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Pion ondensation is studied at one�loop level and nonzero baryohemial potential in the frame-

work of two �avor onstituent quark model using the one�loop level optimized perturbation theory

for the resummation of the perturbative series. A Landau type of analysis is presented for the inves-

tigation of the phase boundary between the pion ondensed/non-ondensed phases. The statement

that the ondensation starts at µ
I

= mπ is slightly modi�ed by one�loop orretions. The seond

order ritial surfae is determined and analysed in the µ
I

− µ
B

− T spae. The µ
I

dependene of

the one�loop level harged pion pole masses is also studied.

PACS numbers: 11.10.Wx, 03.75.Nt, 11.10.6h, 21.65.+f

I. INTRODUCTION

From the early 70's, when the idea of pion ondensation was �rst suggested [1℄, many investigations have been

performed in the �eld. Right in the early works, the possibility emerged that pion ondensation might have a

signi�ane in the evolution of ompat stars [2, 3, 4℄. Beside ompat stars, pion ondensation an our in asymmetri

nulear matter as well as in heavy ion ollisions at intermediate energies. While the phases of QCD an be well

desribed by perturbation theory at extreme high temperatures and densities, at moderate temperatures and densities

a perturbative desription is not possible, here other methods like lattie �eld theory and e�etive �eld theories an

be applied. In lattie �eld theory a seond order phase transition was found from normal phase to pion ondensed

phase in two �avor QCD at a ritial isospin hemial potential, whih is about the pion mass [5, 6, 7℄. Pion and in

some ases kaon ondensation was also investigated in numerous e�etive models suh as hiral perturbation theory

[8, 9℄, ladder QCD [10℄, random matrix method [11℄, NJL model (in the mean �eld approximation) [12, 13, 14, 15℄,

PNJL model [16℄ and linear sigma model [17, 18, 19℄. These investigations mostly fous on properties of asymmetri

hadroni matter, however if one wants to desribe for instane a neutron star, whih is eletrially neutral on average,

then the ondition of harge neutrality as well as β�equilibrium must be imposed expliitly as disussed in [14, 20℄.

Our main goal here is to go beyond the present status of the �eld and determine the phase boundary between

the pion ondensed and non�ondensed phases in the µ
I

− µ
B

− T spae at one�loop level and to alulate the µ
I

dependene of the harged pion masses beyond tree level. This work is the ontinuation of our previous works [21, 22℄,

in the sense that we use the same framework of onstituent quark model and the optimized perturbation theory (OPT)

[23℄ as a resummation tehnique, whih preserves the perturbative renormalizability as well as the symmetries of the

model. However there we used three �avor model, while the present investigation deals with an e�etive model of

2��avor QCD. This approximation is su�ient to see the main properties of pion ondensation.

The paper is organized as follows. In Setion II, we introdue the model and disuss its renormalization in detail in

ase when not only salar but also pseudosalar (pion) ondensate is present. We treat bosons at one�loop level, while

the onstituent quarks are onsidered at tree level. In Setion III, we present the one�loop equations, whih desribe

our system, namely the equations of state for the salar and pion ondensates and the equation for the resummed

pion mass. Moreover we show that a Ward identity holds, from whih the Goldstone theorem also follows. Then we

expand our equations in powers of the pion ondensate, with whih we restrit ourselves to a Landau�type analysis of

the phase transition. At the end of this setion a simple formula for the boundary of the pion ondensation domain

is established. In Setion IV we diagonalize the mixed boson and fermion propagators, whih are determined also

for small values of the pion ondensate. Setion V is dediated to the parameterization of the model, i.e. we �x the

parameters of the Lagrangian at zero temperature and vanishing hemial potentials at one�loop level. Here we also

disuss the hoie of the renormalization sales. In Setion VI we present the numerial results and �nally we onlude

in Setion VII.
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II. THE MODEL AND ITS RENORMALIZATION

Our starting point is the renormalized SU(2)L × SU(2)R symmetri Lagrangian with expliit symmetry breaking

term, whih ontains meson as well as quark �elds [24℄. Without the symmetry breaking term the symmetry group

of the light meson setor (π, σ) is O(4), and the Lagrangian is

L =
1

2

(

∂µφ∂
µφ−m2φ2

)

− λ

4
φ4 + hφ0 + iψ̄γµ∂

µψ − gF
2
ψ̄Tαφαψ

+
1

2

(

δZ∂µφ∂
µφ− δm2φ2

)

− δλ

4
φ4, (1)

where ψ = (u, d)T are the SU(2) doublet quark �elds, φ = (φ0, φ1, φ2, φ3) ≡ (σ, π1, π2, π3) are the salar sigma

and pseudosalar pion �elds, h is the symmetry breaking external �eld, and Tα = (τ0, iτγ5), α = 0 . . . 3 are the

quark�boson oupling matries. In the Lagrangian above the ouplings m2
, λ and the φ �eld are renormalized (�nite)

quantities, while δm2, δλ, and δZ are the orresponding (in�nite) ounterterms. Sine we treat quarks only at tree

level no wave funtion renormalization onstant is neessary for the fermioni �elds.

