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Spin-dependent electron-impurity scattering in two-dimensional electron systems
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We present a theoretical study of elastic spin-dependent electron scattering caused by a charged
impurity in the vicinity of a two-dimensional electron gas. We find that the symmetry properties of
the spin-dependent differential scattering cross section are different for an impurity located in the
plane of the electron gas and for one at a finite distance from the plane. We show that in the latter
case asymmetric (‘skew’) scattering can arise if the polarization of the incident electron has a finite
projection on the plane spanned by the normal vector of the two-dimensional electron gas and the
initial propagation direction. In specially prepared samples this scattering mechanism may give rise
to a Hall-like effect in the presence of an in-plane magnetic field.

PACS numbers: 03.65.Nk, 71.70.Ej, 72.10.-d, 72.10.Fk, 72.25.Rb, 73.21.Fg

In quantum scattering theory one of the central quanti-
ties is the differential scattering cross section (DSCS). In
the so-called S-matrix formalism it is possible to derive
the symmetry properties of the DSCS if the symmetries
of the Hamiltonian – the operators commuting with the
Hamiltonian – are known.1,2 A particular example was
studied by Huang et al..3 They considered the elastic
scattering of two-dimensional electrons off a charged im-
purity sitting in the middle of a semiconductor quantum
well, taking into account the spin-orbit coupling (SOC)
created around the impurity. They have found that de-
spite the cylindrical symmetry of the electrostatic po-
tential created by the impurity, the DSCS can be asym-
metric with respect to the forward scattering direction,
and its antisymmetric component is proportional to the
out-of-plane component of the polarization vector of the
incoming electron. This effect is called asymmetric or
skew scattering, and is reminiscent of the so-called Mott
skew scattering in three dimensions.4,5,6

This special scattering behaviour caused by the SOC
around the impurity can have a directly measurable con-
sequence on the transport of spin-polarized carriers, the
so-called anomalous Hall effect (AHE). The AHE in bulk
metals has been in the focus of experimental and theoreti-
cal research for many decades,7,8,9,10 and recent advances
in the field of magnetic semiconductors have increased
the activity within this area even further.11,12,13,14,15

Recently Cumings et al16 have observed the AHE in a
paramagnetic two-dimensional electron gas (2DEG) cre-
ated in a semiconductor quantum well, and its appear-
ance was attributed to the asymmetric electron-impurity
scattering. In this experiment an out-of-plane magnetic
field was applied, resulting in the Lorentz force acting on
the moving electrons and a finite spin polarization of the
carriers via the Zeeman effect. The Lorentz force alone
would result in the well-known normal Hall resistivity,
but the simultaneous presence of the finite spin polar-
ization and the skew scattering process gives rise to an
additional, anomalous Hall component.

The experiment of Cumings et al.16 has confirmed that
the electron-impurity scattering can contribute signifi-
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FIG. 1: (color online) The electron in a 2DEG (represented
by the green arrow) approaches the impurity located in the
position r0 = (0, 0, z0). Circular lines represent the equipo-
tentials of the impurity potential.

cantly to the Hall resistivity in paramagnetic 2DEGs.
Motivated by this fact, in this work we extend the
problem considered by Huang et al.3 and study the
spin-dependent electron-impurity scattering process in a
2DEG where the impurity might be located at any finite
distance from the plane of the 2DEG. We focus our at-
tention to the symmetry properties of the DSCS describ-
ing individual scattering processes and we show that the
properties of the DSCS are fundamentally different when
the impurity is located in the middle of the quantum well
and when it is at a finite distance from that. In the for-
mer case skew scattering arises only if the polarization
vector of the incident electron has a finite out-of-plane
component. In contrast, we find that in the latter case
skew scattering happens provided that the polarization
vector of the incident electron has a finite projection on
the plane spanned by the normal vector of the plane of
the 2DEG and the initial propagation direction. In the
first part of this paper we summarize the rigorous quan-
tum mechanical derivation of this result. To provide a
simple physical picture of this scattering process we also
present a semiclassical analysis of the electron dynamics
affected by the impurity. Finally, we discuss a possible
experimental setup where the special feature of the con-
sidered scattering process could give rise to a Hall-like
effect in the presence of an in-plane magnetic field.

