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ABSTRACT

A new procedure, designed to remove foreground stars from galaxy profiles is

presented here. Although several programs exist for stellar and faint object photometry,

none of them treat star removal from the images very carefully. I present my attempt to

develop such a system, and briefly compare the performance of my software to one of the

well known stellar photometry packages, DAOPhot (Stetson 1987). Major steps in my

procedure are: (1) automatic construction of an empirical 2D point spread function from

well separated stars that are situated off the galaxy; (2) automatic identification of those

peaks that are likely to be foreground stars, scaling the PSF and removing these stars,

and patching residuals (in the automatically determined smallest possible area where

residuals are truly significant); and (3) cosmetic fix of remaining degradations in the

image. The algorithm and software presented here is significantly better for automatic

removal of foreground stars from images of galaxies than DAOPhot or similar packages,

since: (a) the most suitable stars are selected automatically from the image for the PSF

fit; (b) after star-removal an intelligent and automatic procedure removes any possible

residuals; (c) unlimited number of images can be cleaned in one run without any user

interaction whatsoever.
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1. INTRODUCTION

We have recently developed a catalog of digital images of 113 nearby galaxies of

various Hubble types (Frei et al., 1996). I used the images in this catalog to develop

techniques what enable me to derive quantitative parameters that represent the galaxies

in the images. These parameters will be used later to explore the sequence of the Hubble

morphological classes of galaxies, and to develop an automated galaxy classification

system (Frei, in preparation).

Foreground stars need to be carefully removed from the above images of galaxies

for a number of reasons. First, to be able to derive quantitative “signatures” that truly

represent the galaxy in question, one must prevent foreground stars from contaminating

the calculations. Second, I plan to degrade resolution in the catalog to simulate the

appearance of galaxies at higher redshifts. This will enable me to test the limitations of

the automated classification system. Although one could process a few hundred images

interactively, this method will not be sufficient for larger data sets. I would like to develop

an automated galaxy classification system, and if star-removed images are needed to

perform the task of automatic classification, than an automatic star-remover should be

an integral part of that system.

Recently, several groups of researchers developed computer codes to process digital

images of stars, galaxies and other sources, all recorded by charge-coupled devices (CCDs)

or digitally scanned from the original plates. DAOPhot developed at the Dominion

Astrophysical Observatory (Stetson 1987) is among the best known packages for crowded-

field stellar photometry. There are also several packages available for (faint) galaxy

photometry, such as APM (Irwin and Trimble, 1984) and FOCAS (Jarvis and Tyson,

1981).

Considering blended images is not of prime importance since images of galaxies

hopefully have no more than a handful of foreground stars, with very little chance to find

overlapping star pairs. Due to the low number of stars per frame, PSFs cannot be fitted

with sufficient accuracy to allow position-dependency across the field. I can not expect

that all peaks on the image correspond to stars. I may have several peaks representing

features in the galaxy (HII regions, spiral arms, bright stars, globular clusters, etc). I

should not remove these as if they were in the foreground.
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The first step of my method is to produce a 2-dimensional empirical point spread

function by using isolated stars in the field that are far from the galaxy so that the

backgrounds of the stars are not affected by features in the galaxy. The most suitable

stars to be used for fitting the PSF are selected automatically. The second step is to

identify those stars which are to be removed, both atop of the galaxy, and near the

galaxy in the frame. The software removes these stars, and patches the residuals so that

the remnants of the stars disappear. All steps, including identification of stars to be

removed, and the intelligent patching of residuals are automatic. The last step is the

possible cosmetic fix of the bad pixels or regions (cosmic ray events, saturation trails,

etc).

