primarily consist of the availability of the data input to them; hence

the model conforms to the data flow principle. The programmer need have little knowledge of

the means by which a problem is solved and instead can concentrate on the definition of the

problem itself. As stated by [UNG78]:

'In order to program complex systems which

involve concurrency, the computer scientist

should learn to utilize lateral thinking. An initial

step is to seek a lateral language which resembles

familiar ones."

If the programmer needs to be concerned with the sequencing of activities, the flow of control

can be expressly addressed through the use of boolean conditions place upon statements in order

to augment the basic data drive. As a result conditional execution is fully supported.

2.2 Objects

The model abstracts all objects into a unified structure which encompasses both material objects

and the actions which can occur on them. An object consists of a five tuple whose components

consist of designator, attribute, representation, corporality and value. Any object which lacks

any of the components is incomplete. In order for any two objects to be equal, each of their

respective components must also be equal.
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The first component, designator, is a set of names which effectively identifies the object. The

existence of the designator implies the existence of the object itself. The designator in turn

consists of a three tuple whose components are the context, user name, and sequence. The

context may be a set of names which further refine nested contexts of access. The user name is

also a set of names by which the user references the data within the object either as a whole or in

nested levels of subsets. The instance defines spatial position, chronological identity or

monotonically increasing sequence number to identify specific subsets within the object. No

more of the designator than is necessary need be specified to retrieve that portion of the object

that is desired, as an example: a reference to an object with the user name "X" and for which

sequence number is applicable might be "X" or "X..+0"; either is sufficient. Another example

might be for the retrieval of the set of persons attending a seminar; the designator might be

"seminar.attendees" whereas a further refined reference might have the user name

"seminar.attendees.speakers".

The attribute component of the object defines the value type, internal structure, and relationship

to other objects. The value type may be atomic or an aggregate consisting of further sub-objects.

The internal structure defines the value type, particularly in the case of aggregates by defining

the structure of the aggregate. The relationship of the object defines it in terms of its association

with other objects in the system. The relationship, for example, of a data base record might be

its commonality to other data base records of like type.

The 3rd component of an object, representation, defines the physical location of the object and

its coding scheme.

The 4th component, corporality, defines the state of the object in terms of its longevity, the

location of the "representation" component, replication count, and authorization of access.
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Longevity takes on four values which are fixed, static, dynamic, and fluid with the ability to

change increasing respectively. Fixed objects represent objects that exist prior to the model and

are represented by decimal numbers (an example). Static objects may take on meaning but once

and and thus most fully mirror the concept of single assignment. Once "complete" a static

object's components are permanently bound. Dynamic objects are allowed to have values which

vary over time but for which separate "instances" are created. Finally, fluid objects may have

their value change at any time between references. As objects pass from the context of their

creation they may have their longevity change to a more restrictive type, but never to a less

restrictive type.

Replication defines the copies of the object currently in existence as well as their availability for

use. Corporality also defines the authorization of the object for use by the requester.

The last component of the object is value which may consist of a boolean, integer, real number

or character as atomic types, or a set, collection, ordered collection or action as non-atomic

types. The value of an object can not exist until all other components of the object exist.

2.3 Actions and Requests

An action can be defined as an object whose value defines some manipulation which can be

performed on other objects. A request is the imperative statement of an action. The basic

structure of both actions and requests is as follows:

(s, m, a, r, t)

Where the components of this five tuple consist of a stimulation condition, a material list, an

action, a result list and a termination condition. The stimulation and termination conditions in

an action are referred to as "internal" and those of a request, which augment the action, are
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refened to as external. The material list represents those objects required (by the data flow

principle) to be available before a request for an action can be enabled. The result list denotes

those objects created as a consequence of the request having been performed. No result object is

available until the request has completed and none are created unless the request ends

successfully.

A request exists in various states, idle, enabled or disabled, depending upon various factors.

These include basic data drive as well as boolean conditions placed upon the request in order to

start it or terminate it. Generally states will transition from idle to enabled to disabled, although

exceptions exist which allow other transitions to occur.

Let me introduce the following syntax in order to present some examples:

action([si] ml, m2, m3; rl, r2 [ti]) ;

Figure 2-1. Sample Action Declaration

Here an action specification is declared called "action' with has an internal stimulation condition

call "si". It takes as input 3 material objects, "ml", "m2", and "m3", and produces 2 result

objects, "rl", and "r2". If internal termination condition "ti" becomes true then the action will

terminate. A request for this action might then be defined as follows:

[se] action( xl, x2, x3; yl, y2 ) [te];

Figure 2-2. Sample Request Declaration

The request for "action" will begin if material objects "xl", "x2", and "x3" are available and "xl"

greater than 25 and condition "se" is true but condition "te" is false. Upon successful completion

objects "yl" and "y2" have been created.
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An action can be detailed into a sequence of sub-actions which, if permitted by the data flow

principle, may run in parallel. This sequence is called the "request set" of the action, a simple

example of which follows:

averages([occurrences > 0] counts, occurrences; al, a2, a3)

{

mean(counts, occurrences; al)
;

median(counts, occurrences; a2) ;

mode(counts, occurrences; a3) ;

}

Figure 2-3. Detailing

A request for "averages" will be enabled when counts and occurrences are available and

occurrences is greater than 0. The results are produced in parallel by the request set of the

action. Within the context of a request for a detailed action, objects can be created and used as

interim values for flow between members of the request set:

radius( x, y; z)

{

square( x; x2 );

square( y; y2 );

add( x2, y2; x2y2 );

squareroot( x2y2; z);

}

Figure 2-4. Locality of Context Within an Action Detail

A request for action "radius" will permit the squares of the material list to proceed in parallel

followed sequentially by the sum of their results and the square root of the sum. The objects

"x2", "y2", and "x2y2" are never seen outside the context of the request.

