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ABSTRACT

Although the long-term numerical integrations of planetary orbits indicate that our
planetary system is dynamically stable at least ±4 Gyr, the dynamics of our Solar
System includes both chaotic and stable motions: the large planets exhibit remarkable
stability on gigayear timescales, while the subsystem of the terrestrial planets is weekly
chaotic with a maximum Lyapunov exponent reaching the value of 1/5 Myr−1. In this
paper the dynamics of the Sun–Venus–Earth–Mars-Jupiter–Saturn model is studied,
where the mass of Earth was magnified via a mass factor κE . The resulting systems
dominated by a massive Earth may serve also as models for exoplanetary systems that
are similar to our one. This work is a continuation of our previous study, where the
same model was used and the masses of the inner planets were uniformly magnified.
That model was found to be substantially stable against the mass growth. Our simu-
lations were undertaken for more then 100 different values of κE for a time of 20, in
some cases for 100 Myrs. A major result was the appearance of an instability window
at κE ≈ 5, where Mars escaped. This new result has important implications for the
theories of the planetary system formation process and mechanism. It is shown that
with increasing κE the system splits into two, well separated subsystems: one consists
of the inner, the other one consists of the outer planets. According to the results the
model became more stable as κE increases and only when κE > 540 Mars escaped,
on a Myr timescale. We found an interesting protection mechanism for Venus. These
results give insights also to the stability of the habitable zone of exoplanetary systems,
which harbour planets with relatively small eccentricities and inclinations.

Key words: celestial mechanics – Solar System: general.

1 INTRODUCTION

The determination of the stability of our Solar System is one
of the oldest problems in astronomy. The question has been
debated over more than 300 years, and has attracted the
attention of many famous mathematicians over the course
of history. The problem played a central role in the devel-
opment of non–linear dynamics and chaos theory. Despite
the considerable efforts, we do not possess a definite an-
swer to the question of whether our Solar System is sta-
ble or not. This is partly a result of the fact that the def-
inition of the term stability is not unambiguous when it
is used in relation to the problem of planetary motion. In
addition to the vagueness of the concept of stability, the
planets in our planetary system show a character typical
of dynamical chaos. The physical basis of this chaotic be-
haviour is now partly understood as a consequence of reso-
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nance overlapping and three body resonances (Lecar et al.
2001; Murray & Holman 1999; Nesvorný & Morbidelli 1999)
which can manifest themselves in dramatic and relatively
sudden changes in an orbit. In the last two decades sev-
eral numerical stability studies were performed in order to
throw light on the question. At present the longest numerical
integrations published are those of Ito & Tanikawa (2002),
where six long-term numerical integrations of all nine plan-
ets, covering a time-span of several 109 and 1011 years are
discussed. Their fundamental conclusion is that the Solar
System seems to be stable in terms of the Hill-criteria at
least over a time-span of ±4 Gyr. Moreover it turned out
that during the integration period all the planetary orbital
elements have been confined in a narrow region.

On the other hand according to Laskar’s semi-analytical
secular perturbation theory (Laskar 1988), the terrestrial
planets’, especially Mercury’s and Mars’ eccentricities and
inclinations show large and irregular variations on a time-
scale of several 109 year (Laskar 1996).
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Figure 1. Eccentricities vs. the semimajor axes of the observed
extrasolar planets. The x-axis is logarithmic. The positions of the
Earth, Jupiter and Saturn are also indicated as diamonds with a
plus sign in the middle.

Nowadays to study the stability of the Solar System, or
its variants, as a representative of the different planetary sys-
tems has become part of the frontline research. Over the past
few years the detection of planets outside the Solar System,
the so called exoplanets, has greatly stimulated the stabil-
ity studies of planetary systems. New exoplanets are being
discovered on a regular basis; more than 150 (April, 2005)
exoplanets are now known. There are 136 systems consisting
of a central star and a gaseous giant planet, and 14 multiple
systems with two, three and four planets. The so far discov-
ered exoplanets have a minimum mass range (m · sin(ip))
from 0.042 mJ to 17.5 mJ where mJ is Jupiter’s mass and
ip is the inclination of the orbital plane with respect to the
plane of the sky. Since ip is unknown a precise mass cannot
be determined, only a lower mass limit. Because of the tech-
nical limitations only planets of Neptune mass or above can
be detected and then only if they are less than 5 AU or so
from the star 1. Therefore more than 90 % of these planets
are orbiting their host star well inside Jupiter’s orbit. There
are major differences between the characteristics of the so
far observed systems and those of the Solar System. Most
of the planets have minimum masses substantially greater
than that of Jupiter – up to six or even more times the
mass of Jupiter. Dozens of planets are orbiting very close to
their hosting star, with semimajor axes down to 0.04 AU.
Finally, planetary orbits are found with large eccentricities,
up to approximately 0.7, plus a few greater, significantly
greater than the highest eccentricities observed for planets
in our Solar System. These characteristics are depicted in
Fig. 1, where the planets’ eccentricities are plotted against
their semimajor axes, the locations of the Earth, Jupiter and
Saturn are marked as diamonds. From Fig. 1 it is apparent
that our planetary system may serve as model case for those
planetary systems which have small eccentricities. Presum-
ably these are also the ones where we may expect stable
terrestrial planets moving in habitable zones (Asghari et al.
2004).

