
ar
X

iv
:1

00
6.

12
22

v1
 [

cs
.N

I]
 7

 J
un

 2
01

0

SONoMA: A Service Oriented Network

Measurement Architecture

TR-ELTE-CNL-2010/1, date: 17 May 2010

Béla Hullár, Sándor Laki, József Stéger, István Csabai, and Gábor Vattay

Departent of Physics of Complex Systems
Eötvös Loránd University, Budapest, Hungary

{hullar, laki, steger, csabai, vattay}@complex.elte.hu

Abstract. To characterize the structure, dynamics and operational state
of the Internet it requires distributed measurements. Although in the last
decades several systems capable to do this have been created, the easy
access of these infrastructures and orchestration of complex measure-
ments is not solved. We propose a system architecture that combines the
flexibility of mature network measurement infrastructures such as Plan-
etLab or ETOMIC with the general accessibility and popularity of public
services like Web based bandwidth measurement or traceroute servers.
To realize these requirements we developed a multi-layer architecture
based on Web Services and the basic principles of SOA, which is a very
popular paradigm in distributed business application development. Our
approach opens the door to perform complex network measurements,
handles heterogeneous measurement devices, automatically stores the
results in a public database and protects against malicious users as well.
To demonstrate our concept we developed a public prototype system,
called SONoMA.

1 Introduction

Since the last 50 years Internet has grown from an academic experiment with
several small attached networks to a highly interconnected heterogeneous sys-
tem that spans several continents. Recently it is a network of networks that
consists of millions of private and public, academic, business, and government
networks of local to global scope. Besides the Internet’s expansion the growing
number of users and applications generate huge and more complex network traf-
fic to be handled which poses many challenges for network operators and the
network itself. As a consequence traffic control, forecasting, performance analy-
sis and monitoring are becoming fundamental issues for network operators and
interesting targets for researchers as well.

To determine the key performance metrics needed to analyze network behav-
ior and network traffic, numerous independent network measurement infrastruc-
tures and testbeds have been developed and deployed all over the world. These
infrastructures aim at helping researchers to examine many interesting aspects of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ELTE Digital Institutional Repository (EDIT)

https://core.ac.uk/display/333614002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1006.1222v1

the Internet like network topology, traffic behavior, one-way and queuing delay
fluctuations or routing policies. Nevertheless, the way to use them is very differ-
ent and sometimes not too comfortable. In general, it splits into the following
key steps: first we write a measurement script then we upload it to the measure-
ment nodes (via Web or a direct terminal connection). After that we execute it
and finally we collect the results and optionally store them in a database.

We have to mention that some ISPs provide publicly accessible measurement
services, which are very popular among Internet users thanks to their convenient
Web based accessibility. Their network measurement capabilities, however, are
very limited and insufficient for the research community. One of the open ques-
tions in network research is how the flexibility of the major network measurement
infrastructures can be combined with the general accessibility and popularity of
these lightweight Looking Glass services.

This paper outlines a Web Service based approach for building an integrated
architecture for network measurements that is scalable, adaptable and open for
scientists and other network developers, while its functionalities can be easily
accessed through a standardized interface. The Service Oriented Architecture
(SOA) is a very popular principle in system design and integration concerning
business applications. Naturally the key components of this principle can be used
in the design of network measurement architectures as well. In this paper we in-
troduce the main concept of a SOA-like Service Oriented Network Measurement
Architecture and its working prototype called SONoMA [1].

SONoMA is a common and extensible networkmeasurement framework which
proposes an alternative to define and perform distributed network experiments.
This SOA based approach aims to decrease the required time and efforts of
network experiment implementation significantly. The two key components for
achieving this goal are the conduction of complex measurements by the system
and the easy invocation of the services by the web service technology. To perform
a measurement using this system there is only one thing to do: prescribe what
you want to measure and then the framework will ensure to deliver the required
measurement data. Nevertheless, the above request will be disassembled to in-
dividual executable tasks in the background. Each task will be performed on a
proper set of measurement nodes in a completely distributed manner. Whilst
the results are forwarded back to the user they are automatically stored in our
public database, which is called the Network Measurement Virtual Observatory
(VO) [6]. Researchers do not have to waist time developing scripts which check
the status of the measurement nodes, spread the probing tasks among the nodes
then collect the results and finally post process the data.