2.4 Control Constructs

Within the model flow of control can be applied using various constructs which augment the data

drive. These constructs include repetition, iteration, recursion, partialing, alternation, and
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caseation. Alternation and caseation are already well defined within the model through die use

of stimulation conditions applied to the request set of an action. Alternation occurs when a pair

of actions have stimulation conditions which are boolean opposites. Through the nesting of

actions any combination of a conventional "if... then... else" construct can be created.

hightax( income; tax )

{

[income <= 10000] multiply( income, .25; tax );

[income > 10000] multiply^ income, .50; tax );

}

computetax( income; tax )

{

[income <= 1000] multiply( income, .10; tax );

[income > 1000] hightax( income; tax );

I

Figure 2-5. Alternation

Caseation is simply the systematic application of mutually exclusive stimulations on a set of

action details:

printerror( code; message

)

{

[ code <= 1 ] assign( "error type 1"; message );

[ code = 2 ] assign( "error type 2"; message );

[ code = 3 ] assign( "error type 3"; message );

[ code > 3 ] assign( "error unknown"; message );

Figure 2-6. Caseation

Repetition and iteration are constructs used to apply repeated application of a request over a

range of values. Repetition occurs intrinsically with the model whenever the material and result

lists specify objects which contain a range of values of like size, for example arrays. A separate

and parallel invocation of the request will occur for each spatially matched pair. Given two

arrays "a" and "b", each containing 3 elements the following request:
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* copy( a; b ) ;

is equivalent to:

copy(a(l);b(l))

copy(a(2);b(2))

copy(a(3);b(3))

Figure 2-7. Repetition

Iteration is a sequential reapplication of a request used when the results of one iteration must be

used as material in the next iteration. For an iteration to occur an internal termination condition

on the changing material/result pair must also be present. For example:

assign( 1, x ) ;

assign( 1 , fact ) ;

factorial x.. + 0, fact.. + 0;x.. + l, fact.. + 1 [x < 16]);

Figure 2-8. Iteration

The request "factorial" would be sequentially applied to objects Y and "fact" so long as "x <

16". The iteration construct is an example of exceptional state transition where the enabled state

returns to the enabled state.

Recursion occurs whenever an action's request set contains a request for that action. Each

invocation creates a new and more limited context then the previous.

For actions which are detailed, partialing may be specified if the material list contains multiple

items. This allows a request for the action to begin execution of the request set on those sub-

actions which do not require the missing detail. For example suppose partialing was requested

on the entire material list of the following action:
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radius3( x, y, z; w )

{

square( x; x2 );

square( y; y2 );

squarc( z; z2 );

add( x2, y2, z2; x2y2z2 );

squareroot( x2y2z2; w);

}

Figure 2-9. Partialing

If a request for this action occurs and only "x" and "y" are available, the request can proceed to

calculate "x2" and "y2" because neither of these sub-actions require "z". The remaining sub-

actions and thus the entire request will then "hang" waiting for the availability of "z", at which

time the request can complete.

2.5 Summary

The ACM model forms the basis for a complete programming language which encourages a

systematic block structuring approach through the detailing of "actions". Intrinsic parallelism is

accomplished through the use of the data flow principle which is augmented by various control

constructs which allow the programmer to specify conditional computation as appropriate. Data

(and actions) has been abstracted into objects which shield the user from irrelevant details thus

allowing for a concentration of effort on the task at hand.
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Chapter 3

3. Analysis and Redefinition

3.1 Introduction

In this chapter we will look more closely at some of the characteristics of the ACM model and

propose some extensions to the model in order to increase its flexibility.

3.2 An Extension to the Iteration Construct

An analysis of the original ACM definition of iteration has led to an extension of that definition

in order to provide the user with greater flexibility. Consider the original definition of iteration:

Definition: An iteration construct is expressed as a

single request in which tj^fy in the action which is of

the form

(sj,m,a,r,ti)

An iteration construct can be used to express the

repeated requests

(j.m^a.r.-.f), j=l, 2, • • • n

where:

m
i

=
(ffIn» mi2.

' mi;)> 7
= 1» 2, • • J

and

r
t

(r„, ra,
• • • r^, *«1, 2, >—K

when the following conditions are met:

1. m
tj
= mXj for all i, x = 1, 2, • • n and for all

j = 1 , 2, • • • J except one j = b

2- ra = rrf for all i,x = \ • • n and for all

k = 1 , 2, • • • K except one k = c

3. there exists a relation m^ = r«_iy for all

n & i>1

4. the wifc, i = 0, 1, 2, • • • n exist
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5. there exists a termination condition t = f(rk).

Let us examine this definition for potential programming limitations by the presentation of some

examples. Assume we wish to calculate the Fibanocci number sequence which has the following

property:

If we wish to calculate the first few numbers in this sequence we could state this in SMART (the

informal syntax introduced in Chapter 2) as follows:

assign(l ;x..O);

assign(l ;x..l);

fibanocci(x..+0, x..-l ; x.. + l [x..+0 > 3]);

Figure 3-1. Iteration Problem 1

Now let us analyze what occurs by looking at the material and result lists as the iteration

proceeds:

m,, = l mn=\ r, = 2 (;t..2=2)

m2 i

= 2 /H22=l ^—"i (x..3=3)

1*31-3 mn=2 r
3
=5 (*..4=5)

- termination -

Figure 3-2. The Material and Results of Iteration Problem 1

Note that by condition 1 we can observe that m u # m2 \ * m3] and therefore b = 1 but we also

observe that mn # m32 and therefore b = 2 . The conclusion reached is that any iteration

requiring more than one of the items in the material list to change cannot occur under the

original definition. Let us extend conditions 1 and 4 to allow this phenomenon:

1. rrtij = mxj for all i, x = 1, 2, • •• n and for all

j — 1, 2, • • J except a subset of j called X
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where X is of cardinality a and J > a ^ 1.

Let Xj denote set X between the i and i-l

iterations.

4. all elements in X, exist for all i = 1, 2, • • • n

Let us explore another example; assume we wish to calculate a number sequence consisting of

the squares of the natural numbers: f(x)=x2 . We could state this in SMART as follows:

assign (0 ; x..0);

powerseq(x..+0 ; X..+1, power..+ 1 [x..+0 = 3]);

Figure 3-3. Iteration Problem 2

Now again let us analyze what occurs by looking at the material and result lists as the iteration

proceeds:

mn=0 rn= l r12=l

»*31«2 r31 = 3 r32=9
termination -

Figure 3-4. The Material and Results of Iteration Problem 2

Note that by condition 2 we can observe that rn * r21 * r31 and therefore c = 1 but we can

also observe that rn # r^ * r32 and therefore c =2. The conclusion reached is similar to that

of the last example, namely that any iteration requiring more than one of the items in the result

list to change cannot occur under the original definition. Let us extend condition 2 to allow

multiple result list items to change:

2- r
ik
= rik for all i, x = 1, 2, • • n and for all

k = 1,2, K except a subset of k called Y
where Y is of cardinality P and K > {J > 1.

Let y, denote set Y between the ; and i-\

iterations.



19

Recall that conditions 3 and 5 are predicated upon the assumption that there exist unique values

for b and c which we have replaced in our extended conditions with sets X and Y respectively.

Therefore we must restate conditions 3 and 5:

3. for any iteration i, i > 1, ot
f
s P,-] and

x; c rw
5. there exists a termination condition

t= boolean f{Yt).