In previous papers (Dvorak & Süli 2002; Dvorak et al.
2005) the dynamical evolution of a simplified Solar system
was studied. The model consisted of the Sun, the three most

1 With OGLE, which is based on optical gravitational lensing it
is possible to detect exoplanets with only Earth-mass.

massive terrestrial planets (Venus, Earth, Mars), Jupiter
and Saturn. The masses of the inner planets were uniformly
magnified by a mass factor κ. It turned out that the dif-
ferent systems remained stable up to 10 Myr for κ 6 220.
Stable islands were found for κ = 245 and 250, which is
a well-known property in such regions which are close to
the last stable orbit in the chaotic domain. We have shown
that the dynamical coupling of Venus and Earth and that
of Jupiter and Saturn remained unbroken for all studied κ.
On the other hand the motion of Mars was not coupled to
any other planet, what may be a reason for the fact that
it was always Mars which caused the decay of the system
after close approaches with Earth. However the remarkable
stability of these model planetary systems suggests that ex-
oplanetary systems with configuration like our Solar System
may harbour moderately or even very massive terrestrial-like
planets.

In the present work our aim was to study and ana-
lyze the dynamical evolution and the stability of the system
with respect to the masses involved. Contrary to our previ-
ous study, in the present work only the mass of the Earth
was increased via a mass factor κE . Furthermore, the ex-
amined systems may be considered as models for individual
exoplanetary system, and the results can be applied to them.
Section 2 explains our dynamical model, the applied meth-
ods and section 3 is devoted to a detailed description of the
results in the κE ∈ [1, 600] region. Finally, we discuss the
results and the implication for exoplanetary systems.

2 DESCRIPTION OF THE MODEL AND

METHODS

The applied dynamical model consisted of the Sun, Venus,
Earth, Mars, Jupiter and Saturn. We have chosen this model
for two reasons. To speed up the numerical integrations, we
have omitted Mercury, Uranus and Neptune. Because of the
small mass of Mercury, it only slightly perturbs the motion
of the terrestrial planets and it has a short orbital period
which would require a reduction in the integration step-size
resulting in increased CPU time. Even though Uranus and
Neptune are massive planets, they are evolving around the
Sun more than twice as far as Saturn, and so they do not in-
fluence the motion of the inner planets significantly. These
simplifications are also justified by the fact, that the dy-
namics of the inner planets are dominated by Jupiter and
Saturn. Furthermore the so far observed exosystems har-
bour at most three of four planets. The above modification
of the Solar System gives grounds for the adjective ”simpli-
fied”. Hereafter we will refer to our simplified Solar System
as S3. The other reason was to make the model more like
an exoplanetary system. The mass of the Earth was magni-
fied via a mass factor κE (the masses of the other planets
were unaltered), which resulted in such hypothetical plan-
etary systems, whose characteristics agree very well with
several exosystems (for example if we multiply the semi-
major axes of the planets of 47 Ursae Majoris by 2.5, the
resulting configuration is something like the Sun, Jupiter
and Saturn system, if κE=1). According to these modifica-
tions, our models are parallel with those exosystems, which
harbour planets with small eccentricities and inclinations.
In Fig. 2 the masses of the planets are plotted as a func-
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tion of κE . At κE ≈ 90 Earth is as massive as Saturn and
when κE ≈ 300 Earth is as massive as Jupiter. The mass
of the other planets are plotted by horizontal dashed lines.
The mass distribution of the so far discovered exoplanetary
systems is also depicted in Fig. 2 up to mass parameter =
2. The integrations were done in the κE ∈ [1, 600] region,
which approximately corresponds to 0 < mass parameter ≈
2 interval, and therefore the mass distribution in Fig. 2 is
displayed only in this interval.

We have considered the S3 as a non-linear Hamiltonian
system, governed only by classical Newtonian gravitational
forces between the objects of the model. The planets have
been taken as point masses, and the Earth’s Moon was not
included in the models. The initial planetary orbital ele-
ments and the actual masses are listed in Table 1.

To check whether the different S3 setups belonging to
different κEs could be stable over a long time interval we
utilized the very precise numerical integration scheme, the
Lie-integrator method. This method is based on the inte-
gration of differential equations with Lie-series and uses the
property of recurrence formulae for the Lie-terms. The de-
tails of the method are described in Hanslmeier & Dvorak
(1984) and Lichtenegger (1984). The scheme is particularly
effective in the case of highly eccentric orbits. The accu-
racy of this integration technique is based on an automatic
stepsize control, and it has been checked in several com-
parative test computations with other integrators. Although
symplectic integrators are very effective when eccentricities
remain small, but the Lie-integrator is a better choice in
studies, where very large eccentricity orbits may occur.

