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Pion 
ondensation is studied at one�loop level and nonzero baryo
hemi
al potential in the frame-

work of two �avor 
onstituent quark model using the one�loop level optimized perturbation theory

for the resummation of the perturbative series. A Landau type of analysis is presented for the inves-

tigation of the phase boundary between the pion 
ondensed/non-
ondensed phases. The statement

that the 
ondensation starts at µ
I

= mπ is slightly modi�ed by one�loop 
orre
tions. The se
ond

order 
riti
al surfa
e is determined and analysed in the µ
I

− µ
B

− T spa
e. The µ
I

dependen
e of

the one�loop level 
harged pion pole masses is also studied.

PACS numbers: 11.10.Wx, 03.75.Nt, 11.10.6h, 21.65.+f

I. INTRODUCTION

From the early 70's, when the idea of pion 
ondensation was �rst suggested [1℄, many investigations have been

performed in the �eld. Right in the early works, the possibility emerged that pion 
ondensation might have a

signi�
an
e in the evolution of 
ompa
t stars [2, 3, 4℄. Beside 
ompa
t stars, pion 
ondensation 
an o

ur in asymmetri


nu
lear matter as well as in heavy ion 
ollisions at intermediate energies. While the phases of QCD 
an be well

des
ribed by perturbation theory at extreme high temperatures and densities, at moderate temperatures and densities

a perturbative des
ription is not possible, here other methods like latti
e �eld theory and e�e
tive �eld theories 
an

be applied. In latti
e �eld theory a se
ond order phase transition was found from normal phase to pion 
ondensed

phase in two �avor QCD at a 
riti
al isospin 
hemi
al potential, whi
h is about the pion mass [5, 6, 7℄. Pion and in

some 
ases kaon 
ondensation was also investigated in numerous e�e
tive models su
h as 
hiral perturbation theory

[8, 9℄, ladder QCD [10℄, random matrix method [11℄, NJL model (in the mean �eld approximation) [12, 13, 14, 15℄,

PNJL model [16℄ and linear sigma model [17, 18, 19℄. These investigations mostly fo
us on properties of asymmetri


hadroni
 matter, however if one wants to des
ribe for instan
e a neutron star, whi
h is ele
tri
ally neutral on average,

then the 
ondition of 
harge neutrality as well as β�equilibrium must be imposed expli
itly as dis
ussed in [14, 20℄.

Our main goal here is to go beyond the present status of the �eld and determine the phase boundary between

the pion 
ondensed and non�
ondensed phases in the µ
I

− µ
B

− T spa
e at one�loop level and to 
al
ulate the µ
I

dependen
e of the 
harged pion masses beyond tree level. This work is the 
ontinuation of our previous works [21, 22℄,

in the sense that we use the same framework of 
onstituent quark model and the optimized perturbation theory (OPT)

[23℄ as a resummation te
hnique, whi
h preserves the perturbative renormalizability as well as the symmetries of the

model. However there we used three �avor model, while the present investigation deals with an e�e
tive model of

2��avor QCD. This approximation is su�
ient to see the main properties of pion 
ondensation.

The paper is organized as follows. In Se
tion II, we introdu
e the model and dis
uss its renormalization in detail in


ase when not only s
alar but also pseudos
alar (pion) 
ondensate is present. We treat bosons at one�loop level, while

the 
onstituent quarks are 
onsidered at tree level. In Se
tion III, we present the one�loop equations, whi
h des
ribe

our system, namely the equations of state for the s
alar and pion 
ondensates and the equation for the resummed

pion mass. Moreover we show that a Ward identity holds, from whi
h the Goldstone theorem also follows. Then we

expand our equations in powers of the pion 
ondensate, with whi
h we restri
t ourselves to a Landau�type analysis of

the phase transition. At the end of this se
tion a simple formula for the boundary of the pion 
ondensation domain

is established. In Se
tion IV we diagonalize the mixed boson and fermion propagators, whi
h are determined also

for small values of the pion 
ondensate. Se
tion V is dedi
ated to the parameterization of the model, i.e. we �x the

parameters of the Lagrangian at zero temperature and vanishing 
hemi
al potentials at one�loop level. Here we also

dis
uss the 
hoi
e of the renormalization s
ales. In Se
tion VI we present the numeri
al results and �nally we 
on
lude

in Se
tion VII.
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II. THE MODEL AND ITS RENORMALIZATION

Our starting point is the renormalized SU(2)L × SU(2)R symmetri
 Lagrangian with expli
it symmetry breaking

term, whi
h 
ontains meson as well as quark �elds [24℄. Without the symmetry breaking term the symmetry group

of the light meson se
tor (π, σ) is O(4), and the Lagrangian is

L =
1

2

(

∂µφ∂
µφ−m2φ2

)

− λ

4
φ4 + hφ0 + iψ̄γµ∂

µψ − gF
2
ψ̄Tαφαψ

+
1

2

(

δZ∂µφ∂
µφ− δm2φ2

)

− δλ

4
φ4, (1)

where ψ = (u, d)T are the SU(2) doublet quark �elds, φ = (φ0, φ1, φ2, φ3) ≡ (σ, π1, π2, π3) are the s
alar sigma

and pseudos
alar pion �elds, h is the symmetry breaking external �eld, and Tα = (τ0, iτγ5), α = 0 . . . 3 are the

quark�boson 
oupling matri
es. In the Lagrangian above the 
ouplings m2
, λ and the φ �eld are renormalized (�nite)

quantities, while δm2, δλ, and δZ are the 
orresponding (in�nite) 
ounterterms. Sin
e we treat quarks only at tree

level no wave fun
tion renormalization 
onstant is ne
essary for the fermioni
 �elds.