At this point we have a reasonably flexible definition of iteration which allows multiple items in

both the material and results to change. Lest we become smug let us look at a somewhat bizarre

example. Assume we wish to calculate a number sequence constructed as follows:

x =l,x,=2, x2=3,x3=4, x4=5, • • • x,=(x,_5+x,_3+Xi_i)

In we could state this in SMART as follows:

assign(l ; x..O):

assign(2 ; x..l);

assign(3 ; x..2);

assign(4 ; x..3);

assign(5 ; x..5);

weirdseq(x..-4 , x..-2, X..+0; X..+ 1 [x..+0 > 120]);

Figure 3-5. Iteration Problem 3

Now yet again let us analyze what occurs by looking at the material and result lists as the

iteration proceeds:
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Wj] = 1 "ij2= 3 "ij3= 5 r]] = 9

ffl2i = 2 ffl22= 4 ffl23= 9 r2] = 15

W3j = 3 "l32= 5 /n33= 15 T3] =23
m4 i

= 4 m42= 9 m43=23 r4] =36
m5j= 5 ffi52~15 mj3=36 ^=56
m6]

= 9 m62=23 m63=56 r61 =88
«i7] = 15 m72=36 m73=88 r71 = 139

- termination -

Figure 3-6. The Material and Results for Iteration Problem 3

This does not even work with the revised iteration definition. Let us try to analyze why and

generalize a solution to improve the flexibility of the definition.

First note that set X has a cardinal number a which must always exceed the cardinal number p

of set Y; that is to say there are always more items in the material list which change in each

iteration than even exist in the result list. Clearly the changes in the material list must be

coming from somewhere. They derive from multiple iterations. Let us introduce a new variable

z which represents the maximum negative instantiation in the material list (for our example

2 4). Note now that any element in the set X must derive from no more than z + \ previous

iterations. In the case where there are not that many previous iterations then any which do not

derive from previous iterations must have preceded the entire iteration construct. We are ready

to restate the iteration definition in its final form:

Definition: An iteration construct is expressed as a

single request in which t^b in the action which is of

the form

(Si,m,a,r,ti)

An iteration construct can be used to express the

repeated requests

(j,m,,a,r„/), i=l, 2, • • n

where:
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ttif = (m,], ma , • my), /— 1, 2, • • J

and

r
t

(r
fl ,

ra,
• rft), *«1,2, •••*

when the following conditions are met:

1. my
= m

j;
for all i, x = 1, 2, • • • n and for all

j = 1, 2, • • • 7 except for some subset of j
called * of cardinality a where J > a ^ 1

2. The set X' = (Um —X) is permanently bound at

the invocation of the iteration. The longevity

component of corporality changes, within the

context of the iteration, to static.

3- r
ik
= rxk f°r aH i,x=l,2,...n and for all

• = 1, 2, •• - AT except for some subset of k

called Y of cardinality p where K > p > 1

.

4. Let Xj and Y
t
represent the set of material and

result items respectively which changed between

the ith and i— 1st iterations. Let z represent the

maximum negative instantiation in the material

list, there exists a relation on i, i > 1 and z

such that

i-l

• if i < z then a, < (2 P„) + *

i-l

• if i > z then a, < ^ p„ and

,_,
n-i-(l+»)

^ C \J Y„

n=i-(1+r)

5. all elements in X, exist for all i = 1, 2, •• • n

6. there exists a termination condition

f= boolean f(Yt).

Where does this leave us? An informal summary of iteration is as follows: Any iteration

construct must contain both material and result items which change between each iteration

although no direct correlation can be drawn between the changing material of one iteration and

any result preceding it. Materia! items which change must appear in the result list; those which

do not change are bound at the start of the construct execution. The result list may contain
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results which change but do not appear in the material list. Finally, an internal termination

condition must be formed on some subset of the changing result list.

While this seems to be a sufficiently flexible definition, it is only fair to point out some

remaining shortcomings which are not supported. No material items can change unless they

appear in the result list. It would be nice to use the iteration construct in a manner which allows

it to consume fresh material from the outside at each iteration. This is not possible under the

current definition.

As a final note on iteration, I would like to propose an interesting extension which I will not

develop beyond its description. An iteration depends upon the results of previous iterations; it

forms an essentially sequential computation across its execution. If the concept of partialing can

be applied to the changing material list set X, then substantial parallelism could be achieved. The

iterating objects would need to be prebound to sequence numbers before the existence of their

values in much the same manner that NfULTTLISP defines futures. The problem needed to be

overcome in this case would be the reconstruction of what results exist if and when any arbitrary

termination condition becomes true on an iteration.

3.3 The Deferred Execution Construct

While data drive is a fundamental concept in the ACM model, one construct missing from it

which is closely related to data drive is a deferred execution construct. Such a construct would

allow for the indefinite deferral of a request until such time as some item in its result list is

required in another request which is otherwise ready to be enabled. In this case the data drive

switches to demand mode. Deferring a request may be beneficial if there is some likelihood that

the results of such a request may never be needed.
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The model already contains the capability to perform this in a somewhat cumbersome and error

prone manner as demonstrated in the following example:

[y2 exists] processl( xl; yl ) ;

process2( x2; y2 ) ;

process3(yl, y2; z3 );

Figure 3-7. Deferred Execution as Currently in the Model

The request "processl" is deferred until "process2", an otherwise artificial request, has completed

and the existence of object "y2" is complete. Since "yl", the result of "processl" is used directly

in "process3", the scheduling of "processl" will not occur until such time that "process3" would

otherwise be ready to be enabled. Note however that this is not exactly deferred execution in

that "processl" is not being stimulated on the need for an output but rather the availability of

some other object. Any significant number of such artificial requests such as represented by

process2" would likely cause significant confusion (not to mention the extra overhead).

Within the model the corporality attribute itself contains a component called "availability" which

is defined as a boolean which if true indicates the object as available and if false additionally

contains information as to the reasons why the object is unavailable. If this component could

contain deferral information in this field then a deferred execution construct would be possible.

Note that the object being deferred is a request but the objects marked as deferred are the result

objects that the request would produce. The format might look as follows:
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[defer] processl( xl; yl ) ;

process3( yl, y2; z3 );

Figure 3-8. Potential Deferred Execution Construct

Here we make the keyword defer an external stimulation condition on the request to be deferred.

The objects in its result list come into immediate existence but are marked unavailable. The

availability component of the corporality would contain information denoting it as deferred and

some logical connection to the request which can make it available. The demand for any result

object in the deferred request would be sufficient to trigger the request (assuming it is not

otherwise blocked by normal material needs or false stimulation conditions). The following is a

more formal definition of the deferred execution construct:

Definition: A deferred object Od is an object which

exists and is not available and for which its non-

availability is due to some request object Rd . The

deferred status of an object is removed if and only if

there exists some request R„ which would be ready to

transition from the idle state to the enabled state

except for some subset of its material list M„ which

contains Od and all elements in M„ which are not

available are deferred. The removal of deferred status

from an object sets the defer stimulus on Rd to true.

