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Abstract: This study proposes a minimal modeling magnetic, angular rate and gravity (MARG)
methodology for assessing spatiotemporal and kinematic measures of functional fitness exercises.
Thirteen healthy persons performed repetitions of the squat, box squat, sandbag pickup, shuffle-walk,
and bear crawl. Sagittal plane hip, knee, and ankle range of motion (ROM) and stride length,
stride time, and stance time measures were compared for the MARG method and an optical motion
capture (OMC) system. The root mean square error (RMSE), mean absolute percentage error (MAPE),
and Bland–Altman plots and limits of agreement were used to assess agreement between methods.
Hip and knee ROM showed good to excellent agreement with the OMC system during the squat,
box squat, and sandbag pickup (RMSE: 4.4–9.8◦), while ankle ROM agreement ranged from good to
unacceptable (RMSE: 2.7–7.2◦). Unacceptable hip and knee ROM agreement was observed for the
shuffle-walk and bear crawl (RMSE: 3.3–8.6◦). The stride length, stride time, and stance time showed
good to excellent agreement between methods (MAPE: (3.2 ± 2.8)%–(8.2 ± 7.9)%). Although the
proposed MARG-based method is a valid means of assessing spatiotemporal and kinematic measures
during various exercises, further development is required to assess the joint kinematics of small ROM,
high velocity movements.

Keywords: biomechanics; kinematics; spatiotemporal; gait; motion analysis; inertial sensors

1. Introduction

Motion capture is a fundamental component of many modern biomechanical analyses.
Common technologies used for human motion capture include optical, image/video processing
and electromagnetic-based systems [1]. Although considered the gold standard of motion capture,
optical motion capture (OMC) systems are expensive, typically limited to a laboratory environment,
and suffer from marker occlusion, often resulting in loss of data [2]. Image/video processing
systems suffer from similar marker occlusion problems, as well as parallax and perspective
error [3]. Electromagnetic systems are limited to slow movements due to a low sampling
frequency and are susceptible to large errors where ferromagnetic disturbances are present in the
environment [1]. The limitations of current motion capture technology, particularly for field-based
research, have prompted researchers to explore alternate technology for human motion capture.
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Advancements in inertial measurement unit (IMU) and magnetic, angular rate and gravity
(MARG) technologies has seen the development of affordable, compact, and powerful devices [4].
Inertial measurement units measure the tri-axial angular rate and linear acceleration, while MARG
devices also measure the tri-axial magnetic field strength. By attaching IMU/MARG devices to
individual body segments and performing specialized processing of the output data, the position and
orientation of each segment and the resultant kinematics of the body can be estimated [5]. High sampling
rates, an affordable equipment cost, and the ability to stream data live or collect data directly on the device
for future download make IMU/MARG technology an attractive alternative to traditional motion capture
systems. Researchers have used both proprietary and researcher-developed IMU/MARG systems
to measure human movement for a range of applications, including sporting [6–11], clinical [12–15],
and ergonomic [16–19] applications. Literature investigating the validity of IMU/MARG motion
capture for the assessment of human kinematics suggests that the accuracy of IMU/MARG motion
capture is dependent on the task complexity, movement speed, sensor placement, specific kinematic
parameter being analysed, and processing methodology used [20,21]. Processing methods described in
previous validation studies of researcher-developed systems, particularly in the areas of sensor fusion
and sensor to segment alignment, provide valuable information for the development of IMU/MARG
motion capture technology.

In its most simplistic form, integration of the angular rate data of an IMU/MARG device provides
an orientation estimation of the device with respect to its original orientation in a local coordinate
frame [22]. Integration of the inherent bias within the angular rate data results in cumulative drift error
over time [23]. The acceleration due to gravity measured by the accelerometer may be used to assist in
correcting the attitude (inclination) component of this drift; however, the signal becomes corrupt when
the device is in a non-quasi-static state [22]. Similarly, the magnetometer data provides a heading
(horizontal direction) orientation and can be used to assist in correcting the heading component of
the drift. However, this heading estimation is often corrupted by magnetic disturbances within the
environment [23].

Sensor fusion leverages the most reliable components of accelerometer, gyroscope, and magnetometer
orientation observations at each time point to provide an orientation estimation of the device in a local or
global reference frame [24]. While proprietary systems use their own sensor fusion algorithms, the most
common methods of sensor fusion incorporate versions of the complementary filter [12,25,26] and Kalman
filter [27]. Previous literature suggests minimal differences in the orientation estimation accuracy between
such sensor fusion methods [22,28,29]. The ability to further tune the Kalman filter using various noise and
disturbance parameters is suggested to give Kalman filter-based approaches a slight accuracy advantage
over complementary filter approaches, albeit at the expense of the computational load [22].

Once the orientation of the IMU/MARG device has been established, the coordinate system
of the device must be aligned with the coordinate system of the segment to which it is attached.
This process is known as sensor to segment alignment. Sensor to segment alignment methods
described in previous validation studies of researcher-developed systems can be categorized as manual
alignment with or without the use of specialized alignment devices [7,30]; static pose estimation [13,31];
functional calibration [32–35]; and most recently, deep learning [36]. Although the former three
alignment methods have been shown to have a minimal effect on the overall agreement between OMC
and IMU/MARG measures [37], the practicality of such sensor to segment alignment methods should
be considered.