We use the grand 
anoni
al generating fun
tional of the renormalized Lagrangian in order to introdu
e the baryon

and isospin 
hemi
al potentials as well as the s
alar and pion 
ondensates. As one shall see, one 
onsequen
e of the

presen
e of pion 
ondensation amounts to the appearan
e of the non�trivial wave fun
tion renormalization 
onstant in

the equation of state of the 
ondensate. At �nite temperature and densities the grand 
anoni
al generating fun
tional,

whi
h determines the N�point fun
tions of the �elds, is

Z =

∫

DφDΠDψ̄Dψ exp

[

i

∫ −iβ

0

dt

∫

d3x(Πφ̇ + iψ̄γ0ψ̇ −H+ µ
B

QB + µ
I

QI)

]

, (2)

where the Hamiltonian of the system is

H =
1

2

(

Π2 + (∇φ)2 +m2φ2
)

+
λ

4
φ4 − hφ0 + iψ̄γi∂iψ +

gF
2
ψ̄Tαφαψ

− 1

2
δZΠ2 +

1

2
δZ(∇φ)2 + δλ

4
φ4 +

1

2
δm2φ2, (i = 1, 2, 3) (3)

and the 
anoni
al momenta of the s
alar �elds are de�ned by

Π =
δL
δφ̇

= (1 + δZ)φ̇. (4)

In (2) QB, QI are the 
onserved baryon and isospin 
harges de�ned by the zeroth 
omponent of the 
orresponding

Noether 
urrents of the symmetri
 Lagrangian

QB =

∫

d3x
1

3
(u†u+ d†d), (5)

QI =

∫

d3x

[

(1 + δZ)(π1π̇2 − π2π̇1) +
1

2

(

u†u− d†d
)

]

. (6)

At small temperatures, when h 6= 0 or h = 0 and m2 < 0 the original O(4) symmetry of the meson se
tor breaks down

to O(3), whi
h means that the σ s
alar �eld has a nonzero va
uum expe
tation value (vev), thus 〈φ0〉 ≡ 〈σ〉 ≡ v 6= 0.
Moreover, if the isospin 
hemi
al potential µ

I

is su�
iently large, 
harged pions 
ondensate (Bose-
ondensation) and

another nonzero va
uum expe
tation value o

urs, whi
h additionally breaks down the symmetry to O(2). If one

initially introdu
es vev to all the four bosoni
 �elds it 
an be shown that be
ause of the remaining O(2) symmetry

the �elds 
an be transformed in su
h a way that only two nonzero expe
tation value remains, from whi
h one is the

aforementioned v, and the other one 
an be either 〈φ1〉 or 〈φ2〉, i.e. one 
an entirely transform out 〈φ3〉. Hen
e, we

an 
hoose 〈φ1〉 ≡ 〈π1〉 ≡ ρ 6= 0 and 〈φi〉 ≡ 〈πi〉 = 0 for i = 2, 3 (see for e.g.[18℄).

Shifting the �elds by their expe
tation values in Eq.(2) the generating fun
tional 
an be written as

Z =

∫

DφDψ̄Dψ
[

e−
R

−iβ

0
dt

R

d3xψ̄Gf−1
ψe−i

R

−iβ

0
dt

R

d3xL̃I

∫

DΠei
R

−iβ

0
dt

R

d3x(Πφ̇−H̃B)

]

. (7)

Here Gf
−1

is the tree level fermion propagator matrix, whi
h after going to Fourier spa
e and introdu
ing the

ωn = (2n+ 1)β fermioni
 Matsubara frequen
ies, is given as (see for e.g. [17℄),

iGfij
−1

=

(

(−iωn + 1
3µB + 1

2µI)γ0 − γipi − gF
2 v −i gF2 γ5ρ

−i gF2 γ5ρ (−iωn + 1
3µB − 1

2µI)γ0 − γipi − gF
2 v

)

, (8)
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where pi is the spatial momentum. In (7) H̃B = H̃Π
B + H̃B,2 
ontains all terms depending on the 
anoni
al momenta

and bosoni
 �elds up to se
ond order. Other terms are 
ontained in the L̃I . The non�zero 
ondensates generate three
point 
ouplings, whi
h 
an be dire
tly read o� from the expli
it form of L̃I (A.1). The 
ombination Πφ̇− H̃Π

B 
an be

written as

Πφ̇− H̃B = − 1

2
(1 − δZ)

(

Π2
0 − 2Π0(1 + δZ)φ̇0

)

− 1

2
(1 − δZ)

(

Π2
3 − 2Π3(1 + δZ)φ̇3

)

− 1

2
(1 − δZ)

(

Π2
1 − 2Π1(1 + δZ)(φ̇1 − µ

I

φ2)
)

− 1

2
(1 − δZ)

(

Π2
2 − 2Π2(1 + δZ)(φ̇2 + µ

I

(φ1 + ρ))
)

. (9)

After 
ompleting into whole squares and performing the integration over the 
anoni
al momenta in (9), one 
an

identify the tree level bosoni
 inverse propagator matrix and from the linear terms the tree level equations of states

(EoS).