The rest of the paper is organized as follows: in Section 2 we overview the
state of the art including the prior network measurement facilities and testbeds.
Section 3 briefly introduces the Web Services technology. The key concepts of our
service oriented network measurement architecture are presented in Section 4,
while its prototype implementation is detailed in Section 5. Section 6 focuses on
the case studies showing how simple it is to use SONoMA to perform distributed
network measurements. The final section summarizes our results.

2 State of the Art

The idea of building global network measurement infrastructures is not new. In
the last decades numerous facilities have been developed and deployed all over
the world. The mature ones like PlanetLab [8] or ETOMIC [7] provide almost
full control over their geographically dispersed measuring nodes. Besides net-
work measurements they open the door to try out new network protocols and
applications as well. This kind of freedom makes them general testbeds. Never-
theless, this freedom is not necessary for most of the use cases required by the
network measurement community. On the other hand, it makes the development
and deployment of network experiments needlessly complicated. and the usage
of this system requires registration and other restrictions.

There are other projects like DIMES [9], which takes a different approach
than building and maintaining a costly permanent infrastructure. The members
of this community are volunteers who choose to install the DIMES agent on their
PC and these agents use the idle time of the their computers to download and
perform measurement tasks. The capabilities of these software agents, however,
are very limited and the use of this system also requires registration and learning
a new interface.

Scriptroute [11], in contrast with DIMES, provides a general and flexible
software platform for defining network experiments easily. It proposes a Ruby
based scripting environment which makes an ordinary PC be able to carry out
network measurements instrumented remotely and safely. The weakness of this
approach is its lacking a uniform mechanism for complex measurements which
require the cooperation of a set of the measurement nodes (e.g. chirp measure-
ments, network tomography, etc.). Thus in this scenario users themselves have
to build up their distributed measurements by synchronizing the active probing
nodes. Scriptroute is currently deployed and accessible on PlanetLab slices and
its users have to implement and build up their distributed measurements in this
determinate language.

Besides the above solutions there are numerous ISPs providing lightweight
measurement services like traceroute or ping, which are very popular among In-
ternet users thanks to their public accessibility. These services are advertised via
their own Web based user interface. The available widely heterogeneous inter-
faces do not facilitate to perform distributed measurements in a unified access
manner. Furthermore, the measurement types they offer are mostly limited to
ping and traceroute.

Several national R&E networks including GÉANT2 and Internet2 joined
their forces to specify and implement a service oriented monitor infrastructure
for collecting and publishing network performance data, called perfSONAR [3].
perfSONAR is based onWeb Services as well as SONoMA and they have much in
common in their architecture. However there are several conceptual differences
between them. Network operators designed perfSONAR for monitoring purposes,
while our approach focuses on the problems of complex network measurements,
especially active probing.

SONoMA introduces a sophisticated resource allocation strategy, which dif-
fers from the ones used in existing infrastructures. For example, PlanetLab ac-
complishes a time sharing approach by running several virtual machines in par-
allel, while ETOMIC operates a time allocation system to ensure precise timing
during the experiments. It is obvious that most of the network monitoring probes
do not need dedicated resources, whereas in certain special cases precision will
still require high availability of the peripherals and resources. Our architecture
supports both resource managing mechanisms.

As we mentioned before numerous lightweight network diagnostic services
like bandwidth measuring tools are publicly available. In contrast to the ma-
jor network measurement infrastructures these basic services do not require user
authorization, resource management and resource allocation. However, their lim-
ited tool set is more than enough for most of the Internet users which makes
these services very popular. The approach discussed in this paper makes an at-
tempt to integrate the complexity of major network experimentation facilities
and the popularity of the above lightweight services. It provides public access
with reasonable limitations for performing basic measurements and gives full
access to registered users for assembling complex Internet experiments.