In Sec. 2 I present the detailed algorithms, and in Sec. 3 I work through a simple

example to demonstrate the usual steps of processing. Comparison of performance

between DAOPhot and my method is presented in Sec. 4. I used the addstar routine in

DAOPhot to add artificial stars to 2 different galaxies that were star-removed previously,

and removed these artificial stars with both DAOPHOT and my program. Images of

the residuals and some statistics are provided in both cases. In Sec. 5 I outline possible

future improvements. I will be happy to supply heavily commented C source code to

those who are interested.
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2. THE STEPS OF FOREGROUND–STAR REMOVAL

My steps of star removal can be collected into three major groups, each group

containing several tasks. Some of these tasks are well known and straightforward. I

adopted and coded them for my purposes, and I built a user interface that is most

suitable for the given task. A few others, most importantly those used to patch the

residuals of a removed star in the image, were first developed for this project.

The steps can be summarized as follows:

(1) Fitting the PSF:

(1a) Finding local peaks in the image.

(1b) Selecting those peaks that are likely to be isolated stars off the galaxy.

(1c) Constructing the PSF.

(2) Removing stars:

(2a) Finding local peaks that are sufficiently above the local background.

(2b) Selecting those peaks that are likely to be foreground stars.

(2c) Scaling the PSF and removing stars.

(2d) Examining residuals, finding the smallest possible area where further patching

is required.

(2e) Patching these residuals.

(3) Cosmetic fix of images:

(3a) Cosmetic fix of all degradations in the image.

(3b) Removing extra stars or replacing wrongly removed stars.

(3c) Saving information about the locations in the image where changes were made.

In this section I mention all the important parameters that must be decided upon

before this procedure will work. I will give estimated values of these parameters which

seem to be reasonable a priori. In the next section, where I present an actual image and

go through the steps of star removal, I will give the values of the parameters I used for

processing the given image.

2.1 Fitting an Empirical Point Spread Function

I fit a PSF for each image separately. Stars used for the fit are converted to grids

of the same size, and combined to form the PSF. Due to the usually small number of
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stars available for my fits, I decided to use a 2D empirical PSF for the entire image field,

independent of the location in the field. I naturally want to find foreground stars for the

PSF fit which are far from the background galaxy, so that the local sky around these

stars is uncontaminated. The second requirement is to find stars that are well separated

from any other objects in the image.

I determine the level of the background sky. Since I will use this sky only to find

peaks, the median value of all the pixels in the image will serve me well. The next step

is to find all isolated peaks in the image which are above a threshold. I search all pixels

to find all local maxima, and than collect those that are separated from any other by at

least a certain preset value (usually 4-5 times the expected FWHM of the PSF). Following

this, I pick those which are above the preset value (usually 40-50 times sigma above the

sky level). Naturally, I avoid all of those that may be high enough to be in the nonlinear

regime of the given CCD.

What remains is a set of coordinates that may represent positions of suitable stars

to be used for the PSF fitting. The following step is to extract all regions around these

peaks to grids of common size, and to center the objects on these grids. I used parabolic

centroiding to find the true center (to subpixel precision) of the objects, and used sinc

interpolation to shift the images to be centered. I used square grids of size several times

the expected FWHM of the PSF.

I can examine each of the candidate stars now and select those most suitable for

fitting the PSF. First, I find the local sky around each of the selected objects, and reject

those that have local backgrounds higher than the sky level determined earlier for the

entire image, since they may sit on a background feature, and not on a flat sky. To find

the local sky, I used a circular annulus around the object with inner radius several times

the expected FWHM of the PSF. This geometry ensures that any contribution to the

local sky due to the fact that the background may not be flat is canceled to first order.

I used the median value of all pixels in the annulus as local sky. My first condition for

keeping a star for the PSF fit is that the local sky around the star in question is not

significantly higher than the background sky for the entire image. I keep all those stars

which have local sky not above the image-sky plus 75 % of the sigma of the image-sky.

This condition is formulated as:

Slocal < Si + 0.75 σi , (1)

where Si is the image-sky level determined earlier, σi is the standard deviation of the
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image-sky, and Slocal is the local sky around an object. Second, I calculate the FWHM for

all the objects remaining on my imaginary stack of two-dimensional grids. After finding

the median of these FWHMs, I reject objects which have FWHMs 25 % bigger or smaller

than the median:

0.75 Wmedian < Wobject < 1.25 Wmedian , (2)

where Wmedian is the median of all FWHMs and Wobject is the FWHM of the object

being tested. I also order the patches according to the FWHMs, and reject the upper

quartile of the patches so ordered (if they were not already rejected based on criteria

listed earlier), in order to use the more compact objects for the PSF fitting (this might

eliminate those stars affected more by coma):

Wobject < W3/4 , (3)

where W3/4 is the upper quartile of all FWHMs.