We use the grand anonial generating funtional of the renormalized Lagrangian in order to introdue the baryon

and isospin hemial potentials as well as the salar and pion ondensates. As one shall see, one onsequene of the

presene of pion ondensation amounts to the appearane of the non�trivial wave funtion renormalization onstant in

the equation of state of the ondensate. At �nite temperature and densities the grand anonial generating funtional,

whih determines the N�point funtions of the �elds, is

Z =

∫

DφDΠDψ̄Dψ exp

[

i

∫ −iβ

0

dt

∫

d3x(Πφ̇ + iψ̄γ0ψ̇ −H+ µ
B

QB + µ
I

QI)

]

, (2)

where the Hamiltonian of the system is

H =
1

2

(

Π2 + (∇φ)2 +m2φ2
)

+
λ

4
φ4 − hφ0 + iψ̄γi∂iψ +

gF
2
ψ̄Tαφαψ

− 1

2
δZΠ2 +

1

2
δZ(∇φ)2 + δλ

4
φ4 +

1

2
δm2φ2, (i = 1, 2, 3) (3)

and the anonial momenta of the salar �elds are de�ned by

Π =
δL
δφ̇

= (1 + δZ)φ̇. (4)

In (2) QB, QI are the onserved baryon and isospin harges de�ned by the zeroth omponent of the orresponding

Noether urrents of the symmetri Lagrangian

QB =

∫

d3x
1

3
(u†u+ d†d), (5)

QI =

∫

d3x

[

(1 + δZ)(π1π̇2 − π2π̇1) +
1

2

(

u†u− d†d
)

]

. (6)

At small temperatures, when h 6= 0 or h = 0 and m2 < 0 the original O(4) symmetry of the meson setor breaks down

to O(3), whih means that the σ salar �eld has a nonzero vauum expetation value (vev), thus 〈φ0〉 ≡ 〈σ〉 ≡ v 6= 0.
Moreover, if the isospin hemial potential µ

I

is su�iently large, harged pions ondensate (Bose-ondensation) and

another nonzero vauum expetation value ours, whih additionally breaks down the symmetry to O(2). If one

initially introdues vev to all the four bosoni �elds it an be shown that beause of the remaining O(2) symmetry

the �elds an be transformed in suh a way that only two nonzero expetation value remains, from whih one is the

aforementioned v, and the other one an be either 〈φ1〉 or 〈φ2〉, i.e. one an entirely transform out 〈φ3〉. Hene, we
an hoose 〈φ1〉 ≡ 〈π1〉 ≡ ρ 6= 0 and 〈φi〉 ≡ 〈πi〉 = 0 for i = 2, 3 (see for e.g.[18℄).

Shifting the �elds by their expetation values in Eq.(2) the generating funtional an be written as

Z =

∫

DφDψ̄Dψ
[

e−
R

−iβ

0
dt

R

d3xψ̄Gf−1
ψe−i

R

−iβ

0
dt

R

d3xL̃I

∫

DΠei
R

−iβ

0
dt

R

d3x(Πφ̇−H̃B)

]

. (7)

Here Gf
−1

is the tree level fermion propagator matrix, whih after going to Fourier spae and introduing the

ωn = (2n+ 1)β fermioni Matsubara frequenies, is given as (see for e.g. [17℄),

iGfij
−1

=

(

(−iωn + 1
3µB + 1

2µI)γ0 − γipi − gF
2 v −i gF2 γ5ρ

−i gF2 γ5ρ (−iωn + 1
3µB − 1

2µI)γ0 − γipi − gF
2 v

)

, (8)
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where pi is the spatial momentum. In (7) H̃B = H̃Π
B + H̃B,2 ontains all terms depending on the anonial momenta

and bosoni �elds up to seond order. Other terms are ontained in the L̃I . The non�zero ondensates generate three
point ouplings, whih an be diretly read o� from the expliit form of L̃I (A.1). The ombination Πφ̇− H̃Π

B an be

written as

Πφ̇− H̃B = − 1

2
(1 − δZ)

(

Π2
0 − 2Π0(1 + δZ)φ̇0

)

− 1

2
(1 − δZ)

(

Π2
3 − 2Π3(1 + δZ)φ̇3

)

− 1

2
(1 − δZ)

(

Π2
1 − 2Π1(1 + δZ)(φ̇1 − µ

I

φ2)
)

− 1

2
(1 − δZ)

(

Π2
2 − 2Π2(1 + δZ)(φ̇2 + µ

I

(φ1 + ρ))
)

. (9)

After ompleting into whole squares and performing the integration over the anonial momenta in (9), one an

identify the tree level bosoni inverse propagator matrix and from the linear terms the tree level equations of states

(EoS).

