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Abstract

We present AMADA, an interactive web application to analyse multidimensional datasets. The user up-
loads a simple ASCII file and AMADA performs a number of exploratory analysis together with contemporary
visualizations diagnostics. The package performs a hierarchical clustering in the parameter space, and the user
can choose among linear, monotonic or non-linear correlation analysis. AMADA provides a number of clus-
tering visualization diagnostics such as heatmaps, dendrograms, chord diagrams, and graphs. In addition,
AMADA has the option to run a standard or robust principal components analysis, displaying the results as
polar bar plots. The code is written in R and the web interface was created using the SHINY framework.
AMADA source-code is freely available at https://goo.gl/KeSPue, and the shiny-app at http://goo.gl/UTnU7I.
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1. Introduction

The emerging precision era of astronomy marks
the transition from a data-deprived field to a data-
driven science, in which statistical methods play a
central role. The need to handle these ever-increasing
datasets impacts all branches of modern science, char-
acterizing the so-called era of Big Data. As a conse-
quence, an efficient exploration of high-dimensional
datasets is becoming ubiquitous throughout all scien-
tific fields, such as biology (e.g., Venter et al., 2004),
social sciences (e.g., Patty and Penn, 2015), geol-
ogy (e.g., van Zyl, 2014) and astronomy (e.g., Ball
and Brunner, 2010; Graham et al., 2013; Martinez-
Gomez et al., 2013).

Upcoming surveys such as the Large Synoptic
Survey Telescope (e.g., LSST Science Collaboration
et al., 2009), the Square Kilometre Array (e.g., Car-
illi, 2014), and Euclid (e.g., Scaramella et al., 2015),
just to mention a few, will push the boundaries of
our ability to analyse sky catalogs, while the ever-
increasing complexity of cosmological simulations
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keeps lessening the distance between observed and
synthetic data (e.g., Overzier et al., 2013; de Souza
et al., 2013b, 2014b; Vogelsberger et al., 2014).

An optimal exploration of these catalogs, observed
and/or simulated, heavily relies on our ability to un-
cover hidden relationships among different quanti-
ties (e.g., Borne et al., 2008; Ball and Brunner, 2010;
Graham et al., 2013), such as fundamental planes of
galaxy properties (Tully and Fisher, 1977; Faber and
Jackson, 1976), as well as to identify the optimal set
of variables to describe and predict a certain prop-
erty of interest (e.g. the presence of star formation
activity in a halo; de Souza et al. 2015).

A mainstay methodology for data exploration in
astronomy is the correlation analysis. Its goal is to
describe the level of association, usually linear, be-
tween a given pair of variables. Its applicability vir-
tually covers the entire astronomical domain, such as
gamma-ray bursts (e.g., Burgess et al., 2014), cos-
mic voids (Hamaus et al., 2014), star formation ac-
tivity (Lee et al., 2013), dark matter halo properties
(de Souza et al., 2013a, 2014a), and baryonic galaxy
properties (Yates et al., 2012), just to cite a few.

To facilitate the use of contemporary exploratory
and visualization techniques commonly used in other
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scientific fields but not fully exploited in astronomy,
we developed the AMADA package. The code al-
lows the user to visualize subgroups of variables with
high association in a hierarchical tree structure through
diverse visual tools, such as graphs, chord diagrams,
dendrograms and heatmaps. The goal is to deliver
a user-friendly guide for a first data screening. By
providing a systematic methodology for clustering
detection in the space of object properties, the re-
searcher can make a statistically justified decision
about the subset of features to be studied in a given
catalog.

It is worth noting that other interfaces for data
exploration in astronomy exist (e.g, Brescia et al.,
2010; Burger et al., 2013; Konstantopoulos, 2015).
Particularly, VOStat (Chakraborty et al., 2013) and
AstroStat (Kembhavi et al., 2015) are two web-based
services for statistical analysis using R under the hood.
Both projects are focused on providing a user-friendly
environment to perform a wide range of standard sta-
tistical analysis, such as hypothesis testing, multi-
variate analysis, clustering and so forth. However,
AMADA is the first of its kind with a primary focus
on information visualization techniques for general
correlation analysis in multidimensional catalogs.