The 4 × 4 inverse boson propagator (Gb
−1
) in Fourier spa
e with the introdu
tion of the ωn = 2πnβ bosoni


Matsubara frequen
ies splits up into the inverse propagator of π3 and a 3 × 3 
oupled inverse propagator matrix of

the remaining three bosoni
 �elds π1, π2, σ. In the π1,2 se
tor we swit
h to the 
harged π± = (π1 ∓ iπ2)/
√
2 base and

use the following relabeling i, j = 1, 2, 3, 4 −→ π+, π−, σ, π3. In this way the non zero elements of Gbij
−1

are

iGb44
−1

= (−iωn)
2 − E2

π3
, (10)

iGbkl
−1

=





(−iωn − µ
I

)2 − E2
π3

− λρ2 −λρ2 −
√
2λvρ

−λρ2 (−iωn + µ
I

)2 − E2
π3

− λρ2 −
√
2λvρ

−
√
2λvρ −

√
2λvρ (−iωn)

2 − E2
π3

− 2λv2



 ,

where k, l = 1, 2, 3, Eπ3
=
√

p2 +m2
π3
, and the tree level π3 mass square is m2

π3
= m2 + λ(v2 + ρ2).

As mentioned earlier in (9) the 
oe�
ients of the terms linear in the 
orresponding �elds φ0 (σ) and φ1 (π1)
determine the two non�trivial equations of states:

EoS

tree

σ = v(m2 + λ(v2 + ρ2))− h = 0, (11)

EoS

tree

π1
= ρ(m2 + λ(v2 + ρ2)− µ2

I

(1 + δZ)) = 0. (12)

In the se
ond EoS the wave fun
tion renormalization 
onstant δZ is expli
itly written �whi
h unavoidably o

urs

when �eld renormalization is introdu
ed followed by the 
anoni
al way of introdu
ing 
hemi
al potentials� even if

it is a higher order term, be
ause we would like to emphasize the importan
e of its presen
e. From the one�loop

fermioni
 
ontribution of the se
ond EoS, as it will be seen later, a µ2
I

proportional divergen
e arise, whi
h has to

be absorbed into some in�nite 
ounterterm, and this 
ounterterm will be the δZ renormalization 
onstant. In other

words the la
k of δZ would result in an un
an
eled divergen
e in the se
ond EoS.

The in�nite parts of the 
ounterterms 
an be obtained by requiring the �niteness of the perturbative N�point

fun
tions (in our 
ase the propagator and the four point boson vertex) in the symmetri
 phase (v = ρ = 0) at

T = µ
B

= µ
I

= 0. Pra
ti
ally it is easier to obtain the in�nite parts from the one�loop EoS (see Se
. III).

A

ordingly, the following 
ounterterms 
an be found up to one�loop order with 
uto� regularization,

δm2 = −6λ(Λ2 −m2 ln
Λ2

l2b
) +

g2F
4π2

NcΛ
2,

δλ = 12λ2 ln
Λ2

l2b
− g2F

32π2
Nc ln

Λ2

el2f
, (13)

δZ = −Nc
g2F
16π2

ln
Λ2

l2fe
2
,

where Λ is the three dimensional 
uto� in momentum spa
e, while lb and lf are the bosoni
 and fermioni
 renor-

malization s
ales, respe
tively. These 
ounterterms 
an
el by de�nition all divergen
es at one�loop level and at

v = ρ = T = µ
B

= µ
I

= 0 and in the broken phase the same 
ounterterms 
an be used with a slight modi�
a-

tion due to the ne
essary resummation (see Se
. III). The �nite parts of δm2
, δλ and δZ are determined by the

parameterization of the model in the broken phase (see Se
. IV).
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III. EQUATIONS AT ONE�LOOP LEVEL

As it is well known from �nite temperature �eld theory, tree level mass squares 
an be
ome negative in the broken

phase as the temperature in
reases. A

ordingly some sort of resummation of the perturbative propagator is needed

(see for example in [25℄). We perform this using the optimized perturbation theory [23℄, where a temperature (and


hemi
al potential) dependent mass term is introdu
ed in the Lagrangian and the di�eren
e between the original and

the new mass parameter is treated as a (�nite) higher order 
ounterterm,

Lmass = −1

2
m2φ2 = −1

2
M2(T, µ)φ2 − 1

2
∆m2(T, µ)φ2. (14)

Here ∆m2
is the �nite �one�loop level� 
ounterterm. The new mass parameter is determined by requiring that the

inverse one�loop level π3 propagator at zero external momentum stays equal to its tree level value (fastest apparent


onvergen
e FAC)

M2
π3

≡M2 + δm2 + (λ+ δλ)(v2 + ρ2) + Σπ3
(ω = p = 0,M2, T, µ) + ∆m2 =M2 + λ(v2 + ρ2) ≡ m2

π3
, (15)

where we indi
ated the resummed mass dependen
e of the self energy (Σπ3
). Stri
tly speaking the OPT at one�loop

order repla
es m with M(T, µ) also in the internal tree level propagator lines. Sin
e π3 is not a mixed state, M(T, µ)

an be expressed through the tree level π3 mass, whi
h equals its one�loop level value by the 
ondition (15), and thus

the diagonal part of the boson propagator (10) 
an be written as a fun
tion of the π3 mass instead of M(T, µ),

iGb11
−1

= (−iωn − µ
I

)2 − p
2 −m2

π3
− λρ2, iGb22

−1
= (−iωn + µ

I

)2 − p
2 −m2

π3
− λρ2

iGb33
−1

= (−iωn)
2 − p

2 −m2
π3

− 2λv2, iGb44
−1

= (−iωn)
2 − p

2 −m2
π3
.

(16)

Here and in the following the π3 mass is denoted by mπ3
due the PMS relation (mπ3

=Mπ3
). In this way M(T, µ) is

eliminated from (15) and the resummed π3 mass is determined by the equation

m2
π3
(T, µ) = m2 + δm2 + (λ+ δλ)(v2 + ρ2) + Σπ3

(ω = p = 0,m2
π3
, T, µ), (17)

where Σπ3
now depends on mπ3

through the �resummed tree level� propagator matrix (16). This means that the above

pro
edure makes the π3 propagator (Gb44) self
onsistent at p = 0, while the mixed se
tor of the boson propagator is

partially resummed due to its mπ3
dependen
e.