The length of the integrations was fixed at 20 Myrs, in
some cases at 100 Myrs, which was a trade-off between too
long CPU time and the quality of the results. Since our inter-
est focuses primarily on the inner three planets’ motions, for
which the orbital time-scales are much shorter than those of
the outer two giant planets, the 20 Myrs seems a justifiable
choice, although it is known from earlier work (see for e.g.
Jones et al. (2001); Jones & Sleep (2002)) that exosystems
can stay stable for hundreds of millions of years and then
fall apart. In the case of weak chaos therefore the 100 and
especially the 20 Myr timespan might be short and in some
of the integrations where the terrestrial planets survived for
20 or 100 Myrs, they might not survive significantly longer.
For the sake of a comparison all results were derived on
the same computer. In some cases we have performed com-
parative integrations on different platforms (to obtain more
information of the particular system).

The conservative definition of the point at which sys-
tems become unstable is when close encounter between two
planets happens: two bodies approach one another within
an area of the larger Hill radius. The consequence of such
an event is the dramatic changes in the orbital elements of
the two planets, and usually the escape of the planet with
smaller mass. In this paper we define a system unstable,
when an orbit crossing or a close encounter happens. This
definition is somewhat more general and the instability can
be directly connected to the eccentricity via the perihelia
and aphelia distances. Henceforward we state that our model
is dynamically unstable if orbit crossing or close encounters
happen in the course of the integration. Using both criteria
is clearly an extension of the conservative definition of in-
stability. It is justifiable to incorporate the orbital crossing

criteria in the definition since we know from experience that
an orbital crossing in general leads to a close encounter in
very short time. The main difference between the two defi-
nitions is the time-scale of instability. We note that orbital
crossing does not lead to close encounter in all cases when
certain resonances have adjusted the planetary motions in
such a way that the planets avoid each other. For example
this is the case in the Neptune-Pluto pair. In our models
no such protection resonances are present, henceforward we
use the above definition to distinguish between stable and
unstable S3 setups. The integrations were not stopped after
one of the above criterion had been met, but were continued
until the integration timespan was reached.

For an indication of stability we used a straightforward
check based on the eccentricity. This osculating orbital el-
ement shows the probability of orbital crossing and close
encounter of two planets, and therefore its value provides
information on the stability of the orbit. We examined the
behavior of the eccentricities of the planets along the inte-
gration, and used the largest value as a stability indicator;
in the following we call it the maximum eccentricity method
(hereafter MEM). This is a reliable indicator of chaos, be-
cause the overlap of two or more resonances induce chaos
and large excursions in the eccentricity. We know from ex-
perience, that instability comes from a chaotic growth of
the eccentricity. This simple check has already been used in
other stability studies, and was found to be quite a powerful
indicator of the stability character of an orbit (Dvorak et al.
2003; Asghari et al. 2004).

2.1 The Laplace-Lagrange secular theory

In order to find a theoretical explanation for the decay of
the system we have applied the Laplace-Lagrange first or-
der secular theory. This linear theory yields accurate results
under the following assumptions:

(i) no mean motion commensurabilities,
(ii) no orbit-crossing, and
(iii) the eccentricities and inclinations are small enough.

Our models meet these criteria. However a complication
is that the orbits of Jupiter and Saturn are close to a
5:2 commensurability. Since the appearance of the Laplace-
Lagrange theory, as a first approximation it has been exten-
sively used in the studies of motion of the planets and of
other Solar System bodies. In several researches (Knezevic̀
1986; Laskar 1988) the results of the first and higher or-
der secular theories were compared. According to these
studies the secular frequencies calculated from the Laplace-
Lagrange theory are sufficiently accurate for our present re-
search goal. The main discrepancies are in the case of Jupiter
and Saturn. As we are interested only in the motions of the
inner planets, therefore we will apply the Laplace-Lagrange
theory to our models. From the above assumptions it is ap-
parent that the precision of the theory does not depend on
the planetary masses, accordingly there is no theoretical lim-
itation on the mass factor’s magnitude.

Since the eccentricities and inclinations may vanish at
remote epochs, it is better to use the Lagrange orbital ele-
ments:
(

h

k

)

= e ·
sin̟
cos̟

,

(

p

q

)

= i ·
sinΩ
cosΩ

. (1)
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Figure 2. The mass distribution of the known exoplanetary systems are plotted together
with the mass of the Earth as a function of the mass factor (κE) (solid line). The masses of
the other planets were left unchanged, and they are represented by straight, dashed lines. The
lower x-axis is the mass factor, the upper x-axis is the mass parameter of the exoplanetary
system. The left y-axis is the mass of the planets in a logarithmic scale, the right y-axis is
the number of planets. The width of the bin is 0.2 (this refers to the top axis)

Table 1. Planetary orbital elements (JD 2449200.5) with respect to the mean ecliptic and equinox J2000.
The quantities a, e, i, ω, Ω and M denote the semimajor axis, eccentricity, inclination, argument of perihelion,
longitude of ascending node and mean anomaly. In the last row the masses of the planets in Solar mass units
are listed (MSun = 1).

