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Pion condensation in the two—flavor chiral quark model at finite baryochemical
potential
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Pion condensation is studied at one-loop level and nonzero baryochemical potential in the frame-
work of two flavor constituent quark model using the one-loop level optimized perturbation theory
for the resummation of the perturbative series. A Landau type of analysis is presented for the inves-
tigation of the phase boundary between the pion condensed/non-condensed phases. The statement
that the condensation starts at pur = my is slightly modified by one-loop corrections. The second
order critical surface is determined and analysed in the puy — ugp — 7" space. The ur dependence of
the one—loop level charged pion pole masses is also studied.

PACS numbers: 11.10.Wx, 03.75.Nt, 11.10.6h, 21.65.+f

I. INTRODUCTION

From the early 70’s, when the idea of pion condensation was first suggested ﬂ], many investigations have been
performed in the field. Right in the early works, the possibility emerged that pion condensation might have a
significance in the evolution of compact stars @, E, @] Beside compact stars, pion condensation can occur in asymmetric
nuclear matter as well as in heavy ion collisions at intermediate energies. While the phases of QCD can be well
described by perturbation theory at extreme high temperatures and densities, at moderate temperatures and densities
a perturbative description is not possible, here other methods like lattice field theory and effective field theories can
be applied. In lattice field theory a second order phase transition was found from normal phase to pion condensed
phase in two flavor QCD at a critical isospin chemical potential, which is about the pion mass E, , [ﬂ] Pion and in
some cases kaon condensation was also investigated in numerous effective models such as chiral perturbation theory
B, [Q], ladder QCD m], random matrix method , NJL model (in the mean field approximation) m, 13, 14, [ﬁ],
PNJL model [16] and linear sigma model m, 18, |. These investigations mostly focus on properties of asymmetric
hadronic matter, however if one wants to describe for instance a neutron star, which is electrically neutral on average,
then the condition of charge neutrality as well as f—equilibrium must be imposed explicitly as discussed in m, @]

Our main goal here is to go beyond the present status of the field and determine the phase boundary between
the pion condensed and non—condensed phases in the puy — ug — 7" space at one—loop level and to calculate the ug
dependence of the charged pion masses beyond tree level. This work is the continuation of our previous works m, ﬁ,
in the sense that we use the same framework of constituent quark model and the optimized perturbation theory (OPT)
@] as a resummation technique, which preserves the perturbative renormalizability as well as the symmetries of the
model. However there we used three flavor model, while the present investigation deals with an effective model of
2—flavor QCD. This approximation is sufficient to see the main properties of pion condensation.

The paper is organized as follows. In Section II, we introduce the model and discuss its renormalization in detail in
case when not only scalar but also pseudoscalar (pion) condensate is present. We treat bosons at one-loop level, while
the constituent quarks are considered at tree level. In Section III, we present the one—loop equations, which describe
our system, namely the equations of state for the scalar and pion condensates and the equation for the resummed
pion mass. Moreover we show that a Ward identity holds, from which the Goldstone theorem also follows. Then we
expand our equations in powers of the pion condensate, with which we restrict ourselves to a Landau—type analysis of
the phase transition. At the end of this section a simple formula for the boundary of the pion condensation domain
is established. In Section IV we diagonalize the mixed boson and fermion propagators, which are determined also
for small values of the pion condensate. Section V is dedicated to the parameterization of the model, i.e. we fix the
parameters of the Lagrangian at zero temperature and vanishing chemical potentials at one—loop level. Here we also
discuss the choice of the renormalization scales. In Section VI we present the numerical results and finally we conclude
in Section VII.
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II. THE MODEL AND ITS RENORMALIZATION

Our starting point is the renormalized SU(2);, x SU(2)r symmetric Lagrangian with explicit symmetry breaking
term, which contains meson as well as quark fields Ilﬂ] Without the symmetry breaking term the symmetry group
of the light meson sector (7, o) is O(4), and the Lagrangian is

L= 5 (00000~ m*6?) — 26"+ hoo + i — YT 60

1 oA 4

X So (1)
where 1 = (u, d) are the SU(2) doublet quark fields, ¢ = (¢o, ¢1, P2, ¢3) = (0,71, 72, 73) are the scalar sigma
and pseudoscalar pion fields, h is the symmetry breaking external field, and T, = (79,i77;5), « = 0...3 are the
quark-boson coupling matrices. In the Lagrangian above the couplings m?, A and the ¢ field are renormalized (finite)
quantities, while dm?, 6\, and §Z are the corresponding (infinite) counterterms. Since we treat quarks only at tree
level no wave function renormalization constant is necessary for the fermionic fields.

