
Are International R&D Spillovers Costly for the US?

Kul B Luintel *1

Department of Economics and Finance
Brunel University, Uxbridge

Middlesex UB8 3PH
Kul.Luintel@Brunel.ac.uk

Mosahid Khan1

OECD: DSTI/EAS
2, rue Andre Pascal; 76016 Paris, FRANCE

Mosahid.KHAN@oecd.org

Abstract: Coe and Helpman (1995) and others report positive and equivalent R&D
spillovers across G7 countries. We argue that their homogeneity constraint on
spillovers across G7 countries is inappropriate, and show that it is rejected by the data.
Extending the data set and applying new empirical approaches, we find: (i) R&D
spillovers are extremely heterogeneous across G7 countries; (ii) panel estimates do
not correspond to country specific estimates and conceal important cross-country
differences in knowledge diffusion; and (iii) the US is a net loser in terms of
international R&D spillovers. Our interpretation is that when competitors ‘catch-up’
technologically, they challenge US market shares and investments worldwide and this
has implications for US productivity.

JEL Classification:  F12; F2; O3; O4; C15
Key words: International R&D spillovers; Dynamic heterogeneity; Productivity; Co-
integration; Rank Stability.

* Corresponding author.

1. This paper has benefited from the comments and suggestions of seminar participants at the
departments of economics at Manchester University, University of London (SOAS), and
South Bank University, London. We thank all those participants. Peter Pedroni deserves
special thanks for useful exchanges and providing the RAT’s routine for panel co-integration
tests. Thanks are also due to Lynn Mainwaring and Philip Arestis for their constructive
suggestions. Views expressed in the paper are those of authors and do not necessarily reflect
those of their institutions. The usual disclaimer applies.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

I. Related Literature

In a seminal paper, Coe and Helpman [1995; henceforth, CH] provide

empirical evidence on trade related international R&D spillovers by using panel data

for 21 OECD countries and Israel over the period 1971-1990. Their main findings are

that the domestic (Sd) and foreign (Sf) R&D capital stocks affect domestic total factor

productivity (TFP) positively; Sd has bigger effect than Sf on large countries whereas

the opposite holds on smaller countries; and the more open the smaller countries are

the more likely they are to benefit from Sf. According to Navaretti and Tarr (2000, p.

2) CH’s work is the ‘most quoted reference’ in the field.

The finding of significant R&D spillovers across countries is consistent with

the growth literature. The endogenous growth literature, in particular, posits

endogenous innovations as key propagators of long-run economic growth1. In these

models technology spills over through international trade and triggers productivity

increases in importing countries so long as there exists a positive mark-up between the

marginal product and the cost of imported intermediate goods.2 Productivity

transmissions of this kind are not only important for developed countries but they are

also vital in promoting economic growth in developing countries. Indeed, Coe et al.

(1997) report significant R&D spillovers from 22 OECD countries to the Group of 77.

CH’s findings have been put under rigorous scrutiny. Engelbrecht (1997) re-

examines the sensitivity of CH’s results by including the measures of human capital

and productivity 'catch-up' and finds that the significant R&D spillovers remain, albeit

with a reduced magnitude. Keller (1998) scrutinizes the role of trade patterns in

                                                
1 See, among others, Romer, 1990; Aghion and Howitt, 1998; and Grossman and Helpman, 1991.

2 It should be noted that, besides international trade, knowledge is internationally diffused through a
range of channels such as foreign direct investment, international alliances between firms, migration of
scientists and engineers, international collaborative research, conferences and publications etc.
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determining the extent of R&D spillovers. He focuses on the weights (actual import

shares) used by CH to compute Sf and shows that randomly generated import ratios

can lead to similar or even higher international spillovers. He further shows that

ignoring the import ratios altogether and assigning equal weights to all trading

partners’ R&D capital stocks also leads to larger spillover effects than those reported

by CH. In a recent paper, however, Coe and Hoffmaister (1999) show that Keller’s

random weights are technically ‘not random’ and they suggest alternative

randomisations which re-confirm that trade patterns are important for knowledge

diffusion. Lichtenberg and van Pottelsberghe (1998) show that CH’s weighting

scheme biases the measurement of Sf and that their indexation scheme also biases the

estimates of spillovers coefficients. They propose an alternative weighing scheme but

continue to find significant spillovers albeit with somewhat reduced magnitude.

CH used panel co-integration tests. Unfortunately, at the time of their writing

the econometrics of panel co-integration was not fully developed. Kao et al. (1999) re-

examine R&D spillovers using CH’s data and specifications but addressing the

econometrics of panel co-integration tests in a more formal and complete manner.

Interestingly, Kao et al. (op. cit) do not find evidence of international spillovers - the

effect of Sf on TFP appears insignificant – when they use a dynamic OLS (DOLS)

estimator shown to have better power properties. Recently, van Pottelsberghe and

Lichtenberg (2001) extended CH’s analyses by treating foreign direct investment

(FDI) as a channel of technology diffusion. They use only 13 of the CH’s 22 sample

countries and apply panel co-integration tests due to Pedroni (1999). They find

evidence of significant R&D spillovers. To sum up, the general picture emerging from
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this strand of literature is supportive of positive and significant international R&D

spillovers across countries3.

II. Motivation

Studies reviewed above (CH; Engelbrecht, 1997; Keller, 1998; Lichtenberg

and van Pottelsberghe, 1998; van Pottelsberghe and Lichtenberg, 2001; Kao et al.,

1999), important though they are, impose two important constraints. First, they

inadvertently impose homogeneity of domestic and foreign R&D elasticities of TFP

across the G7 countries. Second, productivity gains from knowledge diffusion are

considered non-rival. Thus, technology diffusions across countries lead to equivalent

productivity gains irrespective of whether the country is a technological leader (e.g.

US) or a follower (e.g. Canada). Growth theories, which advocate positive

international knowledge spillovers, neglect the issues of technological and industrial

rivalry. Unfortunately, technological rivalry is a world reality and knowledge

diffusion, in principal, can be positive or negative. 4  If R&D strategy is designed to

pre-empt competition then spillovers can be negative. Further, R&D competition may

lead to duplicative R&D and resource wastage. Thus, whether international

knowledge spillover is indeed positive for all countries irrespective of their stages of

technological sophistication is an interesting empirical question, which needs to be

examined at country level. Nadiri and Kim (1996) point out, and we concur, that

"R&D spillovers are likely to be country specific even for the highly industrialised G7

countries". Such diversity can be attributed to hosts of country-specific factors

                                                
3 Our purpose is to add to the spillover literature initiated by CH. We have, therefore, been restrained in
summarising the main papers in this category. Griliches (1992 and 1994), Mohnen (1999) and Mairesse
and Sassenon (1991), to name but a few, provide extensive surveys.

4 A number of high profile rival R&D projects exist.  EU's Galileo satellite programme, Eurofighter,
the Airbus etc. are examples of competition between Europe and America.
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including the heterogeneity of 'social capability' and technological infrastructure (see

section IV). Panel tests, which are what all the studies reviewed above are, only

provide estimates of ‘average’ spillover coefficients among a group of countries and

are ill-equipped to offer any insight into country-specific spillover elasticities. Time

series studies, which analyse these issues at country level, are conspicuously lacking

in the R&D field.5 This paper aims to fill this gap in the literature by offering, among

other things, up-to-date country level analyses of knowledge spillovers across G7

countries. We apply tests that are capable of modelling the R&D dynamics both in

time series and panel frameworks6. In so doing, the paper contributes the literature in

following ways.

First, we extend the R&D data set in two directions: (i) the data are extended

to 35 years (1965-1999) compared to the 20 years (1971-1990) analysed by other

studies reviewed above; and (ii) our data set includes total R&D activity (i.e., total

R&D expenditure incurred within a national boundary) as opposed to the business-

sector-only R&D used in studies reviewed above. This is important because, besides

the business sector, higher education, government and the private non-profit

institutions also undertake R&D activities and command a significant share (above

one-third) of the total R&D activities. Moreover, the share of non-business sector

R&D appears to be even higher historically (see section III). Griliches (1994, p.2)

remarked that the advances made in theory and econometric methods will be ‘wasted’

unless they are applied to the right data set. We hope that the new and extended data

                                                
5  Our EconLit Bid search under the search word ‘R&D Spillovers’ scored 141 hits (returns). All
empirical papers used panel estimators and none were time series studies.