Those stars still remain are going to be used for the PSF fit. I first scale them

according to the total weight of the images formed on the grids. I select each pixel row by

row, column by column in the PSF’s grid, and identify all the pixel values corresponding

to the same pixel in each of the grids on the stack. I find the median of these values,

and place this median to the grid of the PSF. This way, each pixel of the derived PSF is

going to be the median of the corresponding pixels on the stack. I selected a few bright

stars with similar peak values, and supposed that all data is at least critically sampled,

consequently the median pixel is a good estimate of what I need in the PSF.

Although all the images on the stack were individually centered, the resulting PSF

may not have the common center. I use parabolic centroiding again to find the true

center of the PSF in its grid (usually off only by a few hundredth of the size of a pixel)

and use sinc interpolation to center the PSF on the grid. As the last step, the FWHM

of the newly created PSF is calculated.

I designed a user interface that helps to quickly check the resulting PSF, and modify

parameters and re-fit the PSF if necessary. The 3D surface plot of the PSF can be

displayed on the screen. The location of the stars used for the fit can be displayed, and

all the locations of the stars once on the stack can be listed along with the reason for

rejection from the stack (conditions (1)–(3)). Three dimensional surface plots of any

regions of the image can be displayed, and stars can be added or removed from the stack

interactively.
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2.2 Finding and Removing Stars; Patching Residuals

To find those stars that are to be removed, I look for peaks in the image again. The

minimum allowable separation is smaller than in the previous case, however. This is due

to two reasons: the stars found now will not be used for the critical step of fitting the

PSF, and to be able to remove the majority of the stars automatically, I should avoid

excluding too many, just because they are not very well separated. I found that 2-3 times

the FWHM of the PSF is enough separation for this step.

Given the list of sufficiently separated local maxima, I select those peaks which are

above the local sky by at least a given threshold. The local background is found in a

circular annulus centered around the peak. The inner and outer radii of this annulus

is predetermined in the units of the FWHM of the PSF. Since extended object will

contribute to the local sky in the computations (due to the relatively small annulus) I

will find higher local background than the real value. This, in turn, will reduce the height

of the peak I determine, and I will be more likely to reject such a peak from star removal,

since the value of the peak may fall below the predetermined threshold.

The maximum value of the peak is not restricted to be in the linear regime of the

CCD any more. I want, however, to avoid all bleeding columns, and therefore exclude all

regions with more than a few pixels in the saturated regime. Extended saturated regions

will be treated separately in the final step.

To remove a given star, first I have to scale the PSF to the given star. I extract the

region where the star is and register the star on its grid. I calculate the light corresponding

to both the star and the PSF using a special pattern of multiplicative factors (“weights”)

shown in Fig. 1. This pattern is designed so that if there is no light coming from the

star, the total light is 0, and the contribution of a nonzero or nonflat local background

is canceled. The weights are positive (+1) in a circle around the center of the star,

and negative (−1) in a concentric annulus adjacent to the central circle. If the area of

the circle equals the area of the annulus, then the pixel-by-pixel sum of this pattern is

0. This means that any remaining contribution from the local background (galaxy, sky,

other sources) is taken out. Since the same pattern of weights is used to calculate the

light of both the star and the PSF, the ratio of the two lights will be the same as the

ratio of total lights in the two images.

Comparing the two lights, I scale the PSF so that the light of the scaled PSF matches
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the light of the star. I shift the center of the scaled PSF on it’s grid to match the real

center of the star on the grid of the original image, and subtract this scaled and shifted

PSF from the original image pixel-by-pixel within a predetermined radius.