The manual alignment method (also commonly referred to as the technical anatomical alignment
method) requires the precise alignment of the local coordinate system of the IMU/MARG device
with the anatomical coordinate system of each segment. The manual alignment method is the least
computationally expensive method [37]; however, it comes at the cost of requiring additional specialized
calibration equipment or highly skilled persons to identify anatomical landmarks and place sensors
according to these landmarks [7,30].
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Static pose calibration methods remove some of the reliance on the precise alignment of each
IMU/MARG device coordinate system with the respective segment coordinate system by allowing the
arbitrary placement of all but one device [13,31]. Mathematical transformations are used to transform a
known local sensor coordinate system into a known segment coordinate system via a global coordinate
system. This method appears to be a common compromise between computationally simplistic manual
alignment and more computationally expensive approaches.

Functional calibration techniques require the client to perform specific movements with the
IMU/MARG devices arbitrarily positioned on each segment [32–35]. Numerical methods are then used
to determine the segment or joint coordinate systems from the data collected during the calibration
movements. While the functional calibration method allows the arbitrary positioning of all IMU/MARG
devices, the computational cost in establishing segment/joint coordinate systems is generally greater
than the manual alignment and static pose method [37]. Additionally, certain conditions may prevent
some clients from performing the calibration movements [33].

Most recently, deep learning has been used to achieve sensor to segment alignment [36].
This state-of-the-art approach relies on a quantity of previously collected real or simulation motion
data to train a model to identify the orientation of an arbitrarily positioned sensor and automatically
align it with the segment coordinate system. Although this method is relatively new and has seen
limited development, initial research suggests that the method may be computationally expensive and
that it requires large sets of existing data for accurate model training [36].

As there is currently no standardized methodology for IMU/MARG motion capture for all
applications, it is necessary to learn from the previous literature and validate any novel or
application-specific IMU/MARG motion capture methodology. To the best of the authors’ knowledge,
no previous literature has validated the use of MARG-based motion capture during functional fitness
exercises [20,38], where highly dynamic movements result in large ranges of motion across multiple
joints [39].

The aim of this study was to assess the validity of a minimal modeling MARG motion capture
methodology (from here on referred to as the MARG method) for the estimation of spatiotemporal
(stride length, stride time, and stance time) and kinematic (sagittal plane hip, knee, and ankle joint range
of motion (ROM)) parameters when compared to those obtained using an OMC system during various
functional fitness exercises. The MARG method uses a minimal modeling approach, which includes
the alignment of the sensor to the segment, processing, and anatomical modeling assumptions.

2. Materials and Methods

2.1. Participants

Thirteen participants, including 10 males (27.6 ± 10.8 y, 82.6 ± 13.5 kg, 181.4 ± 6.2 cm) and three
females (31.1 ± 9.6 y, 61.2 ± 5.0 kg, 162.4 ± 5.1 cm), with a broad range of anthropometric characteristics,
were recruited for this study to account for body type differences within the fitness population.
All participants were required to have undertaken some form of resistance or cardiovascular training
of a minimum of twice per week for at least six months prior to testing and be free from any injury at
the time of testing. Participants meeting the defined criteria provided written informed consent prior
to commencing testing. The study was conducted in accordance with the Declaration of Helsinki and
ethical approval was granted for all procedures used throughout the study by the Bond University
Human Research Ethics Committee (BH00070).

2.2. Experimental Protocol

Analyzed movements were selected based on their transferability to a range of exercise-related
movement patterns [39,40] and their ability to be performed in a laboratory environment (Figure 1).
The following subsection provides a description of these five movements.
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2.2.1. Squat

Each participant performed three sets of five squat repetitions. Participants were instructed
to cross their arms over their chest and perform the squats to a maximum comfortable depth at a
self-selected cadence.

2.2.2. Box Squat

Each participant performed three sets of five box squat repetitions. Participants were instructed
to cross their arms over their chest and perform the squats to the depth of a wooden box with the
following dimensions: height: 500 mm × depth: 300 mm ×width: 400 mm.

2.2.3. Sandbag Pickup

Each participant performed three sets of three sandbag pickup repetitions (sandbag mass: 10 kg,
diameter: ~400 mm, length: ~400 mm). Participants were instructed to adopt a hybrid stoop and squat
lifting technique whereby the participant would initialize the lift with relatively straight legs and a
curved upper spine, before positioning the sandbag in their lap and standing using a technique similar
to the stone lift from the sport of strongman.

2.2.4. Shuffle Walk

Each participant performed three sets of four to six strides of a modified gait pattern across the
test volume, simulating the technique they may use if they were carrying a heavy object. Participants
were instructed to vary their stride rate, stride length, and stride width throughout and between sets.