We use the grand canonical generating functional of the renormalized Lagrangian in order to introduce the baryon
and isospin chemical potentials as well as the scalar and pion condensates. As one shall see, one consequence of the
presence of pion condensation amounts to the appearance of the non—trivial wave function renormalization constant in
the equation of state of the condensate. At finite temperature and densities the grand canonical generating functional,
which determines the N—point functions of the fields, is

+ = (620,¢0"¢ — 5m*¢?) —

_ ~if S
Z= / DHDIIDYDY exp [i / dt / 2T + ipyoth — H + usQs + Q1) | , (2)
0

where the Hamiltonian of the system is

M= 2 (24 (Vo) +m?6?) + 2 0% — hoo + 1midits + LT b0

— %52112 + %52(%)2 + %;54 + %5m2¢2, (i=1,2,3) (3)
and the canonical momenta of the scalar fields are defined by
oL .
5 ( ) (4)

In @) @p, Qr are the conserved baryon and isospin charges defined by the zeroth component of the corresponding
Noether currents of the symmetric Lagrangian

Qp = /d?’x%(uTu—i—de), (5)

Q1 /d% {(1 +0Z)(miry — mam1) + % (ulu—d'd)|. (6)
At small temperatures, when h # 0 or h = 0 and m? < 0 the original O(4) symmetry of the meson sector breaks down
to O(3), which means that the o scalar field has a nonzero vacuum expectation value (vev), thus (¢g) = (o) =v # 0.
Moreover, if the isospin chemical potential y; is sufficiently large, charged pions condensate (Bose-condensation) and
another nonzero vacuum expectation value occurs, which additionally breaks down the symmetry to O(2). If one
initially introduces vev to all the four bosonic fields it can be shown that because of the remaining O(2) symmetry
the fields can be transformed in such a way that only two nonzero expectation value remains, from which one is the
aforementioned v, and the other one can be either (¢1) or (¢2), i.e. one can entirely transform out (¢3). Hence, we
can choose (¢1) = (1) = p # 0 and (¢;) = (m;) = 0 for i = 2,3 (see for e.g.[18]).
Shifting the fields by their expectation values in Eq.(2) the generating functional can be written as

zZ= / DDIDY [e Jo? e PG i e [ dal / et Jo e J d%(m’%)] - (7)

Here G/ is the tree level fermion propagator matrix, which after going to Fourier space and introducing the
wn = (2n + 1) fermionic Matsubara frequencies, is given as (see for e.g. [17]),

gr

of 71 _ ((Fiwn + 3 + g0 — vipi — Sv —i955p q
Wiy = _ijar _ 1, _1 s — 9E ) (8)
1550 (—iwn + gpB — 5)v0 — Yipi — Gv



where p; is the spatial momentum. In () 7:13 = 7-13 + 7-13 o contains all terms depending on the canonical momenta
and bosonic fields up to second order. Other terms are contained in the L 1. The non—zero condensates generate three
point couplings, which can be directly read off from the explicit form of Lr (A). The combination II¢ — H} can be
written as

Mo —Hp = — 1—52 (H —2H01+5Z)¢>O)

— 1—5Z

- %(1 ~52) (113~ 2o (1 + 62)(é + ma(n + ) . (9)

B 1_52 (H — 9T0, 1+6Z)¢3)
)(

12 — 2011, (1 4 02) (1 — MI¢2))

After completing into whole squares and performing the integration over the canonical momenta in (@), one can
identify the tree level bosonic inverse propagator matrix and from the linear terms the tree level equations of states
(EoS).

The 4 x 4 inverse boson propagator (Gbil) in Fourier space with the introduction of the w, = 27nf bosonic
Matsubara frequencies splits up into the inverse propagator of 73 and a 3 x 3 coupled inverse propagator matrix of
the remaining three bosonic fields 71, 72, 0. In the 7 o sector we switch to the charged 7t = (m F iwz)/\/i base and

use the following relabeling i, = 1,2,3,4 — 7,7, 0, 73. In this way the non zero elements of Gi—’[l are

1

Gl = (—iwn)® - EZ,, (10)
B e
Gy = -\p? (—iwy + p1)? — E72|_3 — A\p? —V2\vp ,

—V2\vp —V2 vp (—iwn)? — EZ, — 2\0?