Definition: A deferred request is an object

(st,m,a,rht)

when the following conditions are met:

1. The stimulation condition se consists of the set

S of x boolean conditions for all j, € S, such

that 5]^^ • • *sx , forms the stimulation

condition and defer € S. The condition "defer"

is initially false.

2. The set of result objects r, are deferred objects.
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3. The "defer" element of the stimulation set S is

transformed to true if the deferred status of any

object in r, is removed.

3.4 Operations on Unordered Collections

The only operations allowed on unordered collections are ADD, DELETE, and REPLACE. It

would be useful to add to this set the operations LENGTH and SUBLENGTH. LENGTH

reflects the number of elements in the unordered collection while SUBLENGTH returns the

number of elements of a particular type. Following is the original definition:

Definition: An Unordered Set. Let [cuc2 ,
• • c„]

denote an unordered collection of objects; in

particular, let [] denote the empty unordered

collection <J>.

Let c'[x) denote the unordered collection which

results from concatenating the object x onto the end

of unordered collection c

and

let D be the domain of the objects in an unordered

collection.

Then:

a) [] is an unordered collection, the null unordered

collection 4>.

b) if c is an unordered collection, and dtD, then

c'[d] is an unordered collection.

c) the only collections are those specified by a) and

b).

d) ADD( c, [d] ) = ^-[d]

e) DELETER c, [d] ) = ^ if d notl c

or

DELETER c, [d] ) -^ if di c where if the

notation [c,, • • ,c,, • • • c„] is an abbreviation

for []-[c,]- • • • ~[cn]=c then if

d ~ [c/]»/-'Vi, • • .'m then

c ' =
[
c ^y ' ' ' .C[,-l],C[i+1] ,

• • • c„]
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f) REPLACE^ c, [d], [e] ) = ^ if d nott c

or

REPLACE^ c, [d], [e] ) = jjc' it di c where if

d - [cj]J=i,h. • • .'* then

c' = [cit C[
f_,j, e, C[, +1 ],

• • • c„]

Now in order to add the LENGTH and SUBLENGTH operators we must add the following to

the above definition:

g) LENGTH{ [) ) = tfl,
LENGTH ( c, [d] ) = ^1 + LENGTH( c )

h) SUBLENGTH( c,[d]) = ^ if d notd c

or

SUBLENGTH( c, [d] ) = ^1
+ SC/flLE7VG77/( c\ [<f] )

if </ € c and c' - c — [d]

3.5 Mapping Coercion in Repetition Constructs

What if we wish to invert the order of elements in an array and store it in another array? The

repetition construct is designed to allow parallel actions across the ordered values -

of an object.

The mapping of material objects to the result objects is defined as follows:

Definition: The mapping I defined on the linear order

of the structures involved. Given two structures M
and R with linear order M = (m^,m2 , ,ntj) and

/? = (r,,r2 ,
• • • ,rj) then the mapping of M to R is

m, £ r,.

The linear order is established from the spatial

coordinates of a structure or from the order defined

within an abstraction. The mapping £ is otherwise

undefined.

Three cases exist to determine linear order:

a) The linear order for structures with spatial

coordinates is defined in the model such that

elements are ordered by letting the first coordinate

vary most rapidly, the second varies next most

rapidly, etc.
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The remainder of the definition deals with ordered

collections and is not relevant to this extension.

Now consider the following repetition construct where the action being requested inverts the

elements of an array, an object which uses spatial coordinates:

invert( a; b );

By the above definition of mapping the only mapping allowed is

a[l]->b[l], a[2]->b[2], .... etc.

In this example we wish to really map

a[l]->b[n], a[2]->b[n-l], ..., etc.

How can we adjust the model to allow this, or any other arbitrary linear mapping, to occur?

The object component "attribute" defines the logical organization of the object. Using this

component we can make the following definition:

Definition: A mapping object is a complete object

(d,a,r,c,v) such that:

1

.

The designator d exists.

2. The attribute a exists and defines a linear

function on the natural numbers N such that

ii - A*i)

3. The representation r exists but is not relevant

(vacuous).

4. The corporality c exists as static and available.

5. The value v exists and is the null set.

The restriction to linear functions is required so that no mapping to the same natural number can

occur more than once. Using the above definition we can restate case a in the definition of

mapping as follows:

al) The linear order for structures with spatial

coordinates is defined in the model such that

elements are ordered by letting the first
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coordinate vary most rapidly, the second varies

next most rapidly, etc.

a2) The linear order for structure with spatial

coordinates may be coerced to use the linear

functional value {; of a mapping object for any

coordinate.

The semantic definition of a mapping object is beyond the scope of this paper; let us assume one

exists for "inverse". Returning to our previous example the use of a mapping object might appear

as follows:

copy( a(invert); b ) ;

The effective mapping would result in a* (, *» The mapping of any array to another can occur

in any linearly definable fashion. Each spatial coordinate of a multiple dimension array can be

treated individually producing a wealth of possible transformations.

3.6 A Summary of Other Research

The following extensions are being researched at this time in parallel with this effort. They will

be briefly mentioned here for completeness. In [YUK86] the following extensions were

proposed:

• A restatement of request states and state transitions to eliminate some ambiguities and define

the concept of unsuccessful completion of a request.

• The addition of boolean predicates which allow the success or failure of a request to be used

in the stimulation or termination of other requests.

• An pre-defined action which forces a request to fail.

• The definition a default case for the caseation construct.

• The addition of the concurrent alternative construct which allows parallel execution of
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altemativc requests.

Additionally the following were proposed by [SH187]:

• A indefinite looping construct which rebinds the context of its material and result lists at each

iteration.

• The inclusion of a dynamic FIFO data object which is particularly useful in the indefinite

looping construct in order to solve producer/consumer problems.
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Chapter 4

4. SMART - an ACM Language (the Semantics)

4.1 Introduction

A thorough discourse on the semantic meaning of any language, even a simple one, is admittedly

a difficult chore. Anything less risks the danger of raising more questions than it answers; this

chapter faces that risk. It contains a rather informal presentation of the semantics of the

implementation of SMART. The choices made were not well developed beyond the simple

expediency of selecting a meaning which was consistent with what was to be accomplished within

the limited implementation. As a result most of the semantics discussed here are probably

arguable, particularly if applied to a more general implementation.

4.2 Limitations on the Implementation

While a more thorough discussion of the implementation can be found elsewhere [SHI87], it

would be helpful to briefly state the limitations placed upon the implementation of SMART. In

brief:

• Data object types have been limited to the atomic types integer, real, and character.