The 4 × 4 inverse boson propagator (Gb
−1
) in Fourier spae with the introdution of the ωn = 2πnβ bosoni

Matsubara frequenies splits up into the inverse propagator of π3 and a 3 × 3 oupled inverse propagator matrix of

the remaining three bosoni �elds π1, π2, σ. In the π1,2 setor we swith to the harged π± = (π1 ∓ iπ2)/
√
2 base and

use the following relabeling i, j = 1, 2, 3, 4 −→ π+, π−, σ, π3. In this way the non zero elements of Gbij
−1

are

iGb44
−1

= (−iωn)
2 − E2

π3
, (10)

iGbkl
−1

=





(−iωn − µ
I

)2 − E2
π3

− λρ2 −λρ2 −
√
2λvρ

−λρ2 (−iωn + µ
I

)2 − E2
π3

− λρ2 −
√
2λvρ

−
√
2λvρ −

√
2λvρ (−iωn)

2 − E2
π3

− 2λv2



 ,

where k, l = 1, 2, 3, Eπ3
=
√

p2 +m2
π3
, and the tree level π3 mass square is m2

π3
= m2 + λ(v2 + ρ2).

As mentioned earlier in (9) the oe�ients of the terms linear in the orresponding �elds φ0 (σ) and φ1 (π1)
determine the two non�trivial equations of states:

EoS

tree

σ = v(m2 + λ(v2 + ρ2))− h = 0, (11)

EoS

tree

π1
= ρ(m2 + λ(v2 + ρ2)− µ2

I

(1 + δZ)) = 0. (12)

In the seond EoS the wave funtion renormalization onstant δZ is expliitly written �whih unavoidably ours

when �eld renormalization is introdued followed by the anonial way of introduing hemial potentials� even if

it is a higher order term, beause we would like to emphasize the importane of its presene. From the one�loop

fermioni ontribution of the seond EoS, as it will be seen later, a µ2
I

proportional divergene arise, whih has to

be absorbed into some in�nite ounterterm, and this ounterterm will be the δZ renormalization onstant. In other

words the lak of δZ would result in an unaneled divergene in the seond EoS.

The in�nite parts of the ounterterms an be obtained by requiring the �niteness of the perturbative N�point

funtions (in our ase the propagator and the four point boson vertex) in the symmetri phase (v = ρ = 0) at

T = µ
B

= µ
I

= 0. Pratially it is easier to obtain the in�nite parts from the one�loop EoS (see Se. III).

Aordingly, the following ounterterms an be found up to one�loop order with uto� regularization,

δm2 = −6λ(Λ2 −m2 ln
Λ2

l2b
) +

g2F
4π2

NcΛ
2,

δλ = 12λ2 ln
Λ2

l2b
− g2F

32π2
Nc ln

Λ2

el2f
, (13)

δZ = −Nc
g2F
16π2

ln
Λ2

l2fe
2
,

where Λ is the three dimensional uto� in momentum spae, while lb and lf are the bosoni and fermioni renor-

malization sales, respetively. These ounterterms anel by de�nition all divergenes at one�loop level and at

v = ρ = T = µ
B

= µ
I

= 0 and in the broken phase the same ounterterms an be used with a slight modi�a-

tion due to the neessary resummation (see Se. III). The �nite parts of δm2
, δλ and δZ are determined by the

parameterization of the model in the broken phase (see Se. IV).
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III. EQUATIONS AT ONE�LOOP LEVEL

As it is well known from �nite temperature �eld theory, tree level mass squares an beome negative in the broken

phase as the temperature inreases. Aordingly some sort of resummation of the perturbative propagator is needed

(see for example in [25℄). We perform this using the optimized perturbation theory [23℄, where a temperature (and

hemial potential) dependent mass term is introdued in the Lagrangian and the di�erene between the original and

the new mass parameter is treated as a (�nite) higher order ounterterm,

Lmass = −1

2
m2φ2 = −1

2
M2(T, µ)φ2 − 1

2
∆m2(T, µ)φ2. (14)

Here ∆m2
is the �nite �one�loop level� ounterterm. The new mass parameter is determined by requiring that the

inverse one�loop level π3 propagator at zero external momentum stays equal to its tree level value (fastest apparent

onvergene FAC)

M2
π3

≡M2 + δm2 + (λ+ δλ)(v2 + ρ2) + Σπ3
(ω = p = 0,M2, T, µ) + ∆m2 =M2 + λ(v2 + ρ2) ≡ m2

π3
, (15)

where we indiated the resummed mass dependene of the self energy (Σπ3
). Stritly speaking the OPT at one�loop

order replaes m with M(T, µ) also in the internal tree level propagator lines. Sine π3 is not a mixed state, M(T, µ)
an be expressed through the tree level π3 mass, whih equals its one�loop level value by the ondition (15), and thus

the diagonal part of the boson propagator (10) an be written as a funtion of the π3 mass instead of M(T, µ),

iGb11
−1

= (−iωn − µ
I

)2 − p
2 −m2

π3
− λρ2, iGb22

−1
= (−iωn + µ

I

)2 − p
2 −m2

π3
− λρ2

iGb33
−1

= (−iωn)
2 − p

2 −m2
π3

− 2λv2, iGb44
−1

= (−iωn)
2 − p

2 −m2
π3
.

(16)

Here and in the following the π3 mass is denoted by mπ3
due the PMS relation (mπ3

=Mπ3
). In this way M(T, µ) is

eliminated from (15) and the resummed π3 mass is determined by the equation

m2
π3
(T, µ) = m2 + δm2 + (λ+ δλ)(v2 + ρ2) + Σπ3

(ω = p = 0,m2
π3
, T, µ), (17)

where Σπ3
now depends on mπ3

through the �resummed tree level� propagator matrix (16). This means that the above

proedure makes the π3 propagator (Gb44) selfonsistent at p = 0, while the mixed setor of the boson propagator is

partially resummed due to its mπ3
dependene.