In addition to the above aspects we distinguish two different invocation modes
in SONoMA: synchronous services for fast and immediate measurements and
asynchronous ones for long-running probes.

3 Web Service

Web Service is a technology that provides interoperability between different
computers, platforms and applications to build up a distributed system. This
technology has many advantages. First, Web Services are independent form any
operating systems and programming languages. Second, they offer a simplified
access to remote procedures. This platform independent approach is very useful
in a distributed environment, where a lot of systems interact. In the last decades
it has became a mature technology which contains numerous standards and ex-
tensions like WS Security for using encryption and signatures to secure message
exchanges. In addition, most of the programming languages support the creation
and the use of Web Services and offer tools for the automated code generation.

The Service-Oriented Architecture (SOA) is an effective distributed system
development paradigm based on Web Services. In this approach the system is
made up of loosely coupled services which communicate each other through the
network. The deployed services can be used by other organizations and compa-
nies according to the well defined interfaces. This system design with the stan-
dardization enables the effective and strong cooperation between the different
participants of a field. For example, the travel industry now has a well-defined
set of services which allows software engineers to create travel agency applica-
tions easily. These products use the off-the-shelf services of different companies
like other travel agencies, hotels or airline companies and improves the efficiency
thanks to a big degree of automation.

This SOA based system design is currently under adaptation in the field of
network management1. Although in the literature there exists a few proposals
based on the Web Services technology in connection with network measurements,
a mature, well standardized solution is still missing.

4 Architecture Overview

The idea of exploiting the advantages and flexibility of Web Service technologies
in the context of network measurements is not a new one [3, 5, 4]. Building and
maintaining network measurement repositories and sharing experimental data
[12] is also an apparent trend in both engineering and scientific community.

Our system concept tries to bind the two together. Namely, we propose a
three-tier system architecture that provides simple means to carry out a broad
range of network measurements on the one hand, and on the other the system is
responsible for saving all raw network measurement data in a public repository
also called Network Measurement Virtual Observatory. The idea behind collect-
ing raw data is apparent. It provides a unified methodology to represent and
publish measurement data and it also makes reproducibility possible, for exam-
ple if different new methods become available to estimate some characteristics
of the network they are easily fed by historical data for the sake of comparison.

Fig. 1. shows the architecture of the system. Measurement Actors (A)
are the topmost entities in this model. In the most natural case Actors are user
applications implemented in any programming or scripting languages capable of
integrating Web Service functionalities. The main advantage of this approach
is that user can simply embed network measurements into their applications
seamlessly. They can process their results within that framework and/or trigger
signals based on the evaluation of the raw measurement data received in turn of
calling the services. At the same time, this model framework also offers a more
convenient solution for the price of a less flexible way to interact with the system.
Namely, Actors could also be nicely elaborated graphical user interfaces served
via the world wide web. In both cases a well defined programming interface is
provided the Actor to contact the middleware, the Management Layer.

The Management Layer (ML) is the second layer in this model and is
responsible for implementing and serving the following fundamental operations:
i) accounting both Actors and Measurement Agents, ii) authenticating Actors,
authorizing requests and checking them against misuse, iii) handling measure-
ment sessions, scheduling and composing experiments. These tasks are detailed
in Fig. 2.

The Measurement Agents (MA) and the Virtual Observatory (VO)
reside at the lowest level of the proposed model. Conceptually, any network
entities implemented the required web service interface can be a MA. However,
it does not need to implement all the available network measurements, the ML
keeps track of all the MAs and their abilities.

1 e.g. ETSI TS 188 001 NGN, ITU-T M.3060

Fig. 1. The layout of the software architecture. Actors (A), the Management Layer and
Measurement Agents (MA) form a 3-tier framework. Data are archived in the public
Network Measurement Virtual Observatory (VO).