We consider a 2DEG in the x-y plane created in a sym-
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metric quantum well, and a charged pointlike impurity
in the position r0 = (0, 0, z0). The setup is shown in
Fig. 1. Assuming that the SOC strength λ is energy-
independent and has the same value in the quantum well
and barrier materials, the contribution of the impurity
to the Hamiltonian is17

Hi = Vi(r) +
λe

~
Ei(r) · (σ × p). (1)

Here r is three-dimensional coordinate vector of the elec-
tron, Vi is the electrostatic potential created by the impu-
rity, Ei = ∇Vi/e is the electrostatic field created by the
impurity and σ is the vector of Pauli matrices represent-
ing electron spin. Note that in the presented theory the
screening effects can be incorporated into Vi. If screen-
ing is taken into account, then Vi may loose its spherical
symmetry around the impurity, however, its cylindrical
symmetry around the z axis is still retained.
We start with the quantum mechanical analysis of the

electron dynamics in this system. For simplicity the
2DEG is treated as ideal in the sense that electrons
are confined to the plane. Under this assumption, the
system can be modelled by the following effective two-
dimensional Hamiltonian:

H2D =
p2x + p2y
2m∗

+ V̄i +
λe

~
σz

(

Ēi,ypx − Ēi,xpy
)

+

+
λe

2~

[

σx

{

py, Ēi,z

}

− σy

{

px, Ēi,z

}]

, (2)

where for any f ∈ {Vi, Ei,x, Ei,y, Ei,z} we have defined
the notation f̄(x, y) = f(x, y, 0), and {., .} denotes the
anticommutator. This form of the Hamiltonian can be
derived in a rigorous way using the standard dimension
reduction technique used by Huang et al,3 with the negli-
gation of the energy dependence of the effective mass m∗

and SOC strength λ. Note that the cylindrical symme-
try of the electrostatic potential V̄i and field Ēi created
by the impurity is retained even if screening effects are
incorporated into Vi.
Having the effective 2D HamiltonianH2D in hand, now

it is possible to study the scattering of electrons on the
spin-dependent impurity potential. In the absence of the
impurity, H2D has plane wave eigenfunctions. We will
consider the scattering of the electron plane wave

φγ(ρ, ϕ) = eikρ cosϕγ, (3)

which has energy E = ~
2k2/2m∗ and propagates along

the x axis. Here ρ and ϕ denotes the standard planar
polar coordinates and γ is a normalized two-component
complex vector describing the spin state of the plane
wave. We denote the polarization vector of the incident
electron by P 0, which is a three-dimensional real unit
vector, and is related to the spinor γ by the expression
P 0 = γ†σγ. Here † denotes the combination of complex
conjugation and transposition.
It has been shown18 that in two-dimensional spin-

dependent electron scattering problems the DSCS can be

expressed as the function of the scattering angle ϕ and
the polarization vector of the incident electron P 0 in the
following form:

σdiff(ϕ,P 0) = c(ϕ) + v(ϕ) · P 0, (4)

Here the dot represents scalar product, and the func-
tion c(ϕ) and the vector-valued function v(ϕ) =
(v1(ϕ), v2(ϕ), v3(ϕ)) is related to S-matrix and the scat-
tering amplitude.
It can be shown straightforwardly that the Hamilto-

nian in Eq. (2) has three important symmetries: H2D

commutes with the out-of-plane component of the to-
tal angular momentum operator (Jz = −i~∂ϕ + ~σz/2),
with time reversal (T = iσyC where C is the complex
conjugation) and with a special combined symmetry of
real-space reflection and spin rotation (σyPx, where Px

is the spatial reflection with respect to the x axis). How-
ever, if z0 = 0, i.e. the impurity is located in the plane
of the quantum well, then an additional symmetry of the
Hamiltonian can be found. Namely, in this case the out-
of-plane component Ēi,z of the electric field created by
the impurity vanishes identically, and so does the last
term in the Hamiltonian in Eq. (2). It means that in
this special z0 = 0 case σz also commutes with H2D, and
as a consequence of that the symmetry properties of the
DSCS are different in the cases z0 = 0 and z0 6= 0, as it
will be shown below.
Starting from these symmetry properties of the Hamil-

tonian H2D in Eq. (2), and following the method using
the S-matrix formalism outlined in Ref.2 we were able
to derive the symmetry properties of the functions c and
v appearing in the formula Eq. (4) of the DSCS. Our
findings are summarized in the first and second lines of
Table I. In the z0 = 0 case, in correspondence with pre-
vious results,3 we have found that skew scattering can
arise only if the out-of-plane component of the polariza-
tion vector of the incident electron is finite. This can be
deduced using the first line of Table I and Eq. (4). On
the other hand, a fundamentally different behaviour is
found in the z0 6= 0 case, when the impurity is lifted out
from the 2DEG plane. In this case, skew scattering is
forbidden only if the initial polarization vector is aligned
with the y axis, and the DSCS can become asymmetric
if the inital polarization vector has a finite component
in the x-z plane (see the second line of Table I and Eq.
(4)). In general, in the z0 6= 0 case skew scattering hap-
pens provided that the initial polarization vector P 0 has
a finite projection on the plane spanned by the normal
vector of the 2DEG and the initial propagation direction.
Usually, the symmetry properties of the DSCS calcu-