6 Nadiri and Kim (1996) address the heterogeneity of R&D spillovers across G7 countries using a
multi-product-translog-cost function and report that domestic and foreign R&D elasticities differ
considerably across G7 countries. We follow a time series approach and assess these issues in the
tradition of Coe and Helpman (1995). This paper complements the work of Nadiri and Kim.
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set and the new econometric approaches that we employ to examine the knowledge

spillover issues will prove to be a step in the right direction in addressing Griliches’

point.

Second, we confront an interesting empirical issue of whether global

technology diffusion is beneficial to US. A growing body of empirical literature,

which is distinctly different from CH’s approach, doubts that it does. International

spillovers appear asymmetrical, flowing from large R&D-intensive nations to small

and less R&D-intensive nations, but not vice versa (Park, 1995; Mohnen, 1999). The

US and Japan trade heavily and Japan is a rich and technologically advanced country

yet the bilateral spillovers between US and Japan are either greatly in favour of Japan

or unidirectional from US to Japan (Bernstein and Mohnen, 1998). International R&D

spillover exists from Canada to Japan but not vice versa (Bernstein and Yan, 1995).

Only a few OECD countries (US, Germany and Japan) are major spillover generators

(Eaton and Kortum, 1996). Inward FDI and Japanese new plant (‘greenfield’)

investments do not contribute to US skills, nor do the imported inputs appear to

upgrade the levels of U.S. productivity (Blonigen and Slaughter, 2001) 7. These

results, based on bilateral spillover analyses and / or disaggregated (micro) data, cast

doubt on the thesis that international R&D spillovers favour the US. However,

Griliches (1992), points out that macro effects of R&D cannot be directly inferred

from micro estimates and the extent of R&D spillover may depend on the level of data

aggregation. We address this issue at a wider level by using aggregate data and

modelling R&D dynamics at country level. Since the US has been the technological

leader of capitalist world since World War II and there exist ample grounds to believe

that technological and industrial rivalry exist between the US, the EU and Japan, it is
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of interest to enquire whether the US benefits or loses when its competitors (G7

partners) accumulate their own R&D stocks.8

Third, we follow a novel and robust empirical approach. The long-run

relationship between TFP, Sd and Sf is examined by employing Johansen's (1991)

multivariate VAR, a well-established method in time series econometrics. This

method also addresses the possibility of multiple co-integrating vectors between TFP,

Sd and Sf and the validity of normalisation on TFP. The robustness of our results is

further assessed by employing the fully modified OLS (FMOLS) estimator (Phillips

and Hansen, 1990). An important dimension of our empirical approach is that these

estimators are used to perform both time series and panel co-integration tests. Larsson

et al. (2001) extend Johansen’s multivariate vector error correction model to a panel

framework. Pedroni (2000) develops panel co-integrations tests based on FMOLS.

Thus, we offer time series results which shed some new light on the diversity of R&D

dynamics across G7 countries while our panel results help reconcile our findings with

the existing ones. Moreover, Johansen’s ML based panel co-integration (rank) tests

provide an appealing alternative to the two-step residual based tests applied by van

Pottelsberghe and Lichtenberg (2001) and Koa et al. (1999).

Fourth, the issue of the stability of spillover elasticity has attracted

considerable interest in the literature. CH address this issue by comparing the time

varying elasticity of TFP with respect to Sf across different years (i.e., 1971, 1980 and

                                                                                                                                           
7 Caves (1996) and Aitken and Harrison (1999) also point out that inward FDI can be costly to the
productivity of domestic firms.

8 A number of points can be put forward as to why international R&D spillover may not be positive for
US productivity.  Foreigners heavily imitate the US so that the foreign R&D stock that the US faces
may not be distinct from her own domestic R&D stock. Hence, it can be argued that the foreign R&D
stock, duplicated from the US, does not enhance US productivity. If spillover from the US accrues to
its product-market rivals then that may cost the US in terms of productivity loss. Further, the
accumulation of R&D by the EU and Japan may gradually replace US investments both at home and
abroad and reduce US productivity. For empirical evidence on this latter aspect see van Pottelsberghe
and Lichtenberg (2001) and see also Dunning (1994).



7

1990). These elasticities are derived by multiplying the full sample coefficient of Sf

by the import share for 1971, 1980 and 1990. Kao et al. (1999) follow the same

approach. On the basis of the magnitude of elasticities thus derived they conclude that

the impact of foreign R&D has risen ‘substantially’ from 1971 to 1980. The problem

however is that their approach essentially fixes the coefficient of Sf to its full sample

value and only picks up the variations in import shares. Moreover, CH and Kao et al.

(1999) do not implement any formal tests of structural stability9. van Pottelsberghe

and  Lichtenberg (2001) conduct standard F tests by splitting the sample between

1971-80 and 1981-90 and report significant structural shifts in international spillover

coefficients. Given the non-stationary nature of the data, the validity of standard F

tests can be called into question however. In this paper we address this issue through

the tests of the stability of cointegrating ranks and cointegrating parameters.

  Fifth, our time series results also address some of the concerns surrounding

the panel tests. Levine and Zervos (1996, p. 325) state that panel regressions mask

important cross-country differences and suffer from 'measurement, statistical, and

conceptual problems'. Quah (1993) shows the difficulty associated with the lack of

balanced growth paths across countries when pooling the data; Pesaran and Smith

(1995) point out the heterogeneity of coefficients across countries. Indeed, we find

significant parameter heterogeneity of R&D dynamics across G7 countries (see

section IV). Finally, we provide country-specific parameters (spillover elasticities,

etc.), which are potentially of more policy significance than the cross-country

‘average’ parameters.

                                                                                                                                           
9 CH (pp. 884-5) also test for the stability of parameters by using dummy and trend variables and report
instability. However, they do not report the standard errors, which makes it difficult to infer whether
these shifts are indeed significant.
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 To preview our results, tests reveal that the R&D dynamics across G7

countries are heterogeneous and as such data cannot be pooled. This is consistent with

the diversity of G7 countries in terms of their economic sizes, openness and R&D

intensity and infrastructure shown in section IV. TFP, Sd and Sf are cointegrated and

all but Germany could be normalised on TFP. We find extremely diverse elasticities

of TFP with respect to Sd and Sf across G7 countries. Most importantly, we find

international R&D spillovers to be significantly and robustly negative to the US.

Thus, accumulation of R&D by G7 partners hurts US total factor productivity.

Further, a comparison of our panel and time series results suggests that panel results

indeed conceal the cross-country differences, a concern echoed by many. Formal tests

show that cointegrating ranks and parameters are stable for a considerably long

period, findings that go against those of CH, Kao et al. (1999) and van Pottelsberghe

and Lichtenberg (2001).

The rest of the paper is organised as follows. Section III covers data issues;

section IV discusses the issues of heterogeneity; section V discusses model

specification and econometric methodology; section VI presents empirical results and

compares and contrasts these with existing findings; and section VII summarises and

concludes.

III. Data

Our sample consists of G7 countries viz., Canada, France, Germany, Italy,

Japan, United Kingdom and the United States. Data frequency is annual and covers a

period of 35 years (1965-1999). The data series required for the core analysis of this

paper are TFP, Sd and Sf. Details of their construction as well as other relevant data
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and their sources are given in Appendix A. Figure 1 plots the total factor

productivity10.

Figure 1 about here

France, Italy and Japan show more or less smooth increases in their total factor

productivity except for some reductions around 1974-75. Canada’s total factor

productivity shows a prolonged period of stagnation and/or decline from the early

1970s to mid-1980s and then again in the early periods of 1990s. Germany shows

quite a sizeable downturn in total factor productivity after 1990, which may be

attributed to her unification. UK productivity shows three episodes of decline: mid-

seventies, early eighties and late-eighties that overlap well into the 1990s. US total

factor productivity appears quite stagnant for a rather long period extending from

mid-sixties to early eighties and shows improvements after 1984. In fact our plot

closely mirrors the discussion contained in a voluminous literature about the

slowdown in US productivity. Griliches (1994) argues that the decline in US

productivity might have started as early as the mid-sixties rather than in the mid

1970s, the aftermath of the first oil price shock, as is widely claimed; and productivity

might not have recovered until mid-1980s. Our plot of US total factor productivity

echoes Griliches' explanation.

Figure 2 about here

   Figure 2 plots domestic R&D capital stocks. Canada, France, Germany,

Japan and Italy show rises in their stocks of domestic R&D. The UK’s plot is smooth

but rather flat indicating a slow rate of accumulation. The US’s stock of domestic

R&D suffers around the first oil shock and recuperates only after 1984; since then the

trend is clearly upward.