After the star is removed by this method, there will be some pixels that do not

blend in smoothly with the background. I can determine the size of a circular region

around the center of the removed star in which the residuals are above or below a certain

threshold, and I can replace this circular region with random data bearing the same

statistical characteristics as the local background. My aim is to replace only the smallest

possible region which contains significant residuals.

A first order plane is fitted to the data locally, in an annulus centered around the

removed star. The inner radius of this annulus is bigger than several times the FWHM

of the PSF used for removal, so that the direction of the plane fitted will not be affected

by any errors in the star-removal process. The local sigma around the removed star is

also determined in this annulus. The region is than extracted to a square grid, and the

plane (an analytic function) is subtracted from the data. This step “tilts” the area that

contains the residuals flat in the first order sense. I sum up the “bad” pixels in concentric

annuli around the center of the removed star on this grid. A bad pixel is one where its

value is a few times sigma above or below 0. The outer and inner radii of the annuli are

constantly decreased, and the number of the bad pixels are noted. If the number of bad

pixels grow above a preset limit while decreasing the size of the annuli, the outer radius

of the annulus where this happens is going to be the radius of the region within which

the pixels has to be replaced.

The pixels in this circle are replaced by values drawn from a Gaussian distribution

with 0 mean and variation which equals the variation of the local background. The data

are then “tilted” back to the original slope (analytic, first order background added), and

the simulated data are replaced to the original image.

Small objects and higher order curvature in the background can introduce more bad

pixels even far from the center of the removed star then usual. It seemed natural to set

the limit for the number of acceptable bad pixels in any given annuli as the function of

the number of bad pixels found in the outermost annulus (the one used to determine the

local sigma). I also kept a parallel condition, based on the total number of bad pixels (in

case the outer annulus is severely affected by bad pixels, I did not want to accept all the

residuals because they are relatively better).

After some experiments, I decided to use the combination of two sets of thresholds.
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The first set of thresholds contains the following parameters: pixels are bad if they are

above or below 1 local sigma; the number of bad pixels (after areas of annuli carefully

equalized) should not be bigger than 2 times the number of bad pixels in the outer

annulus, and, simultaneously, the number of bad pixels can not be bigger than half the

number of pixels in the annulus. The second set of thresholds are almost the same, the

only difference is that the level for a pixel being “bad” is increased to 2 local sigma.

To formulate my two parallel conditions, I denote the number of bad pixels in an

annulus Nbp(r), where r is the outer radius of the annulus (the inner radius is determined

so that the area of all annuli kept constant). I determine the number of bad pixels in

the outermost annulus (Nbp(router)), and keep decreasing the outer radii of subsequent

annuli until:

Nbp(r) < 2 Nbp(router) (4a)

and

Nbp(r) < 0.5 Np(r) , (4b)

where Np is the number of pixels (area) of the annulus with outer radius r. If one of these

conditions are not met while decreasing r, this r is the suggested radius of the circular

region which has to be repaired. Since I have two separate sets of conditions (different

only in the threshold used to determine the number of bad pixels), I will obtain 2 such

radii. My experience shows that the average of these two radii yields the best result: this

average should be the radius of the region to be repaired.

The center of a galaxy is likely to be the brightest peak in that galaxy. If I want to

be sure that I do not remove what belongs to the galaxy, I should require that all peaks

of objects to be removed should be at least as high above the local sky as the center of

the galaxy is above the background sky determined for the entire image. This is a very

conservative condition, but this criteria is easy to automate and removing stars with this

threshold is usually enough for subsequent processing of the galaxy-images.

If I set the threshold to be lower than outlined above, I may remove objects that

belong to the galaxy in the background. The most important objects are HII regions,

which may appear very compact and thus resemble foreground stars. There are three

criteria that can be used to distinguish them from stars. The first is the FWHM. For HII

regions, if they are resolved, the FWHM is somewhat larger than for stars on the same

image. The second criteria is color. In case images of the same galaxy are available in

different passbands, the color of objects can be examined. Since HII regions are usually
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bluer than stars, the sources that are brighter on the bluer image are more likely to be

HII regions. The last criteria is position. On images of spiral galaxies, objects close to

the spiral arms are likely to be associated with the background galaxy. It is clear that all

three conditions are probabilistic. Combining all of them may give us results which are

correct for the majority of objects.