2.2.5. Bear Crawl

Each participant performed three sets of bear crawls across the test volume. Participants were
instructed to assume a four-point stance position before performing two to three strides across the
test volume.
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2.3. OMC Marker Placement and Processing

A six-camera Bonita Vicon 3D OMC system (Vicon Motion Systems Ltd., Oxford, UK), sampling
at 100 Hz, was used as the reference for joint ROM and spatiotemporal estimations [41]. The capture
volume was approximately 3 m × 2 m × 2 m. Fifteen 14 mm reflective markers were attached to
the landmarks reported in Figure 2. Clusters of four reflective markers were attached to the lateral
shank and thigh of the participant. Joint angles were estimated via inverse kinematics using Visual3D
software (Visual3D, C-motion, Inc.; Rockville, MD, USA) [42].
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Figure 2. Optical motion capture (OMC) and magnetic, angular rate and gravity (MARG) sensor
placement: CAL, calcaneus; FT1, foot tracking marker one; GT, greater trochanter; KNL, knee lateral;
KNM, knee medial; LASIS, left anterior superior iliac spine; LPSIS, left posterior superior iliac spine;
LPT1, left pelvis tracking marker one; MAF, foot MARG sensor; MAP, pelvis MARG sensor; MASH,
shank MARG sensor; MATH, thigh MARG sensor; MH1, first metatarsal head; MH5, fifth metatarsal
head; ML, lateral malleolus; MM, medial malleolus; RASIS, right anterior superior iliac spine; RPSIS,
right posterior superior iliac spine; RPT1, right pelvis tracking marker one; SHCL, shank cluster; THCL,
thigh cluster.

2.4. MARG Placement and Processing

Four MARG sensors (ImeasureU, Vicon Motion Systems Ltd., Oxford, UK) were fixed on a single
side of the participant’s body (Figure 2 and Table 1). The location of each MARG sensor was selected
for repetitive identification by untrained persons in the field and to minimize the effect of soft tissue
artefacts [43]. Each sensor consisted of a triaxial accelerometer (±16 g), triaxial gyroscope (±2000◦/s),
and triaxial magnetometer (±4900 µT) with an on-board sampling rate of 1125 Hz (accelerometer and
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gyroscope) and 112.5 Hz (magnetometer). The Capture.U app (software version 1.1.843, Vicon Motion
Systems Ltd., Oxford, UK), installed on an iPad Air 2 (iOS 13.3.1, Apple Inc., CA, USA), was used
to initialize and synchronize MARG device data recording. Raw MARG data (see Supplementary
Material) were processed using distinct methods for kinematic and spatiotemporal measures.

Table 1. MARG device positioning.

Segment MARG Position

Pelvis Midway between the right and left posterior superior iliac spine
Thigh Approximately 150 mm proximal to the lateral epicondyle of the femur
Shank Approximately 100 mm distal to the lateral tibial condyle
Foot Halfway between the lateral malleoli and the base of the foot

2.4.1. Kinematic Measures

A modified method for determining joint angle kinematics based on Beravs, Reberšek, Novak,
Podobnik, and Munih [31] was developed using a custom Matlab script (The Mathworks Inc., Natick,
MA, USA) (Figure 3). The following pre-processing and sensor to segment alignment methods
were used.
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MARG data pre-processing: Two different methods for preparing the raw MARG data were used
in order to determine the most appropriate method for the selected movement patterns. These will be
referred to as the default (DEF) method and the tuned and filtered (TAF) method (Figure 4).Sensors 2020, 20, x FOR PEER REVIEW 7 of 22 
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Figure 4. Data pre-processing default (DEF) and tuned and filtered (TAF) methods.

For both the DEF and TAF method, the effects of soft and hard iron magnetic disturbances on the
raw magnetic field data were reduced by performing a calibration procedure [44]. For the TAF method,
gyroscope data were passed through a sixth-order low-pass Butterworth filter with a cut-off frequency
of 60 Hz. Filter parameters were established from a frequency analysis of data collected in pilot testing.
Acceleration data remained unfiltered in both DEF and TAF methods, based on pilot testing results.

Acceleration, angular rate data (raw for DEF, filtered for TAF), and magnetic field data (calibrated
for hard and soft iron effects) were passed into an attitude heading reference system (AHRS) fusion
filter to estimate the orientation of each MARG device in the global reference frame (Sensor Fusion and
Tracking Toolbox Release 2019a, The Mathworks Inc., Natick, MA, USA). The AHRS filter used a 9-axis
indirect Kalman filter to model the error process of the system. The filter allowed initial device and
tuning properties to be set for a given movement and environment.

In the TAF method, device tuning properties and biases were established using a combination of a
static dataset collected over a four-hour period, information from the device datasheet, and pilot testing
data of each exercise. These properties included the following: Variance of accelerometer ((m/s2)2) and
gyroscope ((rad/s)2) noise; variance of magnetometer disturbance noise (µT2); gyroscope offset drift
((rad/s)2); a compensation factor for linear acceleration drift [0, 1]; and the expected magnetic field
strength due to the geographic location (Table 2). In the DEF method, all filter properties remained as
the default properties set by Matlab and the Kalman filter were left to correct for these errors (see MEMS
Industry Group [45] for further details).
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Table 2. MARG tuning properties.