2. Main features

AMADA is written in R 3.1.1 and developed us-
ing Rstudio1 and Shiny2 frameworks. RStudio is an
open source interface for development of R applica-
tions, and Shiny is a package that allows to build in-
teractive web applications directly from R. Instruc-
tions on how to run the code locally, and a brief in-
stallation tutorial are given in Appendix A.

The package allows an interactive exploration and
information retrieval from high-dimensional datasets.
The user can choose among different methods for
correlation analysis, whose outcomes are displayed
in a chosen graphical layout for visual inspection. In
the following, we briefly describe the main available
features.

1www.rstudio.com
2shiny.rstudio.com

2.1. Datasets
The user can upload a dataset in a plain text ASCII

file as space or comma separated values (CSV). The
columns should be named, and missing data should
be marked as NA. An example of how a typical
dataset looks like, together with a screenshot from
the web portal, is displayed in Fig. 1. Alternatively,
the user can use the download data button to inspect
on its own text editor how to format the matrix. The
current version of AMADA does not allow an inter-
active selection of columns. Therefore, we show be-
low how it can be easily done in R command line
using the c function:

1 data (iris )
2 colnames (iris )<-c ("SL" ,"SW" ,"PL" ,"PW" ,"←↩

Species" )
3 head (iris )
4 SL SW PL PW Species
5 5 . 1 3 . 5 1 . 4 0 . 2 setosa
6 4 . 9 3 . 0 1 . 4 0 . 2 setosa
7 iris2<-iris [ ,c ("SL" ,"SW" ) ]
8 head (iris2 )
9 SL SW

10 5 . 1 3 . 5
11 4 . 9 3 . 0

The original column names of the famous iris dataset
(Fisher, 1936) are shortened in the example (S = sepal,
P = petal, L = length, W = width) to save space.

In addition, some public catalogs are already made
available on the portal. In the following we will use
two of them for explanatory purposes. As an ex-
ample of low-dimensional and relatively small sam-
ple we use a catalog of galaxies experiencing super-
nova (SN) explosions, while as an example of high-
dimensional and moderately large sample we use a
mock galaxy catalog. More specifically, we apply
AMADA to investigate:

• Supernova host galaxy properties (Sako et al.,
2014). In this catalog the properties of Type
Ia and II supernova host galaxies are retrieved
from the Sloan Digital Sky Survey multi-band
photometry. The available catalog represents
a sub-sample of the original one, after removal
of non-supernova objects and missing data. The
final sample is composed of 443 (56) galax-
ies hosting Type Ia (Type II) supernova, each
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Figure 1: A screenshot of the AMADA portal showing properties of host galaxies of Type Ia supernovae. This portal is publicly
available at http://goo.gl/UTnU7I.

of them described by 10 parameters, such as
galaxy age, star formation rate, distance from
supernova to the host galaxy, and so forth.

• Galaxy properties (Guo et al., 2011). A mock
galaxy catalog built using semi-analytic galaxy
formation models and the N-body Millennium
Simulations (Springel, 2005). The initial data
set is composed of ≈ 180, 000 haloes at red-
shift 0. To avoid numerical artifacts due to low
resolution effects, we select only those struc-
tures with at least 300 particles (e.g., Antonuccio-
Delogu et al., 2010). In addition, we consider
only central star forming galaxies (i.e., no satel-
lite galaxies). The remaining dataset is com-
posed of 7079 haloes, and each halo is described
by approximately 30 parameters.

As here we adopt the original nomenclature for the
various quantities, we recommend the reader to re-
fer to the original articles or catalogs for a detailed
description of each parameter.