• Longevity of data objects can be static, dynamic, fluid.

• No aggregations or spatial coordinates (arrays) are allowed.

• No detailing of actions occur. All requests are for essentially atomic actions which internally

behave outside of the model.

• No type checking occurs; the assumption used is that whatever atomic action is requested will

he able to use the material data object types as presented and will produce exactly the data
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object types specified in the results.

• Conditions are formed from any valid grouping of boolean operations.

• Conditions may contain the request success/failure extension described in [YUK86].

• The only major construct available is the extended version of iteration presented in chapter 3.

Note that alternation and caseation can be simulated through the judicious use of external

stimulations.

4.3 Informal Semantics

This section will cover the static semanitics of SMART but will occasionally lapse into dynamic

semantics. The intent is to provide the user enough information in order to use the

implementation. It is assumed that the reader is familiar with the syntax of SMART; a

discussion of this subject can be found in [SHI87]. Additionally the BNF for SMART is in the

attachments.

Data objects must be declared with the keyword var followed by a longevity keyword, static,

dynamic, or fluid, followed by the type, int, real, or char and finally followed by a object

designator or list of designators. For example:

VAR STATIC int x, y;

FLUID real fl,£2;

DYNAMIC int a ;

char b;

Figure 4-1. Data Object Declarations

All of the above are valid declarations. If the longevity is not specified, as in the case of "b",

then the default of DYNAMIC is assumed. Reference to data objects in subsequent requests is

limited to the user name component of the designator. In the case of DYNAMIC objects the
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designator may have a relative or absolute sequence number associated with it.

With the declaration of a static data object a value may be assigned to it from the universe of

fixed objects, for instance:

VAR STATIC int x - 1,

STATIC char a = 'a';

STATIC int y;

STATIC char b;

Figure 4-2. Data Object Value Initialization

The first 2 objects, "x" and "a", have initialized values. Because they are static they cannot be

changed in value whereas "y" and "b" may change due to some later inclusion in a result list since

they are incomplete (no value component).

Because no detailing is being done at this time, the statement of any request implies the action

being requested must be atomic; therefore a request may appear as follows:

label: [se] action(ml. m2, ... mj ; rl, r2, ... rk [ri]) [te] ;

Figure 4-3. A General Request Declaration in SMART

This is the most expansive request object which can be used in the implementation. A label may-

be provided for use in the stimulation or termination conditions of other requests. Optional

external stimulation and termination conditions can be formed on any boolean expression.

Because no detailing is allowed internal termination conditions are allowable within the request

in order to facilitate iteration (the one major construct being implemented). Finally the material

and result lists, separated by a semi-colon, may contain multiple objects and reasonable (and as

yet undetermined) sizes of these lists are acceptable. White space is optional anywhere and all

statements are terminated by a semi-colon. Stripped to its simplest form a request appears as

follows:
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action( m ; r ) ;

Figure 4-4. A Simple Request Declaration in SMART

A simple request consists of the atomic action with a statement of at least 1 material object and

1 result object and with no conditions specified. Because the atomic actions exist outside of the

model, even this simple form may in fact have no material and/or result lists. Simple requests,

as well as any other, are entirely driven by data flow; no explicit ordering of requests adds any

imperative ordering to the execution.

The specification of a dynamic data object within a material or result list may occur with or

without sequence numbers. Within the material list a dynamic object defaults to the latest value,

while within the result list it is the next value in the sequence. Negative relative sequence

numbers are allowed in a material list whereas they are not allowed in the result list. Similarly a

positive sequence number may be applied (limited to "..+ 1") to a result object but not to a

material object. Absolute sequence numbers may also be used. An example of the correct

usage of dynamic objects follows:

VAR DYNAMIC int x, y, z;

multiply(x, y..-l ; z.. + l)

Figure 4-5. Correct Use of Dynamic Data Objects

Here the latest sequence of "x" and the second latest sequence of "y" are used to produce the next

sequence of "z". Any sequence of "x" will suffice but at least 2 sequences of "y" must be

available before the data drive will allow this request to be enabled. An example of the

incorrect usage of dynamic sequenced objects is:
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VAR DYNAMIC int x, y, z;

STATIC int a, b;

zeppelin(a..+0, x.. + l, y..O ; b, Z..+0) ;

Figure 4-6. Incorrect Use of Dynamic Data Objects

This example will go down in flames; a number of problems exist.

• Since "a" is a static object it cannot have a sequence number.

• The dynamic object "x..+0"used here would require that the next version after the latest be

available before the request can be enabled. When that value became available it

immediately becomes designated "x..+0", therefore "x.. + l" would never be available.

• "z" produces the latest sequence that already exists, a violation of single assignment.

Iteration adds some restrictions to the material and result lists; They must contain at least 1

common dynamic data object and of those in common at least one must be a part of a required

internal termination. A valid example is &s follows:

VAR DYNAMIC int x, y, z;

FLUID int a;

iter(a, x, y ; x, a, z [x < 20]) ;

Figure 4-7. Iteration

Here material "a", "y" and "x" are used to produce "x", "a" and "z". Since "x" is the only dynamic

object in both the material and result lists it must also appear in the internal termination. Even

though "a" appears in both the material and result lists it is fluid and thus not an iterating value.

The context of a request is bound when the request is enabled. In the above example should "y"

be unavailable and some other request is producing a sequence of "x" values the binding of which

"x" is used as input to this request will not occur until "y" becomes available. Furthermore for
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each iteration, even though "a" and "y" are fluid and dynamic respectively, the values bound in

each iteration remain the same as at the outset. Since "a", "x", and "z" appear in the result list

they are only available to any other request at the termination of the entire iteration (of course

pre-existing values are available). Note that since "a" is fluid only one value is produced but

since "x" and "z" are dynamic the number of values produced are entirely dependent upon the

number of iterations that occur.

The essential difference between an internal termination and an external termination, outside

that of iteration, is the context in which it is evaluated. Consider the following:

VAR FLUID x;

action(x, y; z [x < 5]) [x > 10];

Figure 4-8. Internal Versus External Termination

The above is not an iteration because no material list objects appear in the result list. It would

appear that the action will terminate if "x<5" or "x>10". This is true at the outset because when

the context of the action is established both conditions are evaluated. However, once enabled the

contextual binding effectively eliminates any further need to examine the internal termination as

it can no longer change. The external stimulation can change because outside of the context of

the action "x" is still capable of change through other requests. At each change in value the

external stimulation must be reevaluated. If "x" was dynamic rather than fluid this would still be

true, however, were "x" static then then both the internal and external stimulation both would

need only be evaluated once, when "x" is available.