In the proposed system we apply two orthogonal classifications of the network
measurements. From user’s point of view we differentiate between synchronous
and asynchronous measurement calls. In the former case network measurements
are parametrized in such a way, that results are available within a few seconds.
Thus the measurement results will be returned to the Actors directly and the
code calling the service functions will be blocked until the measurement ends. In
the latter case experiments are parametrized for long runs and only a measure-
ment reference is returned, which makes it possible to try and retrieve results
later, when they are available. In both cases the raw data produced by MAs are
simply stored in the VO.

The other classification is based on the measurement complexity. We define
atomic measurements and complex measurements. Atomic measurements are
the simplest building blocks of any network measurement (e.g. traceroute, ping,
etc.). The collection of atomic measurements (or a part of all the possible ones)
are offered by MAs. However, complex measurements are realized at ML level.
In most cases they combine several basic measurements running on one or more
MAs (e.g, bandwith measurement, network tomography, geographical localiza-
tion, etc.). Then ML has to collect and match pieces of information properly
together, just like aligning a probe packets time stamps upon emission and re-
ception. In addition a complex measurement may contain post processing, data
formatting and evaluation phases as well. In this case the aggregated or evalu-
ated values like queuing delay histograms or location estimates will be stored in
the VO as well as the raw measurement data like one-way delays or round-trip
times required for the calculation of these complex network characteristics.

The model described here enables both time-sharing and time-reserving mea-
surement approaches. It is dependent on the requirements of the given network
measurement, which are formulated in measurement rules by the ML. For ex-
ample, topology discovery and echo measurements do not require dedicated re-
sources, thus the implementations of traceroute and ping run in time-sharing
mode, whereas network tomography measurement [10], which requires the gen-
eration and sending of highly correlated IP packets and precise time stamping
is definitely executed in time-reservation mode.

Fig. 2. The internal structure of the Management Layer middleware.

5 A Prototype System

Testing our concept and showing its advantages we have implemented the key
elements of the proposed architecture including the Management Layer (inter-
facing to VO), two types of Measurement Agents, and a few Actor examples, as
well. We separated the different functionalities and worked out a clear design,
which makes the system be able to adopt to the new demands plainly. This sec-
tion overviews the building blocks of the realized components of the system and
the thoughts behind their implementations.

5.1 Measurement Actors

Users are free to realize their Actors in the programming environment they use
everyday, since web service technology is supported by almost all programming
languages. Actors are offered the service descriptor file (WSDL in document
literal format) from which the interface code can be generated automatically.
Including the interface code in the source of the Actor all measurement services
are available through simple function calls (see 6 for examples).

For demonstration purposes we developed a simple web accessible application
where a few synchronous measurements are available that require no extra anal-
ysis of the data.[1] Here the user has freedom to modify some of the parameters
of the measurements via input boxes and pull down menus.

Naturally a simple web form is incapable of taking the full power of delivering
asynchronous long measurements, so users in need for them will need to fall
back to the use of the WSDL. In Table 5.1 we enlist the currently implemented
measurement services and also indicate those that we plan to extend with in the
near future.

Table 1. The list of the supported measurement services (* marks services that are
currently under implementation)

Function name Short description

getVersion queries the current version of the ML
requestSession opens a new session
closeSession closes the given session
getNodeList returns the list of measurement nodes according to the

given type parameter
shortPing synchronous ping measurement
longPing asynchronous ping measurement
paralellPing asynchronous ping measurement towards different desti-

nations
ensamblePing asynchronous ping measurement towards different desti-

nations from different sources
shortTraceroute synchronous treaceroute measurement
longTraceroute asynchronous traceroute measurement
paralellTraceroute asynchronous traceroute measurement towards different

destinations
ensambleTraceroute asynchronous traceroute measurement towards different

destinations from different sources
shortChirp synchronous chirp measurement from a source MA to a

destination MA
longChirp asynchronous chirp measurement from a source MA to a

destination MA
getAvailableBandwidth performs bandwidth measurement between two measure-