2.2. Control Options
Several control options are available on the portal

to choose among different methods of analysis and

visualization. Once the desired combination is cho-
sen, the user should click on the button Make it so! to
update the results. The following options are avail-
able:

• Fraction of data to display: choose the percent-
age of data displayed on the screen.

• Correlation method: choose among Pearson,
Spearman or Maximum Information Coefficient
(MIC).

• Display numbers: choose if correlation coeffi-
cients should be displayed in the heatmap.

• Dendrogram type: choose among phylogram,
cladogram or fan configurations3.

• Graph layout: choose between spring and cir-
cular configurations.

• Chord diagram colour: choose among differ-
ent colour schemes.

3Visualizations inspired by phylogenetic tools (e.g., Paradis
et al., 2004).
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• Number of PCs: choose the number or Princi-
pal Components (PCs) to display as Nightin-
gale charts.

• PCA method: choose between standard or ro-
bust Principal Components Analysis (PCA).

3. Methods

In this section we briefly discuss the different meth-
ods used by AMADA to analyse the datasets.

3.1. Correlation methods
The correlation analysis quantifies the strength of

the association between a pair of variables, through
a correlation coefficient. Its absolute value varies be-
tween 0 (uncorrelated variables) and 1 (perfect as-
sociation). Currently, AMADA offers three options
of correlation measurements: linear (Pearson; Pear-
son, 1895), monotonic (Spearman; Spearman, 1904)
and non-linear (MIC; Reshef et al., 2011). We briefly
present them in the following, and refer the reader to
the original papers for more details.

Pearson. This is widely employed in statistics to mea-
sure the degree of the relationship between linearly
related variables. The following formula is used to
estimate the Pearson coefficient, rp, between two vari-
ables Xi and Yi:

rp =

∑n
i=1(Xi − X)(Yi − Y)√∑n

i=1(Xi − X
2
)
√∑n

i=1(Yi − Y)2

, (1)

where X and Y represent the sample mean, and n the
total number of objects in the dataset.

Spearman rank correlation. This is a non-parametric
method to measure the degree of monotonic associa-
tion between two variables, and does not rely on any
distributional assumption. For a dataset of size n, the
variables Xi and Yi are converted to ranks4, and the

4In statistics, ranking refers to the data transformation in
which numerical or ordinal values are replaced by their rank
when the data are sorted. For example, if the numerical data
3.8, 5.4, 2.1, 10.3 are observed, the ranks of these data items
would be 2, 3, 1 and 4 respectively.

following formula is used to calculate the Spearman
coefficient, ρ:

ρ = 1 −
6
∑n

i=1 d2
i

n(n2 − 1)
, (2)

where di = RXi − RYi is the difference between ranks.

Maximal information coefficient. MIC (Reshef et al.,
2011) is founded under concepts of information the-
ory (e.g., Li, 1990). In this context, the Shannon
entropy, H , can be understood as a measure of un-
certainty of a random variable. For a single discrete
distribution it can be written as

H(A) = −
∑
a∈A

p(a) log p(a), (3)

while the joint entropy for a pair of discrete random
variables (A,B) with a joint distribution p(a, b) is de-
fined as

H(A, B) = −
∑
a∈A

∑
b∈B

p(a, b) log p(a, b), (4)

where p(a) and p(b) are the marginal probability mass
functions (PMFs) of A and B, and p(a, b) is the joint
PMF. Hence, the mutual information (MI) measures
the amount of information that one random variable
contains about another random variable,

MI(A, B) =
∑
a∈A

∑
b∈B

p(a, b) log
(

p(a, b)
p(a)p(b)

)
,

≡ H(A) −H(A, B). (5)

Consider D as a finite set of ordered pairs, {(ai, bi), i =

1, . . . , n}, partitioned into a x-by-y grid of variable
size, G, such that there are x-bins spanning a and
y-bins covering b, respectively. The PMF of a par-
ticular grid cell is proportional to the number of data
points inside that cell. We can define a characteristic
matrix M(D) of a set D as

M(D)x,y =
max(MI)

log min{x, y}
, (6)

representing the highest normalized MI of D. The
MIC of a set D is then defined as

MIC(D) = max
0<xy<B(n)

{
M(D)x,y

}
, (7)
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representing the maximum value of M subject to 0 <
xy < B(n), where the function B(n) ≡ n0.6 was em-
pirically determined by Reshef et al. (2011).