                                                
10 All plots are normalised at 1995=1. This is done for the ease of comparison with CH's data set. Our
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Figure 3 about here

Figure 3 plots Sf. It is interesting to note that the Sf of Japan and Germany are

pretty flat since 1975 while their TFP and Sd are rising. This pattern in data is

puzzling given the common belief that Japan, in particular, has increasingly benefited

from international R&D spillovers. The US, on the other hand, shows an upward trend

in Sf (due to a rise in other countries’ Sd), but a flat TFP during most of the sample

period. This does raise the question whether the build-up of R&D outside of the US is

at all helpful to US productivity. We take up these issues in the empirical section. For

the remaining countries Sf and TFP are both trending upwards.

Table 1 about here

In table 1 we report the relative importance of various sectors involved in

R&D activities. Business sector R&D is dominant in US and Japan and accounts for

75 and 72 percent respectively of their total national R&D expenditure in 1998;

however this ratio is only 54% for Italy and 62% for Canada and France. For other

countries, the business sector accounts for about two-thirds of total R&D activities. A

comparison of R&D expenditures across the 1980s and 1990s indicates that the share

of non-business sector R&D activities might have been quite high historically. This

pattern of R&D activities clearly shows the importance of total R&D stocks.

IV. Heterogeneity

The heterogeneity of international R&D spillovers has long been emphasised

by technology-gap theorists.11 They argue that technology or ‘know-how’ is very

much entrenched in the organisational structures of a country and carries a distinct

                                                                                                                                           
data plots appear pretty close to those of CH. However, we do not use indexed data in our econometric
analysis.
11  Ames and Rosenberg (1963); Nelson and Wright (1992); Dosi (1988); Nelson (1993) are to name
but a few.
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‘national flavour', which makes technology transfer often difficult and costly. Each

country is perceived as separate technological entity characterised by its own R&D

dynamics and differing ‘social capability’ to absorb international innovations. ‘Social

capability’ is defined in terms of technical, industrial, economic, financial and

political ability of the country concerned. Abramovitz (1993), for example, argues

that the lack of ‘technological congruence’ might have significantly delayed the

adoption of US technology by the European countries.

In Table 2 we present some aggregate statistics. It is evident that the US is by

far the most dominant country, producing around 46% of total G7-wide GDP,

followed by Japan (17%) and Germany (11%). Canada is the smallest in terms of

GDP (4.2%). Major disparities also exist in the ownership of R&D capital stock and

R&D intensity. The US owns 53% of G7-wide R&D stocks, followed by Japan

(16%), Germany (11%), UK (8.2%) and France (7.2%). Canada and Italy own around

3% each. The average R&D intensity has remained lowest in Canada (1.4%) and

highest in Japan (2.6%) during the sample period. US R&D intensity has been more

or less stable during the last 35 years (2.5% of GDP), whereas Japan shows some

increments. The intra-G7 trade-flows show that Canada is the most open (42% of her

GDP), followed by the UK (18%), Italy (17%), France (16.7%) and Germany

(16.7%). Japan’s trade with her G7 partners is lowest (6.8%) and the US trades the

equivalent of 7.3% of GDP. Given this heterogeneity in economic size, openness,

stocks and intensity of R&D etc., empirical investigations that lump G7 countries

together and constrain the elasticity of TFP with respect to Sd and Sf to be equal

across them, raise some doubts.

Formal tests of dynamic heterogeneity of the TFP relationship across G7

countries are conducted as follows. First, we estimate a second order autoregressive
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and distributed lag model, ADL(2), for level of TFP conditioning on levels of Sd and

Sf and test for the equality of parameters across G7 countries. Second, we estimate

ADL(2) on growth rates and perform tests of parameter equality. Chow type F tests

under the null of parameter equality across G7 countries are reported in Table 3; tests

reject the null. Thus, the elasticity of TFP with respect to Sd and Sf across G7 are not

homogenous. This contradicts the constraint maintained by CH and others. Finally,

we test if error variances across groups are homoskedastic as another measure of

dynamic heterogeneity. Both the LM-test and the White-test of group-wise

heteroskedasticity are reported. The LM test is equivalent to the LR-test and assumes

normality whereas White's test is robust to non-normality. Both tests confirm that

error variances across G7 countries are significantly different. Thus, the elasticity of

TFP with respect to Sd and Sf as well as their dynamics across G7 countries are

significantly different and hence the data set cannot be pooled.

V.  Specification and Econometric Methods

Specification

We adopt the behavioural specification of CH, followed by numerous studies

cited above, in order to examine the effects of domestic and foreign stocks of R&D on

domestic TFP. Their basic econometric specification is:

1 1 1log logd fd f
t tt tLogTFP S Sβ β β ε= + + + (1)

where TFP is total factor productivity, Sd and Sf are domestic and foreign R&D

capital stocks, and βd and βf are (unknown) parameters which directly measure the

elasticity of TFP with respect to Sd and Sf. Equation (1) states that domestic total

factor productivity is a function of domestic and foreign R&D capital stocks. In order
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to evaluate the role of trade patterns on international R&D spillovers, CH interact the

import ratio with the stock of foreign R&D and specify the following equation:

  2 2 2log logd fd f
t tt t tLogTFP S m Sβ β β ε= + + + (2)

where ‘mt’ is the time-varying import ratio. We estimate the long-run relationship

between TFPt, Sd
t and Sf

t using specifications (1) and (2). The variable, (m log Sf)t,

captures the effect of trade patterns in international R&D spillovers.

Methods

Johansen's (1988) maximum likelihood (ML) method re-parameterises a k-

dimensional and pth order vector (X) to a vector error-correction model (VECM):

1 1 2 2 1 1...t t t p t p t p t tX X X X X Dµ ϕ ε− − − − + −∆ = + Γ ∆ + Γ ∆ + + Γ ∆ + Π + + (3)

In our analysis Xt = [TFP, Sd, Sf]t is a 3x1 vector of the first order integrated [I(1)]

variables; Γi are (3x3) short-run coefficient matrices; Π(3x3) is a matrix of long-run

(level) parameters;  Dt capture the usual deterministic components; µ is a constant

term and εt is a vector of Gaussian errors.  The steady-state of (3) is given by the rank

of Π  which is tested by the well known Maximal Eigen-value and Trace tests

(Johansen, 1988). Asymptotic critical values for these test statistics are tabulated by

Osterwald-Lenum (1992). A co-integrated system, Xt, implies that: (i) Π = α (3 x r)β′(r x

3) is rank deficient, i.e., r< k (r = number of distinct co-integrating vectors); and

(ii){α⊥ Γβ⊥ } has full rank, (k-r), where α⊥  and β⊥  are (3 x (3-r)) orthogonal matrices to

α and β.
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A number of issues are important in the specification and testing of VAR

models. The power of co-integration tests depends on the time span of data rather than

on the number of observations (Campbell and Perron, 1991) 12. Our data extend 35

years, which in our view is sufficiently long to capture the long-run relationship

between TFP, Sd and Sf. Further, in order to allow for finite samples, degrees of

freedom adjustments are suggested by, among others, Reimers (1992) and we adjust

the test statistics accordingly 13. The VAR lengths (p) are specified such that the VAR

residuals are rendered non-autocorrelated14. Since variables in the VAR have non-zero

mean we restrict a constant term in the co-integrating space. Our trivariate VAR can

at most have two co-integrating vectors. If multiple co-integrating vectors are found in

the system then Johansen (1991) suggests identification through exactly identifying

restrictions whereas Pesaran and Shin (2002) suggest tests of over-identifying

restrictions. We follow the latter approach if two co-integrating vectors are found. The

stock of foreign R&D for each country, a key conditioning variable, is a weighted

sum of the rest of the world’s (i.e., other G7 countries’) domestic R&D. Therefore, Sf

may be weakly exogenous to the system. We subject Sf to weak-exogeneity tests and,

where found, impose it in further estimations for it improves the efficiency of the

estimated co-integrating vectors.

Recently, there have been significant advances in the econometrics of panel

cointegration. Larsson et al. (2001) develop a panel co-integration test based on

                                                
12 Hakkio and Rush (1991) point out that, unlike in the univariate tests, shorter sample is acceptable in a
multivariate VAR since it yields additional observations on the long-run fluctuations. Luintel and Khan
(1999) further elaborate on this issue.