The self energy in (17) ontains bosoni as well as fermioni loop integrals,

Σπ3
(ω = p = 0,m2

π3
, T, µ) = λ+ λ

∑

p

∫

Tr{T bGb(ωn,p, µI)}

+ λ2
∑

p

∫

BbijB
b
kl

(

Gbik(ωn,p, µI)G
b
jl(ωn,p, µI) +Gbil(ωn,p, µI)G

b
jk(ωn,p, µI)

)

+ g2F
∑

p

∫

Gfil(ωn,p, µI, µB)B
f
ijG

f
jk(ωn,p, µI, µB)B

f
kl, (18)

where T b, Bb,f denotes the oupling matries whih arise from (9) and are listed in the appendix. It is worth to

note that the divergenes of the self energy are anelled by the in�nite perturbative ounterterms if one replaes

m with M(T, µ) in (13). In this ase, it seems that the ounterterms are temperature and/or hemial potential

dependent, however it an be proved order by order that all T and/or µ dependent in�nities are anelled by higher

order ontributions (see for e.g. in [23℄ and [26℄).

The salar ondensate v is determined by the vanishing of the one�loop level one point funtion of σ (EoSσ at

one�loop level),

v

(

m2 + δm2 + (λ+ δλ)(v2 + ρ2) + λ
∑

p

∫

Tr{HbGb(ωn,p, µI)}+ gF
∑

p

∫

Tr{HfGf (ωn,p, µI, µB)}
)

= h, (19)

where Hb,f
an be found in the appendix. Comparing (18) and (19) one an reognize a Ward identity whih onnets

the symmetry breaking external �eld with the propagator of π3 at zero external momentum,

vm2
π3

= h. (20)

This relation is a onsequene of the remaining O(2) symmetry, whih is an axial vetor rotation around the third

isospin axis from the point of view of the hiral symmetry. Moreover (20) guarantees the Goldstone theorem for this

degree of freedom (neutral pion).
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The pion ondensate is determined through the π1 one point funtion, whih is the EoSπ1
at one�loop level,

ρ

(

m2 + δm2 + (λ+ δλ)(v2 + ρ2)− µ2
I

(1 + δZ) + λ
∑

p

∫

Tr{RbGb(ωn,p, µI)}

+gF
∑

p

∫

Tr{RfGf (ωn,p, µI, µB)}
)

= 0, (21)

where and Rb,f an be found in the appendix. Here the in�nite part of δZ just anels the µ
I

dependent divergene

of the fermion loop integral.

The alulation of the loop integrals in (18) and (21) requires the diagonalization of the propagators and the

orresponding transformation of the oupling matries due to the non�diagonal matrix elements in (10) and (8).

The diagonalization itself is a straightforward alulation, however the eigenvalues of the boson propagator (10) are

non�rational funtions of ωn. Thus performing the Matsubara sums is a very ompliated task and it is beyond the

sope of our paper. In order to avoid these di�ulties the diagonalization was aomplished only for small ρ. As one
shall see in the next setion this method leads to ordinary Matsubara frequeny dependene in the propagators. For

that very reason we restrited ourselves to a Landau�type analysis of the pion ondensation in a small viinity of the

phase boundary. Up to seond order in ρ the mass equation (17) an formally be written as

m2
π3

= m2 + λv2 + t(0)(m2
π3
, v, T, µ

I,B) + (λ + t(2)(m2
π3
, v, T, µ

I,B))ρ
2, (22)

while (19) goes over into the simple form of (20) due to the Ward identity. At the same order in ρ (21) an be

rewritten as,

ρ
[

µ2
I −m2 − λv2 − r(0)(m2

π3
, v, T, µ

I,B)− (λ+ r(2)(m2
π3
, v, T, µ

I,B))ρ
2 +O(ρ4)

]

= 0 (23)

By virtue of the above equation the pion ondensate may have non�zero value only if the roots of the expression in

the square braket are real. Assuming that λ+ r(2) > 0, Eq.(23) yields

ρ =

√

µ2
I −m2 − λv2 − r(0)(m2

π3
, v, T, µ

I,B)

λ+ r(2)(m2
π3
, v, T, µ

I,B)
(24)

if µ2
I−m2−λv2−r(0) > 0. This means that in this ase the transition is of seond order supposing that the oe�ient

of the fourth order term in (23) is negative. Moreover if λ+ r(2) < 0 and µ2
I −m2 − λv2 − r(0) < 0 (keeping that the

fourth order term is negative) it an be seen that the equation an have two nonzero roots, whih suggests �rst order

phase transition. For the alulation of the t(0,2) and r(0,2) oe�ients in (22) and (24) diagonalization of the boson

and fermion propagator up to order ρ2 is needed, whih will be presented in the next setion.