where k,l =1,2,3, Er, = \/p? + m2_, and the tree level 73 mass square is m2, = m? + A(v? + p?).
As mentioned earlier in (@) the coefficients of the terms linear in the corresponding fields ¢o (o) and ¢1 (m1)
determine the two non—trivial equations of states:

EoSY®® = v(m? + A(v® +p?)) —h =0, (11)
EoSy*® = p(m?+ A(v® + p?) — pf (14 6Z)) = 0. (12)

In the second EoS the wave function renormalization constant §Z is explicitly written —which unavoidably occurs
when field renormalization is introduced followed by the canonical way of introducing chemical potentials— even if
it is a higher order term, because we would like to emphasize the importance of its presence. From the one—loop
fermionic contribution of the second EoS, as it will be seen later, a pf proportional divergence arise, which has to
be absorbed into some infinite counterterm, and this counterterm will be the §Z renormalization constant. In other
words the lack of Z would result in an uncanceled divergence in the second EoS.

The infinite parts of the counterterms can be obtained by requiring the finiteness of the perturbative N—point
functions (in our case the propagator and the four point boson vertex) in the symmetric phase (v = p = 0) at
T = pug = pr = 0. Practically it is easier to obtain the infinite parts from the one-loop EoS (see Sec. [III).
Accordingly, the following counterterms can be found up to one-loop order with cutoff regularization,

A2 g2
2 _ 4 ZE 2
om? = —6A(A% —m?In l2) 471_ZNCA ,
A2 92 A2
oA = 12X°In— — ZE N, In — 13
YT mee T a (13)
QF A?
Z = —N, 1
0 1672 " 122’

where A is the three dimensional cutoff in momentum space, while [, and [¢ are the bosonic and fermionic renor-
malization scales, respectively. These counterterms cancel by definition all divergences at one-loop level and at
v=p=T=pug = pur = 0 and in the broken phase the same counterterms can be used with a slight modifica-
tion due to the necessary resummation (see Sec. [[II). The finite parts of dm?, A and §Z are determined by the
parameterization of the model in the broken phase (see Sec. [V]).



III. EQUATIONS AT ONE-LOOP LEVEL

As it is well known from finite temperature field theory, tree level mass squares can become negative in the broken
phase as the temperature increases. Accordingly some sort of resummation of the perturbative propagator is needed
(see for example in IE]) We perform this using the optimized perturbation theory ], where a temperature (and
chemical potential) dependent mass term is introduced in the Lagrangian and the difference between the original and
the new mass parameter is treated as a (finite) higher order counterterm,

1 1 1
Emass = _§m2¢2 = _§M2(T7 M)(b? - §Am2(T7 M)(b? (14)
Here Am? is the finite “one-loop level” counterterm. The new mass parameter is determined by requiring that the
inverse one-loop level 73 propagator at zero external momentum stays equal to its tree level value (fastest apparent
convergence FAC)
M2 = M? +6m® + (A + 00 (0> + p?) + By (W = p = 0, M?, T, p) + Am® = M? + X\(0* + p*) = m (15)

w3

where we indicated the resummed mass dependence of the self energy (X,,). Strictly speaking the OPT at one-loop
order replaces m with M (T, p) also in the internal tree level propagator llnes Since 73 is not a mixed state, M (T, i)
can be expressed through the tree level 73 mass, which equals its one—loop level value by the condition (EIH), and thus
the diagonal part of the boson propagator ([I0) can be written as a function of the 73 mass instead of M (T, u),

o 1 . b 1 :

1(}'1{171 = (—iwp — p1)? —p2 —m2_ — \p?, ng{l = (—iwn + p)? —p? —m2, — \p? (16)
Gy = (—iw,)? —p? —m2 2/\11 G4, = (—iwn)? —p? —m2,.

Here and in the following the 73 mass is denoted by mr, due the PMS relation (my, = My,). In this way M (T, u) is
eliminated from (I3) and the resummed 75 mass is determined by the equation

mi, (T, i) = m? +6m® + (A + 0A) (v + p?) + By (w = p = 0,m3,, T, p), (17)

where X, now depends on m, through the “resummed tree level” propagator matrix (16). This means that the above
procedure makes the 73 propagator (G%,) selfconsistent at p = 0, while the mixed sector of the boson propagator is
partially resummed due to its m,, dependence.