13 Reinsel and Ahan (1992) and Cheung and Lai (1993) also suggest for (equivalent) degree of freedom
correction for small samples.
14  It is common to specify lag lengths following some information criteria (for example, Akaike, 1973;
Schwarz, 1978).  However, Johansen (1992) suggest that the lag length in the VAR should be specified
such that the VAR residuals are empirically uncorrelated. Cheung and Lai (1993) show that the lag
length selection based on information criteria may not be adequate when errors contain moving average
terms. Hence, we specify lag-length based on the test of serial correlation in VAR residuals.
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Johansen's ML approach. The panel cointegration rank trace test (PTR) is shown to be

the standardized mean of individual trace statistics (TRVT) estimated for each member

of the panel and is given by:

[ ( )] (0,1)
var ( )

VT w
TR

w

V TR E ZP N
Z

−= ⇒ (4)

where V is the number of countries in the panel, i.e., (i=1,…,V); T is the time

dimension (t=1, …,T); E(Zw) and var (Zw) are the expected mean and variance of the

asymptotic trace statistics which are tabulated by the authors through stochastic

simulations. Under the null all the countries of the heterogeneous panel have at most r

co-integrating vectors among k variables i.e., H0: rank ( Π i) = ir r≤  against the

alternative hypothesis H1: rank ( Π ) = k. PTR is shown to be asymptotically standard

normal. For 25T ≥  and 5V ≥ , the power of this test is near unit. Since we have a

panel of V = 7 and T= 35, this test should be sufficiently powerful.

Monte Carlo simulations of Kao and Chiang (1998) show that the pooled

(within-dimension) dynamic OLS (DOLS) panel cointegration estimator outperforms

those based on OLS and Fully Modified OLS (FMOLS; Phillips and Hansen, 1990).

Koa et al. (1999) employ these tests in order to assess the R&D spillovers using CH's

model and data. More recently, Pedroni (2000) shows that the group mean (between-

dimension) panel cointegration tests based on FMOLS are preferred over the pooled

estimators as the former shows relatively minor size distortions even in small samples.

In particular, the group mean estimators allow for the heterogeneity of co-integrating

vectors across the countries in the panel under the alternative hypothesis whereas the

pooled estimators constraint the value of the cointegrating vector to be same for all

countries. The null hypothesis is H0: βi = β0 for all i (i = 1,…,V) against the
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alternative hypothesis H1: βi≠ β0; thus the values for βi are not constrained to be the

same under the alternative hypothesis. There is a clear advantage in using group mean

estimators in this application as we expect the elasticities of TFP with respect to Sd

and Sf to be heterogeneous across G7 countries. The group mean estimators are robust

to heterogeneity of residual dynamics around the cointegrating vectors whereas the

pooled panel estimators are not. Further, group mean estimators do not constrain the

transitional (short-run) dynamics to be similar across countries and are robust to the

fixed effects. Finally, the point estimates of group mean estimators can be interpreted

as the mean value of the cointegrating vectors which is however not true in the case of

pooled estimators. Pedroni (2000) shows that the group mean panel FMOLS

estimator, GFMβ
�

, can be constructed as:

1
,

1

V

GFM FM i
i

Vβ β−

=
= ∑

�

(5)

where ,FM iβ  is the conventional FMOLS estimator applied to the ith member of the

panel. The associated t-statistic for the between dimension estimator is given by

1/ 2
,

1

V

FM i
i

t V tβ β
−

=
= ∑K K ; where ,FM itβ

K is the conventional t-ratio associated with the ,FM iβ .

The group mean t-statistics are shown to be standard normal and so long as the T > V,

which is what we have, this panel test is extremely powerful and exhibits remarkably

small size distortion even in a small sample.

VI. Empirical Results

CH (1995) reported that TFP, Sd and Sf are clearly trended and contained unit

roots. Plots of our data set in figures 1 to 3 also confirm this trending pattern.

Nevertheless, we implement the univariate KPSS test (Kwiatkowski et al., 1992),
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which tests the null of stationarity, in order to formally evaluate the time series

properties of data.15 Results are reported in Table 4. As expected, in most cases, tests

reject the null of stationatity of TFP, Sd and Sf at very high precision (1%). In some

cases however the precision is not as high; nevertheless, the null of stationarity is

rejected for all but one at 10% or better. The only exception is UK TFP which appears

trend stationary; however its level stationarity is clearly rejected. In view of its level

non-stationarity and the slowly decaying autocorrelation functions, we decided to treat

UK TFP as a non-stationary process. All series are stationary in their first differences.

Overall, KPSS tests confirm that TFP, Sd and Sf are unit root processes, a result

consistent with earlier findings (e.g., CH).

Johansen rank tests and a range of VAR diagnostics pertaining to

specifications (1) and (2) are reported in Table 5. Tests show that Sf is weakly

exogenous in five countries (viz., Canada, France, Germany, Japan and the UK) in

specification (1) whereas it holds for all but the U.S in specification (2). Where

identified, the weak exogeneity of Sf are imposed for they improve the efficiency of

the estimates.

Trace statistics, adjusted for the finite samples, show that TFP, Sd and Sf are

co-integrated in all sample countries and exhibit a single co-integrating vector under

both specifications. 16 For a valid normalisation and error-correction representation,

the associated loading factors (αs) must be negatively signed and significant. On this

basis, we could normalise all countries except Germany on TFP; their associated

                                                
15 Kwiatkowski et al. (1992) show that these tests are more powerful than the usual DF/ADF tests.
Recently however Caner and Kilian (2001) warn against these power gains specially when data are
high frequency. Our data are low frequency.

16 Under specification (1) Italy shows two cointegrating vectors unless Sf is treated weakly exogeneous.
Since the identification of multiple cointegrating vectors in a panel setting is not yet fully developed we
circumvent this by imposing weak exogeneity of Sf for Italy in specification (1). In any case, even
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loading factors are negatively signed and significant at 5% or better. Germany, on the

other hand, showed perversely (positively) signed and insignificant loading factors

and hence could not be normalised on TFP. Instead, Germany’s co-integrating vector

is normalised on Sd, which now has a correctly signed and significant loading factor17.

LM tests show absence of serial correlation in VAR residuals. Residuals also pass

normality tests. A second or third order lag length is sufficient to render the VAR

residual uncorrelated. This is plausible in view of the low frequency (annual) of data.

The estimated co-integrating vectors, obtained from the Johansen and FMOLS

methods are reported in table 6. Most importantly, we find that the international R&D

spillover for the U.S. is significantly negative (-0.16 under Johansen and –0.06 under

FMOLS). This result is extremely robust to VAR length (1-4), estimation methods

and specifications. Thus, it appears that R&D accumulation by competitors hurts US

TFP. This supports our conjecture above and reinforces the findings of Bernstein and

Mohnen (1998) and Blonigen and Slaughter (2001) from a macro perspective.

Japanese results, on the other hand, are puzzling. International R&D spillovers appear

insignificant for Japan in all but one estimate (i.e., FMOLS under specification (1)).

We imposed a positive coefficient on Japanese Sf and tested for its sustainability. LR

tests do not reject the proposition that the elasticity of TFP with respect to Sf is

positive for Japan (at most 0.02 in specification (1)). The remaining countries -

Canada, France, Italy and UK - show positive and significant effects of Sf on TFP.

 Interacting Sf with the import ratio magnifies the spillover coefficients (semi-

elasticities) of all countries but Canada. The negative spillover coefficient for the US

becomes –0.30 under the Johansen method and it becomes –0.20 under the FMOLS.

                                                                                                                                           
when weak exogeneity is not imposed the exactly identified Italian TFP relationship appears
qualitatively similar to the one reported in table 6.
17 Normalisation on Sf is conceptually problematic nonetheless it produces an insignificant loading
factor (α) for Germany.
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Increases in these coefficients are due to the low import ratios and are consistent with

the patterns found by CH and others. Japan continues to show insignificant spillover

coefficients but it does not statistically reject the null of a positive coefficient (with a

maximum of 0.15).

The effect of Sd on TFP is more prevalent. Of the six countries normalised on

TFP all but Canada exhibit a positive and significant elasticity of TFP with respect to

Sd. For Canada the effect of Sd on TFP appears insignificant, which, again is rather

surprising.