IV. DIAGONALIZED PROPAGATORS FOR SMALL ρ

In our approah, as was disussed previously, the next step is to determine the eigenvalues of the propagator matries

for small ρ values, in other words to �nd the propagating eigenmodes with help of some suitable linear transformation

of the original �elds perturbatively in ρ. This step is not neessary if one would like to alulate the e�etive potential

(see for e.g. [17℄). In ase of the bosoni propagator the transformation matrix up to O(ρ3) is found to be,

OB =





1− |a|2 ρ2 b(1− 2av)ρ2 −
√
2aρ

b∗(1− 2a∗v)ρ2 1− |a|2 ρ2 −
√
2a∗ρ√

2aρ
√
2a∗ρ 1− 2 |a|2 ρ2



+O(ρ3), (25)

where a = a(ωn, µ) = λv/(µ2 + 2λv2 + 2iωnµ) and b = b(ωn, µ) = iλ/(4µωn). As it an be heked OB is not a

unitary transformation and it is important to note that OB depends on the Matsubara frequeny ωn. With this

transformation OB · (iGbπ+,π−,σ

−1
) · O−1

B = diag(iG̃−1
π+ , iG̃

−1
π− , iG̃

−1
σ ) + O(ρ3), where the tilde reminds us that these

propagators belong to the transformed (propagating) partiles. It is worth to note that the new π+
and π−

partiles

are no longer harge onjugates of eah other, whih is a natural onsequene of the presene of the pion ondensate.

After alulating the inverses perturbatively, the transformed π+
, π−

and σ bosoni propagators are given by

iG̃π+ =
1

(ωn + iµ
I

)2 + E2
π

− ρ2
λ(2µ2

I

+ 2λv2 − 4iµ
I

ωn)

((ωn + iµ
I

)2 + E2
π)

2(µ2
I

+ 2λv2 − 2iµ
I

ωn)
+O(ρ4), (26)
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iG̃π− =
1

(ωn − iµ
I

)2 + E2
π

− ρ2
λ(2µ2

I

+ 2λv2 + 4iµ
I

ωn)

((ωn − iµ
I

)2 + E2
π)

2(µ2
I

+ 2λv2 + 2iµ
I

ωn)
+O(ρ4), (27)

iG̃σ =
1

ω2
n + E2

σ

− ρ2
λ(µ2

I

+ 2λv2)(µ2
I

+ 6λv2 + 4µ2
I

ω2
n)

(ω2
n + E2

σ)
2((µ2

I

+ 2λv2)2 + 4µ2
I

ω2
n)

+O(ρ4), (28)

while the π3 propagator is

iGπ3
=

1

ω2
n + E2

π

− ρ2
λ

(ω2
n + E2

π)
2
+O(ρ4). (29)

In ase of the fermioni inverse propagator matrix the diagonalization must be performed autiously due to the

presene of the non ommuting Dira matries. The learest approah is to solve the equation OF (iG
−1
F )O−1

F = diag
for OF diretly. In this way OF is found to be

OF =





1 +
g2F
32k2

0

ρ2 −i gF4k0
γ0γ5ρ

−i gF4k0
γ0γ5ρ 1 +

g2F
32k2

0

ρ2



 , (30)

where k0 = (−iωn + 1
3µB)γ0 and the matrix is hermitian. After performing the inverse perturbatively the fermioni

propagators are given by

iG̃u/d = − 1

/pu/d −mf
− ρ2

g2F
8k0

1

/pu/d −mf
γ0

1

/pu/d −mf
(31)

where /pu/d = (−iωn + µu/d)γ0 − γipi and µu/d = µ
B

/3± µ
I

/2.

In the appendix it is shown that all integrandus appears in the one�loop equations (18), (19) and (21) an be

written as traes over �avor spae (in ase of fermions traes also onern Dira indies). In this way one an insert

the bosoni/fermioni transformation matries given in (25) and (30) under the traes and transform the propagators

within into diagonal form, whih will lead to transformation of the orresponding oupling matries. Thus for instane

the trae in (A.4) an be written as

Tr{Bb′Gb} = Tr{Bb′O−1
B OBG

bO−1
B OB} = Tr{OBBb

′
O−1
B G̃b} = Tr{B̃bG̃b}, (32)

where G̃b = diag(G̃−1
π+ , G̃

−1
π− , G̃

−1
σ ), and B̃b is the transformed oupling matrix, whih depends on ωn as was mentioned

earlier. Similar expressions an be derived in ase of fermions.

V. THE PARAMETERIZATION

Before alulating at �nite temperature and non�zero hemial potentials one has to parameterize the model at

T = µI,B = 0. We losely follow the method presented in [21, 22, 27℄. Sine ρ = 0 at µ
I

= 0, there are �ve parameters,

namely m2
, λ, gF , h and v, whih an be �xed by setting four physial quantities �namely the pion, sigma, u and d

quark masses plus the pion deay onstant (through the PCAC relation)� to their physial values and by requiring

the ful�llment of the (20) equation of state. At T = µI,B = 0 and ρ = 0, the one�loop level π3 inverse propagator an
be written as

i(G1�loop

π3
)−1 = (1 − δZ)p2 −m2 − δm2 − (λ + δλ)v2 − Σπ3

(p2 = 0)− p2Σ′
π3
(p2 = 0)− Σ̃(p2), (33)

where Σ′
π3

= ∂Σπ3
/∂p2 and Σ̃π3

∼ O(p4). Fixing the physial π3 mass (Mπ = 138MeV) through the π3 one�loop

level propagator at p2 = 0 and using the (17) mass resummation equation at ρ = T = µI,B = 0 one obtains