Venus Earth Mars Jupiter Saturn

a 0.723328 0.999999 1.523614 5.202627 9.545509
e 0.006747 0.016716 0.093443 0.048370 0.052420
i 3.394820 0.000545 1.850191 1.304638 2.485620
ω 54.847892 113.611521 286.492727 275.222227 338.025839
Ω 76.691772 349.288391 49.573832 100.470086 113.651098
M 135.521541 78.172620 185.208769 233.733076 259.852365
1/mi 408 523.71 332 946.047 3 098 708.0 1047.348 3497.898

Eq. (1) associates the h, k, p and q Lagrangian-elements to
the e, i, ̟, and Ω Keplerian-elements, where e denote the
eccentricity, i the inclination, ̟ the longitude of perihelion
and Ω the longitude of ascending node. Using these vari-
ables the general solution of the differential equations for
the planets takes the following form:
(

hs

ks

)

=
n
∑

j=1

M
(j)
s

sin
cos

(gjt+ βj) , (2)

(

ps
qs

)

=
n
∑

j=1

L
(j)
s

sin
cos

(fjt+ γj) , (3)

where the s index denotes the planet, the j index denotes
the mode, N is the number of planets, M

(j)
s and L

(j)
s are the

amplitudes, gj and fj denote the secular frequencies and βj

and γj are the angular phases.
The planet’s orbital elements are described by Eq. (2)

and Eq. (3), which are the sum of harmonic oscillations. Us-
ing these formulae it can be calculated that the planet’s ec-
centricities and inclinations are varying between given limits
with quasiperiodic oscillations. Due to the positive gj secular
angular velocities the apsidal lines of the planets are rotat-
ing directly, whereas the nodes accordingly to the negative fj

secular angular velocities are rotating indirectly. Upon these
mean rotations quasiperiodic variations are superimposed.
Both of the apsidal and nodal motions can be approximated
by average angular velocities, which are to a first approxima-
tion equal with the frequencies of those harmonious terms
which are multiplied by the largest amplitudes:

es ·
sin̟s

cos̟s
≈ M

(J)
s

sin
cos

(gJt+ βJ ) (4)

where M
(J)
s = maxj |M

(j)
s | and the average angular velocity

of the s’th planet is given by gJ .
In this manner on the basis of the amplitudes each sec-

ular frequency can be associate with each planet. This asso-
ciation is not mutually unambiguous. It may happen to as-
sociate a certain secular frequency to more then one planet.

The use of the linear theory seems to be in contradic-
tion to the large eccentricities and inclinations that may be
reached by a planet during the simulation. We emphasize
that the forementioned theory was used at the beginning of
the integration, when the inclinations and the eccentricities
are small, and the above assumptions are therefore fullfilled.

The above described linear secular theory was imple-
mented in the MAPLE computer algebra program. With

c© 2005 RAS, MNRAS 000, 1–11
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Table 2. Summary of the integrations.

κE interval ∆κE Earth mass in Total time
Jupiter mass [Myr]

1 – 25 1.0 [1/300 – 1/12] 20
4 – 6 0.1 [1/75 – 1/50] 100

30 – 200 5.0 [1/10 – 2/3] 20
210 – 300 10.0 [2/3 – 1] 20
330 – 600 30.0 [1 – 2] 20

the aid of this application the formulae of the theory can
be evaluated in a few seconds and it gives the complete first
order solution of the problem.

3 RESULTS

In this section we give a detailed description and overview
of the results of our simulations. The model was integrated
for more then 100 different values of κE . The interval of
data output was 100 years, the total amount of data is ap-
proximately 6 GBs, and the total used CPU time is more
than several thousands of days. All of the integrations were
done on two Sun Fire 15000 supercomputers with 72 US-
III+ 1200 MHz processor in each computer. In Table 2 the
first column lists the different κE intervals, the second shows
the stepsize (∆κE) in the mass factor. A small stepsize is
taken for 4 6 κE 6 6 in order to explore the interesting
behaviour of the system leading – very surprisingly – to the
escape of Mars. In the third column we list approximately
the mass of Earth in Jupiter’s mass unit. The last column
gives the time-span of numerical integrations.

3.1 The 1 6 κE 6 25 region

As we expected, the orbital motions of the planets indicate
long-term stability in most of our numerical experiments:
no orbital crossings nor close encounters between any pair
of planets took place in the course of the integrations. How-
ever, a suprising result was the discovery of the instability
window for the κE ∈ [4, 6] interval: at several κE values Mars
escaped; the details can be found in the next subsection.