The self energy in (17) 
ontains bosoni
 as well as fermioni
 loop integrals,

Σπ3
(ω = p = 0,m2

π3
, T, µ) = λ+ λ

∑

p

∫

Tr{T bGb(ωn,p, µI)}

+ λ2
∑

p

∫

BbijB
b
kl

(

Gbik(ωn,p, µI)G
b
jl(ωn,p, µI) +Gbil(ωn,p, µI)G

b
jk(ωn,p, µI)

)

+ g2F
∑

p

∫

Gfil(ωn,p, µI, µB)B
f
ijG

f
jk(ωn,p, µI, µB)B

f
kl, (18)

where T b, Bb,f denotes the 
oupling matri
es whi
h arise from (9) and are listed in the appendix. It is worth to

note that the divergen
es of the self energy are 
an
elled by the in�nite perturbative 
ounterterms if one repla
es

m with M(T, µ) in (13). In this 
ase, it seems that the 
ounterterms are temperature and/or 
hemi
al potential

dependent, however it 
an be proved order by order that all T and/or µ dependent in�nities are 
an
elled by higher

order 
ontributions (see for e.g. in [23℄ and [26℄).

The s
alar 
ondensate v is determined by the vanishing of the one�loop level one point fun
tion of σ (EoSσ at

one�loop level),

v

(

m2 + δm2 + (λ+ δλ)(v2 + ρ2) + λ
∑

p

∫

Tr{HbGb(ωn,p, µI)}+ gF
∑

p

∫

Tr{HfGf (ωn,p, µI, µB)}
)

= h, (19)

where Hb,f

an be found in the appendix. Comparing (18) and (19) one 
an re
ognize a Ward identity whi
h 
onne
ts

the symmetry breaking external �eld with the propagator of π3 at zero external momentum,

vm2
π3

= h. (20)

This relation is a 
onsequen
e of the remaining O(2) symmetry, whi
h is an axial ve
tor rotation around the third

isospin axis from the point of view of the 
hiral symmetry. Moreover (20) guarantees the Goldstone theorem for this

degree of freedom (neutral pion).
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The pion 
ondensate is determined through the π1 one point fun
tion, whi
h is the EoSπ1
at one�loop level,

ρ

(

m2 + δm2 + (λ+ δλ)(v2 + ρ2)− µ2
I

(1 + δZ) + λ
∑

p

∫

Tr{RbGb(ωn,p, µI)}

+gF
∑

p

∫

Tr{RfGf (ωn,p, µI, µB)}
)

= 0, (21)

where and Rb,f 
an be found in the appendix. Here the in�nite part of δZ just 
an
els the µ
I

dependent divergen
e

of the fermion loop integral.

The 
al
ulation of the loop integrals in (18) and (21) requires the diagonalization of the propagators and the


orresponding transformation of the 
oupling matri
es due to the non�diagonal matrix elements in (10) and (8).

The diagonalization itself is a straightforward 
al
ulation, however the eigenvalues of the boson propagator (10) are

non�rational fun
tions of ωn. Thus performing the Matsubara sums is a very 
ompli
ated task and it is beyond the

s
ope of our paper. In order to avoid these di�
ulties the diagonalization was a

omplished only for small ρ. As one
shall see in the next se
tion this method leads to ordinary Matsubara frequen
y dependen
e in the propagators. For

that very reason we restri
ted ourselves to a Landau�type analysis of the pion 
ondensation in a small vi
inity of the

phase boundary. Up to se
ond order in ρ the mass equation (17) 
an formally be written as

m2
π3

= m2 + λv2 + t(0)(m2
π3
, v, T, µ

I,B) + (λ + t(2)(m2
π3
, v, T, µ

I,B))ρ
2, (22)

while (19) goes over into the simple form of (20) due to the Ward identity. At the same order in ρ (21) 
an be

rewritten as,

ρ
[

µ2
I −m2 − λv2 − r(0)(m2

π3
, v, T, µ

I,B)− (λ+ r(2)(m2
π3
, v, T, µ

I,B))ρ
2 +O(ρ4)

]

= 0 (23)

By virtue of the above equation the pion 
ondensate may have non�zero value only if the roots of the expression in

the square bra
ket are real. Assuming that λ+ r(2) > 0, Eq.(23) yields

ρ =

√

µ2
I −m2 − λv2 − r(0)(m2

π3
, v, T, µ

I,B)

λ+ r(2)(m2
π3
, v, T, µ

I,B)
(24)

if µ2
I−m2−λv2−r(0) > 0. This means that in this 
ase the transition is of se
ond order supposing that the 
oe�
ient

of the fourth order term in (23) is negative. Moreover if λ+ r(2) < 0 and µ2
I −m2 − λv2 − r(0) < 0 (keeping that the

fourth order term is negative) it 
an be seen that the equation 
an have two nonzero roots, whi
h suggests �rst order

phase transition. For the 
al
ulation of the t(0,2) and r(0,2) 
oe�
ients in (22) and (24) diagonalization of the boson

and fermion propagator up to order ρ2 is needed, whi
h will be presented in the next se
tion.