ment nodes
shortTrain synchronous back-to-back packet train sender from a

source MA to several destination MAs
longTrain asynchronous back-to-back packet train sender from a

source MA to several destination MAs
getResults returns the results of a terminated asynchronous mea-

surement
getProcessInfo queries the status of a submitted asynchronous measure-

ment
topology1 performs traceroute measurements between a set of MAs

and gives back the topology graph
queuingDelayTomography1 computes and gives back the distribution of queuing de-

lay fluctuations on the topology spanned by the measure-
ment nodes

queuingDelayVariance1 computes the variance of queuing delay fluctuations on
the topology spanned by the measurement nodes

geographicalLocalization1 performs delay and topology measurements to localize
the given IP address

pcapSender1 sends out a general packet pattern described by a stan-
dard pcap file

5.2 Management Layer

An elaborate view of our Management Layer implementation is depicted in Fig.
2. The ML provides four operational interfaces, all dedicated for different pur-
poses. i) The Client side interface is an input/output interface offered for the
Actors. All the functionalities related to requesting measurement sessions, carry-
ing out the measurements themselves and methods of data retrieval are described
here in a WSDL description. The rest of the interfaces are hidden from the Ac-
tors. ii) The Instructor interface as for its functionality is similar to the Client
side interface residing at a level lower, between the ML and the MA. Note that
the WSDL description of this interface is constrained to the atomic measurement
methods only. iii) To avoid errors originating from a bad experiment duration
guess the Callback interface is provided to MAs, where long processes can notify
the middleware of process termination and trigger the Management Layer to
take the necessary steps of data retrieval. iv) The raw data of each and every
atomic measurement is loaded to the VO via the Storage interface.

Considering the time line of a measurement, the modules of Management
Layer will belong to three sets: i) services and tasks to be invoked before mea-
surement, ii) services and modules, which are responsible for managing measure-
ments, and iii) modules that pre-process and store raw measurement data.

The first group, the Authentication, Authorization & Session handling (AAS)
collect the modules to call prior to measurements. The tasks of Authenticator
and Authorizator is self-explanatory. Authenticated Actors are granted a ses-
sion and a privilege schema. The session binds all the network measurements
of an Actor together, which is also represented in the databases of the VO.
The session also encapsulates the overall requests of an Actor such as the for-
mat it expects to receive the measurement data. The privilege schema, which is
checked during measurement authorization, distinguishes between different Ac-
tors, e.g. an Actor authenticated as guest has no privileges to run asynchronous
long measurements and quotas are introduced on the frequency they use the
system, whereas respected Actors have larger freedom to exploit the capabilities
of the system. The Allocator and the Resource broker modules are responsible
for checking if the chosen MA is capable of a given experiment and whether
the required resources are available. If the experiment requires a time-reserving
operation then a certain estimated time interval will be allocated and parallel
measurement requests will be omitted. The Security checker uses heuristics to
filter out the unlucky combination of the experiment parameters, which may lead
to malicious or blocking traffic. It also maintains a gray list of MAs that have
some constraints on their atomic measurement methods, e.g. operators of MAs
connected to low speed links typically would not like probe packet generation at
a high rate.

The second set of modules, Control and Measurement methods manage the
network measurements. Lookup service provides Actors an up-to-date status
information of the set of MAs against different filtering rules, like the nodes that
are available and/or are capable of a certain measurement type or may inform
Actor when an MA is free again in case it is busy at present. It is also the Lookup

service’s duty to handle signals from the Callback interface and to initiate data
retrieval from the given nodes. The Killer service can be used to hang up a
measurement and free allocated resources just in case the Actor is not interested
in the result any more. The Measurement methods interface contains low level
measurements (like shortPing()) offered by MAs and complex ones implemented
at Management level (like getAvailableBandwidth()).

The third set of modules operates on the raw measurement data. Measure-

ment result parsers provide classes for each basic measurement type to read,
represent and analyze their responses. VO storage and retrieval methods build
up database connection on demand and embody queues to store data. In addi-
tion, data retrieval after a long measurement is manifested here. Output format

generators serialize the raw measurement data in the requested format (e.g.
NetXML, CSV, etc.).