The success of a request implies that all of its results have been produced and the failure implies

that none of its results are produced. The success or failure of a request can be used in the

simulation or termination conditions of another request; for example:
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producer(a; x, y);

avel: averagel(x, y; z) [S(ave2)
|
S(ave3)]

ave2: average2(x, y; z) [S(avel)
|
S(ave3)j

ave3: average3(x, y; z) [S(avel)
j
S(ave2)]

Figure 4-9. Success or Fail within Conditions

In this example the 3 requests, "avel", "ave2" and "ave3" can all be started in parallel based upon

the data drive, but only one can succeed because any success immediately results in failure of the

others. Only 1 value "z" will be produced.

Finally, let us look at the evaluation of stimulation and termination conditions.

jobl(x, y; z);

[x<z] job2(x, y, z ;a);

job3(x, y, z; b) [a<5];

job4(x, y, z; c) [(z<3)|(x<y)];

Figure 4-10. Condition Evaluation

Here "jobl" is a simple request which is enabled as soon as its material list is available. Upon

completion "job2", "job3", and "job4" are ready to be enabled by pure data drive but each has a

condition which needs evaluation. "job2" will transition to enabled if "x<z" is true. If this

condition is not true then "job2" remains idle until such time as "x<z" becomes true or until the

program terminates. At least one of "x" and "z" must not be static for this condition to even have

the potential of change. "job3" can be enabled immediately even if "a" has no value because a

condition on an incomplete value is considered false and, therefore, the completion of "job3"

may occur even if "a<5" since it may complete before "job2" produces an "a" to evaluate. If

"job3" is either idle or enabled (and running) it will be terminated if "a<5" becomes true.

If a condition contains an incomplete object only the expression using the object is false, so in

fact the condition as a whole might still evaluate as true. Consider the termination condition of



-37

"job4"; even if "z<3" is false because "z" is incomplete, if "x<y" is true then the termination still

occurs. "job4" does not have the problem that "job3" represents because its termination

condition depends upon "x", "y" and "z" being available. Since the data drive for "job4" also

depends on these objects there is no way for "job4" to run with an indeterminate condition. As a

final point note that any time a termination condition becomes true the associated request

transitions to the disabled state.
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Chapter 5 ;

5. SMART - an ACM Language (The Implementation)

5.1 Introduction

This chapter will discuss the implementation of the basic SMART node and how it is used.

5.2 Compilation

Programs for SMART must be compiled before they can be executed within the node. Further

information on the compiler can be found in [SHI87].

5.3 The SMART Network

The SMART network consists of a variable number of nodes which communicate across an

ethemet link between up to as many 5 systems (no reason exists why more could not be

specified). The utilization of any node by any other node is entirely transparent to the user.

Each node on the network is capable of servicing requests originating locally (new executable

programs) or remotely (tasks for remotely controlled programs). The structure of the network is

thus simple and can be represented by the following diagram:
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Network
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Figure 5-1. The SMART Network

Each node represents a set of interacting processes which can also communicate interactively

with a local terminal as well as as other node which is up.

5.4 The SMART Node

A SMART node consists of 5 basic control modules and a library of executable atomic actions.

The basic modules consist of the node manager, terminal driver, scheduler, network driver, and

environment handler. They form a set of communicating sequential processes which interface

using message queues. A diagramatic representation of the basic module interconnections is as

follows:
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Figure 5-2. The SMART Node

The node manager controls the node by starting the other basic modules, routing terminal

communications to the appropriate place, logging information to a file (when requested) and

terminating the node (when necessary). All requests to the node manager originate from its

private input message queue and the activity performed varies:

• Messages arriving from the terminal are checked for direct commands to the node manager.

These include logging comments, killing the node, reprinting outstanding questions, and

killing active programs.

• Messages arriving from the terminal which are not direct commands are parsed to determine

if they represent responses to questions for which other modules are awaiting replies. Such

messages are routed to the appropriate module through a common message queue.

• Messages from the terminal which do not correspond to the above categories are assumed to
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be requests for new programs and are forwarded to the scheduler via its private message

queue.

• Messages arriving from other than the terminal will either be logged, displayed on the

terminal, or both. Messages to the terminal which represent questions will be stored for later

reference when the response from the terminal arrives.

The terminal driver simply spools terminal input into messages (delineated by a newlinc) and

passes the packetized request to the node manager. White space at the beginning of a new line is

thrown away and '@' is treated as a line kill character. One other special character, '!', allows

the user to escape to the terminal shell in order to accomplish non-SMART related commands.

As a final point, the terminal driver is the only process in the SMART node that does not ignore

a <brk>, which it uses to construct a "kill node" command for the node manager.

The scheduler controls the execution of tasks (requests in process), the execution of environment

handlers (programs in process) as well as the locality of tasks within the network. It also is

driven by input on a private message queue and depending upon the message type performs the

following activities:

• A new program request arriving from the terminal will result in the creation of a new

environment handler to control it.

• Requests for tasks arriving from local environment handlers will result randomly in the local

execution of a task, or in a remote task request to another node.

• Requests for tasks arriving from other nodes will result in local execution of such tasks.

• The successful or unsuccessful termination of tasks have the will result in the routing of the

status to the appropriate environment handler, either locally or remotely.
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• If another node goes down any tasks located on that node are automatically rescheduled

somewhere else.

• A request to kill an environment handler (from die terminal) will result in the termination of

that handler as well as any local or remote tasks in progress for it.

• A display of the current local environments and tasks in progress will occur if requested. A

running display of activity is also available for debugging programs.

The network driver is responsible for the interface to other nodes via the ethernet. Incoming

packets are routed to the scheduler and outgoing messages are sent to the proper node. More

details on the network driver are to be found in [YUK86].

The environment handler forms the true executable portion of the SMART language. It parses

the dataflow graph and forwards enabled requests for execution through the scheduler (as tasks).

The arrival of a task completion message will contain the status of the request as well as the

results. Further discussion of the environment handler is beyond the scope of this document (see

[YUK86]).

5.5 The SMART Library

Additionally the SMART node contains a library of atomic actions which can be used as

requests. These execute as tasks and must conform to the standard message handling interface

using the common message queue for any and all terminal communication. Upon completion

they pass a task done response message back to the scheduler. A list of the atomic actions which

are currently available may be found in the attachments.
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5.6 User Instructions

A SMART node is started by entering the "smart<cr>" command. The user will be immediately

queried as to the node number, which must be unique. Each node must be started individually

and will automatically connect to any other active nodes in the network. No requirement exists

for more than one node to be up in order to use that node. If a node goes down any work on

that node being performed for another node will automatically restart elsewhere.