Our results vividly show that the estimated point elasticities of Sd, Sf and m*Sf

exhibit considerable cross-country heterogeneity. Starting with the Johansen

approach, the unrestricted domestic R&D elasticity of TFP ranges from (statistically)

zero (Canada) to 0.55 (UK) whereas the foreign R&D elasticity of TFP ranges

between –0.16 (US) to 0.10 (France) in specification (1). In specification (2), the

coefficient of Sd hovers between (statistically) zero (Canada) to 0.62 (UK) and that of

m*Sf between (statistically) zero (Japan) to –0.30 (US). FMOLS shows very similar

pattern, which establishes the robustness of our results. This multiplicity in point

elasticity across G7 countries is consistent with the heterogeneity of R&D dynamics

shown in section IV as well as the arguments that R&D spillovers are likely to be

country specific.

The co-integrating vectors for Germany deserve some comment. The Johansen

method explicitly allows for the test of the validity of normalisation. Based on this,

the German co-integrating vector could only be normalised on Sd. Specification (1)

shows significant effects of Sf and TFP on Sd whereas in specification (2) the

coefficient of m*Sf  becomes insignificant. Thus, in this tri-variate framework, the
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R&D spillovers for Germany can be described, at best, as complementarities between

Sd and Sf.

Finally, the last row of table 6 reports panel trace statistics and panel group

mean cointegrating parameters. Since Germany cannot be normalised on TFP we

exclude it from the panel analysis. The panel null H0: r=0 is strongly rejected at very

high precision whereas H0: r≤ 1 is not. Thus, panel trace tests show that six of the G7

countries share a common cointegrating vector. Panel estimates show positive and

significant effects of Sd and Sf on the TFP which are consistent with the extant panel

tests. Both estimators (Johansen and FMOLS) produce pretty close panel estimates.

The point elasticity of TFP with respect to Sd ranges between 0.23 and 0.28 which are

also close to those reported by CH (0.22) and Engelbrecht (0.26) but larger than those

of Keller (0.13) and van Pottelsberghe and Lichtenberg (0.15). However, our

coefficients of foreign R&D (0.03 to 0.06) are smaller than those of other studies. For

example, CH’s estimates are 0.06 and 0.29 for Sf and m*Sf while Keller’s random

weight estimates are 0.13 and 0.33, respectively. It is instructive to note that while our

panel results are qualitatively similar to those in the literature, country level results are

extremely diverse and acutely different from panel results.

In table 7 we report statistical evidence on the extent to which panel estimates

correspond to the country specific estimates.  Two sets of results are reported. Panel A

contains p-values of the LR tests under the null that each individual country specific

parameter is equal to its respective panel (between dimension) estimates. Tests (low

p-values) show that the panel estimate of the elasticity of TFP with respect to Sd is

statistically different from its corresponding country specific point estimates in all but

one country (US). Likewise, tests reject the equality of the panel and country specific

estimates of the elasticity (semi-elasticity) of TFP with respect to Sf (m*Sf) for
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France, Italy and the US. Panel B reports the joint test that all country specific

estimates of a parameter are equal to the corresponding group mean parameter. This

test is in the spirit of Hague et al. (1999). It involves conducting a Wald or LR test for

the restriction that each country-specific coefficient is equal to the group mean value

and summing up the individual (χ2) statistics. The test is distributed as (χ2 (V)). The

joint test strongly (at a very high precision) rejects the null that country specific

coefficients are equal to their respective group mean values. Thus, statistical evidence

suggests that panel estimates do not correspond to country specific estimates. An

important insight is that panel tests indeed conceal important cross-country

differences and any generalisation of panel results is fraught with the risk of deriving

wrong inferences with respect to certain member(s) of the panel. This seems to be true

with the majority of countries in this study and the US, in particular, appears distinct

from others.

Stability

The stability of cointegrating ranks and parameters are examined following the

approach of Hansen and Johansen (1998) which compares the recursively-computed

ranks of the ∏ matrix with its full sample estimate. If the sub-sample rank of ∏ differs

significantly from its full sample counterpart, then that implies structural shifts in the

co-integrating rank. Likewise, conditional on the identified co-integrating vectors,

significantly different sub-sample parameters from their full sample counterparts

signify instability of cointegrating parameters. The LR test for these hypotheses is

asymptotically χ2, with kr-r2 degrees of freedom. Tests are carried out in two settings:

(i) allowing both short-run and long-run parameters to vary (Z-model); and (ii) short-
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run parameters are concentrated out and only long-run parameters are allowed to vary

(R-model).

The stability tests are carried out over a period of 15 years (1985-1999) which

leaves the first 20 observations as the initial sample. Figure 4 plots the normalised LR

statistics that tests the stability of ranks under specification (1) using the R-model.18

All LR statistics are scaled by the 5% critical value; hence the values greater than

unity imply rejection of the null of stability and vice versa. In these plots the rank, r, is

stable if rank, r-1, is rejected.

Figure 4 about here

The time path of the scaled LR statistics show that the null of non-cointegration (H0:

r=0) is clearly rejected as all plots which test this hypothesis are above unity. The

plots that test H0: r≤1 are always below unity (i.e., less than the 5% critical value)

except for the US which shows a short period of rank instability around the 1990s.

Thus, all in all, tests reveal that the reported cointegrating ranks are stable.

Figure 5 about here

Figure 5 plots the normalised LR statistics, which test for the stability of co-

integrating parameters. Both R- and Z-models show co-integrating parameters to be

stable as all recursive plots appear well below the unity threshold 19. Thus, we find

that co-integrating ranks and parameters were remarkably stable over the 15-year

period which is in sharp contrast to what CH, Kao et al. (1999) and van Pottelsberghe

and Lichtenberg (2001) reported. As pointed out before, it is important to note that

CH and Kao et al. do not implement any formal tests of stability and their approach

                                                
18 Results from the Z-model are similar to those of the R-model and hence only R-models are reported.
In fact, the R-model is more suitable for testing the stability of the long-run parameters (Hansen and
Johansen, 1998).

19 Minor exceptions to this are that the Z-model indicates significant LR statistics (parameter
instability) for Japan and the US in the first year of recursion. These, however, die out quickly.
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essentially captures the variability of import ratio alone. van Pottelsberghe and

Lichtenberg's standard F test may also be questioned due to the non-stationary nature

of data. We address these issues and find that the long-run relationships between TFP,

Sd and Sf are remarkably stable20.

Bilateral and Multilateral Spillover elasticities

The estimates of the bilateral international R&D spillovers based on the

aggregate point elasticities of table 6 (specification (1)) are reported in Table 8. Each

entry is the estimated elasticity of TFP of country i (reported in columns) with respect

to the domestic R&D capital stock of country j (reported in row). These bilateral

spillover elasticities are calculated as:

.
d

jijf f
ij i f

ij

m S
y S

β α= (6)

where βf
ij is the bilateral spillover elasticity of TFP of country i with respect to the Sd

of country j;  αf
i is country i’s elasticity of TFP with respect to Sf; other variables are

as already defined. Table 8 shows that a 1% increase in US R&D would increase

Japanese output by 0.018%; however, a 1% rise in Japanese R&D would reduce US

output by 0.056%. US R&D shows the highest productivity effect on Canada

(0.048%), followed by France (0.022%) and Japan (0.018%).  Given the negative

elasticity of US TFP with respect to foreign R&D, all bilateral spillover elasticities are

negative. The accumulation of R&D by Japan hurts US productivity the most (-

0.056%) whereas that by Italy hurts the US the least (-0.006%).

                                                
20 Tests of the stability of co-integrating parameters (βd and βf) are also conducted under FMOLS by
computing recursive Wald tests over the period of 1985-1999. The null hypotheses are that the
recursively computed sub-sample and full-sample parameters are equal. Canada, Italy, Japan and the
UK did not reject the null for the whole period, whereas France, Germany and the US show robust
stability over 1990s only. Overall, FMOLS corroborates the stability found in the VECM. To conserve
space, we do not report these results here, but they are available on request.
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The mean international productivity effects of domestic R&D are reported in

the last row of Table 8. Calculations show that US R&D has the biggest output effect

across other members of G7 (a 1% increase in US R&D increases international output

by 0.112%), followed by Germany (0.067%). German R&D appears to enhance the

productivity of France and Italy in an important way whereas its effect on Japanese

output is almost one-tenth of that of the US. The German cointegrating vector, on the

other hand, could not be normalised on TFP.

 The mean elasticity of domestic output with respect to foreign R&D is

reported in the last column of the table.  Our calculations show that a 1% rise in the

R&D of other G7 countries would reduce the US output by 0.165%. French output

appears to benefit most (0.106%) from the rise in the R&D of fellow G7 countries.

Japan's major productivity gains come from the US.