5.3 Measurement Agent

In the current version of the prototype system Measurement Agents are running
on PlanetLab slices and on the Active Probing Equipments (APE) installed at
OneLab [2] sites. While the agents running on PlanetLab are based on ordinary
PC architecture, APE is an embedded, real-time system which provide an active
probing platform with GPS synchronized precise packet time stamping hardware
add-on. Implementing the two kind of agents required different programing li-
braries and environments, but ML and the system users do not experience any
differences since the web services technology hides the details.

6 Case Studies

To demonstrate the benefits of our approach, we show two complex use cases:
a bandwidth measurement and a topology discovery experiment. In both cases
the Actors codes are implemented in python. The main steps of the program
flow are i) instantiate the web service and request a session, ii) run the desired
measurement and collect data, iii) close session and post-process the results.

The first case (Prog 1) implements an asynchronous measurement, where we
try to draw the connection graph among a set of MAs. We note here that while
requesting a session from Management Layer, user passes a description of the
desired result format, i.e. comma separated values, zipped output in this case.
Next, the web method’s parameters are set: the measurement nodes between
which we intend to discover the network topology. After calling the properly
parametrized topology() web method an unique identifier, a processID is re-
turned. As it can be seen on Fig. 4 this complex measurement is disassembled
into the execution of individual traceroute probes, whose results are pushed in-
dividually to the VO after completion. When all partial measurements are over,
the Actor is able to retrieve the set of links using the getData() method. In call-
ing gatData() based on the sessionID, prosessID pair, ML retrieves traceroute
data from the VO repository and realizes the construction of the link set to be

returned. Using 8 nodes in the experiment we may draw the graph like in Fig.
3.

In the second case we request for a bandwidth estimate between two MAs.
Compared to the previous example, the main difference here is that we use the
getAvailableBandwidth() method which represents a synchronous measurement.
Therefore, after calling the above procedure the measurement results will be re-
turned straight away. However, in the background ML breaks down this complex
query into two atomic measurement instances: a chirp sender and a capture pro-
cess. Next, it checks the availability of the nodes involved in the measurement,
reserves them, runs the processes and collects data. Right after the collection
of the sending and receiving timestamps, ML matches them properly and stores
the raw data in the VO. In the meantime an estimation process is launched to
digest raw time series and the evaluated result is returned to the user.

We hope that the introduced two examples show how easily SONoMA can be
used to perform complex and distributed network measurements like topology
discovery or bandwidth estimation.

Metric measure

Collected routes 56
Mean/STDEV of route lengths 15.4 / 4.9
Number of edges 254
Number of nodes 194
Alternative routes 38
Number of load balancers 42
Number of links with delay statistics 122
Average delay 20.4 ms
Links of <1 ms delay 180

Fig. 3. We show the output of Prog. 1 and the basic statistical properties.

7 Conclusion

In this paper we introduced a novel networkmeasurement architecture, SONoMA
based on Web Services. In the proposed three-tier system users reach the Mea-
surement Agents through an intermediate Management Layer. This middleware
controls the access, offers atomic and complex measurements, hides the hetero-
geneity of the agents and stores the results in a public repository. This concept
enables the uniform handling of active and passive measurements and allows the
time sharing and the time reservation resource allocation schemata, too. Fur-
thermore we have presented our publicly available prototype, whose agents are

Prog. 1 The pseudo code of a topology discovery measurement among 8 MAs.
instantiate web service
ws = ServiceServerSOAP("http://157.181.172.123:8888")

request a session

sessionID = ws.requestSession(user="User", zipResults=True, formatResults="CSV")

do the measurement

(processID, expectedDuration) = \
ws.topology(sessionID, nodeList = ["157.181.175.247", "132.65.240.38", ...])