If the node needs information from the terminal a message will appear on the terminal prefixed

by a "nn: " where "nn" is a sequence number. The node itself does not wait for the reply but

instead continues processing whatever work it has ready. This may include additional questions

to the terminal. When the user wishes to reply the answer must be prepended with "nn: " where

"nn" is the «ame sequence number of the original message. Should the outstanding messages be

forgotten the user may enter "?<cr>". This will result in the re-display of all outstanding

questions.

In order to start a program the user must enter "name<cr>" where name is the resultant output

of the successful execution of the SMART compiler. Anything entered at the terminal which

cannot be determined to be another command will be assumed to be a request for a new

program. Whenever a new program is started the process number of the environment handler

for that program will be displayed.

In the case where the terminal user wishes to stop a particular program the command "kill

nnnn<cr>" where "nnnn" is the process number of the environment handler will result in the

termination of that handler along with any currently active tasks, either local or remote.

Entering 'list all<cr>", 'list jobs<cr>", or 'list tasks<cr>" will display the current status of
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activity within the node. Entering Hist active<cr>" will display each task request processed as

they occur; "list silent<cr>" will log each task as they occur, and "list stop<cr>" will stop an

active or silent display.

The state of an active program can be logged by entering "dump rainn<cr>" where "rmnn" is the

process number of the environment handler for the program. When a program terminates a

message indicating "done" or "hung" will be displayed based upon whether or not any requests

did not transition to the disabled state.

The node itself may be terminated at any time by entering "exit<cr>
H
or "<brk>". This will

result in the orderly shutdown of the node allowing other nodes to continue to function correctly.

Finally the SMART session will result in a record of the activity on that node in a file called

"logfile". Additional information on using the smart node is found in the attachments.
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Chapter 6

6. Conclusions

6.1 Accomplishments

The problem addressed by this paper has been the task of freeing the programmer from the

difficulties encountered when dealing with concurrent processing. The need for such processing is

becoming more acute as the maximum threshold for performance on traditional computer

architecture is rapidly being approached. Relevant ideas have been presented from current

research in the area of parallel processing with particular emphasis on data drive models. Of

particular interest are the concepts of:

• data abstraction

• object orientation

• the data drive principle

• single assignment

• the elimination of side effects.

Using the ACM model as a basis for a language employing the data drive principle, several

extensions to the model were proposed:

• An expanded definition of iteration which allows significant flexibility- in its use.

• A deferred execution construct which allows the model to run in a demand mode, thus

deferring potentially forever the unneeded overhead of unnecessary activity.

• Extensions to the build-in operations on unordered collections which allow the size of the
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collection and sub-collections to be determined.

• A definition of a mapping object which allows a repetition construct to associate in any way

objects of different spatial design.

An implementation of a modest subset of the ACM model was done, hopefully as a building

block to a more complete implementation in the future. In order to maintain the data drive

principle of inherent concurrency this implementation was designed to perform on multiple

processors connected in a network where enabled requests are performed at random anywhere

within the complex.

6.2 Notable Limitation';

Although the extended definition of iteration adds significant flexibility it still retains several

shortcomings. No provision is made for the inclusion of new material to the construct after its

invocation except for the interating data objects already contained within the context of the

iteration.

Additionally if the concept of parrialing could be extended to the result list a significant

performance enhancement might be achieved in parallel execution. As it currently exists an

iteration has absolutely no internal parallelism, but one can easily construct, at least informally,

many examples where parallelism within the iteration would have significant benefit. The

difficulty in extending the definition involves defining exactly what exists when any given iterate,

assuming many running concurrently, has its termination condition satisfied.

The introduction of a mapping object was a significant improvement to the repetition construct.

Unfortunately it is difficult to envision exactly how such an object can be syntactically defined in

order to use it.
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The implementation of SMART is notably incomplete in mat only the iteration construct was

even attempted. Of particular interest would have been detailing of actions which would have

lent a block structured flavor to the language. In addition the inclusion of both files and

aggregates would have made the language more useful.

6.3 Areas for Future Research

Directions for future research in the use of the ACM model is a fertile field as the model

provides a rich diversity for the definition of objects. While it is not hard to come up with ideas

I would suggest several which should come as no surprise:

• The extension of parrjaling to the result list probably would have significant performance

enhancement possibilities.

• The syntactic and semantic description of a mapping object to make this a useful tool.

• A definition of file handling within the model would take the model a long way to a

legitimate implementation.

The implementation of SMART has significant limitations, the elimination of any one would

improve the language and its usefulness. As previously stated the most significant limitation was

the lack of detailing. Additionally the implementation of constructs, aggregate objects, files,

and the use of contextual designators; all of these would enhance the language. No particular

emphasis was made on the performance of the implementation; this would also be an area well

worth study. Although not really a part of the model nor the language, the current smart node

has the capability to allow multiple work station interaction. It would be a simple effort to

extend the language to allow directed task execution to specific nodes.
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As a final point, ACM, a data flow model, would function well on a hardware system designed

for data flow. It would be nice to see it implemented for such hardware.
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SMART User Notes

The SMART Node: User Notes

The following is an overview of how to use SMART:

Compilation

In order to compile a program enter "acm filename" where filename if the name of the

source file. The compiled output will be called "filename.out" unless the option "-o

filename" is entered on the compilation command, in which case the name of the compiled

output will be "filename".

Starting or stopping a node

To start a node simply enter "smart". You will be prompted for a unique node name. If

any other nodes are up or come up they will be automatically attached without manual

intervention. In order to terminate a node simply enter "exit". Any tasks being performed

on that node for another will restart elsewhere.

Answering Questions

Any questions displayed on the terminal are prefixed with "nn: ". In order to reply the user

should attach the same prefix to the reply. Entering "?<cr>" will redisplay any

outstanding questions.

Starting a Program

Simply enter the name of the compiler output file

Debugging a Program

The following commands may be entered in order to debug a program or a node control

problem:

list jobs - lists all active programs

list tasks - lists all active tasks

list all - does both of above

list active - displays start/stop of tasks

list silent - logs start/stop of tasks

list stop - stops a active/silent display

log "xxxx" - logs a comment
dump "nnn" - dumps data flow graph status

kill "nnn" - terminates an active program
"@" - line kill character
"!"

- shell escape

Additionally a dissassembler is available which will produce a listing of requests with

identification numbers which will associate to the various display commands above. This

disassembler is invoked, outside of the node, by entering "acmdis filename".
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Debugging Extensions

If extensions are made to the language, the capability to interactively debug the

environment handler can be done using two terminals. The node must be started on one
terminal. On the other terminal, using "sdb", the environment handler is started.

Determine the process number and on the other terminal (running smart) enter "debug

nnn" where "nnn" is the environment handler process number. At this point the

environment handler will be able to have tasks executed.
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The SMART Library

The SMART Library

The following list represents the atomic actions currently available:

Demonstration Actions:

askadd, asksub, askmult, askdiv

Each of these require 2 integer materials and produce 1 integer result. The terminal

connected to the node upon which the task is run determines will be queried for a

response.