Tuning Property DEF Method TAF Method

Variance of accelerometer noise (m/s2)2 1.92 × 10−3 3.45 × 10−4

Variance of gyroscope noise (rad/s)2 9.14 × 10−4 1.40 × 10−6

Gyroscope offset drift (rad/s)2 3.05 × 10−13 1.77 × 10−8

Magnetometer disturbance noise (µT2) 5.00 × 10−1 1.00 × 10−1

Linear acceleration compensation factor 5.00 × 10−1 9.00 × 10−1

Expected magnetic field strength (µT) 50.0 (unique to each magnetic calibration)

From the AHRS filter, a quaternion representation of each device in the global frame was
established. Quaternion and direction cosine matrix (DCM) representations were used throughout
processing to avoid singularities (gimbal lock) inherent when using a common Euler representation [26].

The orientation of the MARG sensor positioned on the foot was such that the x-axis of the MARG
sensor pointed in the anterior/posterior direction of the segment GFqMARG f o

. The cross product of the

known foot segment anterior/posterior facing x-axis component of the DCM, and the vertical z-axis
component of the DCM [0, 0, 1], allowed the y-axis component perpendicular to the two known axes to
be found. From the orientation of the foot segment in the global frame, the orientation of all segments
in the global frame could be assumed to be aligned as GFqseg.o and defined as per Figure 5.
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Using the Hamilton product of the known initial orientations as described using quaternions,
the transformation qseg.t of each MARG sensor’s initial orientation in the global frame to the initial
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segment orientation in the global frame could be determined using Equation (1), where * denotes the
quaternion conjugate.

qseg.t =
GFq∗seg.o ⊗

GFqMARGseg.o
(1)

Segment orientation at each time instance GFqseg.k could then be determined by taking the Hamilton
product of the quaternion representation of the transformation of each MARG sensor to segment
orientation and the orientation of the MARG sensor in the global frame at time instant k using
Equation (2).

GFqseg.k =
GFqMARGseg.k

⊗ q∗seg.t (2)

Joint angles were calculated as the difference in orientation between a proximal GFqseg1k and

distal segment GFqseg2k at each time instant, as described using quaternions (Equation (3)). A visual
representation of the joint angle (difference in the quaternion orientation) could then be obtained using
an Euler angle representation.

q j =
GFq∗seg1k ⊗

GFqseg2k (3)

2.4.2. Spatiotemporal Measures

The stride and stance time were estimated using a custom Matlab script, from initial contact (IC)
and final contact (FC) points identified from acceleration data using the methods of Jasiewicz et al. [46].
Stride length estimation was achieved using a zero velocity update (ZUPT) methodology [47]. The initial
orientation estimation of the pelvis sensor was used to determine the foot segment coordinate
system and direction of travel using the sensor to segment alignment methodology described above.
The acceleration at the heel (minus acceleration due to gravity) was integrated using a trapezoidal
approximation to give the velocity of the foot. The drift resulting from the integration of the motional
acceleration was corrected by means of a ZUPT. Where a stance phase (and thus known instance of
zero velocity) was detected, a Kalman filter was used to reduce the drift caused when integrating by
approximating the error in the system. After the ZUPT correction, the stride length could be estimated
as the distance travelled between consecutive stance phases.

2.5. Data Analysis and Statistical Methods

Data were first assessed for normality by visual inspection and a Shapiro Wilks test. The mean
absolute percentage error (MAPE) and root mean squared error (RMSE) were calculated for each
spatiotemporal and kinematic measure. A classification system was used to assess MAPE values [48],
where MAPE ≤ 5% = excellent agreement, 5% < MAPE ≤ 10% = good agreement, 10% < MAPE ≤ 15%
= acceptable agreement, and MAPE > 15% = unacceptable agreement. To provide greater insight into
the agreement of joint angle estimations throughout the range of motion of each repetition, a measure
of the percentage of time the MARG method error was within ±10% of the ROM of the OMC system
was calculated (E10%). An acceptable error threshold of ±10% for the E10% calculation was selected to
show a clinical difference in means [49]. For time-series comparative measures, MARG joint angle
approximations were resampled to 100 Hz and synchronized manually based on the point of maximum
flexion throughout a repetition.

Bland–Altman upper and lower 95% limits of agreement (LoA) were used to assess agreement
between methods [50,51]. The LoA were set to 1.96 times the upper and lower standard deviation of the
difference between the OMC and MARG method. Where normality was not met, a log transformation
was performed prior to undertaking the Bland–Altman analysis. Paired t-tests were conducted between
TAF and DEF methods. A Wilcoxon signed-rank test was performed where data were not normally
distributed. All statistical analyses were performed in R version 3.6.1 (R Development Core Team,
Vienna, Austria), with statistical significance accepted at p < 0.05.
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3. Results

3.1. Kinematic Measures

Hip, knee, and ankle joint ROM were compared for IMU and OMC during 195 squat, 195 box
squat, and 117 sandbag pickup repetitions, while 193 hip and 195 knee, and 115 hip and 113 knee
ROMs were compared for the modified gait and bear crawl, respectively. Marker dropout in the OMC
prevented a comparison of hip and knee joints during three crawl strides and two modified gait strides.