Fig. 3 depicts the results of the MEM. The maximum
eccentricities (hereafter ME) of Jupiter and Saturn are ac-
tually constant, with a value of 0.06, and 0.088, respec-
tively (they are not shown in Fig. 3). As one can clearly
see from Fig. 3 the MEs of the Earth and Venus are rela-
tively small, and both curves show a similar behaviour as a
consequence of the well-known coupling between them. We
note, that the ME of Earth for κE = 1 is 60% greater than
for κE = 2. After some oscillations of Venus’ and Earth’s
MEs, they stay almost constant with a value of 0.041 and
0.035, respectively. In turn, the ME of Mars steadily in-
creases with κE , and at κE = 5 it suddenly reaches a very
high value, eMars = 0.26091 (the perihelion distance of Mars
is qMars = 1.126)! After this peak Mars’ ME drops down to
its starting value 0.1231, and begins to increase slowly and
gradually with κE .

The character of the variation of the planetary orbital
elements does not change substantially over the course of
the simulation, except for κE around 5. The variations of

Figure 3. Results of the MEM in the 1 6 κE 6 25 region
(∆κE = 1). The x-axis is the κE , the y-axis is the maximum
eccentricity (ME).

the semimajor axes are in the order of 10−4–10−3 AU for
the inner planets, and for Jupiter and Saturn they are ap-
proximately 10−3, 10−2 AU, respectively. The variations in
Jupiter’s and Saturn’s semimajor axes are one order of mag-
nitude larger than those of the inner planets, which is a
consequence of the 5:2 near commensurability between their
motion. For all simulations in this mass factor region the
behaviour of the semimajor axes did not change, and their
excursions remained in the above range.

The eccentricities as a function of time of the inner plan-
ets for κE = 1, 2, and 15 are shown in Fig. 4 (for the sake
of a comparison the eccentricities for the actual masses are
also depicted). As κE goes from 1 to 2, there is a substantial
change in e for all three terrestrial planets. According to the
MEM analysis (see Fig. 3), the MEs of Earth and Venus de-
crease, which manifests themselves in greater perihelia and
smaller aphelia distances (see Fig. 4b). These changes de-
crease the probability of a close encounter between Venus
and Earth, as can be inferred form Fig. 4b. Beyond this κE

value the behaviour of Earth’s and Venus’ eccentricities do
not change and in general their orbits turns into a more and
more regular, quasiperiodic ones as κE increases. Moreover
their dynamical coupling strengthens. These features can be
traced on the panels of Fig. 4.

In the case of Mars the character of the variation of the
eccentricity is more complex:

• For the actual masses Mars’ eccentricity fluctuates with
an amplitude of 0.1 and with a very long period of approxi-
mately 2.5 Myrs. To this fluctuation smaller amplitudes with
shorter periods are added. It is clear from Fig. 4a that Mars’
motion is not coupled to any of the other two terrestrial
planets.

• At κE = 2 Mars’ eccentricity shows a quite different
behaviour: it oscillates with a very short period around a
mean eccentricity of 0.1 with an amplitude of about 0.02.
With increasing κE the center of oscillation shifts to higher
values, and reaches its maximum at 5, where the system is
destabilized.

• For κE > 5 the motion of Mars gradually turns into a
regular one. Moreover, dynamical coupling develops between
all the three inner bodies, which is very well visible from Fig.
4c.

The terrestrial planets seem to gradually form a subsystem

c© 2005 RAS, MNRAS 000, 1–11
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Figure 4. The eccentricities of the inner planets are shown as a function of time for the κE = 1, 2, 15 simulations. The time and mass
factor evolution of the planets’ eccentricities can be traced on the panels. On panel 4c. also Jupiter’s and Saturn’s eccentricities are
shown: the existence of the two separate subsystems is well visible.

c© 2005 RAS, MNRAS 000, 1–11



The stability of the terrestrial planets with a more massive ”Earth” 7

Figure 5. Results of the MEM in the 4 6 κE 6 6 region. The
dotted lines show the ME of the 20 Myr, whereas the solid lines
show the ME of the 100 Myr integrations. The MEs of Jupiter
and Saturn are not plotted. The instability window occupies the
(4.2, 4.9) region. We note that the ordinate is logarithmic.

as the mass factor increases. As the Earth becomes the dom-
inant planet in this region and the motions of the two smaller
neighboring planets are influenced primarily by the Earth
(the major variation in the eccentricities of the Earth, Venus
and Mars has the same period, see Fig. 4c). With regard to
this we may consider the inner planets as a collection of dy-
namically mutually dependent planets, namely a subsystem.

In this mass factor region the giant planets move on
quiet orbits for the duration of all numerical integrations.
Jupiter and Saturn also constitute a subsystem which is
practically not affected from the terrestrial planets. An anal-
ysis of the eccentricities of all bodies for the subsequent mass
factors shows that the model graduates into a system which
consists of two separate and loosely dependent subsystems.