3.2. Principal Components Analysis
The ultimate goal of PCA is to reduce the dimen-

sionality of a multivariate dataset, while explaining
the data variance with as few PCs as possible. Given
its versatility, it has been applied to a broad range
of astronomical studies, such as stellar, galaxy and
quasar spectra (e.g., Chen et al., 2009; McGurk et al.,
2010), galaxy properties (Conselice, 2006; Scarlata
et al., 2007), Hubble parameter and cosmic star for-
mation reconstruction (e.g., Ishida et al., 2011; Ishida
and de Souza, 2011), and supernova photometric clas-
sification (Ishida and de Souza, 2013).

PCA belongs to a class of Projection-Pursuit (PP;
e.g., Croux et al., 2007) methods, whose aim is to de-
tect structures in multidimensional data by projecting
them onto a lower dimensional subspace (LDS). The
LDS is selected by maximizing a projection index
(PI), where PI represents a given feature in the data
(trends, clusters, hyper-surfaces, anomalies, etc.). The
particular case where variance (S 2) is taken as a PI
leads to the classical version of PCA5. The PCA scheme
employed here falls into the category of filter meth-
ods of feature selection. Their aim is to determine
how relevant is a feature in representing a class in
a high-dimensional space, but there exist other ap-
proaches, i.e. the wrapper methods, that can be tai-
lored to determine how relevant a feature is against
a given classification task (see e.g., Donalek et al.,
2013, for a discussion of feature selection methods
in astronomy).

Given n parameters x1, · · · , xn, all of them col-
umn vectors of dimension Γ, the first PC is obtained
by finding a unit vector a which maximizes the vari-

5 The PCs are computed by diagonalization of the data
covariance matrix (Σ2), with the resulting eigenvectors cor-
responding to PCs and the resulting eigenvalues to the vari-
ance explained by the PCs. The eigenvector corresponding to
the largest eigenvalue gives the direction of greatest variance
(PC1), the second largest eigenvalue gives the direction of the
next highest variance (PC2), and so on. Since covariance ma-
trices are symmetric positive semidefinite, the eigenbasis is or-
thonormal (spectral theorem).

ance of the data projected onto it:

a1 = arg max
||a||=1

S 2(atx1, · · · , atxn), (8)

where t is the transpose operation and a1 is the di-
rection of the first PC6. Once we have computed the
(k − 1)th PC, the direction of the kth component, for
1 < k 6 Γ, is given by

ak = arg max
||a||=1,a⊥a1,··· ,a⊥ak−1

S 2(atx1, · · · , atxn), (9)

where the condition of each PC to be orthogonal to
all previous ones ensures a new uncorrelated basis.
Despite of these attractive properties, the classical
version of PCA has some critical drawbacks, as the
sensitivity to outliers (e.g., Hampel et al., 2005). In
order to overcome this limitation, several robust ver-
sions were created. For instance, instead of taking
the variance as a PI in equation (8), a robust mea-
sure of variance (Hoaglin et al., 2000) is taken, i.e.
the median absolute deviation (MAD; e.g., Howell,
2005) of an ordered set κ is given by

MAD(κ1, · · · , κn) = 1.48med
j
|(κ j −med

i
(κi)|), (10)

where med represents the median of the sample, and
the square of MAD gives the robust variance. The
value of 1.48 represents Q−1

0.75, where Q0.75 is the 0.75
quantile of a normal distribution. AMADA allows
the user to run a robust PCA based on the grid search
base algorithm from Croux et al. (2007).