...
wait for some time & retrieve data from the VO

result = ws.getData(sessionID, processID)

post-process data and terminate session

drawGraph(decompress(result))
ws.closeSession(sessionID)

Fig. 4. This sequence diagram illustrates how a topology discovery is disassembled
to atomic traceroute measurements running on MAs. It can be seen that once the
measurements finish, the results are collected and evaluated to generate a topology
map, and both raw and post processed data are stored in the VO automatically.

currently implemented and deployed on PlanetLab nodes and on the APE plat-
form. Finally, we demonstrated the system’s benefits with some use cases. The
presented infrastructure provides ordinary and complex network measurements
in easily and publicly accessible way.

Further research work needs to be done which aims at increasing the number
of measurement types both at complex and atomic levels, to integrate WS-
Security into the authentication and user identification process as well as to
examine the performance and the efficiency of the system implementation. In
addition, the number of Measurement Agents will be extended with the precise
active measurement infrastructures of the OneLab2 project and, of course, we
count on other institutions to join the SONoMA platform [1] as users or as
Measurement Agent operators as well. We also have to think of the adaptation
of volunteer, desktop grid like agents, that worked well in other projects like
DIMES.

8 Acknowledgment

The authors thank the partial support of the National Office for Research and
Technology (NAP 2005/ KCKHA005), the EU ICT MOMENT Collaborative
Project (G.A.No. 215225) and the EU ICT OneLab2 Integrated Project (G.A.No.
224263).

References

1. The sonoma web portal. http://complex.elte.hu/sonoma, 2009.
2. A. Fekete, P. Hága, J. Stéger, J. Aracil, G. Iannaccone, and G. Vattay. Specifica-

tions for advanced monitoring boxes. OneLab2 deliverable D4.2, 2008.
3. A. Hanemann, J. W. Boote, E. L. Boyd, J. Durand, L. Kudarimoti, R. Lapacz,

D. M. Swany, S. Trocha, and J. Zurawski. Perfsonar: A service oriented architecture
for multi-domain network monitoring. In ICSOC ’05, volume 3826 of LNCS, pages
241–254, 2005.

4. W. She J. Zhang, J. Yang and M. Zhang. A new conceptual distributed network
measurement architecture based on web service. In 14th IEEE International Con-

ference on Networks, volume 2, pages 1–7, 2006.
5. M. Rabinovich M. Allman, L. Martin and K. Atchinson. On community-oriented

internet measurement. In PAM ’08, volume 4979 of LNCS, pages 112–121, 2008.
6. P. Mátray, I. Csabai, P. Hága, J. Stéger, L. Dobos, and G. Vattay. Building a

prototype for network measurement virtual observatory. In ACM SIGMETRICS

- MineNet, 2007.
7. D. Morató, E. Magana, M. Izal, J. Aracil, F. Naranjo, F. Astiz, U. Alonso, I. Csabai,

P. Hága, G. Simon, J. Stéger, and G. Vattay. The european traffic observatory
measurement infrastructure (etomic): A testbed for universal active and passive
measurements. In Tridentcom 2005, pages 283–289, Trento, Italy, 23–25 February
2005.

8. PlanetLab. An open platform for developing, deploying and accessing planetary
scale services. http://www.planet-lab.org/, 2003–.

9. Yuval Shavitt and Eran Shir. Dimes: Let the internet measure itself. In ACM

SIGCOMM Computer Communication Review, pages 71–74, October 2005.
10. G. Simon, J. Stéger, P. Hága, I. Csabai, and G. Vattay. Measuring the dynamical

state of the internet: Large scale network tomography via the etomic infrastructure.
Complexus, 2005.

11. Neil Spring, David Wetherall, and Tom Anderson. Scriptroute: A public inter-
net measurement facility. In USENIX Symposium on Internet Technologies and

Systems, 2003.
12. A. S. Szalay, T. Budavári, T. Mali, J. Gray, and A. Thakar. Web services for

the virtual observatory. In SPIE Conference on Advanced Telescope Technologies,
volume 4846, 2002.