The self energy in (I7) contains bosonic as well as fermionic loop integrals,

Spo(w=p=0,m2 Tou) = A+ )\i Te{ TG (o, p, )}
+ A2Z BYBY, (G (@n, Py i) G2y (wn, s i) + Gy (s D 1) Gl (s . 11))
+ g%‘ IpGil(wnapaﬂluMB)BQI;GJf'lk(wnupu/J‘IaMB)Bgla (18)

where T°, B/ denotes the coupling matrices which arise from (@) and are listed in the appendix. It is worth to
note that the divergences of the self energy are cancelled by the infinite perturbative counterterms if one replaces
m with M (T, ) in (I3). In this case, it seems that the counterterms are temperature and/or chemical potential
dependent, however it can be proved order by order that all 7" and/or u dependent infinities are cancelled by higher
order contributions (see for e.g. in [23] and [26]).

The scalar condensate v is determined by the vanishing of the one-loop level one point function of o (EoS, at
one-loop level),

v <m2 +0m? + (A +6A) (v + p?) + AZ Tr{H"G"(wn, P, 1)} + gr Z Tr{H' G (wn,p, 1, uB)}> =h, (19)
P P
where H%/ can be found in the appendix. Comparing (I8) and ([9) one can recognize a Ward identity which connects
the symmetry breaking external field with the propagator of w3 at zero external momentum,
vm?2 = h. (20)

This relation is a consequence of the remaining O(2) symmetry, which is an axial vector rotation around the third
isospin axis from the point of view of the chiral symmetry. Moreover (20) guarantees the Goldstone theorem for this
degree of freedom (neutral pion).



The pion condensate is determined through the m; one point function, which is the EoS,, at one-loop level,
p (m2 +0m? + A+ N (v + p?) — pf(1+62) + )\ZP’I‘r{Rbi(wn,p,ul)}
+gF szI‘{Rfo (wna P, p1, ﬂB)}) = 05 (2]‘)

where and R»/ can be found in the appendix. Here the infinite part of §Z just cancels the g dependent divergence
of the fermion loop integral.

The calculation of the loop integrals in ([I8) and (2I)) requires the diagonalization of the propagators and the
corresponding transformation of the coupling matrices due to the non—diagonal matrix elements in (I0) and (&).
The diagonalization itself is a straightforward calculation, however the eigenvalues of the boson propagator (I0) are
non-rational functions of w,,. Thus performing the Matsubara sums is a very complicated task and it is beyond the
scope of our paper. In order to avoid these difficulties the diagonalization was accomplished only for small p. As one
shall see in the next section this method leads to ordinary Matsubara frequency dependence in the propagators. For
that very reason we restricted ourselves to a Landau—type analysis of the pion condensation in a small vicinity of the
phase boundary. Up to second order in p the mass equation ([I7)) can formally be written as

m2. =m? + 2?4t (mZ, v, T, ) + (A + () (m2,, v, T, pu1,B))p°, (22)

3

while ([I9) goes over into the simple form of (20) due to the Ward identity. At the same order in p (2I)) can be
rewritten as,

p [u? —m? =M —rO(m2 0, T, u) — A+ (m2,,0, T, us))p* + O(p*)| =0 (23)

By virtue of the above equation the pion condensate may have non—zero value only if the roots of the expression in
the square bracket are real. Assuming that A + (2 > 0, Eq.(23) yields

. p3—m? =2 —rO(m2 v, T, pup)
A + T‘(2) (mgry, , U, T7 MI,B)

(24)

if u2 —m?— % — 79 > 0. This means that in this case the transition is of second order supposing that the coefficient
of the fourth order term in ([Z3) is negative. Moreover if A +7(2) < 0 and p2 — m? — \w? — r(® < 0 (keeping that the
fourth order term is negative) it can be seen that the equation can have two nonzero roots, which suggests first order
phase transition. For the calculation of the (%2 and 7(*?) coefficients in [22) and 4) diagonalization of the boson
and fermion propagator up to order p? is needed, which will be presented in the next section.