3.3. Hierarchical Clustering
A cluster analysis can be understood as a descrip-

tive statistics to determine if a given dataset should
be divided into different groups. The method aims to
identify which groups of objects are similar to each
other but different (or distant) from objects in other
groups. There are several ways to define dissimilar-
ity (or distance), according to each particular goal.
Since we are interested in finding groups of variables
highly correlated, it is natural to define the dissimi-

6 arg max
x

f (x) is the set of values of x for which the function

f (x) attains its largest value.
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larity,D, between properties as

D(Xi,Yi) = 1 − |Corr(Xi,Yi)| , (11)

where Corr stands for correlation measurement. Thus,
D(Xi,Yi) = 0 represents perfect correlation, while
the value ofD(Xi,Yi) = 1 indicates uncorrelated vari-
ables.

One of the main advantages of hierarchical clus-
tering methods is that a prior specification of the num-
ber of clusters to be searched is not needed. Instead,
the method requires a measurement of dissimilarity
between groups of variables, which is based on the
pairwise dissimilarities among the observations within
each of two groups. We employ an agglomerative
approach, where each variable is initially assigned to
its own cluster, then the method recursively merges a
selected pair of clusters into a single one, where each
new pair is composed by merging the two groups
with the smallestD in the immediately lower level of
the hierarchy. The lowest level represents each sin-
gle variable, while the highest level is a single cluster
containing all variables. The final outcome is a hier-
archical representations in which the clusters at each
level of the hierarchy are created by merging clusters
at the next lower level. To guide the user in the task
of selecting a certain sub-group of interest, we pro-
vide an optimal number of clusters estimated via the
Caliński and Harabasz index (Caliński and Harabasz,
1974). The tree-like final structure can be graphically
portrayed by e.g., dendrograms, graphs and chord di-
agrams, as discussed in the following §4.

4. Visualization tools

When dealing with a large amount of complex
information, visualizing it in an intelligible way be-
comes a challenge. In this case, the aim of a visual-
ization method is to optimize the intuitive insight of
the data structure in order to exploit the perceptual
capabilities of the human eye. Whilst the role of vi-
sualization belongs to the groundwork of astronom-
ical analysis, new paradigms for multidimensional
data visualization are not fully exploited, when com-
pared to other fields. Patterns, trends and correlations
that might go undetected in tabular-based data, can
be revealed and more easily communicated with in-
teractive visualization tools. AMADA incorporates

contemporary methods to visualize multidimensional
data properties and their intrinsic correlations. This
is particularly relevant if one aims to have a physical
intuition of possible sub-populations of highly corre-
lated quantities, which are not necessarily the domi-
nant components of the whole sample. In the follow-
ing, we describe the main visual capabilities of the
package with a brief introduction of each methodol-
ogy.

4.1. Heatmap
The cluster heatmap is a rectangular grid repre-

sentation of a matrix with cluster trees appended to
its margins. Its aim is to facilitate inspection of clus-
ter structures in large matrices within a compact dis-
played area. The method is broadly used in the bio-
logical sciences (Wilkinson and Friendly, 2009), and
it is worth to cite its recent application to solar data
mining (Fig. 10 of Schuh et al., 2015).

In case of a correlation matrix, the color assigned
to a point in the heatmap grid indicates how much
each pair of variables correlates, as can be seen in
the typical heatmap shown in Fig. 2. For visual-
ization purposes, the arrangement of the rows and
columns is made following a hierarchical clustering
with a dendrogram drawn at the edges of the matrix.
The figure portrays the heatmap of the mock galaxy
catalog from Guo et al. (2011). Note the red square
in the bottom right corner of the panel, automatically
highlighting the trivial association between the mag-
nitudes in the u, g, r, i, and z bands. Less trivial as-
sociations can be identified more easily using for in-
stance a dendrogram visualization, as discussed in
the following section.