The average own rate of return of domestic R&D shows tremendous variation

across G7 countries.21 The US has the highest rate of return (165%) followed by the

UK (140%), Italy (106%), Japan (100%), France (58%) and Canada (-0.23%). van

Pottelsberghe and Lichtenberg (2001) estimate the average rates of return for G7 to be

68% which is somewhat lower than our mean estimate of 94% for six of the G7

countries (US excluded) 22. However, both of these estimates are smaller than those

reported by CH for G7 countries (123%).

Now we compare our results with those observed in the existing empirical

literature. One of the stylised findings is that international R&D spillovers are positive

                                                                                                                                           

21 The own rate of return from domestic R&D, θjj = αd
j 

j
d

j

y
S

, where αd
j is the elasticity of TFP of

country j with respect to its own domestic R&D capital Stock, Sd.

22  In calculating the mean rate of return we set the Canadian rate of return to zero, as the coefficient is
statistically insignificant.
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and they are not importantly different across G7 countries (CH, footnote 10). Our

country level results vividly show this is not the case. The long-run spillover elasticity

differs widely across G7 countries. Moreover, the system approach of Johansen does

not allow the German cointegrating vector to be normalised on TFP, thus raising

doubt about the ad hoc normalisations followed elsewhere. Further, the heterogeneity

of co-integrating parameters suggests that results from pooled regressions should be

treated with great caution.

A second stylised finding is that foreign R&D contributes more to the

productivity of smaller countries than that of large countries. Our country level results

exhibit no such robust pattern. Canada, the smallest in the sample, does not exhibit a

noticeably large elasticity of TFP with respect to foreign R&D.

A third observation is that the more open the smaller countries are the more

they are likely to benefit from international R&D spillovers. We do not find such a

pattern across G7 countries. Canada, the most open in terms of intra-G7 trade, which

imports 17% from G7 partners shows the smallest spillover elasticity. On the other

hand, the magnitude of spillover elasticity of the US is amongst the biggest, although

US is not a small country.

A fourth observation is that the output elasticity of Sd tends to be higher than

that of Sf for large countries. This is universally corroborated by our results.

A fifth observation is that the US is the main R&D spillover generator, but a

weak receiver. Our results reinforce this. We find the US and Germany to be the main

spillover generators and Germany generates almost half that of the US. An interesting

finding is that the US not only is a weak receiver but a net loser. 1% rises in US and

German R&D increase the output of G7 partners by 0.112% and 0.067%,

respectively. However, a 1% rise in the R&D stocks of G7 partners reduces US output
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by 0.165%. This finding is robust to specifications and estimation methods. We

attribute this finding to our empirical approach, which investigates R&D spillovers at

country level and allows parameters to vary across countries. This is also consistent

with our argument that the US, the technology leader, may loose if competitors

become technologically more sophisticated and grab increased world market share.

Finally, it is also commonly observed that Japan benefits from spillovers a lot

but she generates a little. Our results go a step further in confirming this. We find that

Japanese R&D benefits all members of G7 except the US but only in a marginal way.

A 1% rise in Japanese R&D stocks increases the output of all members of G7 except

the US by 0.015% but it hurts US output by 0.056%. Thus, the net spillover

generation from Japan is negative (-0.041%), whereas Japan benefits mainly from the

US. Our finding that the US and Germany are the main spillover generators is

consistent with those of Eaton and Kortum (1996); however, our finding on Japan

differs from theirs.

VII. Conclusion and Implications

Coe and Helpman (1995) and a number of subsequent studies provide

empirical evidence in support of significant international R&D spillovers in a panel

framework. However, they inadvertently constrain the elasticity of TFP with respect

to domestic and foreign R&D stocks to be equal across G7 countries. Equivalent

knowledge diffusion across countries also implies that technology diffusion is non-

rival. We argue that in view of the profound differences across G7 countries in terms

of their economic sizes, openness, R&D stocks and intensity etc. the assumption of

homogeneous spillovers is untenable. We further argue that technological and

industrial rivalry is a world reality. Concerns over national competitiveness and world
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market shares encourage countries to pursue aggressive policies of acquiring and

maintaining technological leadership and to pre-empt any competitor. The EU's

resolve to launch the Galileo satellite in competition with the US Global Positioning

System (GPS) is a case in point and several such rival R&D projects are well-known.

Thus, knowledge diffusion, in principle, could be positive or negative. In this context,

we raise an interesting but hitherto unaddressed empirical question: whether the

accumulation of R&D by the US's competitors (i.e. G7 partners of US) is costly for

US productivity. US productivity may suffer as a result of the gradual replacement of

US investment worldwide and / or a gradual depletion of US world market share

following the acquisition and build up of R&D by its competitors.

Empirically we adopt the behavioural specification of CH, as modified by

Lichtenberg and van Pottelsberghe (1998), but take forward the empirical analysis by

using extended data and new econometric approaches. The R&D data set is extended

to 35 years and it encompasses total R&D activity as opposed to the 20 years’

business-sector-only R&D data analysed by CH and others. It is shown that non-

business-sector activity comprises a significant proportion of total R&D activities.

We follow a novel and robust empirical approach. We employ multivariate

VAR (Johansen, 1988) and the fully modified OLS (FMOLS; Phillips and Hansen,

1990) estimators both of which are capable of providing country-by-country time

series estimates as well as panel estimates of R&D spillovers. Larsson et al. (2001)

extend Johansen’s multivariate vector error correction model to a panel setting

whereas Pedroni (2000) extends the FMOLS.

Time series and panel tests both show that TFP, Sd and Sf are cointegrated.

Thus, long-run relationships between TFP, Sd and Sf exist irrespective of the methods

of estimation. Four points stand out. First, our panel results show positive and
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significant effects of Sd and Sf on TFP, which establish the results of existing panel

tests in the literature. Second, country level results reveal that the long-run elasticities

of Sd and Sf differ widely across G7 countries. Most importantly, we find significantly

negative elasticity of TFP with respect to foreign R&D stocks for the US. This result

is robust to VAR lengths, specifications and estimation methods. Thus, our country

level results suggest that accumulation of R&D by the rest of the world hurts US

productivity. All countries (normalised on TFP) except Canada show significantly

positive domestic R&D elasticity of TFP. For Canada the effect of Sd on TFP is

insignificant which is puzzling. For Germany Sf appears to complement Sd .

Third, a comparison of time series and panel results reveal that panel tests

indeed conceal important cross-country differences and any generalisation of panel

results requires utmost care. Inferences drawn from panel results may go contrary to

those drawn from individual members of the panel and the US happens to be one of

such prime cases in this analysis. We found that, in most cases, the country specific

estimates (point elasticities of Sd and Sf) are significantly different from their panel

counterparts. It is also shown that data on G7 countries could not be pooled at least in

order to analyse the R&D dynamics.

Finally, our results go some way forward reconciling two seemingly

conflicting findings. CH and others (Keller, 1998; Lichtenberg and van Pottelsberghe,

1998 etc.) report positive and equivalent R&D spillovers across G7 countries.

However, Park (1995) and Mohnen (1999) report international R&D spillovers to be

asymmetrical, flowing from large R&D intensive nations to small and less R&D

intensive nations. Bernstein and Mohnen (1998) report that R&D spillovers could also

to be unidirectional. Our panel results - methodologically close to that of the CH-

approach - show that lumping together G7 data and suppressing the country specific
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heterogeneity and / or estimating mean elasticities in the panel produce positive and

equivalent spillovers across G7 countries. However, relaxing such constraints through

country-by-country analyses produce multiplicity of R&D dynamics across G7

countries which is closer to the findings of Park (1995), Mohnen (1999), Bernstein

and Mohnen (1998) and Blonigen and Slaughter (2001). Further, our results support

the findings of Nadiri and Kim (1996) from a different analytical perspective.

The main implications of this study are two fold. First, the extent and the

dynamics of knowledge diffusion may differ depending on the stage of technological

sophistication of the country concerned. Second, as bilateral spillover elasticities

indicate (Table 8), the distribution of knowledge diffusion is hardly uniform. For

example, the US is the sole spillover generator for Canada; France and Italy mostly

receive knowledge diffusion from Germany; Japan mainly receives from the US,

whereas Germany and US both appear equally important for the UK. This indicates

bonding between nations that have congruent technology and / or geographical

proximity.
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Appendix A: Sources and construction of data

The relevant data series and their sources are as follows. Gross domestic

product (Y), gross fixed capital formation (I), level of employment (L) and GDP

deflator (P) are obtained from OECD’s Analytical database; total gross domestic

expenditure on research and development (ERD) is obtained from OECD’s R&D

database; exports (X) and imports (M) of goods and services are obtained from

OECD’s International Trade and Commodity Statistics (ITCS) database; bilateral

exchange rates with US dollars are obtained from International Financial Statistics

(IFS) published by the International Monetary Fund.