3.2 The instability window at κE ≈ 5

According to Fig. 3 the ME of Mars reached its maximum
value at κE = 5. To explore the dynamical evolution of the
inner planets in more detail simulations were performed in
the κE = [4,6] region, with a stepsize of 0.1 for 100 Myrs.
The results of the MEM are shown in Fig. 5, where several
peaks (eM = 1.0) in the curve of Mars’ ME are visible, which
correspond to escape orbits. We note that there are two
minima: at 4.4 and at 4.7. This feature is typical of chaotic
systems, where small differences in initial conditions, round
off errors or the applied computing architectures may result
in different outcomes. To verify this, the two systems with
κE = 4.4 and 4.7 were integrated on different computers
and both of the systems decayed. After κE = 5.2 the ME of
Mars gradually drops down and at κE = 6 it is already less
than 0.15.

Fig. 6 shows the evolution of the perihelia (q) and aphe-
lia (Q) distances of the inner planets for κE = 4.6, for which
case we measured the shortest dynamical lifetime. A strik-
ing feature is that Mars’ perihelion begins to decrease right
at the start of the integration, as a consequence of the steep
increase of its eccentricity. At 250 000 yr Mars’ e reaches
0.16 then it decreases to 0.13, around this value it oscillates
for 1 Myrs. Conversely, q and Q of the Earth and Venus stay
in a well defined zone. At ∼ 1.5 Myr, the perihelion of Mars
begins to oscillate with quite a large amplitude. The center

Figure 6. a.) the inner planets’ perihelia (q) and aphelia (Q)
distances are shown as a function of time for the κE = 4.6 simu-
lation. b.) The eccentricity of Mars is depicted. Note that Mars’
orbit is excited to high eccentricity and it becomes Earth-crossing
at t ≈ 10.5 Myr. c.) The semimajor axes of the Earth and Venus
are shown together.

of this oscillation grows secularly and after 10.5 Myr Mars
becomes an Earth-crosser, moreover it crosses the orbit of
Venus too. As a consequence of the several close encounters
with Earth; Mars escapes from the system. This cascade
mechanism is shown in Fig. 6c, where the semimajor axes
of the Earth and Venus are plotted.

Because of the chaotic nature of the system, different
dynamical lifetimes for the different κE values were found.
Out of the 21 integrations for 100 Myr, Mars escaped four
times and the system decayed 2. It must be stressed that the
chosen length of the integration time is a problem, because

2 By the decay of the system, we understand that the system has
evolved into a different one, with a completely distinct configura-
tion.

c© 2005 RAS, MNRAS 000, 1–11
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it may be relatively short for such investigations. It is well-
known that there exist orbits which are stable for a very
long time interval and then, all of a sudden they evolve into
chaotic orbits. These ’sticky orbits’ are common in nonlinear
dynamical systems and therefore they exist also in planetary
systems (Dvorak et al. 1998; Jones & Sleep 2002). This class
of orbits are embedded in those region of the phase space,
where regular and irregular orbits are close to each other.
We suspect that those systems which did not decay, may be
’sticky systems’, and will be unstable at a much longer time.

According to the chaos theory the extent of this insta-
bility window is a function of the numerical resolution (in
our case the ∆κE). Therefore it is not possible to find the
exact size of this window, however with our resolution this
instability window is in the interval 4.2 < κE < 4.9

The surprising increase in the eccentricity of Mars may
be a result of some secular resonances between the secular
frequencies gj and fj . Such phenomena were already found
by Laskar in the Solar System, who reported that large and
irregular variations can appear in the eccentricities and in-
clinations of the terrestrial planets, especially of Mercury
and Mars on time scales of several Gyr (Laskar 1996).

The secular variations of the orbital elements of the
planets are calculated by means of the Laplace-Lagrange
theory. Using our MAPLE application the M

(j)
s and L

(j)
s

amplitudes, the gj and fj secular frequencies and βj and γj
were calculated in the κE ∈ [4,6] interval on a very fine grid
with a stepsize ∆κE = 0.001. In this region two frequencies,
f2 and f3 have almost the same value (see Table 3), while
the other ones are well separated. In Table 3 the f5 = 0.0
frequency is not included, and also the corresponding am-
plitude (2.8402 ·10−2) and the angular phase (106◦.17) were
left out.

To visualize the dependence of f2 and f3 on the mass
factor, they are shown in Fig. 7a, while in Fig. 7b their
difference around κE = 5 is depicted. From Fig. 7b it is
obvious, that the two curves do not intersect each other: the
difference between the two frequencies are several orders of
magnitudes greater than the accuracy of the computation,
which was set to 10−10. The ∆f = f2−f3 difference reaches
its smallest value for κE = 5.03, ∆f = 0.1439 ”/yr, which
is at the border of the aforementioned instability window.