IV. DIAGONALIZED PROPAGATORS FOR SMALL p

In our approach, as was discussed previously, the next step is to determine the eigenvalues of the propagator matrices
for small p values, in other words to find the propagating eigenmodes with help of some suitable linear transformation
of the original fields perturbatively in p. This step is not necessary if one would like to calculate the effective potential
(see for e.g. [17]). In case of the bosonic propagator the transformation matrix up to O(p?) is found to be,

1—1|a*p® b1 —2av)p> —\2ap
Op = [ b*(1 = 2a*v)p> 1 —|af*p? —V2a*p | +0(p%), (25)
V2ap Vaatp  1-2[afp?

where a = a(wn, 1) = M/(u? + 22\0? + 2iw,pu) and b = b(wy, 1) = i\/(4uw,). As it can be checked Op is not a
unitary transformation and it is important to note that Op depends on the Matsubara frequency w,. With this
transformation Op - (inﬁm,’U*l) 05" = diag(iG_!,iG_1,iG;1) + O(p®), where the tilde reminds us that these
propagators belong to the transformed (propagating) particles. It is worth to note that the new 7 and 7~ particles
are no longer charge conjugates of each other, which is a natural consequence of the presence of the pion condensate.
After calculating the inverses perturbatively, the transformed 7+, 7= and o bosonic propagators are given by

- 1 5 A2ud + 2X\0? — dipw,,)

'Gﬂ' = - . A
o P (wn + )2 + B2)2(12 + 2)02 — Zigiron)

O(ph), 26
(wp +ipg)? + E2 +0(p") (26)




iy 1 A2p2 + 2\? + dipgw,)
G.. = _ 2 1 n 1) 4 97
o on — TP+ B2 " ((on = i) + BD2( + 2002 + By T O ) (27)

5 1 Apd + 220?) (pf + 6 02 + 4pfw?
Gy = 25— 1" (2MI - 2 21} )(51 . ;)2+ 'ulzwnz) +0(p"), (28)
wn + Ea' (wn + Ea') ((NI + 2)‘U ) + 4MI wn)
while the 73 propagator is
1 A

G, = a O(p*). 2
R ey - R prey o PR G (29)

In case of the fermionic inverse propagator matrix the diagonalization must be performed cautiously due to the
presence of the non commuting Dirac matrices. The clearest approach is to solve the equation OF(iGgl)Ogl = diag
for Op directly. In this way Op is found to be

2
14 Z5p? =i rygysp
Op = 32k7 ko , (30)

: gF 9% 2
—lag Y0P L+ g5Ee
where ko = (—iw,, + % 1B )Yo and the matrix is hermitian. After performing the inverse perturbatively the fermionic

propagators are given by

Y S 1
——— ' o0
pu/d_mf Sko pu/d_mf zsu/d_mf

iGyya = — (31)

where p, ;= (—iwn + puya)vo — Yibi and iy q = pB/3 + /2.

In the appendix it is shown that all integrandus appears in the one-loop equations ([I8), (I9) and 2I) can be
written as traces over flavor space (in case of fermions traces also concern Dirac indices). In this way one can insert
the bosonic/fermionic transformation matrices given in ([25)) and (B0) under the traces and transform the propagators
within into diagonal form, which will lead to transformation of the corresponding coupling matrices. Thus for instance
the trace in (A4)) can be written as

Tr{B"G"} = Tr{B" 05'0pG"05' 05} = Tr{0pB" 05'G"} = Tr{B'G"}, (32)

where G? = diabg(G;1 , G;,l ,G71), and BY is the transformed coupling matrix, which depends on w,, as was mentioned
earlier. Similar expressions can be derived in case of fermions.

V. THE PARAMETERIZATION

Before calculating at finite temperature and non—zero chemical potentials one has to parameterize the model at
T = 1,3 = 0. We closely follow the method presented in m, 22, |ﬂ] Since p = 0 at py = 0, there are five parameters,
namely m?2, )\, gr, h and v, which can be fixed by setting four physical quantities —namely the pion, sigma, u and d
quark masses plus the pion decay constant (through the PCAC relation)— to their physical values and by requiring
the fulfillment of the [20) equation of state. At T = purp = 0 and p = 0, the one-loop level w3 inverse propagator can
be written as

(GLP) ™ = (1= 02Z)p* = m® — 6m® — (A + 6MA? — B, (p° = 0) — p°SL, (p* = 0) — 2(p?), (33)

where X/ = 0%, /0p? and ., ~ O(p*). Fixing the physical m3 mass (M, = 138 MeV) through the 73 one-loop
level propagator at p> = 0 and using the (I7) mass resummation equation at p =T = p; g = 0 one obtains