IV. DIAGONALIZED PROPAGATORS FOR SMALL ρ

In our approa
h, as was dis
ussed previously, the next step is to determine the eigenvalues of the propagator matri
es

for small ρ values, in other words to �nd the propagating eigenmodes with help of some suitable linear transformation

of the original �elds perturbatively in ρ. This step is not ne
essary if one would like to 
al
ulate the e�e
tive potential

(see for e.g. [17℄). In 
ase of the bosoni
 propagator the transformation matrix up to O(ρ3) is found to be,

OB =





1− |a|2 ρ2 b(1− 2av)ρ2 −
√
2aρ

b∗(1− 2a∗v)ρ2 1− |a|2 ρ2 −
√
2a∗ρ√

2aρ
√
2a∗ρ 1− 2 |a|2 ρ2



+O(ρ3), (25)

where a = a(ωn, µ) = λv/(µ2 + 2λv2 + 2iωnµ) and b = b(ωn, µ) = iλ/(4µωn). As it 
an be 
he
ked OB is not a

unitary transformation and it is important to note that OB depends on the Matsubara frequen
y ωn. With this

transformation OB · (iGbπ+,π−,σ

−1
) · O−1

B = diag(iG̃−1
π+ , iG̃

−1
π− , iG̃

−1
σ ) + O(ρ3), where the tilde reminds us that these

propagators belong to the transformed (propagating) parti
les. It is worth to note that the new π+
and π−

parti
les

are no longer 
harge 
onjugates of ea
h other, whi
h is a natural 
onsequen
e of the presen
e of the pion 
ondensate.

After 
al
ulating the inverses perturbatively, the transformed π+
, π−

and σ bosoni
 propagators are given by

iG̃π+ =
1

(ωn + iµ
I

)2 + E2
π

− ρ2
λ(2µ2

I

+ 2λv2 − 4iµ
I

ωn)

((ωn + iµ
I

)2 + E2
π)

2(µ2
I

+ 2λv2 − 2iµ
I

ωn)
+O(ρ4), (26)



6

iG̃π− =
1

(ωn − iµ
I

)2 + E2
π

− ρ2
λ(2µ2

I

+ 2λv2 + 4iµ
I

ωn)

((ωn − iµ
I

)2 + E2
π)

2(µ2
I

+ 2λv2 + 2iµ
I

ωn)
+O(ρ4), (27)

iG̃σ =
1

ω2
n + E2

σ

− ρ2
λ(µ2

I

+ 2λv2)(µ2
I

+ 6λv2 + 4µ2
I

ω2
n)

(ω2
n + E2

σ)
2((µ2

I

+ 2λv2)2 + 4µ2
I

ω2
n)

+O(ρ4), (28)

while the π3 propagator is

iGπ3
=

1

ω2
n + E2

π

− ρ2
λ

(ω2
n + E2

π)
2
+O(ρ4). (29)

In 
ase of the fermioni
 inverse propagator matrix the diagonalization must be performed 
autiously due to the

presen
e of the non 
ommuting Dira
 matri
es. The 
learest approa
h is to solve the equation OF (iG
−1
F )O−1

F = diag
for OF dire
tly. In this way OF is found to be

OF =





1 +
g2F
32k2

0

ρ2 −i gF4k0
γ0γ5ρ

−i gF4k0
γ0γ5ρ 1 +

g2F
32k2

0

ρ2



 , (30)

where k0 = (−iωn + 1
3µB)γ0 and the matrix is hermitian. After performing the inverse perturbatively the fermioni


propagators are given by

iG̃u/d = − 1

/pu/d −mf
− ρ2

g2F
8k0

1

/pu/d −mf
γ0

1

/pu/d −mf
(31)

where /pu/d = (−iωn + µu/d)γ0 − γipi and µu/d = µ
B

/3± µ
I

/2.

In the appendix it is shown that all integrandus appears in the one�loop equations (18), (19) and (21) 
an be

written as tra
es over �avor spa
e (in 
ase of fermions tra
es also 
on
ern Dira
 indi
es). In this way one 
an insert

the bosoni
/fermioni
 transformation matri
es given in (25) and (30) under the tra
es and transform the propagators

within into diagonal form, whi
h will lead to transformation of the 
orresponding 
oupling matri
es. Thus for instan
e

the tra
e in (A.4) 
an be written as

Tr{Bb′Gb} = Tr{Bb′O−1
B OBG

bO−1
B OB} = Tr{OBBb

′
O−1
B G̃b} = Tr{B̃bG̃b}, (32)

where G̃b = diag(G̃−1
π+ , G̃

−1
π− , G̃

−1
σ ), and B̃b is the transformed 
oupling matrix, whi
h depends on ωn as was mentioned

earlier. Similar expressions 
an be derived in 
ase of fermions.

V. THE PARAMETERIZATION

Before 
al
ulating at �nite temperature and non�zero 
hemi
al potentials one has to parameterize the model at

T = µI,B = 0. We 
losely follow the method presented in [21, 22, 27℄. Sin
e ρ = 0 at µ
I

= 0, there are �ve parameters,

namely m2
, λ, gF , h and v, whi
h 
an be �xed by setting four physi
al quantities �namely the pion, sigma, u and d

quark masses plus the pion de
ay 
onstant (through the PCAC relation)� to their physi
al values and by requiring

the ful�llment of the (20) equation of state. At T = µI,B = 0 and ρ = 0, the one�loop level π3 inverse propagator 
an
be written as

i(G1�loop

π3
)−1 = (1 − δZ)p2 −m2 − δm2 − (λ + δλ)v2 − Σπ3

(p2 = 0)− p2Σ′
π3
(p2 = 0)− Σ̃(p2), (33)

where Σ′
π3

= ∂Σπ3
/∂p2 and Σ̃π3

∼ O(p4). Fixing the physi
al π3 mass (Mπ = 138MeV) through the π3 one�loop

level propagator at p2 = 0 and using the (17) mass resummation equation at ρ = T = µI,B = 0 one obtains