4.2. Dendrogram
A dendrogram provides a comprehensive descrip-

tion of the hierarchical structures in a visual format.
Among the applications in astronomical research are
the hierarchical structural analysis of interstellar prop-
erties (Houlahan and Scalo, 1992), molecular clouds
(Rosolowsky et al., 2008), and explanatory classifi-
cation of galaxies (Fraix-Burnet et al., 2012). The
individual variables are arranged along the bottom of
the dendrogram and referred to as leaf nodes. Clus-
ters are formed by joining individual variables or ex-
isting clusters, with the joint point referred to as a
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Figure 2: Heatmap visualization of the correlation matrix (using a Pearson correlation measure) of some galaxy properties from the
mock galaxy catalog by Guo et al. (2011). Red indicates strong positive correlation and blue indicates strong negative correlation.
Yellows are associated to correlations close to zero.
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Figure 3: Dendrogram of the galaxy properties from the Guo
et al. (2011) catalog. The different sub-groups of galaxy prop-
erties, assigned using the Caliński and Harabasz index, are col-
ored according to the cluster assignment.

node. At each dendrogram node we have a right and
left sub-branch of clustered variables. The height of
the node can be understood as the dissimilarity D
between the right and left sub-branch clusters.

Fig. 3 displays a dendrogram of the galaxy prop-
erties from the Guo et al. (2011) catalog, divided in
10 major clusters (indicated by different colors) us-
ing the Caliński and Harabasz index. The method au-
tomatically suggests interesting associations among
the galaxy properties, such as the u-band as an indi-
cator of the star formation rate (SFR; see e.g. Gilbank
et al., 2010).

4.3. Graphs
Graphs are powerful tools to represent multivari-

ate data and their relationships. Examples of scien-
tific applications are the analysis of cellular networks
(Aittokallio and Schwikowski, 2006), protein inter-
actions (e.g., Fig. 1 from Aragues et al., 2006), and
brain disorders (Fig. 2 from Fornito et al., 2015). A
graph is defined by a set of vertices representing the
objects of study, and a set of edges representing the
relationships between them. There are many criteria
for judging an optimally drawn graph such as:

• edge crossings should be minimized;

• the vertices should be evenly distributed in the
plane;

• the graph should reflect intrinsic symmetries;

• the edges should not cross nodes.

Each item above can be understood as an optimiza-
tion problem, which is the subject of interest of a re-
search field known as graph drawing (e.g., Tamassia,
2007). There are several methods for graph repre-
sentations. In this work we use the so-called spring-
embedder algorithm (Eades, 1984; Fruchterman and
Reingold, 1991). The underlying idea is to allow the
vertices to behave like particles moving under the
influence of repulsive and attractive forces until the
system reaches equilibrium. This graph-drawing al-
gorithm is particularly useful for graphs where the
directions of the edges are not important, which is
the case of a correlation matrix representation. Fig. 4
displays the correlations among properties of galax-
ies hosting Type Ia (left) and Type II (right) super-
nova. Each vertex represents a galaxy property, while
the thickness of the edges are weighted by the degree
of correlation between each pair of variables (Ep-
skamp et al., 2012). More specifically, the width and
color of the edges correspond to the absolute value
of the correlations: the higher the correlation, the
thicker and more saturated the edge is. Highly corre-
lated parameters appear closer in the graph.

4.4. Chord diagram
Chord diagram is a flexible and popular tool that

has been used in many different applications, such as
identification of relevant signatures in cancer genome
(Fig. 1 from Bunting and Nussenzweig, 2013), or
study of the relation between foragers and farmers in
Central Europe during the Stone Age (Fig. S5 from
Bollongino et al., 2013).