Integer Math:

add, sub, mult, div

Each of these require 2 integer materials and produce 1 integer result.

Real Math:

addf , subf , multf , divf

Each of these require 2 real materials and produce 1 real result.



The SMART BNF Syntax

pgm varlist reqlist

varlist : VAR delist

1

/• Null •/

delist delist dcitem
;

1

dcitem
;
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SMART BNF SYNTAX

dcitem longevity stype ID

longevity stype ID ( INTVAL ) /* not implemented */

longevity stype ID = sign INTVAL
longevity stype ID = REALVAL
longevity stype ID = sign CHARVAL

longevitj

1

': FLUID
DYNAMIC
STATIC
FIXED

/* Null */

stype INT
CHAR
REAL
FILE /*

reqlist : reqlist request
;

request

;

request : label se ED rspec te

selD rspec te

label : ID:

rspec : ( mlist ; rlist ti )

mlist : mlist , desig

desig

/• Null V

rlist rlist , desig

desig

/• Null V

/* not implemented */

se
[ cond ]
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te

/• Null */

[ cond]
/• Null */

[ cond ]

/* Null •/

sign

desig :

username

instance :

spatialpos:

I

sequence:

I

I

cond :

bpntne :

+

/• Null */

username instance

ID

.. sequence

spatialpos . sequence /* not implemented */

.. spatialpos

/• Null */

(desig)

(INTVAL)

INTVAL
+ INTVAL
-INTVAL
x bpnme

OR x bprime
/* Null V

/* not implemented •/

/* not implemented */

/* not implemented */

y xpnme

xpnme AND y xprime
/• Null */

y ( cond

)

boolexp

S(ID)
F(ID)

boolexp expr relop expr

expr t eprime
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epnmc : + t eprime

1

1

- 1 qjrime

/• Null V

t f tpnme

tpnme • f tprime

If tprime

/* Null */

f (expr )

desig

signlNTVAL
signREALVAL

relop EQ
NE
GE
GT
LT
LE



55-

SMART Sample Program 1

Smart Sample Program 1

/

Solve simultaneous equations:

(al • x) + (bl * y) = cl

(a2 * x) + (b2 • y) = c2

VAR static real al; /* 1st line values */

static real bl;

static real cl;

static real a2; /* 2nd line values */

static real b2;

static real c2;

static real *; /* itersection point answer

static real y;

static real xinterl

;

/* alternate variables */

static real xinter2;

static real yinterl

;

static real yinter2;

static real samel;

static real same2;

static real same3;

static real det;

static real detl;

static real det2;

static real vail;

static real val2;

static real val3;

static real val4;

static real xval;

static real yval;

/•

* the following represents the most common solution

V
multf(al, b2;detl);

multf(a2, bl;det2);
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subf(detl, dct2;dct);

multf(b2, cljvall)

multf(bl,c2;val2)

multf(a2, el; vaD)

multf(al,c2;vaJ4)

subf(vall, val2; xval);

subf(val4, val3; yval);

divl: divf(xval, det; x);

div2: divf(yval, det; y);

ansl: print("lines intersect at ", x, y) [F(divl)
|
F(div2)];

/•

* the following checks y intercepts

•/

yintl: [F(divl)
|
F(div2)]divf(cl , bl; yinterl);

yint2: [F(divl)
j
F(div2)]divf(c2, b2; yinter2);

an2: [xinterl =xinter2]print("same vertical Hne")[S(an4)];

an3: [(xinterl !=xinter2) & (F(yintl)
|
F(yint2))]print("parallel vertical lines");

/*

* the following checks x intercepts

*/

xintl: [F(divl)
|
F(div2)]divf(cl , al; xinterl);

xint2: [F(divl)
j
F(div2)]divf(c2, a2; xinter2);

an4: [yinterl =yinter2]print("same horizontal line")[S(an2)];

an5: [(yinterl !=yinter2) & (F(xintl)
| F(xint2))]print("paraUel horizontal lines");

/*

* check for same line

V
divf(al, a2; samel);

divf(bl,b2;same2);

divf(cl, c2;same3);

an6: [F(ansl) & (samel =same2) & (samel =same3)]print("same line");

an7: [F(ansl) & (samel =same2) «fe (samel !=same3)]print("parallel lines");

/*

* get the input

V
11: print("solve simultaneous equations");

12: [S(11)J printf (al)x + (bl)y = cl");
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13i [S(I2)] printC (a2)x + (b2)y = c2");

14: [S(13)j prompt("enter real al"; al);

15

:

[S(M)] prompt("enter real bl "; bl )

;

16: [S(15)] prompt("cnter real cl"; cl);

17: [S(l6)j pn>mpt("enter real a2"; a2);

18: [S(17)j prompt("enter real b2"; b2);

[S(18)] prompt("enter real c2"; c2);
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SMART Sample Program 2

SMART Sample Program 2

r
* test dynamics across several iterations

* (fibanocci number sequence)
*/

VAR

Pi

P2

p3

p4

p5

p6

P?

p8

p9

pa

pb

static int one= 1

;

static inttwo=2;

dynamic int x;

dynamic int max;

/•

* initial

•/

setup

prompt("entcr max number"; max);

al: &ssign(one; x);

[S(al)] assign(one; x);

mult(two, max; max);

I*

* iterate until complete
*/

fl: add(x..+0, x..-l; x.. + l [x..+0 > max..-l]);

f2: [S(f 1 )1 add(x..+0, x..-l; x.. + l [x..+0 > max..+0]);

/*

* print the last 12 numbers in the sequence
*/

[S(f2)] print("last 12 answers: ", x..+0);

[S(pl)] print(" -, x..-l);

[S(p2)] print(" ".x..-2)

(S(p3)] print(" ", x..-3)

[S(p4)l printC ",x..-4)

[S(p5)] print(" ", x..-5)

[S(p6)] printf ",x..-6)

[S(p7)] printf ",x..-7)

[S(p8)J print(" ", x..-8)

[S(p9)] print(" ",x..-9)

[S(pa)] prim(" ",x..-10);

[S(pb)] prim(" ", x-.-ll);
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Abstract

This paper addresses the problem of freeing the programmer from the difficulties encountered
when dealing with concurrent processing. The need for such processing is becoming more acute

as the maximum threshold for performance on traditional computer architecture is rapidly being

approached. Relevant ideas are presented from current research in the area of parallel

processing with particular emphasis on data drive models. An overview of ACM, a data flow

model, is presented and a number of extensions to the model are proposed. Finally, the

description of an implementation of a limited subset of the model is described.