2.3 Cosmetic fix of Bad Pixels and Regions

The user interface I developed can be used to correct any mistakes the above

procedures may make. There is a way to remove a star (simply pointing at it) if it

was left in the image, and it is similarly easy to put back an object if it was mistakenly

removed. It is also possible to show those stars which are about to be removed, and the

list can be modified before actually doing the removal. Parameters described above can

be adjusted if needed.

There is a utility to patch any regions of the image which may seem to be degraded

with the exact same procedure used to patch circular regions of residuals left after star

removal. I also have a utility to patch rectangular regions (usually saturation trails).

I store the central coordinates and radii of all the circular regions of the image which

were changed by star removal or patching. These data can be used for later reference,

or to repeat the same steps for a similar image (if the same source is on several images,

observed in separate time-intervals).



– 12 –

3. Processing a Sample Image

I selected a sample image to demonstrate the steps of processing outlined in the

previous section. This image of the galaxy M100 (NGC 4321) was obtained with the

1.5-meter reflector at the Palomar Observatory during the night of May 4-5, 1991, in the

g band of the Thuan-Gunn photometric system (Thuan and Gunn 1976), extended by

Wade et al (1979). M100 is one of the best known almost-face-on spirals, demonstrating

some of the main features of a “grand design” spiral, but posing still unsolved problems

(Pierce 1986; Elmegreen, Elmegreen and Seiden 1989).

The image was flat fielded, bad columns and pixels of the CCD were repaired, and a

561 by 561 pixel region centered on the center of the galaxy was clipped form the original

CCD image of size 800 by 800 pixels. This image is shown in Fig. 2a.

The image contains 16 bit data, signed integers between −32768 and 32768. Negative

numbers are not used (the data effectively contain 15 bits of information per pixel), the

level of the sky was 797.1 counts, the variation (sigma) was 29.8 counts. I first tried

to find suitable stars for fitting the PSF automatically. The FWHM of the PSF was

estimated to be around 3 pixels, consequently the threshold for minimum separation for

those peaks to be considered in the search was set to 10 pixels. Minimum height of the

peaks was set to sky plus 50 times sigma. Due to a possible nonlinearity in the CCD, the

threshold for maximum acceptable value of the peaks was set to 20000 counts.

Thirteen peaks were found using the above thresholds. These objects were extracted

from the image and were placed on square grids. They were centered, the local sky

around them and the FWHM of each object was computed. Five of the objects were

rejected afterwards because the local sky was too high (see condition (1)). Five other

objects were rejected because of problems with the FWHMs (see conditions (2) and (3)).

The remaining 3 stars were used to fit the PSF. I decided to use more stars and re-fit the

PSF. After lowering the minimum height for an acceptable star to sky plus 40 sigma, 6

suitable stars were found for the PSF fit. These stars are marked in Fig. 2b.

The following step was the actual star-removal using the PSF just constructed. For

the purpose of this demonstration I decided to set the lower limit of the peaks to be

considered for star removal below the peak of the galaxy (which was very high at 18225

counts), at 2500 counts. There were 25 peaks on the image higher than this value, but only
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17 of them were actually 2500 counts higher than the local sky around the corresponding

peak. These 17 stars are marked on Fig. 2c. The square bracket close to the edges of

the image in Fig. 2c encloses the region that is used to look for peaks. Anything outside

this region is too close to the edges of the image to be able to fit the PSF. After removal

and patching the residuals, no visible traces of any of the stars were left on the image,

which is shown in Fig. 2d. The four peaks closest to the center of M100 are most likely

to be HII regions, and not foreground stars since they are much brighter in the i band

image, than in the g band image (I compared this image to the Hα image of M100 in

Hodge and Kennicutt (1983), and the four peaks in question appear to be HII regions,

indeed). However, the PSF are as narrow as the PSFs of stars on this image, so I decided

to remove them to show how my program performs on stars “sitting” on features of the

background galaxy.