Hip and knee joint angle estimation using both the DEF and TAF method showed good to
excellent agreement with the OMC system when performing repetitions of the squat, box squat,
and sandbag pickup (Table 3). The root mean square error and MAPE of hip and knee ROM were less
for the box squat than the squat when using the TAF MARG method. Bland–Altman plots indicate
an underestimation in knee ROM for the squat and sandbag pickup when using the DEF method
(Figure 6). The underestimation of knee ROM by the MARG method during the squat and sandbag
pickup may reflect the large ROM (squat: 121.2 ± 9.5◦; sandbag: 126.8 ± 7.2◦) compared to the other
three exercises. Although there were only three female participants out of the total sample of 13,
when comparing data obtained from male and female participants (Figure 6), the underestimation
in knee ROM during the squat, box squat, and sandbag pickup appeared to be larger in the female
group than the combined or male group (DEF method), with such results also being apparent for
the TAF method. Where no consistent bias was observed for the combined or male group, a slight
overestimation in hip ROM by the MARG method in female participants (both DEF and TAF) may be
observed during the squat, box squat, and sandbag pickup. Inconsistencies in the agreement between
methods (combined group) were observed for both DEF and TAF methods through the relatively wide
Bland–Altman LoA (Figure 6).
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Table 3. Kinematic measures and error metrics.

OMC TAF MARG DEF MARG

ROM (◦) ROM (◦) RMSE (◦) MAPE (%) E10% (%) ROM (◦) RMSE (◦) MAPE (%) E10% (%)

Hip
Squat 96.8 ± 11.8 100.2 ± 14.9 * 9.8 8.2 ± 6.5 95.6 ± 8.5 95.3 ± 14.3 8.8 7.6 ± 4.6 96.0 ± 7.7

Box squat 85.5 ± 12.6 84.6 ± 14.8 * 7.7 6.8 ± 6.1 * 94.4 ± 9.9 * 81.5 ± 13.7 8.1 8.0 ± 5.1 92.2 ± 13.2
Sandbag pickup 97.1 ± 11.4 97.7 ± 14.9 * 9.1 7.0 ± 5.5 87.4 ± 12.4 93.0 ± 13.0 9.3 7.0 ± 5.7 88.1 ± 13.1

Shuffle walk 12.1 ± 3.3 14.1 ± 3.7 * 3.3 25.1 ± 21.0 * - 14.4 ± 3.7 3.8 28.6 ± 24.7 -
Bear crawl 33.3 ± 13.5 32.9 ± 12.4 * 7.1 16.5 ± 21.5 - 30.7 ± 12.2 7.7 16.7 ± 13.4 -

Knee
Squat 121.2 ± 9.5 123.8 ± 11.5 * 7.7 5.1 ± 3.7 * 100.0 ± 0.4 113.0 ± 9.8 9.4 6.7 ± 3.8 100.0 ± 0.5

Box squat 91.6 ± 9.1 91.9 ± 10.8 * 4.4 4.0 ± 2.7 * 100.0 ± 0.0 84.9 ± 9.6 7.2 7.4 ± 3.0 100.0 ± 0.0
Sandbag pickup 126.8 ± 7.2 126.3 ± 8.5 * 5.9 3.7 ± 2.8 * 99.2 ± 3.3 118.8 ± 8.8 9.2 6.4 ± 3.6 98.9 ± 3.2

Shuffle walk 29.1 ± 8.9 22.9 ± 8.0 * 6.8 22.5 ± 16.5 * - 21.1 ± 7.4 7.9 26.0 ± 13.9 -
Bear crawl 40.0 ± 20.4 44.0 ± 20.6 * 8.6 28.4 ± 40.6 - 36.7 ± 19.0 8.4 27.3 ± 30.8 -

Ankle
Squat 31.2 ± 5.2 37.7 ± 5.7 * 7.2 21.9 ± 11.2 * 79.6 ± 15.3 * 32.3 ± 4.5 2.8 7.9 ± 6.1 93.9 ± 8.3

Box squat 21.1 ± 4.9 26.8 ± 5.4 * 6.6 28.6 ± 15.3 * 73.2 ± 15.0 * 23.0 ± 4.4 2.7 11.7 ± 7.5 89.5 ± 10.3
Sandbag pickup 38.9 ± 7.4 42.9 ± 6.1 * 6.2 13.9 ± 11.9 * 84.1 ± 13.4 * 39.0 ± 5.5 3.7 8.2 ± 5.7 93.8 ± 8.2