M2 = m? + M? 4 3NTY (M, ) + T (mg, 1)) + 295N ™ (my, 1), (34)

where m2 = M2 + 2X\v? and Tg/f’ﬂ denotes the bosonic/fermionic tadpole integrals at zero T and prp. In (B34)
the lack of bubble integrals is due to the fact that at p>=0 they reduce to a linear combination of tadpoles. These
tadpoles are finite on account of the §m? and §\ counterterms (I3). Note that new divergent terms do not appear in
the tadpoles at finite temperature and/or non—zero chemical potentials, as it should be. The presence of §Z in (B3)
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FIG. 1: Bosonic renormalization scale dependence of the fermion renormalization scale I7, the mass parameter m? (left panel)
and of the coupling A, the tree level o mass m, (right panel).

is also important because this term renders the p? dependent part of the propagator finite. It involves also a finite
renormalisation:

4 4 2,2 m3
i %, N Mz —mg + Mzimg log (—3) 2 N, em?
520 = 57+ L2 (52 — () = M) p Iy (L (35)
s op? 1672 (m2 — M2)2 1672 B
and the one-loop level PCAC relation depends on §Z5 as follows
V[iGEOP (p? = 0)] ' = fM2(1— 6287 /2), (36)

where fr = 93 MeV is the pion decay constant. Since 5Z§;‘ depends on the fermionic renormalization scale its actual
value is tunable. Thus we required the vanishing of 5Z§;’ to fix the fermionic renormalization scale. This requirement
makes the PCAC relation simpler and thus the values of v, gr, h offer themselves immediately

my
fr”
where m; = 938/3MeV is the constituent u,d quark mass. At this point v, gr, and h are known and m? can be
expressed from (B4).

The remaining unknown A parameter is determined by fixing the physical ¢ mass at one-loop level and at zero
external momentum, that is

U:fTH gr =2 h:fﬂ'Mfrv (37)

M7 = m® 4 dm + 3(A + 6A)0? + X, (p* = 0)
= 2+ 3\ + BA(TY (M, ) + T3 (o, 1)) + 183202 BY (g, Iy) + 63202 BY (M, 1) + 6931 (my, 1), (38)

where B and Tof '? come from the temperature and chemical potential independent part of the bosonic/fermionic
bubble diagram at zero external momentum and degenerate masses. It is worth to note that the same infinite
counterterms render the above equation as well as the equation of M finite.

We use M, = 500 MeV for the physical 0 mass. This choice seems somewhat arbitrary, because the o meson is
a broad resonance rather than a particle with well-defined mass (see [28] and references therein). Thus it would
be more appropriate to identify the mass and width of the ¢ meson through the pole of its spectral function @]
However, we checked that varying M, in the 400 MeV — 750 MeV range produces just the same order of uncertainties
in the thermodynamical results as the variation of the [, boson renormalization scale itself. Accordingly, it is enough
to analyze the [, dependence of the different parameters, hence here and in the following we present our results which
correspond to the choice M, = 500 MeV at zero T, urp. On the left panel of Fig. [[lthe bosonic renormalization scale
dependence of m? and lf, while on the right panel the tree level ¢ mass and the A parameter are shown. As one
can see on the right panel, the tree level o mass equals its one—loop level value at [, =~ 600 MeV thus the ¢ mass
becomes selfconsistent at this point (but only for zero T', urg!). In addition m and [y moderately depend on the
renormalization scale around this point (see left panel of Fig. ). According to the above arguments we choose the
following scale range: 1, € [400 MeV, 800 MeV] for the thermodynamical calculations.
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FIG. 2: Temperature and chemical potential dependence of the scalar condensate v. Left panel shows v(T) at ur,s = 0 and
Iy = 400, 600, 800 MeV. Right panel shows v(ug) at pur = 0 and T' = 20, 50, 80, 100 MeV.

VI. RESULTS AT LOWEST ORDER IN p

As was derived in Sec. [Tl the expectation value p of the pion field is determined by (24) up to second order in
p. From this equation it can be immediately seen that the second order boundary for the occurrence of the pion
condensation in the puy — up — 7" space is determined by

ui —m? — \? — T(O)(mig,v,T, prp) = 0. (39)
Moreover, the prp and T dependence of v and m,, are determined by ([20) and (22), which have to be solved at
p=0. At p =0 [22) has the same form as ([B4) with the slight difference that now the tadpoles which appear therein
have to be calculated at finite temperature and chemical potentials, while the form of (20) is unchanged. Using the
explicit expression of 7(9, Eq. [3) can be expressed as

H% - mgr'g (Ta M1, ,UJB) - Rl*loop (Ta M1, /LB) = 07 (40)

where R71°°P js the remaining part of (9 after subtracting from it m,273. It contains one—loop bosonic and fermionic
contributions. From ([@Q) it is obvious that at one-loop level the condensation does not start exactly at puy = my,,
as it is commonly expected, but it is shifted to some extent by R'°°P. It’s worth to note that the deviation R'1°°P
does not vanish identically even if the resummed pion mass is defined as the pole of the propagator.