Although it is not demonstrated here, the lower limit for the height of the stars to

be removed can be set even lower, and additional sources can be removed individually

using the user interface developed for this purpose.
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4. Performance Compared with DAOPhot

DAOPhot is one of the best known photometry packages available for crowded stellar

field photometry. I intend to demonstrate that removing foreground stars from images

of background galaxies is a different task from processing crowded stellar fields, and

consequently, it was necessary to develop a system tailored for my needs.

I chose two images of spiral galaxies, the nearly edge on NGC 4192 and the nearly

face on NGC 4535. Both of these galaxies are part of our digital galaxy catalog, and

were observed with the 1.5-meter reflector at the Palomar Observatory on the night of

May 4-5, 1991. I used the i passband of the Thuan-Gunn photometric system for these

images.

I completely cleaned the images of any unresolved sources, then added artificial stars

to both of them using DAOPhot, and removed those stars using both DAOPhot and my

software. After star removal, I subtracted the original, clean image from the star-removed

images, and statistically compared the remaining residuals.

For creating artificial stars, I used the original (not star-removed) images of the two

galaxies obtained at Palomar to fit PSFs with DAOPhot. This PSF, determined on the

original image of the given galaxy was stored in a file, and this PSF was used to add

artificial stars to the corresponding clean image (cleaning was done with my software

between these two steps). This way the characteristics of the stars added to the image is

the same as the characteristics of the galaxy in the background. I set up a very simple

grid of 16 stars, all of the same magnitudes, and used DAOPhot’s addstar to add stars

to the images. The combined images are shown in Figs. 3a and 4a for NGC 4192 and

NGC 4535, respectively.

To remove stars with DAOPhot, I used the newly created images to fit a new PSF,

based on the stars now on the image. If I let DAOPhot use all the bright stars for

fitting the PSF, it will blindly select some of those sitting atop of the galaxy for this fit.

I removed stars with a PSF fitted this way with DAOPhot, then used my program to

identify those stars which are off the galaxy, fed this information back to DAOPhot, and

fitted a new PSF using the “suitable” stars only. Star removal with this PSF is much

more successful. I have to stress that my program - unlike DAOPhot - can automatically

find those stars which are off the galaxy and which are consequently most suitable for
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fitting the PSF. I used my program to help DAOPhot, so that I can compare the star

removal part of the two softwares.

After star removal with DAOPhot, I subtracted the original, clean images. The

residuals are shown in Figs. 3b and 4b for the simple PSF fit within DAOPhot, Figs.

3c and 4c show residuals with the better PSF, where I used my software to determine

suitable stars for fitting the PSF. Every pixel that is not affected by the star-removal

procedure is 0 in the subtracted images, and they are shown in white in the figures. To

be able to show differences above and below 0 on these images, I plotted the absolute

value of each pixels.

Please note, that the stretch of grey scales are different for the images obtained with

the different methods. On all figures, white represents 0 counts, but the grey scale is

stretched to different maximum values (pixels with the maximum count, and all pixels

containing a value above it, are shown in black). The stretch is to 500 and 300 maximum

counts on Figs. 3b and 4b, respectively, while only to 30 in both Figs. 3c and 4c.

To quantify the results, I calculated the “power” left in the residuals. To do this, I

simply summed the squared pixel values for every pixel in the residual images, divided

by the number of pixels, and took the square-root of the result:

P =

√

√

√

√

1

N

N
∑

i

p2i , (5)

where P is the residual “power” per pixel, N is the number of pixels, and pi is a pixel-

value.

In Table 1 I show the power per pixel after star removal with the simple PSF (P1)

and with better PSF (P2) for both images. It is obvious, that if I do not add and remove

stars, just simply subtract two featureless regions of an image with similar sky values and

variations, I will detect “power” due to the noise in the image using the method described

by (5). If the variation of the sky is σ, then due to the propagation of errors, the expected

“power” per pixel is
√

2σ. This expected power per pixel due to the variation in the sky

is also shown in Table 1.