Values presented as the mean ± standard deviation where relevant. * Significant difference between the TAF and DEF method (p > 0.05).
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Figure 6. Bland–Altman plots for hip, knee, and ankle range of motion (ROM) using each MARG
method (DEF/TAF) during the squat (row one/two), box squat (row three/four), and sandbag pickup
(row five/six). Red data points represent male participant data, and green data points represent female
participant data.
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Ankle joint angle estimations generally showed good agreement with the OMC system when
using the DEF method for the squat, box squat, and sandbag pickup (Table 3). When using the TAF
method, acceptable (sandbag pickup) to unacceptable (squat and box squat) errors were observed.
Bland–Altman plots indicate a slight (DEF) to moderate (TAF) overestimation bias in the MARG method
for ankle joint ROM during the squat, box squat, and sandbag pickup exercises for the combined
group (Figure 6). This overestimation (both DEF and TAF) appeared to be slightly smaller in female
participants when compared to their male counterparts. Ankle ROM Bland–Altman LoA for the
combined group were smallest for the box squat when compared to the squat and sandbag pickup.

In contrast to the squat, box squat, and sandbag pickup, unacceptable agreement at both the hip
and knee joint was observed for the shuffle-walk and bear crawl, with the TAF method achieving
slightly greater agreeance during the shuffle walk than the DEF method. Preliminary results indicated
that a meaningful E10% analysis of the hip and knee during the shuffle-walk and bear crawl could not
be performed, with values ranging from 60.1% ± 23.9% to 78.4% ± 21.2%. This was in part due to the
high noise to ROM ratio and slight phase duration discrepancy between the OMC and MARG method,
as can be seen in the exemplar data provided in Figure 7. No consistent bias was observed for hip
and knee ROM in the shuffle-walk and bear crawl (Figure 8), with wide LoA in both TAF and DEF
methods further demonstrating the inconsistencies in measurements between the OMC and MARG
method for hip and knee ROM (Table 4).

To an even greater extent than at the hip and knee, preliminary analysis of ankle joint ROM during
the shuffle-walk and bear crawl resulted in a high noise to ROM ratio and unacceptably large MAPE.
As such, it was determined that a meaningful comparison could not be performed and was omitted
(Figure 7e,f).
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Figure 8. Bland–Altman plots for hip and knee ROM using each MARG method (DEF/TAF) during the
shuffle-walk (row one/two) and bear crawl (row three/four). Red data points represent male participant
data, and green data points represent female participant data.
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Table 4. Bland–Altman limits of agreement.

MARG TAF MARG DEF

L−LoA Bias U−LoA L−LoA Bias U−LoA

Hip ROM
Squat (◦) −21.5 −3.4 14.8 −15.42 1.6 18.6

Box squat (◦) −14.1 1.0 16.0 −9.8 4.1 17.9
Sandbag pickup (◦) −18.5 −0.7 17.2 −12.5 4.0 20.6

Shuffle−walk (◦) −7.3 −1.6 4.0 −8.2 −2.0 4.2
Bear crawl −0.1857 * 0.0123 * 0.2100 * −0.1182 * 0.0572 * 0.2325 *

Knee ROM
Squat (◦) −16.9 −2.6 11.7 −1.1 8.2 17.4
Box squat −0.0409 * −0.0001 * 0.0407 * 0.0065 * 0.0337 * 0.0608 *

Sandbag pickup (◦) −11.0 0.6 12.1 −1.1 8.0 17.1
Shuffle−walk −0.1463 * 0.0746 * 0.2954 * −0.1239 * 0.1079 * 0.3398 *

Bear crawl −0.3165 * −0.0692 * 0.1781 * −0.2633 * 0.0129 * 0.2891 *

Ankle ROM
Squat (◦) −12.5 −6.5 −0.6 −6.1 −1.2 3.8

Box squat (◦) −12.0 −5.7 0.6 −5.8 −1.9 2.0
Sandbag pickup (◦) −13.4 −4.1 5.2 −7.5 −0.1 7.2

Spatiotemporal
Stride length (m) −0.050 0.013 0.077 −0.090 0.004 0.099

Stride time (s) −0.061 −0.015 0.030 −0.100 −0.037 0.0256
Stance time (s) −0.077 −0.008 0.060 −0.115 −0.033 0.049

Positive bias represents underestimation by the MARG method and negative bias represents overestimation by
the MARG method; * log transformed data (unitless); L-LoA, lower limits of agreement; U-LoA, upper limits
of agreement.

3.2. Spatiotemporal Measures

The stride length, stride time, and stance times were compared for 192, 178, and 178 instances of
the shuffle-walk, respectively, and 116, 83, and 83 instances of the bear crawl, respectively (Table 5).
The stride length, stride time, and stance time MAPE showed good to excellent agreement with the
OMC system (Table 6). Bland–Altman plots indicated a slight overestimation of the stride and stance
time by the MARG method during both the shuffle-walk and bear crawl, and an underestimation of
the stride length by the MARG method during the shuffle-walk (Figure 9 and Table 6).

Table 5. Spatiotemporal measures of the shuffle-walk and bear crawl.