A study of Table 3 shows that the largest amplitude
are, in the solution for Mars, L

(2)
3 and L

(3)
3 , for Jupiter L

(2)
4

and L
(3)
4 and for Saturn L

(2)
5 , L

(3)
5 . Accordingly the f2 and

f3 frequencies, as was described in section 2.1, can be as-
sociated with Mars, Jupiter and Saturn. The orbital plane
of Mars therefore rotates together with those of Jupiter and
Saturn, giving rise to chaotic behaviour. The equality of two
apsidal or nodal rates is referred to in Solar System as a sec-
ular resonance. In this case we have three secular resonances:
Ω̇M ≈ Ω̇J , Ω̇M ≈ Ω̇S and Ω̇J ≈ Ω̇S . We suspect that these
secular resonances are the possible source of the observed
chaos, and produce the instability window.

3.3 The 30 6 κE 6 600 region

Fig. 8 summarizes the results of the MEM in the 30 6 κE 6

600 region. As one can clearly see from Fig. 8 the MEs of
the planets gradually increase. None of the curves show any
peaks, consequently in this region no instability window was

Figure 7. On the a.) panel are the f2 and f3 secular frequencies,
on the b.) panel their difference around 5.0 are plotted versus the
κE mass factor.

Figure 8. Results of the MEM in the 30 6 κE 6 600 region.
Note, that the y axis is logarithmic.

found. These numerical results are in line with the results
of the linear theory. In this region each of the secular fre-
quencies have quite different values. Beyond κE > 540 Mars
escaped in all simulations. The MEs of the Earth, Jupiter
and Saturn behave very similarly and we may say that from
κE = 100 on the system is dominated by these planets and
Venus and Mars may be considered as quasiasteroids.

Generally the semimajor axes of the inner planets are
confined in a narrow stripe in the order of 10−4–10−3 AU.
These stripes are defined by a very short quasiperiodic os-
cillation around the mean values of the planets’ semimajor
axes. As the mass factor increases the amplitudes of the os-
cillations grow, the width of these stripes slightly broadens.
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Table 3. The fj secular frequencies, the γj phases and the L
(j)
s amplitudes of the model for κE = 5.03

calculated using the Lagrange-Laplace theory. The fj are given in arcsec/yr and the γjs in degree.

fj -47.381072 -25.862186 -25.718241 -7.157383

γj 76◦.92 306◦.01 128◦.89 297◦.61

L
(j)
s

Venus 5.2399 ·10−2 7.5778 ·10−3 1.0696 ·10−2 2.5795 ·10−2

Earth -7.7184 ·10−3 3.9381 ·10−3 5.9598 ·10−3 2.3939 ·10−2

Mars 2.4032 ·10−3 -4.2737 ·10−1 -4.3543 ·10−1 1.3348 ·10−2

Jupiter 4.5852 ·10−6 3.1885 ·10−3 -3.1088 ·10−3 -1.2056 ·10−4

Saturn -2.2595 ·10−6 -7.7642 ·10−3 7.7424 ·10−3 -1.8405 ·10−4

The typical evolution of the eccentricity of the inner
planets are shown in Fig. 9. The character of the curves are
similar to Fig. 4c, only the periods are shorter.

Since Venus, Earth and Mars have the same period in
their eccentricities – just like the Jupiter and Saturn pair
does – the system is separated into two subsystems: one
consisting of Venus, Earth and Mars, and the other Jupiter
and Saturn. This behaviour was already observed for smaller
mass factor values. The strong coupling of the eccentricities
of the two giant planets remains unbroken for all κE. The
eccentricities of Venus and Mars are mainly determined by
that of the Earth, which is the superposition of a long period
(Tl ∼ 2.5·105 yr) variation with amplitude 0.035 and several
shorter period (∼ 104 yr) and smaller amplitude variations
(see Fig. 9b). In the case of Venus, upon this long period
variation several very short periods are superimposed (see
Fig. 9a). On the contrary the eccentricity of Mars flickers
with a period Tl around 0.1 (see Fig. 9c).

As the mass factor increases the long period variations
in the eccentricities of Jupiter and Saturn are more and more
influenced by the Earth. In order to conserve the total an-
gular momentum of the system the centers of oscillations of
Jupiter’s and Saturn’s eccentricities are anticorrelated with
the eccentricity of the Earth (see Fig. 10b). In spite of the
large perturbations from the Earth, the coupling between
the motion of Jupiter and Saturn are still very well deter-
mined (see Fig. 10a). This result is also supported by our
previous study Dvorak & Süli (2002), and therefore we may
say that the dynamical coupling of Jupiter and Saturn essen-
tially determines the dynamics of the Solar System’s bodies.

The time developments of the inclinations are very sim-
ilar to those of the eccentricities:

• the variations of Jupiter’s and Saturn’s inclinations are
coupled,

• the inclinations of Venus and Mars are primarily deter-
mined by that of the Earth,

• with growing κE Jupiter’s and Saturn’s inclinations are
increasingly influenced by the Earth.