First, we investigated the temperature and chemical potential dependence of the scalar condensate v at py = 0
and different values of I, by solving ([20) and ([22)), which can be seen in Fig. Bl On the left panel the temperature
dependence of v is shown at [, = 400,600,800 MeV and at zero chemical potentials. As it is expected, the scalar
condensate shows a smooth crossover as the chiral symmetry is restored at a pseudocritical temperature (7;.) around
150 MeV, which is in good agreement with the continuum limit lattice result found in @] Moreover, the v(T) curve
and consequently 7T slightly depend on [;,. Hence, in the forthcoming we use the fixed scale I, = 600 MeV. On the right
panel the baryochemical potential dependence of v can be seen at I, = 600 MeV scale, and at 7" = 20, 50, 80, 100 MeV
temperatures. At small temperatures the transition is of first order, while for large temperatures it is of analytic
crossover type, indicating the existence of a critical endpoint (CEP), where the transition changes from first order
to crossover with increasing temperature (see e.g. in [21] and references therein). As one can see on Fig. 2 the
temperature at the CEP is around 50 MeV, which is much lower than the lattice result presented in Ref. [31], however
this is a common feature of effective models (for two/three flavors see e.g. Refs. [29], [21]). The critical /pseudocritical
baryochemical potential values range from ~ 600 MeV to ~ 1000 MeV depending on the temperature.

Next, solving 20) and @2)) for different T, ur, up values and tracking the fulfillment of the ([@0) condition we
determined the second order critical surface of pion condensation, which can be seen on Fig.[3l As a function of the
isospin chemical potential at fixed pup the region of pion condensation starts very steeply at around 130 MeV. After
that steep jump a plateau starts, which decreases slowly towards higher values of pj. Moreover, it can be seen that
the region of pion condensation shrinks with increasing up and it even disappears at around pug = 830 MeV (and
w1 = 131 MeV), a behavior which is in accordance with previous effective model studies (see e.g. Sec. VIL.A of [17]).
This is understandable physically, since at large pup the condensate p is basically determined by the difference of the



FIG. 3: Second order critical surface of the pion condensation in the ur — pug — T
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FIG. 4: Phase boundary of pion condensation and the pur = mr, condition as function of the isospin chemical potential for
different pp values.

u — d quark contributions in the EoS, and this difference is decreasing with increasing up at fixed pp, because the
Fermi-Dirac factor in the contribution of u depends on upg + p, while in the contribution of d on ug — p1. It is worth
to observe that on the surface a gradually increasing missing part starts from about up = 415MeV and pu; = 221 MeV.
In that region the p2 —m? — Av? — r(®) combination (numerator of Eq. (24)) is negative, which means that the
transition is not second order anymore. Strictly speaking if in this region there is a nonzero solution to p this can
happen only if A + ) < 0 (denominator of Eq. (24)) and in this case the transition is of first order.

To analyze the surface in detail, two sections taken at ug = 0 MeV and up = 400 MeV are plotted in Fig. @ together
with the pu; = mg, curves. At both baryochemical potentials the condensation starts at around gy = 131 MeV, which
is slightly below the m,, = 138 MeV pion mass, this deviation is due to the corrections R'71°°P in ({@Q). Moreover,
the deviation widens as yu increases. Another interesting feature is that at fixed high temperature as we increase the
isospin chemical potential the condensation evaporates above a certain y value, which is in accordance with Ref. M],
where this phenomenon was observed in case of two flavor PNJL model. In the region where the condensate already
evaporated (p = 0) the chiral symmetry is almost totally restored (v & 0).