M2
π = m2 + λv2 + 3λ(T b0 (Mπ, lb) + T b0 (mσ, lb)) + 2g2FNcT

f,π
0 (mf , lf), (34)

where m2
σ = M2

π + 2λv2 and T
b/f,π
0 denotes the bosoni/fermioni tadpole integrals at zero T and µI,B. In (34)

the lak of bubble integrals is due to the fat that at p2=0 they redue to a linear ombination of tadpoles. These

tadpoles are �nite on aount of the δm2
and δλ ounterterms (13). Note that new divergent terms do not appear in

the tadpoles at �nite temperature and/or non�zero hemial potentials, as it should be. The presene of δZ in (33)
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FIG. 1: Bosoni renormalization sale dependene of the fermion renormalization sale lf , the mass parameter m2
(left panel)

and of the oupling λ, the tree level σ mass mσ (right panel).

is also important beause this term renders the p2 dependent part of the propagator �nite. It involves also a �nite

renormalisation:

δZfin
π3

= δZ +
∂Σπ3

∂p2
(p2 = 0) =

λ

16π2

M4
π −m4

σ +M2
πm

2
σ log

(

m2
σ

M2
π

)

(m2
σ −M2

π)
2

+
g2FNc
16π2

log

(

em2
f

l2f

)

(35)

and the one�loop level PCAC relation depends on δZfin
π3

as follows

v[iG1-loop

π3
(p2 = 0)]−1 = fπM

2
π(1− δZfin

π3
/2), (36)

where fπ = 93MeV is the pion deay onstant. Sine δZfin
π3

depends on the fermioni renormalization sale its atual

value is tunable. Thus we required the vanishing of δZfin
π3

to �x the fermioni renormalization sale. This requirement

makes the PCAC relation simpler and thus the values of v, gF , h o�er themselves immediately

v = fπ, gF = 2
mf

fπ
, h = fπM

2
π , (37)

where mf = 938/3MeV is the onstituent u, d quark mass. At this point v, gF , and h are known and m2
an be

expressed from (34).

The remaining unknown λ parameter is determined by �xing the physial σ mass at one�loop level and at zero

external momentum, that is

M2
σ = m2 + δm+ 3(λ+ δλ)v2 +Σσ(p

2 = 0)

= m2 + 3λv2 + 3λ(T b0 (Mπ, lb) + T b0 (mσ, lb)) + 18λ2v2Bb0(mσ, lb) + 6λ2v2Bb0(Mπ, lb) + 6g2FT
f,σ
0 (mf , lf ), (38)

where Bb0 and T f,σ0 ome from the temperature and hemial potential independent part of the bosoni/fermioni

bubble diagram at zero external momentum and degenerate masses. It is worth to note that the same in�nite

ounterterms render the above equation as well as the equation of Mπ �nite.

We use Mσ = 500MeV for the physial σ mass. This hoie seems somewhat arbitrary, beause the σ meson is

a broad resonane rather than a partile with well�de�ned mass (see [28℄ and referenes therein). Thus it would

be more appropriate to identify the mass and width of the σ meson through the pole of its spetral funtion [29℄.

However, we heked that varying Mσ in the 400MeV� 750MeV range produes just the same order of unertainties

in the thermodynamial results as the variation of the lb boson renormalization sale itself. Aordingly, it is enough

to analyze the lb dependene of the di�erent parameters, hene here and in the following we present our results whih

orrespond to the hoie Mσ = 500MeV at zero T , µ
I,B. On the left panel of Fig. 1 the bosoni renormalization sale

dependene of m2
and lf , while on the right panel the tree level σ mass and the λ parameter are shown. As one

an see on the right panel, the tree level σ mass equals its one � loop level value at lb ≈ 600MeV thus the σ mass

beomes selfonsistent at this point (but only for zero T , µ
I,B!). In addition m and lf moderately depend on the

renormalization sale around this point (see left panel of Fig. 1). Aording to the above arguments we hoose the

following sale range: lb ∈ [400MeV, 800MeV] for the thermodynamial alulations.
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VI. RESULTS AT LOWEST ORDER IN ρ

As was derived in Se. III the expetation value ρ of the pion �eld is determined by (24) up to seond order in

ρ. From this equation it an be immediately seen that the seond order boundary for the ourrene of the pion

ondensation in the µ
I

− µ
B

− T spae is determined by

µ2
I −m2 − λv2 − r(0)(m2

π3
, v, T, µ

I,B) = 0. (39)

Moreover, the µ
I,B and T dependene of v and mπ3

are determined by (20) and (22), whih have to be solved at

ρ = 0. At ρ = 0 (22) has the same form as (34) with the slight di�erene that now the tadpoles whih appear therein

have to be alulated at �nite temperature and hemial potentials, while the form of (20) is unhanged. Using the

expliit expression of r(0), Eq. (39) an be expressed as

µ2
I −m2

π3
(T, µ

I

, µ
B

)−R1�loop(T, µ
I

, µ
B

) = 0, (40)

where R1�loop

is the remaining part of r(0) after subtrating from it m2
π3
. It ontains one�loop bosoni and fermioni

ontributions. From (40) it is obvious that at one�loop level the ondensation does not start exatly at µ
I

= mπ3
,

as it is ommonly expeted, but it is shifted to some extent by R1�loop

. It's worth to note that the deviation R1�loop

does not vanish identially even if the resummed pion mass is de�ned as the pole of the propagator.