When κE = 540 Mars’ eccentricity had grown secularly
and at Te ≈ 3.4 Myr, Mars passed near by Earth, which
ejected the planet from the system (see Fig. 11). In this case,
we did not observe orbit-crossing. However the minimum
distance between Earth and Mars was 0.164 AU, which is
about twice the Hill radius of the massive ”Earth” RH(κE =
540) = 0.081 AU. A cataclysmic outcome is therefore to be
expected (Jones et al. 2005). In the systems with κE = 570

and 600 Mars was ejected after a sequence of orbit-crossing
with Earth at Te ≈ 4.35× 106 and at Te ≈ 5.51× 106 years,
respectively.

The stability of Venus is an intriguing property of the
systems. In each of our simulations the orbital elements of
Venus did not show any sign of chaos. The Earth and Venus
are prevented from close encounters by a coupling of Venus’
eccentricity and ∆̟; ∆̟ is the difference between the lon-
gitude of perihelion of the Earth and Venus. Whenever the
perihelion of Earth conjunctions with the aphelion of Venus
(∆̟ = 180◦), the eccentricity of Venus is around its min-
imum (see Fig. 12), maximizing the distance between the
two orbits. A similar protection mechanism also occurs with
real Mars and the asteroid Pallas. This kind of coupling was
also observed by Jones & Sleep (2002) for an ’Earth’ in the
47 UMa system.

4 DISCUSSION

We studied the dynamics of a simplified dynamical model
of the Solar System where we included the three terres-
trial planets Venus, Earth and Mars and the gas giants
Jupiter and Saturn. This model was already studied in detail
(Dvorak & Süli 2002) when the masses of all terrestrial plan-
ets were uniformly increased. It turned out that the different
systems remained stable for 10 Myrs up to large mass factor
values. As a continuation of this work the same model with
a more massive Earth was studied and signs of chaotic be-
haviour were reported in Dvorak et al. (2005). In this article
a detailed exploration of the different S3 setups is presented,
and the existence of an instability window is revealed. As an
important byproduct the plethora of the integrations can
serve as a general model of exoplanetary systems with two
massive planets close to the 5:2 mean motion resonance on
low eccentric orbits for comparable mass ratios of the giant
planets.

We investigated over 100 S3 models where we increased
the mass of the Earth by a mass factor κE between 1 6

κE 6 600. These new systems have been integrated using
extensive numerical integrations for 20 million years (for se-
lected systems up to 100 million years) to find out the effect
of a very massive Earth on the stability of the whole system
on one hand; on the other hand the model now can serve
as example of exoplanetary systems of two or three massive
planets.

It turned out, that even when the Earth had Jupiter’s
mass (κE ≈ 300) and beyond, the system was still stable, but
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Figure 9. The eccentricities of the Venus, Earth and Mars (from
top to bottom) for κE = 30 over a 1 million year time-span.

when κE ∈ (4.2 , 4.9), the motion of Mars become chaotic.
In this instability window Mars’ orbital eccentricity finally
reached values which led to close encounters of Mars with
the Earth, and even with Venus. After a sequence of close en-
counters Mars escaped within some millions of years. Using
the results of the Laplace-Lagrange secular theory we found
secular resonances acting between the motions of the nodes
of Mars, Jupiter and Saturn. These secular resonances give
rise to strong chaos, which is the cause of the appearance of
the instability window, and eventually the escape of Mars.

We also found an interesting coupling of Venus’ e and
∆̟, which protect Venus form a close encounter with Earth.
This mechanism was observed in the Solar System and
in 47 UMa with a hypothetical Earth (Jones et al. 2005;
Jones & Sleep 2002).

According to these results, the stability of the Solar Sys-
tem depends on the masses of the planets, and small changes
in these parameters may result in a different dynamical evo-

Figure 10. a.) The time development of the eccentricities of
Jupiter and Saturn. b.) The eccentricity of the Earth and the lo-
cal maximums of Jupiter’s and Saturn’s eccentricities are shown
for κE = 250. The coupling between the eccentricities can be well
observed.

Figure 11. This plot shows the escape of Mars for κE = 540.

lution of the planetary system. No other instability window
in κE were found; first results of additional computations
where we increased the masses of Venus and separately also
of Mars, showed signs of chaotic motions for some windows
in κ too, but a detailed study of these two other cases of a
modified S3 is in preparation. There we also intend to give
a detailed comparison of the three systems, namely with a
massive Venus, a massive Earth and a massive Mars.

Finally we note that all these models may be used as
dynamical reference models for a better understanding of
the stability of orbits in extrasolar planetary systems.
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Figure 12. This plot shows the relationship between Venus’ ec-
centricity and ∆̟ during 20 Myrs for κE = 540.
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