A consistent series on physical capital stock (K) for the whole sample period

was lacking, therefore we constructed total capital stock for each country in the

sample from respective gross fixed investment series in constant prices using the

perpetual inventory method23. A depreciation rate of eight percent and the sample-

average real GDP growth rate are used to generate the initial capital stock. Likewise,

following common practice (CH, 1995) the domestic R&D capital stock (Sd) is

calculated from ERD using the perpetual inventory method. ERD covers all the R&D

expenditure carried out within the national territory of each sample country, which is

converted to constant prices by deflating by the GDP deflator. The initial domestic

R&D capital stock ( 0
dS ) is calculated as (see CH, 1995):

0
0

R
d ES

g δ
=

+
(7)

where δ is depreciation rate, assumed to be eight percent,24 g is the average annual

growth rate of ERD over the sample, ER
0 is the initial value of ERD in the sample. In

                                                
23 Gross fixed investment was converted to constant prices by deflating by the GDP deflator.

24 Following Coe and Helpmen (1995), we also computed R&D capital stocks using 15% depreciation
rate. Our econometric results remain qualitatively same to this alternative measure of Sd.
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order to compute the foreign R&D capital stock (Sf) we follow the insights of

Lichtenberg  and  van Pottelsberghe (1998) and compute as:

d
ij jf

i
j i j

m S
S

y≠
=∑ (8)

where mij is imports of goods and services of country i from country j and yj is

country j’s GDP.25 Finally, we compute total factor productivity (TFP) in the usual

way (c.f. CH,1995):

log log log (1 ) logTFP Y K Lγ γ= − − − (9)

Following the literature in this tradition we set the value of the γ coefficient to 0.3.

                                                                                                                                           
25 Note that Sd

j are converted to common currency (US dollars) using PPP equivalent exchange rates
while calculating Si

f.
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Appendix

Figure 1: Total factor productivity
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Figure 2: Domestic R&D capital stocks
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Figure 3: Foreign R&D capital stocks
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Figure 4: Plots of Scaled Recursive LR-Statistics (Rank Stability Tests)
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Recursive LR statistics of rank stability are scaled by appropriate 5% critical value.
Hence, plots above unity imply rejection of the null.
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Figure 5: Parameter Stability Tests (Plots of Scaled Recursive LR-statistics)
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Since the plots of recursive LR-statistics are scaled by the appropriate 5% critical
value, the horizontal line at unity indicates the critical threshold.
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Table 1: Distribution of domestic R&D expenditure by sector of performance (%)

Business enterprise sector Other sectors

Countries 1981 1985 1991 1995 1997 1998 1981 1985 1991 1995 1997 1998
Canada 48 53 52 60 61 62 52 47 48 40 39 38
France 59 59 62 61 61 62 41 41 39 39 39 38

Germany 69 72 70 66 68 68 31 28 31 34 33 32
Italy 56 57 56 53 53 54 44 43 44 47 47 46
Japan 66 72 75 70 73 72 34 28 25 30 27 28
United

Kingdom
63 64 67 65 65 66 37 36 33 35 35 34

United
States

70 73 73 72 74 75 30 27 27 28 26 25

Source: Main Science and Technology Indicators (MSTI) database, OECD.
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Table 2: Some stylised aggregate statistics
GDP share in G7 totala Canada France Germany Italy Japan UK US

1965-69 4.0 8.1 11.4 7.5 12.8 8.6 47.6
1970-79 4.2 8.4 11.1 7.7 16.0 7.8 44.7
1980-89 4.4 8.1 10.2 7.7 17.5 7.0 45.1
1990-99 4.2 7.4 10.6 7.1 18.1 6.7 45.8

Mean 4.2 7.9 10.7 7.4 17.0 7.2 45.5
R&D stock share in G7 totala

1965-69 1.8 6.4 8.0 2.2 6.9 12.1 62.5
1970-79 2.1 7.1 9.8 2.7 10.9 10.0 57.5
1980-89 2.4 7.3 11.2 3.0 15.8 8.3 52.0
1990-99 2.6 7.3 11.0 3.4 19.6 6.7 49.5

Mean 2.4 7.2 10.6 3.0 15.8 8.2 52.8
R&D intensityb

1965-69 1.2 2.0 1.7 0.7 1.6 2.3 2.7
1970-79 1.1 1.7 2.1 0.8 2.0 2.2 2.2
1980-89 1.4 2.1 2.6 1.1 2.6 2.2 2.6
1990-99 1.6 2.3 2.4 1.1 2.9 2.0 2.6

Mean 1.4 2.2 2.4 1.1 2.6 2.1 2.5
Trade intensityc

1965-69 27.5 9.0 12.0 11.1 7.0 9.7 3.7
1970-79 32.7 13.6 13.8 16.9 6.8 14.6 5.8
1980-89 36.1 16.7 19.2 17.1 7.7 18.3 7.1
1990-99 47.5 17.4 16.5 17.1 6.2 18.6 8.1

Mean 41.6 16.6 16.7 17.1 6.8 18.0 7.3
a: based on constant price (1995 PPP dollars).
b: R&D expenditures as a percentage of GDP.
c: Exports plus imports from other G7 countries as a percentage of GDP.

Source: MSTI database, OECD
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Table 3: Heterogeneity of R&D and TFP dynamics across G7 countries

Panel: A Panel: B

Equality of θ LM test WH test Equality of λ LM test WH test

6.855a

F(7,175)

30.528a

χ2(6)

28.000a

χ2(7)

17.757a

F(7,182)

27.757a

χ2(6)

33.485a

χ2(7)

The specification for panel A is:
2 2 2

0 1 2 3
1 1 1

d f
t i t ii t i i i t

i i i
tfp tfp S Sθ θ θ θ ε− −−

= = =
∆ = + ∆ + ∆ + ∆ +∑ ∑ ∑ .

The specification for Panel B is: 
2 2 2

0 1 2 3
1 1 1

d f
t i t ii t i i i t

i i i
tfp tfp S Sλ λ λ λ ε− −−

= = =
= + + + +∑ ∑ ∑ .

Equality of θ and λ are standard (Chow type) F-tests of parameter equality across G7 countries. Lagrange
Multiplier (LM) and White's (WH) tests both reject that error variances are homoscedastic across G7 countries.
They are computed by regressing the square of residuals on original regressors, their squares and cross products.
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Table 4: KPSS unit root tests
Canada France Germany Italy Japan UK US

Variables ηµ ιµ ηµ ι µ ηµ ι µ ηµ ι µ ηµ ι µ ηµ ι µ ηµ ι µ
TFP
Sd

Sf

0.835a

1.323a

1.172a

0.130c

0.222a

0.233a

1.228 a

1.256 a

1.236 a

0.228 a

0.198b

0.137c

1.106a

1.242 a

1.103 a

0.290 a

0.306 a

0.137c

1.274 a

1.316 a

1.237 a

0.264 a

0.211 a

0.261 a

1.187 a

1.280 a

0.670b

0.225 a

0.301 a

0.147b

1.245 a

1.263 a

1.225 a

0.074
0.144b

0.139c

1.353 a

1.447 a

1.202 a

0.134c

0.130c

0.286 a

The Critical Values for ηµ are 0.739 and 0.463 at 1% and 5%; the respective critical values for ι µ are 0.216 and 0.146. In their first differences all
series are stationary. The latter set of results is not reported here to conserve space, however are available on request. Superscripts a, b, and c
indicate rejection of the null of stationarity at 1%, 5% and 10%, respectively.
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Table 5: Co-integration tests and VAR diagnostics between TFP, Sd and Sf  (Johansen Method)

1 1 2log logd fd f
t tt tLogTFP S Sβ β β ε= + + +   (1) 2 2 2log *logd fd f

t tt t tLogTFP S m Sβ β β ε= + + +  (2)
Trace Statistics:
Ho: rank=r
 r=0        r≤1     r≤2

α:
loading
factor

Wexo LM
(3)

NOR LAG Trace Statistics:
Ho: rank=r
 r=0        r≤1       r≤2

α:
loading
factors

Wexo LM
(3)