Finally we calculated the one—loop pole masses of the charged pions on different temperatures as a function of the
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FIG. 5: p1 dependence of the one-loop pole masses of charged pions at different temperatures (7' = 90, 140, 150 MeV). The thin
lines indicate the condensed phase for each temperature (where our calculation is not valid).

isospin chemical potential at p = 0. For this we calculated the self energies of the charged pions, then we solved the
following pole mass equations:

2
(Msile> = (ms:ie)2 + Eﬂri (w = M:ilea P= 0, T7 MLB)a (4]‘)

where we have implicitly used the already known solutions v(T, uyg) and mq, (T, u ). The one-loop masses are
plotted on Fig. Bl On the figure thick lines represent the sectors, where our calculation is valid, that is p = 0. At the
thin line parts of the curves the pions are condensed, thus we should go beyond the lowest approximation in p to get
correct results in that sectors. It is worth to note that when the condensation sets in none of the one—loop charged
pion masses becomes zero as opposed to the masses defined through the dispersion relation (see e.g. m]) Another
interesting thing is that at larger values of u; where the condensation has already evaporated and our calculation is
valid (thick line parts) the charged pion masses are still different, however p = 0. This difference is due to the fact
that the isospin background acts differently on the charged pions (with opposite signs).

VII. CONCLUSIONS

In this paper we studied the pion condensation in the framework of SU(2); x SU(2)g constituent quark model
with explicitly broken symmetry term in the presence of baryochemical potential. The model was parameterized
at one-loop level and optimized perturbation theory was used for the resummation of the perturbative series. The
one—loop equations were expanded in powers of p, and a Landau type analysis was performed for the phase boundary
at lowest order in p. A simple condition for the boundary of the pion condensation was set up, and we argued that
this condition gives a second order surface in the ur — ug — 7" space. The temperature and renormalization scale
dependence of the scalar condensate v was investigated, and a mild renormalization scale dependence was found.
At zero baryochemical potential the pseudocritical temperature is in accordance with results found on lattice @]
Using the condition for the pion condensation the second order surface was determined. It was found that the surface
starts steeply with increasing uy at fixed up and towards large values of up the pion condensed region shrinks and
even disappears at around pug = 830 MeV. However, at such a high energy one should take into account the effects
of the strange quark. Investigating different sections of the surface it was showed that at one-loop level the pion
condensation curve slightly differ from the py = m,, curve at small p and this deviation increases with increasing
pu1- We also studied the dependence of the charged one-loop pion masses on the isospin chemical potential. As a
continuation of the present study the analysis can be extended to higher order in p, with which for instance the scaling
properties around the surface, the dispersion relation at one-loop level and different phases of the condensed matter
(BCS/LOFF) could be investigated.
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APPENDIX: COUPLINGS

The coupling matrices appearing in ([I8), (I9) and (2I)) can be obtained from the interaction term of the shifted
fields in the Lagrangian

A - A - .
Z¢4 + 97F¢Ta¢a1/) — 1 ((7r1 + p)2 + 7r§ + ﬂ'g + (o + 0)2)2 + 97F1/) (to(o +v) +iv5(71(m1 + p) + Tome + T373)) V.

(A1)
The four and three point couplings of (A)) determine the coefficients of the tadpole and bubble terms of (IX).
Including the symmetry factors of the corresponding graphs these are:

1000 00 0 p
» 0100 - 00 0 p ;if= 0
"=1oo010]| B_ﬁoo\}\/iv’ B_z 0 /)’ (A2)
0003 pp V2u 0

where in case of bosons the same convention is used for the labeling of the matrix elements as in (I0). The bosonic
bubble contribution in (I8)) can be rewritten as

> BYBL(GHGY, + GYGY) = 2T {G"TB"G" B}, (A.3)
i,7,k,l

and by virtue of the structure of B® and G® one can factor out the 73 propagator from the above expression as follows
Tr{G*TB*G*B"} = G Tr{B"'G"}, (A.4)
where

P> PP V2up 0

2 2 \/_ 0
Bb/ =9 P Up . A5
\/—vp \/—vp 202 0 (A-5)
0 0 O
The fermionic bubble contribution can be formulated as,
> &Blc Bl =1{¢!"B/G' B/} = To{B/G'B/ G/}, (A.6)
ikl

where the trace is over flavor as well as Dirac indices.
Moreover, in equations of states (I9) and (2I]) the tadpole coefficients are also determined by the three point

couplings of (A1),

2p o v/vV2 0
20 v/v2 0 1/10
R=| Pr_ 7 RS =~ AT
’U/\/i ’U/\/§ p 0 ) 2 O 1 ’ ( )
0 0 0 p
and
v 0 p/V20
0 v p/V2 0 ' 0 s
H* = P =1 A8
p/V2 p/V2 3v 0] 2 <”Y5 0> (4.8)
0 0 0 v
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