M2
π = m2 + λv2 + 3λ(T b0 (Mπ, lb) + T b0 (mσ, lb)) + 2g2FNcT

f,π
0 (mf , lf), (34)

where m2
σ = M2

π + 2λv2 and T
b/f,π
0 denotes the bosoni
/fermioni
 tadpole integrals at zero T and µI,B. In (34)

the la
k of bubble integrals is due to the fa
t that at p2=0 they redu
e to a linear 
ombination of tadpoles. These

tadpoles are �nite on a

ount of the δm2
and δλ 
ounterterms (13). Note that new divergent terms do not appear in

the tadpoles at �nite temperature and/or non�zero 
hemi
al potentials, as it should be. The presen
e of δZ in (33)



7

 510

 520

 530

 540

 550

 560

 570

 580

 590

 300  400  500  600  700  800  900

[M
eV

]

lb

lf

sqrt(-m2)

 400

 600

 800

 1000

 1200

 1400

 1600

 300  400  500  600  700  800  900

[M
eV

]

lb

Mσ=500 MeV 

fπλ

mσ

FIG. 1: Bosoni
 renormalization s
ale dependen
e of the fermion renormalization s
ale lf , the mass parameter m2
(left panel)

and of the 
oupling λ, the tree level σ mass mσ (right panel).

is also important be
ause this term renders the p2 dependent part of the propagator �nite. It involves also a �nite

renormalisation:

δZfin
π3

= δZ +
∂Σπ3

∂p2
(p2 = 0) =

λ

16π2

M4
π −m4

σ +M2
πm

2
σ log

(

m2
σ

M2
π

)

(m2
σ −M2

π)
2

+
g2FNc
16π2

log

(

em2
f

l2f

)

(35)

and the one�loop level PCAC relation depends on δZfin
π3

as follows

v[iG1-loop

π3
(p2 = 0)]−1 = fπM

2
π(1− δZfin

π3
/2), (36)

where fπ = 93MeV is the pion de
ay 
onstant. Sin
e δZfin
π3

depends on the fermioni
 renormalization s
ale its a
tual

value is tunable. Thus we required the vanishing of δZfin
π3

to �x the fermioni
 renormalization s
ale. This requirement

makes the PCAC relation simpler and thus the values of v, gF , h o�er themselves immediately

v = fπ, gF = 2
mf

fπ
, h = fπM

2
π , (37)

where mf = 938/3MeV is the 
onstituent u, d quark mass. At this point v, gF , and h are known and m2

an be

expressed from (34).

The remaining unknown λ parameter is determined by �xing the physi
al σ mass at one�loop level and at zero

external momentum, that is

M2
σ = m2 + δm+ 3(λ+ δλ)v2 +Σσ(p

2 = 0)

= m2 + 3λv2 + 3λ(T b0 (Mπ, lb) + T b0 (mσ, lb)) + 18λ2v2Bb0(mσ, lb) + 6λ2v2Bb0(Mπ, lb) + 6g2FT
f,σ
0 (mf , lf ), (38)

where Bb0 and T f,σ0 
ome from the temperature and 
hemi
al potential independent part of the bosoni
/fermioni


bubble diagram at zero external momentum and degenerate masses. It is worth to note that the same in�nite


ounterterms render the above equation as well as the equation of Mπ �nite.

We use Mσ = 500MeV for the physi
al σ mass. This 
hoi
e seems somewhat arbitrary, be
ause the σ meson is

a broad resonan
e rather than a parti
le with well�de�ned mass (see [28℄ and referen
es therein). Thus it would

be more appropriate to identify the mass and width of the σ meson through the pole of its spe
tral fun
tion [29℄.

However, we 
he
ked that varying Mσ in the 400MeV� 750MeV range produ
es just the same order of un
ertainties

in the thermodynami
al results as the variation of the lb boson renormalization s
ale itself. A

ordingly, it is enough

to analyze the lb dependen
e of the di�erent parameters, hen
e here and in the following we present our results whi
h


orrespond to the 
hoi
e Mσ = 500MeV at zero T , µ
I,B. On the left panel of Fig. 1 the bosoni
 renormalization s
ale

dependen
e of m2
and lf , while on the right panel the tree level σ mass and the λ parameter are shown. As one


an see on the right panel, the tree level σ mass equals its one � loop level value at lb ≈ 600MeV thus the σ mass

be
omes self
onsistent at this point (but only for zero T , µ
I,B!). In addition m and lf moderately depend on the

renormalization s
ale around this point (see left panel of Fig. 1). A

ording to the above arguments we 
hoose the

following s
ale range: lb ∈ [400MeV, 800MeV] for the thermodynami
al 
al
ulations.
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FIG. 2: Temperature and 
hemi
al potential dependen
e of the s
alar 
ondensate v. Left panel shows v(T ) at µ
I,B = 0 and

lb = 400, 600, 800MeV. Right panel shows v(µ
B

) at µ
I

= 0 and T = 20, 50, 80, 100MeV.

VI. RESULTS AT LOWEST ORDER IN ρ

As was derived in Se
. III the expe
tation value ρ of the pion �eld is determined by (24) up to se
ond order in

ρ. From this equation it 
an be immediately seen that the se
ond order boundary for the o

urren
e of the pion


ondensation in the µ
I

− µ
B

− T spa
e is determined by

µ2
I −m2 − λv2 − r(0)(m2

π3
, v, T, µ

I,B) = 0. (39)

Moreover, the µ
I,B and T dependen
e of v and mπ3

are determined by (20) and (22), whi
h have to be solved at

ρ = 0. At ρ = 0 (22) has the same form as (34) with the slight di�eren
e that now the tadpoles whi
h appear therein

have to be 
al
ulated at �nite temperature and 
hemi
al potentials, while the form of (20) is un
hanged. Using the

expli
it expression of r(0), Eq. (39) 
an be expressed as

µ2
I −m2

π3
(T, µ

I

, µ
B

)−R1�loop(T, µ
I

, µ
B

) = 0, (40)

where R1�loop

is the remaining part of r(0) after subtra
ting from it m2
π3
. It 
ontains one�loop bosoni
 and fermioni



ontributions. From (40) it is obvious that at one�loop level the 
ondensation does not start exa
tly at µ
I

= mπ3
,

as it is 
ommonly expe
ted, but it is shifted to some extent by R1�loop

. It's worth to note that the deviation R1�loop

does not vanish identi
ally even if the resummed pion mass is de�ned as the pole of the propagator.