OMC MARG

Stride
Length (m) Stride Time (s) Stance Time (s) Stride

Length (m) Stride Time (s) Stance Time (s)

Shuffle-walk 0.339 ± 0.086 0.846 ± 0.219 0.568 ± 0.179 0.326 ± 0.096 0.861 ± 0.224 0.577 ± 0.177
Bear crawl 0.515 ± 0.157 1.912 ± 0.479 1.502 ± 0.497 0.511 ± 0.175 1.949 ± 0.489 1.535 ± 0.500

Values presented as the mean ± standard deviation.

Table 6. Error metrics of spatiotemporal measures.

Stride Length Stride Time Stance Time

RMSE (m) MAPE (%) RMSE (s) MAPE (%) RMSE (s) MAPE (%)

Shuffle-walk 0.035 8.2 ± 7.9 0.028 2.6 ± 2.1 0.036 5.2 ± 5.9
Bear crawl 0.048 7.8 ± 5.7 0.049 2.4 ± 2.5 0.053 3.2 ± 2.8

Values presented as the mean ± standard deviation where relevant.
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Figure 9. Bland–Altman plots for the stride length, stride time, and stance time during the shuffle-walk
(row one) and bear crawl (row two). Red data points represent male participant data, and green data
points represent female participant data.

4. Discussion

The aim of this study was to assess the validity of a minimal modeling MARG motion capture
method for spatiotemporal and kinematic measures during repetitions of various functional fitness
exercises. The MARG method used minimal modeling assumptions, in that simple, sensor to segment
alignment, data processing (through the DEF method), and anatomical modeling assumptions were
used. To the best of the authors’ knowledge, the exercises selected in the current study covered a wider
range of sagittal plane ROM than previous literature [5,20,38,52].

The RMSE in hip, knee, and ankle ROM during the squat, box squat, and sandbag pickup were
similar to those of previous research during squat, single leg squat, and counter movement jump
exercises (hip: 4.9–8.3◦; knee: 2.4–3.1◦; ankle: 2.5–5.3◦) [38]. While the knee ROM RMSE may be slightly
greater in the current study than those of Teufl, Miezal, Taetz, Fröhlich, and Bleser [38], a MAPE of less
than 10% was still considered to be a good level of agreement. Slightly greater agreeance was seen in
joint ROM using the TAF method than the DEF method for the hip and knee; however, both methods
were acceptable. The DEF method showed greater agreeance in all analysed exercises for ankle ROM
and is suggested in preference to the TAF method for ankle joint measures.

The shuffle-walk and bear crawl demonstrated small hip and knee joint ROM (12.1◦ ± 3.3–40.0◦

± 20.4◦) and agreement between the OMC system and both TAF and DEF MARG methods varied.
Similar hip and knee RMSE during over-ground walking (hip: 6.1◦, knee: 6.8◦) have been found in
previous studies [53]. The relatively large (>10%) MAPE found during the shuffle-walk and bear crawl
movements in the current study suggest neither MARG method (DEF or TAF) may be acceptable for
measuring the relatively moderate hip or knee ROM during the shuffle-walk or bear crawl. The high
noise to ROM measurements observed in hip and knee ROM during the modified gait patterns
(example seen in Figure 7d) made the manual alignment of OMC and MARG time-series plots based on
peak values ambiguous. Furthermore, phase discrepancies were observed in these data (Figure 7a,b),
which may be the result of the resampling of MARG joint angle estimations to 100 Hz for comparison
with OMC. In exercises such as the shuffle walk where the stride duration is small (0.846 ± 0.219 s)
relative to the sample rate of the OMC system (100 Hz), the modeling of few data points may result in
the loss of fidelity in the joint angle approximation. As the MARG method is initially sampled and
modeled at 1125 Hz, and then resampled to 100 Hz for comparison with the OMC, the loss of fidelity
in the joint angle approximation may be less than the OMC approximation. The large differences
observed in the timeseries curve analysis (in particular Figure 7e) may be a combined result of the
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inherent noise in the MARG method joint angle approximation and the loss of fidelity in the OMC joint
angle approximation for short-duration activities, such as a stride in the shuffle walk and bear crawl.
The ambiguity caused by both noise and phase duration discrepancy led to the inability to confidently
report E10% values for the hip and knee and as such, such data were omitted. It was concluded that the
recommendation based on other error metric calculations, that neither MARG method (DEF or TAF)
may be acceptable for measuring hip/knee ROM during the shuffle-walk or bear crawl, would not
change upon the calculation of E10% for all participants.

Preliminary ankle ROM data of the shuffle-walk and bear crawl demonstrated an even greater
noise to ROM ratio (Figure 7e,f) than at the hip and knee. Ambiguity caused by this large noise to ROM
ratio lead to the inability to confidently report error metrics. Wells, Alderson, Camomilla, Donnelly,
Elliott, and Cereatti [7] observed greater differences in OMC- and MARG-based joint angle estimations
during higher velocity upper-limb sporting movements when compared to lower velocity movements.
As the MARG devices used to measure ankle ROM are positioned closer to the extremity of the lower
limb than those used to estimate hip and knee ROM, higher velocities and larger disagreement between
the OMC and MARG joint angle estimation than at the hip and knee may be expected. Based on the
preliminary data, error metrics of the hip and knee, and predicted greater error metrics at the ankle,
it was concluded that neither MARG method may be suitable for ankle ROM assessment during the
shuffle-walk and bear crawl where a small ROM and greater movement velocity are expected.