First, we investigated the temperature and hemial potential dependene of the salar ondensate v at µ
I

= 0
and di�erent values of lb by solving (20) and (22), whih an be seen in Fig. 2. On the left panel the temperature

dependene of v is shown at lb = 400, 600, 800MeV and at zero hemial potentials. As it is expeted, the salar

ondensate shows a smooth rossover as the hiral symmetry is restored at a pseudoritial temperature (Tc) around
150MeV, whih is in good agreement with the ontinuum limit lattie result found in [30℄. Moreover, the v(T ) urve
and onsequently Tc slightly depend on lb. Hene, in the forthoming we use the �xed sale lb = 600MeV. On the right

panel the baryohemial potential dependene of v an be seen at lb = 600MeV sale, and at T = 20, 50, 80, 100MeV

temperatures. At small temperatures the transition is of �rst order, while for large temperatures it is of analyti

rossover type, indiating the existene of a ritial endpoint (CEP), where the transition hanges from �rst order

to rossover with inreasing temperature (see e.g. in [21℄ and referenes therein). As one an see on Fig. 2 the

temperature at the CEP is around 50MeV, whih is muh lower than the lattie result presented in Ref. [31℄, however

this is a ommon feature of e�etive models (for two/three �avors see e.g. Refs. [29℄, [21℄). The ritial/pseudoritial

baryohemial potential values range from ∼ 600MeV to ∼ 1000MeV depending on the temperature.

Next, solving (20) and (22) for di�erent T, µ
I

, µ
B

values and traking the ful�llment of the (40) ondition we

determined the seond order ritial surfae of pion ondensation, whih an be seen on Fig. 3. As a funtion of the

isospin hemial potential at �xed µ
B

the region of pion ondensation starts very steeply at around 130MeV. After

that steep jump a plateau starts, whih dereases slowly towards higher values of µ
I

. Moreover, it an be seen that

the region of pion ondensation shrinks with inreasing µ
B

and it even disappears at around µ
B

= 830MeV (and

µ
I

= 131MeV), a behavior whih is in aordane with previous e�etive model studies (see e.g. Se. VII.A of [17℄).

This is understandable physially, sine at large µ
B

the ondensate ρ is basially determined by the di�erene of the
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FIG. 4: Phase boundary of pion ondensation and the µ
I

= mπ3
ondition as funtion of the isospin hemial potential for

di�erent µ
B

values.

u − d quark ontributions in the EoS, and this di�erene is dereasing with inreasing µ
B

at �xed µ
I

, beause the

Fermi�Dira fator in the ontribution of u depends on µ
B

+µ
I

, while in the ontribution of d on µ
B

−µ
I

. It is worth

to observe that on the surfae a gradually inreasing missing part starts from about µ
B

= 415MeV and µ
I

= 221MeV.

In that region the µ2
I − m2 − λv2 − r(0) ombination (numerator of Eq. (24)) is negative, whih means that the

transition is not seond order anymore. Stritly speaking if in this region there is a nonzero solution to ρ this an

happen only if λ+ r(2) < 0 (denominator of Eq. (24)) and in this ase the transition is of �rst order.

To analyze the surfae in detail, two setions taken at µ
B

= 0MeV and µ
B

= 400MeV are plotted in Fig. 4 together

with the µ
I

= mπ3
urves. At both baryohemial potentials the ondensation starts at around µ

I

= 131MeV, whih

is slightly below the mπ3
= 138MeV pion mass, this deviation is due to the orretions R1�loop

in (40). Moreover,

the deviation widens as µ
I

inreases. Another interesting feature is that at �xed high temperature as we inrease the

isospin hemial potential the ondensation evaporates above a ertain µ
I

value, whih is in aordane with Ref. [16℄,

where this phenomenon was observed in ase of two �avor PNJL model. In the region where the ondensate already

evaporated (ρ = 0) the hiral symmetry is almost totally restored (v ≈ 0).
Finally we alulated the one�loop pole masses of the harged pions on di�erent temperatures as a funtion of the



10

 100

 200

 300

 400

 500

 600

 700

 0  100  200  300  400  500  600

[M
eV

]

µI [MeV]

mπ+ : T=150 MeV
     T=140 MeV
     T=  90 MeV

mπ- : T=150 MeV
     T=140 MeV
     T=  90 MeV

FIG. 5: µ
I

dependene of the one�loop pole masses of harged pions at di�erent temperatures (T = 90, 140, 150MeV). The thin

lines indiate the ondensed phase for eah temperature (where our alulation is not valid).

isospin hemial potential at ρ = 0. For this we alulated the self energies of the harged pions, then we solved the

following pole mass equations:

(

Mpole

π±

)2

=
(

mtree

π±

)2
+Σπ±(ω =Mpole

π± ,p = 0, T, µ
I,B), (41)

where we have impliitly used the already known solutions v(T, µ
I,B) and mπ3

(T, µ
I,B). The one�loop masses are

plotted on Fig. 5. On the �gure thik lines represent the setors, where our alulation is valid, that is ρ = 0. At the
thin line parts of the urves the pions are ondensed, thus we should go beyond the lowest approximation in ρ to get
orret results in that setors. It is worth to note that when the ondensation sets in none of the one�loop harged

pion masses beomes zero as opposed to the masses de�ned through the dispersion relation (see e.g. [18℄). Another

interesting thing is that at larger values of µ
I

where the ondensation has already evaporated and our alulation is

valid (thik line parts) the harged pion masses are still di�erent, however ρ = 0. This di�erene is due to the fat

that the isospin bakground ats di�erently on the harged pions (with opposite signs).

VII. CONCLUSIONS

In this paper we studied the pion ondensation in the framework of SU(2)L × SU(2)R onstituent quark model

with expliitly broken symmetry term in the presene of baryohemial potential. The model was parameterized

at one�loop level and optimized perturbation theory was used for the resummation of the perturbative series. The

one�loop equations were expanded in powers of ρ, and a Landau type analysis was performed for the phase boundary

at lowest order in ρ. A simple ondition for the boundary of the pion ondensation was set up, and we argued that

this ondition gives a seond order surfae in the µ
I

− µ
B

− T spae. The temperature and renormalization sale

dependene of the salar ondensate v was investigated, and a mild renormalization sale dependene was found.

At zero baryohemial potential the pseudoritial temperature is in aordane with results found on lattie [30℄.

Using the ondition for the pion ondensation the seond order surfae was determined. It was found that the surfae

starts steeply with inreasing µ
I

at �xed µ
B

and towards large values of µ
B

the pion ondensed region shrinks and

even disappears at around µ
B

= 830MeV. However, at suh a high energy one should take into aount the e�ets

of the strange quark. Investigating di�erent setions of the surfae it was showed that at one�loop level the pion

ondensation urve slightly di�er from the µ
I

= mπ3
urve at small µ

I

and this deviation inreases with inreasing

µ
I

. We also studied the dependene of the harged one�loop pion masses on the isospin hemial potential. As a

ontinuation of the present study the analysis an be extended to higher order in ρ, with whih for instane the saling

properties around the surfae, the dispersion relation at one�loop level and di�erent phases of the ondensed matter

(BCS/LOFF) ould be investigated.
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APPENDIX: COUPLINGS

The oupling matries appearing in (18), (19) and (21) an be obtained from the interation term of the shifted

�elds in the Lagrangian

λ

4
φ4 +

gF
2
ψ̄Tαφαψ −→ λ

4

(

(π1 + ρ)2 + π2
2 + π2

3 + (σ + v)2
)2

+
gF
2
ψ̄ (τ0(σ + v) + iγ5(τ1(π1 + ρ) + τ2π2 + τ3π3))ψ.

(A.1)

The four and three point ouplings of (A.1) determine the oe�ients of the tadpole and bubble terms of (18).

Inluding the symmetry fators of the orresponding graphs these are:

T b =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3






, Bb =

√
2









0 0 0 ρ
0 0 0 ρ

0 0 0
√
2v

ρ ρ
√
2v 0









, Bf =
i

2

(

−γ5 0
0 γ5

)

, (A.2)

where in ase of bosons the same onvention is used for the labeling of the matrix elements as in (10). The bosoni

bubble ontribution in (18) an be rewritten as

∑

i,j,k,l

BbijB
b
kl(G

b
ilG

b
jk +GbjlG

b
ik) = 2Tr{Gb TBbGbBb}, (A.3)

and by virtue of the struture of Bb and Gb one an fator out the π3 propagator from the above expression as follows

Tr{Gb TBbGbBb} = Gbπ3
Tr{Bb′Gb}, (A.4)

where

Bb
′
= 2









ρ2 ρ2
√
2vρ 0

ρ2 ρ2
√
2vρ 0√

2vρ
√
2vρ 2v2 0

0 0 0 0









. (A.5)

The fermioni bubble ontribution an be formulated as,

∑

i,j,k,l

GfilB
f
ijG

f
jkB

f
kl = Tr{Gf TBfGfBf} = Tr{BfGfBfGf T }, (A.6)

where the trae is over �avor as well as Dira indies.

Moreover, in equations of states (19) and (21) the tadpole oe�ients are also determined by the three point

ouplings of (A.1),

Rb =









2ρ ρ v/
√
2 0

ρ 2ρ v/
√
2 0

v/
√
2 v/

√
2 ρ 0

0 0 0 ρ









, Rf =
1

2

(

1 0
0 1

)

, (A.7)

and

Hb =









v 0 ρ/
√
2 0

0 v ρ/
√
2 0

ρ/
√
2 ρ/

√
2 3v 0

0 0 0 v









, Hf =
i

2

(

0 γ5
γ5 0

)

. (A.8)
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