lated in the first Born approximation (FBA) are more
restrictive than those of the exact DSCS. A particular
example is the z0 = 0 case considered in Ref.3, where it
has been shown that the quantity v(ϕ) in Eq. (4) char-
acterizing the spin-dependent component of the DSCS
vanishes if the scattering problem is treated in the FBA.
(Compare first and third lines of Table I.) We have ap-
plied a similar analysis in the z0 6= 0 case and found that
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case c v1 v2 v3

exact z0 = 0 S 0 0 A

exact z0 6= 0 S A S A

Born z0 = 0 S 0 0 0

Born z0 6= 0 S A S 0

TABLE I: Symmetry properties of the quantities determining
the differential scattering cross section in Eq. (4). S (A)
denotes the quantities which are even (odd) function of the
scattering angle ϕ. 0 denotes the quantities which vanish
identically as a result of the symmetries of the system.

in this case v(ϕ) can be finite in the FBA. Moreover, we
derived its symmetry properties as well, and summarized
the results in the fourth line of Table I.
Now we present a simple semiclassical interpretation of

the derived symmetry properties characterizing the con-
sidered spin-dependent scattering process. In the follow-
ings we use the quantum Hamiltonian in Eq. (1) to derive
equations of motion for the observables, and otherwise we
treat r, p, σ as strictly classical quantities. Specially, in-
stead of σ we will use the three-dimensional unit vector
P .
Consider a semiclassical particle in the 2DEG ap-

proaching the scattering centre along the x axis with im-
pact parameter b and spin polarization vector P 0. For
simplicity we assume that the two-dimensional semiclas-
sical dynamics of the scattered electron is determined
mainly by the electrostatic potential Vi, and the SOC
plays the role of a weak perturbation. The trajectory of
the motion affected only by Vi (the ‘unperturbed’ trajec-
tory) is given by r(t, b) = (x(t, b), y(t, b), 0), the position
vector of the particle with impact parameter b at time t.
We assume that at the moment t = 0 the particle is ap-
proaching the scattering centre but still out of the range
of the potential created by the impurity. Trivially

x(t, b) = x(t,−b), (5a)

y(t, b) = −y(t,−b), (5b)

i.e. the trajectories corresponding to impact factors b and
−b are related by a reflection with respect to the x axis.
During the motion the SOC [the second term in Eq. (1)]
acts as an effective inhomogeneous magnetic field felt by
the electron spin: P ·Beff(r, ṙ), where

Beff(r, ṙ) = −
λem∗

~
[E(r)× ṙ] . (6)

The dot (ṙ) denotes time derivative, and we used ṙ =
p/m∗. With respect to the spin and orbital dynamics,
there are two important consequences of the presence of
this inhomogenous effective magnetic field. Firstly, the
spin of the moving particle will precess around the ef-
fective magnetic field. Secondly, the inhomogeneity of
the effective magnetic field gives rise to a Stern-Gerlach-
like force which deflects the particle from its unperturbed
trajectory.

For a given impact factor b and unperturbed trajectory
r(t, b), the equation of motion for the spin of the moving
electron is1

Ṗ (t, b) =
1

~
P (t, b)×Beff(r(t, b), ṙ(t, b)), (7)

similarly to the well-known Bloch-equations.19 If the spin
of the incident particle P 0 ≡ P (t = 0, b) is given, and
with this initial value condition the solution of Eq. (7) is
known, then the Stern-Gerlach force1 can be expressed
as the gradient of the local SOC energy

F (r(t, b),P (t, b)) = −∇[P (t, b) ·Beff(r(t, b), ṙ(t, b))].
(8)

The presence of this force is due to the presence of SOC
close to the scattering centre, and it deflects the particles
from their original, unperturbed trajectory.
We claim that if the spin of the incident electron has

a finite projection on the x-z plane then the presence of
the SOC destroys the reflection symmetry of the motion
with respect to the x axis and therefore gives rise to an
asymmetry in the DSCS as well. This is a consequence
of the fact that if the polarization vector lies in the x-
z plane then the components of the Stern-Gerlach force
fulfill the relations

F1(r(t, b), ṙ(t, b)) = −F1(r(t,−b), ṙ(t,−b)), (9a)

F2(r(t, b), ṙ(t, b)) = F2(r(t,−b), ṙ(t,−b)). (9b)