With presenting these numbers I intend to show the importance of finding suitable

stars for the PSF fit - what is done by my program - if there is a relatively faint but

extended object in the background. It is interesting to note that the residual power can

be less than the expected power due to the variation of the sky. This is due to the fact

that I subtracted the very same original image to which artificial star were added. In



– 16 –

theory, if the PSF used for adding stars and the PSF used later for star removal are

perfectly matched, with this method we can get 0 residual power.

I used my method to remove the artificial stars from the same images, and subtracted

the original, clean image after star-removal. To be able to compare the star removal by

PSF fitting (without patching the residuals) between DAOPhot and my method, I first

switched off patching in my software. The residuals are shown in Figs. 3d and 4d, and

the residual powers (P3) are in Table 1. I also used patching, the corresponding residuals

are in Figs. 3e and 4e, the residual powers are P4 in Table 1.

It is clear from these numbers (P2 vs. P3) that my star removal method (without

patching) gives comparable residual powers than DAOPhot, when the PSF is fitted using

the same set of stars. That is, the star removal steps are similar in both programs.

However, the overall performance is much better for my code since it automatically finds

suitable stars for the PSF fit, and after removal, it uses a special algorithm to patch

possible residuals. The difference between P1 and P2 clearly suggests that finding suitable

stars for the PSF fit is very crucial.

The residual power after patching is substantially larger than without patching.

These numbers are misleading, since with patching I introduce random noise to the data.

Even if no residuals of the removed stars are left in the image, I expect some residual

power due to the random variation in the sky (see the last line in Table 1). Patching

certainly removes residuals of subtracted stars, and produces an image where traces of

removed foreground stars are hardly noticeable (see Fig. 2d).
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5. Conclusions and Possible Improvements

The small residuals that remained in the images after star removal presented in the

previous section demonstrate that my methods can clean foreground stars from images

of galaxies to a satisfactory degree. The level of automation unfortunately is not very

high at this stage. I can run the procedure automatically and achieve results better

than with DAOPhot, but dim stars are left in the image which can be removed only

interactively. Systematic studies of statistical properties of these objects are required to

further automate my procedure.

The star-removal procedure itself can be further improved. The PSF fit can be

modified to work for undersampled images. If a great number of stars are available

for the PSF fit, roundness of these stars can be introduced as a new criteria to select

the best stars for the fit. The procedure can be expanded to handle blended images of

groups of nearby stars. A special procedure could be introduced to treat bright stars in

the nonlinear regime of the CCD better. FWHMs, colors, and positions of objects which

might belong to the background galaxy should be evaluated automatically to better guess

whether they are background objects or foreground stars.

I especially thank James Gunn for his continuous support and good suggestions

throughout this project. I acknowledge useful discussions with Puragra (Raja)

Guhathakurta and Neil Tyson. I also thank the anonymous referee for making this

paper much more readable with many useful suggestions. This research was supported

in part by NSF through grant no. AST-9100121, and by OTKA through grant no. F

17150. Z. F. is a Magyary Fellow.



– 18 –

REFERENCES

Elmegreen, B. G., Elmegreen, D. M., & Seiden, P. E. 1989, ApJ, 343, 602

Frei, Z., Guhathakurta, P., Gunn, J. E., & Tyson, J. A. 1996, AJ, 111, 174

Hodge, P. W., & Kennicutt, R. C. 1983, AJ, 88, 296

Irwin, M. J., & Trimble, V. 1984, AJ, 89, 83

Jarvis, J. F., & Tyson, J. A. 1981, AJ, 86, 476

Pierce, M. J. 1986, AJ, 92, 285

Stetson, P. B. 1987, PASP, 99, 191

Thuan, T. X., & Gunn, J. E. 1976, PASP, 88, 543

Wade, R. A., Hoessel, J. G., Elias, J. H., & Huchra, J. P. 1979, PASP, 91, 35



– 19 –

FIGURE CAPTIONS

Figure 1. Suface plot of the template of weights used to calculate the light

corresponding to stars and to the PSF. Due to symmetry, any nonzero or nonflat sky

cancels (the total “weight” of this pattern is 0).