In the case studied here, the chord diagram repre-
sents another visualization of the correlation matrix,
likewise the graph, heatmap and dendrogram. This
tool illustrates relationships between distinct param-
eters. The columns and rows are represented by seg-
ments around the circle. Individual cells are shown
as ribbons, which connect the corresponding row and
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Figure 4: Graph representation of the host galaxy properties from Sako et al. (2014). The thickness of the edges are weighted by
the degree of correlation between each pair of variables. The width and color correspond to the degree of association: the higher
the correlation, the thicker and more color saturated the edge is. The left (right) side represents the properties of Type Ia (Type II)
supernova host galaxies.

column segments (Gu et al., 2014). The thickness of
the ribbons is weighted by the degree of correlation
between each pair of variables. Fig. 5 portrays the
correlations among supernova Type Ia/II host galaxy
properties. For a given choice of colour palette, the
colour intensity ranges from fully anti-correlated to
correlated values.

4.5. Nightingale chart
The last plot is inspired by the original Nightin-

gale chart (e.g., Cohen, 1984; McDonald, 2001). This
is one of the most influential statistical visualizations
of all time, used by Florence Nightingale to convince
Queen Victoria about improving hygiene in military
hospitals (see also Draper et al., 2009, for a review
of radial methods in information visualization).

We show it as a polar bar plot, where the length
of each slice represents the relative contribution of
each variable to the i-th Principal Component. Fig
6 displays the contributions of the supernova Type
Ia/II host galaxy properties for the first and second
principal components7.

7We should warn the reader that currently the SHINY inter-

5. Summary

We have presented the AMADA package, a web
application for interactive exploration and informa-
tion retrieval of high-dimensional datasets. This is
designed for high-dimensional catalogs, with a wide
range of applications. There are, though, some lim-
itations in terms of data-size and performance. In
particular, SHINY allows to upload in the applica-
tion only up to 1GB of data. Thus, the SHINY server
should be mostly used for a quick exploration of the
package features, so that the user can skip the in-
stallation step to familiarize with the code, while we
recommend to run AMADA locally (as explained in
Appendix A) when applied to a real scientific prob-
lem. In addition, the speed performance of some
methods, such as the hierarchical clustering, may not
scale well with very large datasets. As a reference,
the processing time to produce a dendrogram from
a matrix with 100,000 objects and 100 columns was

face does not work well with more than 4 PCs simultaneously
displayed on the screen. This limitation can be potentially fixed
by tweaking the figure dimensions, if e.g. a PDF file is produced
using the R command line (see Appendix A).
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Figure 5: A chord diagram representing the Pearson correlations among the galaxy properties hosting Type Ia (left panel), and Type
II supernovae (right panel).

∼ 1.5 seconds on an iMac featuring a 3,5 GHz Intel
Core i7 and 32 GB of ram memory. An example of
the script to reproduce this test is given below,

1 require (AMADA )
2 N = 100000 #Number o f rows
3 M= 100# Number o f columns
4 M1<-matrix (rnorm (N*M ,mean=0 ,sd=1) , N , M )
5 ptm <- proc .time ( )
6 corr<-Corr_MIC (M1 ,"pearson" )
7 Fig1<-plotdendrogram (corr ,"fan" )
8 proc .time ( ) − ptm

Therefore, despite some limitations, we expect the
current version of the package to be suitable for a
wide variety of astronomical catalogs. Since this is a
software release paper, we avoided a detailed scien-
tific discussion on the available datasets, which here
have been used merely as a proof of concept. How-
ever, it is worth mentioning that AMADA automati-
cally recovers and displays trivial and non-trivial cor-
relations. An example of the former is the correla-
tion between the u, g, r, z and i magnitudes of su-
pernova host galaxies as seen in Fig. 4, while an ex-
ample of the latter is the association between the star
formation rate and u-band magnitude in the galaxy
mock catalog as shown in Fig. 3. It is important to

mention that few methods herein implemented are a
later development of a previous work from the au-
thors making use of MIC statistics and robust PCA
to understand the redshift dependence of halo bary-
onic properties in the early Universe (de Souza et al.,
2014). We therefore refer the reader to this work as
an example of application in a cosmological context
of the methods discussed here.