NOR LAG

CA 37.84a     8.85       -
[19.96]  [9.24]

-0.242b

(-1.96)
0.519 0.399 0.891 3 31.5b   8.79        -

[19.96]  [9.24]
-0.190c

(-1.90)
0.081 0.414 0.989 2

FR 26.83a     6.59      -
[19.96]  [9.24]

-0.386a

(-3.61)
0.963 0.354 0.383 2 29.37a   5.772     -

[19.96]  [9.24]
-0.356a

(-4.05)
0.362 0.181 0.377 2

DE 20.83b   4.06        -
[20.0]  [9.2]

-0.035a

(-4.36)
0.873 0.236 0.237 2 19.00c     6.002      -

[19.96]  [9.24]
-0.018a

(-3.60)
0.311 0.801 0.004a 3

IT 30.99a    9.13        -
[19.96] [9.24]

-0.602 a

(-5.68)
0.001a 0.137 0.115 3 35.46a     8.49    -

[19.96]  [9.24]
-0.629a

(-5.62)
0.424 0.169 0.110 2

JP  21.00b    4.37     -
[19.96]  [9.24]

-0.526a

(-4.49)
0.090 0.501 0.587 3 21.67b   5.25      -

[19.96]  [9.24]
-0.461a

(-4.70)
0.228 0.367 0.818 3

UK 24.52b     7.56     -
[19.96]   [9.24]

-0.523a

(-3.87)
0.236 0.409 0.289 2 23.53b   5.381    -

[19.96]  [9.24]
-0.666a

(-4.93)
0.372 0.203 0.400 3

US 33.81c   15.7    3.24
[34.91][19.96][9.24]

-0.299b

(-2.05)
0.008a 0.832 0.323 3 33.76b    14.1    3.12

[34.91][19.96] [9.24]
-0.396 a

(-2.26)
0.003 a 0.733 0.448 3

The country mnemonics are: CA=Canada; FR=France; DE=Germany; IT=Italy; JP=Japan; UK= United Kingdom; US=United States. Reported
trace statistics are adjusted for finite sample following Reimers (1992). [.] are the appropriate 5% critical values of trace statistics. Germany is
normalised on Sd. Figures within parenthesis (.) are t-ratios. Wexo are P-values of weak-exogeneity test of Sf which are χ2(1) distributed. LM(3)
are P-values of third order LM test of serial correlation in VAR residuals. NOR are P-values of Bera-Jarque normality tests of VAR residuals,
which are χ2(2), distributed. LAG indicates VAR lag lengths. Superscript a, b, and c indicates significance at 1%, 5% and 10% respectively.
Under the Johansen approach the UK and US required impulse dummy for first oil shock (1973); Germany required impulse dummy for
unification (1990-91) in order to improve normality and/or auto-correlation. These dummies were entered unrestricted. No dummies are entered
for the FMOLS estimates reported in (table 6).
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Table 6: Estimated cointegrating parameters (Johnsen and FMLOS methods)
Johansen FMOLS

Sd Sf m*Sf Sd Sf m*Sf

CA -0.035 (1.094)
0.002  (0.125)

0.055 (1.719)b

0.036(2.118)b
-0.090 (-1.408)
0.005 (0.254)

0.124 (2.903)a

0.046 (2.102)b

FR 0.155 (6.739)a

0.220 (14.667)a
0.101(6.313) a

0.187(6.448) a
0.218 (7.616) a

0.254 (14.977)a
0.071 (3.762) a

0.149 (4.346)a

DE Sd = 1.545aTFP + 0.414bSf;  Sd = 0.982b TFP +0.060 m*Sf

      (6.058)          (2.029)            (1.889)         (0.149)
Sd = 2.306a TFP + 0.962a Sf 

;  Sd = 3.825a TFP - 0.575 m*Sf

      (6.946)           (4.276)              (8.019)          (1.226)
IT 0.174 (4.244) a

0.342 (34.20) a
0.092 (4.00) a

0.113(6.278) a
0.262 (4.482) a

0.339 (32.296)a
0.069 (2.158)b

0.150 (5.828)a

JP 0.221 (13.00) a

0.224 (11.789) a
0.024 (0.667)

0.032(0.294)
0.195 (13.858)a

0.234 (14.280)a
0.138 (3.018) a

0.063 (0.396)
UK 0.554 (5.711) a

0.619 (12.137) a
0.034(1.619)

0.077(1.974)b
0.481 (4.501) a

0.539 (10.943)a
0.050 (2.221) b

0.141(3.648)a

US 0.508 (4.269) a

0.281 (6.690) a
-0.159 (-3.00) a

-0.295 (-6.854)a
0.339 (3.796) a

0.281 (6.831) a
-0.063 (-1.558)

-0.197 (-2.014)b

                                       r=0                 r=1
Panel trace (PTR):         6.905a              1.489

TFP = 0.263a Sd +0.025a Sf ;  TFP= 0.281a Sd +0.025a m*Sf

          (14.309)  (4.619)                 (32.493)       (4.187)

TFP= 0.233a Sd + 0.065a Sf;  TFP =0.276a Sd + 0.059a m*Sf

       (13.406)      (4.773)                (32.482)       (5.839)

The country mnemonics are: CA=Canada; FR=France; DE=Germany; IT=Italy; JP=Japan; UK= United Kingdom; US=United States.
(.) are respective t-ratios. The mean trace statistics for the panel H0: r=0 and H0:r=1 are 27.979 and 8.034; their E(Zw) are 14.995 and

6.086 and var (Zw) are 24.995 and 10.535, respectively. Panel coefficients are computed as 1

1

V

Panel i
i

Vβ β−

=
= ∑

K

and the associated t-ratios as:

1/ 2
,

1

V

panel i
i

t V tβ β
−

=
= ∑K K . Panel results exclude Germany. Bartlet window of second order is used for FMOLS.



46

Table 7: Tests for the heterogeneity of co-integrating parameters across countries (Johansen estimates)

CA FR IT JP UK US
Sd Sf m*Sf Sd Sf m*Sf Sd Sf m*Sf Sd Sf m*f Sd Sf m*Sf Sd Sf M*Sf

0.00a 0.32 0.00a 0.00a 0.10c 0.04b 0.02b 0.97 0.04b 0.72 0.17 0.05bPanel:A
0.00a 0.54 0.00a 0.00a 0.00a 0.00a 0.00a 0.95 0.00a 0.22 0.71 0.02b

Panel:B                                           Sd                        Sf ;                     Sd                     m*Sf

                                        45.391                 20.076               56.526                30.894

d.f.                                     (6)                     (6)                       (6)                        (6)

Critical Value  (1%)       16.816                 16.816               16.816                16.816

The country mnemonics are: CA=Canada; FR=France; IT=Italy; JP=Japan; UK= United Kingdom; US=United States.
Panel: A reports the p-values of LR tests under the null that each country specific parameter is equal to its panel counterpart. The first and
second rows in panel (A) pertain to specifications, 0 log logd d f f

t tt tLogTFP S Sβ β β ε= + + +  and 0 log logd d f f
t tt t tLogTFP S m Sβ β β ε= + + + ,

respectively. Tests are reported only for the slope parameters. Panel B tests the joint null that all country specific parameters associated with a
particular variable (e.g., Sd) are equal to the respective panel (group mean) coefficient. Thus, panel A reports country-wise and parameter wise
tests of equality whereas panel B reports the joint tests.
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Table 8: International output elasticities of domestic R&D capital stocks, 1965-1999

CA FR DE IT JP UK US Average
CA - 0.001 0.001 0.000 0.003 0.003 0.048 0.057
FR 0.001 - 0.039 0.014 0.006 0.025 0.022 0.106
IT 0.001 0.027 0.035 - 0.003 0.016 0.013 0.095
JP 0.001 0.001 0.002 0.001 - 0.002 0.018 0.026
UK 0.001 0.007 0.011 0.003 0.003 - 0.011 0.035
US -0.046 -0.011 -0.021 -0.006 -0.056 -0.025 - -0.165
Average -0.041 0.026 0.067 0.012 -0.041 0.020 0.112

Bilateral output elasticities are calculated using equation (6) in the text. Their interpretation is as follows.
The output elasticity of Japan with respect to US R&D is 0.018.The average figures in the last row show that a
1% increase in Japan’s R&D would on average reduce other-G7 output by 0.041%. Likewise, the
last column shows that Japan’s output will increase by 0.026% following a 1% rise in the
domestic R&D of other six members of G7 group.
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