Figure 2a. Image of M100 (NGC 4321) in the Thuan-Gunn g band. The background

galaxy and all foreground stars before star removal are shown.

Figure 2b. The same galaxy as in Fig. 2a. 6 stars to be used for fitting the PSF

are marked.

Figure 2c. The same galaxy as in Fig. 2a. 17 stars to be removed are marked, still

before star removal.

Figure 2d. The image of M100 after the 17 stars marked in Fig. 2c were removed

and the residuals were patched.

Figure 3a. The image of galaxy NGC 4192 in the Thuan-Gunn i band, with 16

bright artificial stars superimposed. The original image was cleaned of stars first, and 16

artificial stars were added later. The square bracket marks the region that is clipped and

enlarged for Figs. 3b-3e.

Figure 3b. Image of residuals after star removal with DAOPHOT, using all bright

stars for the PSF fit. The 16 artificial stars shown on Fig. 3a were removed and the

clean image was subtracted. The absolute value of pixels are displayed. The grey scale

is stretched between 0 (white) and 500 (black). The square bracket in Fig. 3a marks the

region that is shown here.

Figure 3c. Image of residuals after star removal with DAOPHOT, using well

selected stars for the PSF fit. The 16 artificial stars shown on Fig. 3a were removed

and the clean image was subtracted. The absolute value of pixels are displayed. The

grey scale is stretched between 0 (white) and 30 (black). Please note, that the dynamic

range of the residuals is much smaller than in Fig. 3b. The square bracket in Fig. 3a

marks the region that is shown here.

Figure 3d. Residuals after star removal using our star subtraction (no patching).

The 16 artificial stars shown on Fig. 3a were removed and the clean image was subtracted.
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The absolute value of pixels are displayed. The grey scale is stretched between 0 (white)

and 50 (black). The square bracket in Fig. 3a marks the region which is shown here.

Figure 3e. Residuals after star removal using our method (with patching). The 16

artificial stars shown on Fig. 3a were removed and the clean image was subtracted. The

absolute value of pixels are displayed. The grey scale is stretched between 0 (white) and

100 (black). The square bracket in Fig. 3a marks the region which is shown here.

Figure 4a. The image of galaxy NGC 4535 in the Thuan-Gunn i band, with 16

bright artificial stars superimposed. The original image was cleaned of stars first, and 16

artificial stars were added later. The square bracket marks the region that is clipped and

enlarged for Figs. 4b-4e.

Figure 4b. Image of residuals after star removal with DAOPHOT, using all bright

stars for the PSF fit. The 16 artificial stars shown on Fig. 4a were removed and the

clean image was subtracted. The absolute value of pixels are displayed. The grey scale

is stretched between 0 (white) and 300 (black). The square bracket in Fig. 4a marks the

region that is shown here.

Figure 4c. Image of residuals after star removal with DAOPHOT, using well

selected stars for the PSF fit. The 16 artificial stars shown on Fig. 4a were removed

and the clean image was subtracted. The absolute value of pixels are displayed. The

grey scale is stretched between 0 (white) and 30 (black). Please note, that the dynamic

range of the residuals is much smaller than in Fig. 4b. The square bracket in Fig. 4a

marks the region that is shown here.

Figure 4d. Residuals after star removal using our star subtraction (no patching).

The 16 artificial stars shown on Fig. 4a were removed and the clean image was subtracted.

The absolute value of pixels are displayed. The grey scale is stretched between 0 (white)

and 50 (black). The square bracket in Fig. 4a marks the region which is shown here.

Figure 4e. Residuals after star removal using our method (with patching). The 16

artificial stars shown on Fig. 4a were removed and the clean image was subtracted. The

absolute value of pixels are displayed. The grey scale is stretched between 0 (white) and

100 (black). The square bracket in Fig. 4a marks the region which is shown here.