Whilst previous literature has focused on comparing OMC relative angles of markers placed
on or around MARG sensors to relative angles estimated from MARG, the current study compared
biomechanically-modeled joint estimations derived from an OMC system to relative angles estimated
from MARG measures. The relative angles measured using the MARG method assume that the
anterior/posterior axis of the foot sensor and the anterior/posterior axes of all limbs are aligned during the
calibration pose. Any error in the initial alignment will be apparent in the mathematical transformation
of each individual segment sensor coordinate system to the respective segment coordinate system,
with the error compounding where adjoining segments are misaligned. Brice et al. [54] demonstrated
less agreement between OMC biomechanically-modeled joint angles and un-modeled MARG relative
angles than OMC un-modeled relative angles and MARG measured relative angles. This leads to the
suggestion that some of the differences in joint angle ROM estimations found in the current study may
be due to the differences in modeling assumptions used in each of the OMC and MARG methods and
the compounding error occurring throughout the alignment and mathematical transformation process.

With the exception of the stride length, the errors in spatiotemporal measures during the
shuffle-walk and bear crawl in the current study were greater than those observed using a similar
methodology during over-ground walking [55]. The stride length, stride time, and stance time RMSE
observed by Teufl, Lorenz, Miezal, Taetz, Fröhlich, and Bleser [55] during over-ground walking
were 0.04 m, 0.01 s, and 0.02 s, respectively, with similar RMSE having been observed in treadmill
running [56]. The larger disagreement in temporal parameters between the OMC and MARG method
in the current study may partially be due to the difficulty in identifying the instance of IC and FC during
the modified gait patterns, which resulted in reduced IC and reduced changes in heel acceleration
during the initial swing than would be seen in a normal gait with longer strides [57]. In the modified
gait patterns, identifying FC from a MARG sensor mounted on the lateral side of the heel, where the toe
is the last true contact point with the ground, may lead to inaccuracies in identifying the FC instance.

While this study addressed a number of gaps within the literature, a number of limitations of
the current study should be noted. Data were only collected from a single side of the body, in a
limited laboratory space and assessed only for sagittal plane flexion/extension ROM. Although a
magnetic calibration was conducted for each testing session, it is expected that due to ferromagnetic
disturbances present in the laboratory environment, the accuracy of the MARG method may have
still been compromised. The reference OMC and MARG method use different physical measurements
to derive joint angle estimations, with each method having associated noise. Measurement noise
combined with different modeling assumptions would result in distinctly different noise properties
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and therefore signal patterns. The ability to compare estimations of small ROM between systems
where the noise to signal ratio is high may be a major limitation when validating MARG against OMC
methods [20,38].

5. Future Work

To further develop the proposed MARG method into an accurate means of measuring human
kinematics during high velocity, small ROM movements, such as the shuffle walk and bear crawl,
a number of areas of potential development are suggested. Further refinement of the Kalman
filter tuning parameters, specialized for a given exercise (variance of accelerometer/gyroscope noise,
and linear acceleration compensation factor) and the environment (magnetometer disturbance noise)
may be needed to improve joint ROM estimations where high signal to noise ratios are observed [22].
These parameters may be established through further data collection and testing. Where previous
literature has achieved segment coordinate system to sensor alignment using specialized equipment [7]
or complicated movement-based algorithms [32–34,36], a possible middle-ground between the
complexities of previous literature and the minimal methods used in the current study may be
achieved. Although not a direct development of the MARG method, collecting data at a sampling rate
common to both MARG and OMC equipment will likely result in greater agreeance between methods
and provide a closer measure to the true validity of the MARG method. Future work should also
look at assessing the validity of the MARG method for bilateral, multi-planar motion and assess its
inter-day and assessor reliability.

6. Conclusions

The proposed minimal modeling MARG-based method is a valid means of assessing
spatiotemporal and kinematic measures of persons performing various functional fitness exercises.
It is suggested that care should be taken when selecting tuning and filtering parameters when using
the MARG method for specific exercises. Although a high noise to joint ROM measurement ratio may
be an inherent issue when assessing the validity of human motion analysis methods during some
exercises, further development of the MARG method may result in a valid means of measuring small
joint ROM during fast movements.

Supplementary Materials: The data collected from this research is available at https://cloudstor.aarnet.edu.au/
plus/s/uKrW0HlazGKIc3n.
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Abbreviations

AHRS Attitude Heading Reference System
DCM Direction Cosine Matrix
DEF Default method
FC Final Contact
IC Initial Contact
IMU Inertial Measurement Unit
LoA Limits of Agreement
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MAPE Mean Absolute Percentage Error
MARG Magnetic Angular Rate Gravity
OMC Optical Motion Capture
RMSE Root Mean Square Error
ROM Range of Motion
TAF Tuned and Filtered method
ZUPT Zero Velocity Update
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