First, we investigated the temperature and 
hemi
al potential dependen
e of the s
alar 
ondensate v at µ
I

= 0
and di�erent values of lb by solving (20) and (22), whi
h 
an be seen in Fig. 2. On the left panel the temperature

dependen
e of v is shown at lb = 400, 600, 800MeV and at zero 
hemi
al potentials. As it is expe
ted, the s
alar


ondensate shows a smooth 
rossover as the 
hiral symmetry is restored at a pseudo
riti
al temperature (Tc) around
150MeV, whi
h is in good agreement with the 
ontinuum limit latti
e result found in [30℄. Moreover, the v(T ) 
urve
and 
onsequently Tc slightly depend on lb. Hen
e, in the forth
oming we use the �xed s
ale lb = 600MeV. On the right

panel the baryo
hemi
al potential dependen
e of v 
an be seen at lb = 600MeV s
ale, and at T = 20, 50, 80, 100MeV

temperatures. At small temperatures the transition is of �rst order, while for large temperatures it is of analyti



rossover type, indi
ating the existen
e of a 
riti
al endpoint (CEP), where the transition 
hanges from �rst order

to 
rossover with in
reasing temperature (see e.g. in [21℄ and referen
es therein). As one 
an see on Fig. 2 the

temperature at the CEP is around 50MeV, whi
h is mu
h lower than the latti
e result presented in Ref. [31℄, however

this is a 
ommon feature of e�e
tive models (for two/three �avors see e.g. Refs. [29℄, [21℄). The 
riti
al/pseudo
riti
al

baryo
hemi
al potential values range from ∼ 600MeV to ∼ 1000MeV depending on the temperature.

Next, solving (20) and (22) for di�erent T, µ
I

, µ
B

values and tra
king the ful�llment of the (40) 
ondition we

determined the se
ond order 
riti
al surfa
e of pion 
ondensation, whi
h 
an be seen on Fig. 3. As a fun
tion of the

isospin 
hemi
al potential at �xed µ
B

the region of pion 
ondensation starts very steeply at around 130MeV. After

that steep jump a plateau starts, whi
h de
reases slowly towards higher values of µ
I

. Moreover, it 
an be seen that

the region of pion 
ondensation shrinks with in
reasing µ
B

and it even disappears at around µ
B

= 830MeV (and

µ
I

= 131MeV), a behavior whi
h is in a

ordan
e with previous e�e
tive model studies (see e.g. Se
. VII.A of [17℄).

This is understandable physi
ally, sin
e at large µ
B

the 
ondensate ρ is basi
ally determined by the di�eren
e of the
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FIG. 3: Se
ond order 
riti
al surfa
e of the pion 
ondensation in the µ
I

− µ
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− T
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FIG. 4: Phase boundary of pion 
ondensation and the µ
I

= mπ3

ondition as fun
tion of the isospin 
hemi
al potential for

di�erent µ
B

values.

u − d quark 
ontributions in the EoS, and this di�eren
e is de
reasing with in
reasing µ
B

at �xed µ
I

, be
ause the

Fermi�Dira
 fa
tor in the 
ontribution of u depends on µ
B

+µ
I

, while in the 
ontribution of d on µ
B

−µ
I

. It is worth

to observe that on the surfa
e a gradually in
reasing missing part starts from about µ
B

= 415MeV and µ
I

= 221MeV.

In that region the µ2
I − m2 − λv2 − r(0) 
ombination (numerator of Eq. (24)) is negative, whi
h means that the

transition is not se
ond order anymore. Stri
tly speaking if in this region there is a nonzero solution to ρ this 
an

happen only if λ+ r(2) < 0 (denominator of Eq. (24)) and in this 
ase the transition is of �rst order.

To analyze the surfa
e in detail, two se
tions taken at µ
B

= 0MeV and µ
B

= 400MeV are plotted in Fig. 4 together

with the µ
I

= mπ3

urves. At both baryo
hemi
al potentials the 
ondensation starts at around µ

I

= 131MeV, whi
h

is slightly below the mπ3
= 138MeV pion mass, this deviation is due to the 
orre
tions R1�loop

in (40). Moreover,

the deviation widens as µ
I

in
reases. Another interesting feature is that at �xed high temperature as we in
rease the

isospin 
hemi
al potential the 
ondensation evaporates above a 
ertain µ
I

value, whi
h is in a

ordan
e with Ref. [16℄,

where this phenomenon was observed in 
ase of two �avor PNJL model. In the region where the 
ondensate already

evaporated (ρ = 0) the 
hiral symmetry is almost totally restored (v ≈ 0).
Finally we 
al
ulated the one�loop pole masses of the 
harged pions on di�erent temperatures as a fun
tion of the
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FIG. 5: µ
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e of the one�loop pole masses of 
harged pions at di�erent temperatures (T = 90, 140, 150MeV). The thin

lines indi
ate the 
ondensed phase for ea
h temperature (where our 
al
ulation is not valid).