(Here and henceforth the vector subscripts 1, 2 and 3
are equivalent to x, y and z, respectively.) We sketch
the steps of the proof in the followings. The definition
of Beff in Eq. (6), the properties in Eqs. (5) and the
cylindrical symmetry of E(r) implies symmetry relations
of the components of Beff :

[Beff(r(t, b), ṙ(t, b))]k = (−1)k[Beff(r(t,−b), ṙ(t,−b))]k,
(10)

where k = 1, 2, 3. The Picard-Lindelof20 solution of Eq.
(7) is

P (t, b) = P 0 +

∫ t

0

dt′
Beff(t

′, b)

−~
× P 0 + (11)

∫ t

0

dt′
∫ t′

0

dt′′
Beff(t

′, b)

−~
×

Beff(t
′′, b)

−~
× P 0 + . . . ,

where we used the notation Beff(t, b) ≡
Beff(r(t, b), ṙ(t, b)) for brevity. Using Eqs. (10)
and (11), and assuming an initial spin P 0 ⊥ (0, 1, 0), it
is straighforward to prove that

Pk(t, b) = −(−1)kPk(t,−b). (12)

Finally, substituting Eqs. (10) and (12) into Eq. (8) re-
sults in Eqs. (9). A similar analysis shows that if the spin
of the incident electron is aligned with the y axis then the
reflection symmetry between the trajectories correspond-
ing to b and −b is retained in the presence of SOC, and
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therefore this is the only case when skew scattering does
not take place. As a generalization of these results, we
formulate the central theorem of this semiclassical anal-
ysis as follows: if the initial polarization vector has a
finite projection on the plane spanned by the normal of
the 2DEG and the initial propagation direction, then the
DSCS becomes asymmetric with respect to forward scat-
tering direction. Note that this conclusion is equivalent
to the results of the rigorous quantum mechanical sym-
metry analysis presented above.
By repeating the preceding analysis for the case when

the impurity is located in the plane of the 2DEG (z0 =
0), and using the fact that in this case the out-of-plane
component of the electric field vanishes identically, it can
be shown that skew scattering may occur only if the out-
of-plane component of the initial polarization vector of
the electron is finite. This result is in agreement with
the quantum mechanical result summarized in the first
line of Table I.
So far we have discussed the symmetry properties of

the DSCS corresponding to individual scattering events.
Here we argue that in specially prepared disordered sam-
ples this peculiar scattering mechanism may give rise to
an experimentally observable effect similar to the skew
scattering induced AHE in spin-polarized systems. The
setup is shown in Fig. 2. The sample for the proposed ex-
periment should contain a symmetric quantum well with
an additional delta-doped impurity layer at a finite dis-
tance from the quantum well. For clarity in Fig. 2 we
show only a single impurity. We also assume that the
2DEG is fully or partially spin-polarized by a static ho-
mogeneous in-plane magnetic field B. If a finite dc cur-
rent parallel to the magnetic field is flowing through this
sample, then the skew scattering mechanism will result in
a finite Hall signal despite the fact that the magnetic field
has no out-of-plane component: skew scattering means
that the electrons drifting in the direction of the driving
electric field are preferably scattered by impurites to, say,
the left (right) if their spin is parallel (antiparallel) to the
magnetic field. Therefore in the polarized 2DEG more
electrons will pile up at the left edge of the sample than
at the other edge, giving rise to a finite transversal bias
between the two edges. Though quantitative estimates

regarding the magnitude of this effect are not presented
here, the fact that v1 is finite in the FBA while v3 van-
ishes suggests that the predicted effect should be at least
comparable with the anomalous Hall effect16 measured
in the presence of an out-of-plane polarization.

In summary, we have shown that the spin-dependent
electron-impurity scattering in a 2DEG has different
symmetry properties when the impurity is sitting in the
plane of the 2DEG (z0 = 0) and when it is located at a fi-
nite distance from that (z0 6= 0). In the former case skew
scattering can arise only if the spin of the incident elec-
tron P 0 has a finite out-of-plane component, whereas in
the latter case skew scattering happens if P 0 has a finite
projection on the plane spanned by the normal vector of
the 2DEG and the initial propagation direction. We also
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FIG. 2: (color online) Proposed measurement setup for ex-
perimental investigation of the Hall-like effect if an impurity
plane is present in the sample at a finite distance from the
2DEG plane. The short horizontal red (blue) arrows in the
figure represent spins parallel (antiparallel) to the polarizing
magnetic field B.

proposed a measurement setup which could be used to
experimentally investigate the Hall-like effect arising as
a consequence of the peculiar scattering mechanism stud-
ied in this paper and the presence of an in-plane magnetic
field.

J. Cs. acknowledges the support of the Hungarian Sci-
ence Foundation OTKA under the contracts No. T48782
and 75529.
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