The code is freely available on GITHUB and can
be run both online and locally. This work is part of a
larger enterprise known as Cosmostatistics Initiative
(COIN)8, whose philosophy is to enable astronomers
to easily introduce novel techniques into their daily
research. This is an open-source project, and we ex-
pect to continuously add extra features. Therefore,
we encourage the users to contact the authors with
suggestions, while potential contributors and devel-
opers can fork the AMADA repository on GITHUB9.
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Dissecting the spin distribution of dark matter haloes. MN-
RAS 407, 1338–1346.

Aragues, R., Jaeggi, D., Oliva, B., 2006. Piana: protein
interactions and network analysis. Bioinformatics 22 (8),
1015–1017.
URL http://bioinformatics.
oxfordjournals.org/content/22/8/1015.
abstract

Ball, N. M., Brunner, R. J., 2010. Data Mining and Machine
Learning in Astronomy. International Journal of Modern
Physics D 19, 1049–1106.

Bollongino, R., Nehlich, O., Richards, M. P., Orschiedt, J.,
Thomas, M. G., Sell, C., Fajkosová, Z., Powell, A., Burger,
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Appendix A. Running AMADA locally

Appendix A.1. From Shiny
To install and run the interface, the first step is to

have R in your computer11. Thereafter, you have to
install the following R packages:

1 install .packages (c ("ape" ,"circlize" ,"←↩
corrplot" ,"devtools" ,"fpc" ,"ggplot2"←↩
,"ggthemes" ,"MASS" ,"markdown" ,"←↩
mclust" ,"minerva" ,"mvtnorm" ,"pcaPP" ,←↩
"pheatmap" ,"phytools" ,"qgraph" ,"←↩
RColorBrewer" ,"RCurl" ,"squash" ,"←↩
stats" ,"shiny" ) ,dependencies=TRUE )

We are now read to install AMADA from GitHub
repository:

1 require (devtools )
2 install_github ("RafaelSdeSouza/AMADA" )

An alternative simpler option is to type the following
command

1 require (devtools )
2 install_github ("COINtoolbox/AMADA" ,←↩

dependencies=TRUE )

11http://www.r-project.org
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and R will automatically install the necessary depen-
dencies to run AMADA. After installing the AMADA
package, the user can run the visual interface with the
following command:

1 require (shiny )
2 runUrl ("https://github.com/COINtoolbox/←↩

AMADA_shiny/archive/master.zip" )

AMADA can also be used directly via the web.
This option requires no local installation, but the ac-
tual processing may be slower. This web interface
is hosted by the shinyapps.io platform12, and can be
accessed directly at http://goo.gl/UTnU7I.

Appendix A.2. From R command line
If the user prefer to run AMADA on its own data

without relying on the shiny interface, it can be done
directly from R command line. An example of how
to produce a dendrogram of the Type Ia supernova
dataset and saving it as a PDF file is presented below:

1 require (AMADA ) #Load t h e package
2 data ("SNIa" ) #Load t h e SNIa d a t a
3 corr<-Corr_MIC (SNIa ,"pearson" )
4 Fig1<-plotdendrogram (corr ,"phylogram" )

To save the figure as PDF file, with a customized
height and width, just type the following:

1 pdf ("phylogram.pdf" ,height = 8 ,width=8)
2 Fig1
3 dev .off ( )

Examples of how the use the other functions inside
R can be found in the description file, which can be
access via the command13

1 help (package="AMADA" )

In the current package version, the layout of the fig-
ures is mostly hardcoded, but it can be easily changed
inside the source code. We expect to add more flexi-
bility in future versions.

12http://www.shinyapps.io
13We should stress that the functions to display the chord di-

agram and the heatmap are basically convenient wrappers to the
functions available in the packages PHEATMAP and CIRCLIZE.
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