isospin 
hemi
al potential at ρ = 0. For this we 
al
ulated the self energies of the 
harged pions, then we solved the

following pole mass equations:

(

Mpole

π±

)2

=
(

mtree

π±

)2
+Σπ±(ω =Mpole

π± ,p = 0, T, µ
I,B), (41)

where we have impli
itly used the already known solutions v(T, µ
I,B) and mπ3

(T, µ
I,B). The one�loop masses are

plotted on Fig. 5. On the �gure thi
k lines represent the se
tors, where our 
al
ulation is valid, that is ρ = 0. At the
thin line parts of the 
urves the pions are 
ondensed, thus we should go beyond the lowest approximation in ρ to get

orre
t results in that se
tors. It is worth to note that when the 
ondensation sets in none of the one�loop 
harged

pion masses be
omes zero as opposed to the masses de�ned through the dispersion relation (see e.g. [18℄). Another

interesting thing is that at larger values of µ
I

where the 
ondensation has already evaporated and our 
al
ulation is

valid (thi
k line parts) the 
harged pion masses are still di�erent, however ρ = 0. This di�eren
e is due to the fa
t

that the isospin ba
kground a
ts di�erently on the 
harged pions (with opposite signs).

VII. CONCLUSIONS

In this paper we studied the pion 
ondensation in the framework of SU(2)L × SU(2)R 
onstituent quark model

with expli
itly broken symmetry term in the presen
e of baryo
hemi
al potential. The model was parameterized

at one�loop level and optimized perturbation theory was used for the resummation of the perturbative series. The

one�loop equations were expanded in powers of ρ, and a Landau type analysis was performed for the phase boundary

at lowest order in ρ. A simple 
ondition for the boundary of the pion 
ondensation was set up, and we argued that

this 
ondition gives a se
ond order surfa
e in the µ
I

− µ
B

− T spa
e. The temperature and renormalization s
ale

dependen
e of the s
alar 
ondensate v was investigated, and a mild renormalization s
ale dependen
e was found.

At zero baryo
hemi
al potential the pseudo
riti
al temperature is in a

ordan
e with results found on latti
e [30℄.

Using the 
ondition for the pion 
ondensation the se
ond order surfa
e was determined. It was found that the surfa
e

starts steeply with in
reasing µ
I

at �xed µ
B

and towards large values of µ
B

the pion 
ondensed region shrinks and

even disappears at around µ
B

= 830MeV. However, at su
h a high energy one should take into a

ount the e�e
ts

of the strange quark. Investigating di�erent se
tions of the surfa
e it was showed that at one�loop level the pion


ondensation 
urve slightly di�er from the µ
I

= mπ3

urve at small µ

I

and this deviation in
reases with in
reasing

µ
I

. We also studied the dependen
e of the 
harged one�loop pion masses on the isospin 
hemi
al potential. As a


ontinuation of the present study the analysis 
an be extended to higher order in ρ, with whi
h for instan
e the s
aling

properties around the surfa
e, the dispersion relation at one�loop level and di�erent phases of the 
ondensed matter

(BCS/LOFF) 
ould be investigated.
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APPENDIX: COUPLINGS

The 
oupling matri
es appearing in (18), (19) and (21) 
an be obtained from the intera
tion term of the shifted

�elds in the Lagrangian

λ

4
φ4 +

gF
2
ψ̄Tαφαψ −→ λ

4

(

(π1 + ρ)2 + π2
2 + π2

3 + (σ + v)2
)2

+
gF
2
ψ̄ (τ0(σ + v) + iγ5(τ1(π1 + ρ) + τ2π2 + τ3π3))ψ.

(A.1)

The four and three point 
ouplings of (A.1) determine the 
oe�
ients of the tadpole and bubble terms of (18).

In
luding the symmetry fa
tors of the 
orresponding graphs these are:

T b =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3






, Bb =

√
2









0 0 0 ρ
0 0 0 ρ

0 0 0
√
2v

ρ ρ
√
2v 0









, Bf =
i

2

(

−γ5 0
0 γ5

)

, (A.2)

where in 
ase of bosons the same 
onvention is used for the labeling of the matrix elements as in (10). The bosoni


bubble 
ontribution in (18) 
an be rewritten as

∑

i,j,k,l

BbijB
b
kl(G

b
ilG

b
jk +GbjlG

b
ik) = 2Tr{Gb TBbGbBb}, (A.3)

and by virtue of the stru
ture of Bb and Gb one 
an fa
tor out the π3 propagator from the above expression as follows

Tr{Gb TBbGbBb} = Gbπ3
Tr{Bb′Gb}, (A.4)

where

Bb
′
= 2









ρ2 ρ2
√
2vρ 0

ρ2 ρ2
√
2vρ 0√

2vρ
√
2vρ 2v2 0

0 0 0 0









. (A.5)

The fermioni
 bubble 
ontribution 
an be formulated as,

∑

i,j,k,l

GfilB
f
ijG

f
jkB

f
kl = Tr{Gf TBfGfBf} = Tr{BfGfBfGf T }, (A.6)

where the tra
e is over �avor as well as Dira
 indi
es.

Moreover, in equations of states (19) and (21) the tadpole 
oe�
ients are also determined by the three point


ouplings of (A.1),

Rb =









2ρ ρ v/
√
2 0

ρ 2ρ v/
√
2 0

v/
√
2 v/

√
2 ρ 0

0 0 0 ρ









, Rf =
1

2

(

1 0
0 1

)

, (A.7)

and

Hb =









v 0 ρ/
√
2 0

0 v ρ/
√
2 0

ρ/
√
2 ρ/

√
2 3v 0

0 0 0 v









, Hf =
i

2

(

0 γ5
γ5 0

)

. (A.8)
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