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TOPOLOGICAL HAUSDORFF DIMENSION AND LEVEL SETS

OF GENERIC CONTINUOUS FUNCTIONS ON FRACTALS

RICHÁRD BALKA, ZOLTÁN BUCZOLICH, AND MÁRTON ELEKES

Abstract. In an earlier paper we introduced a new concept of dimension for
metric spaces, the so called topological Hausdorff dimension. For a compact
metric space K let dimH K and dimtH K denote its Hausdorff and topolog-
ical Hausdorff dimension, respectively. We proved that this new dimension
describes the Hausdorff dimension of the level sets of the generic continuous
function on K, namely sup{dimH f−1(y) : y ∈ R} = dimtH K − 1 for the
generic f ∈ C(K), provided that K is not totally disconnected, otherwise ev-
ery non-empty level set is a singleton. We also proved that if K is not totally
disconnected and sufficiently homogeneous then dimH f−1(y) = dimtH K − 1
for the generic f ∈ C(K) and the generic y ∈ f(K). The most important goal
of this paper is to make these theorems more precise.

As for the first result, we prove that the supremum is actually attained on
the left hand side of the first equation above, and also show that there may
only be a unique level set of maximal Hausdorff dimension.

As for the second result, we characterize those compact metric spaces
for which for the generic f ∈ C(K) and the generic y ∈ f(K) we have
dimH f−1(y) = dimtH K − 1. We also generalize a result of B. Kirchheim
by showing that if K is self-similar then for the generic f ∈ C(K) for every
y ∈ int f(K) we have dimH f−1(y) = dimtH K − 1.

Finally, we prove that the graph of the generic f ∈ C(K) has the same
Hausdorff and topological Hausdorff dimension as K.

1. Introduction

We recall first the definition of the (small inductive) topological dimension.

Definition 1.1. Set dimt ∅ = −1. The topological dimension of a non-empty metric
space X is defined by induction as

dimtX = inf{d : X has a basis U s. t. dimt ∂U ≤ d− 1 for every U ∈ U}.

For more information on this concept see [3] or [6].
We introduced the topological Hausdorff dimension for compact metric spaces

in [1]. It is defined analogously to the topological dimension. However, it is not
inductive, and it can attain non-integer values as well. The Hausdorff dimension of
a metric space X is denoted by dimH X , see e.g. [5] or [9]. In this paper we adopt
the convention that dimH ∅ = −1.
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Definition 1.2. Set dimtH ∅ = −1. The topological Hausdorff dimension of a
non-empty metric space X is defined as

dimtH X = inf{d : X has a basis U s. t. dimH ∂U ≤ d− 1 for every U ∈ U}.

Both notions of dimension can attain the value ∞ as well.

Let K be a compact metric space, and let C(K) denote the space of continuous
real-valued functions equipped with the supremum norm. Since this is a complete
metric space, we can use Baire category arguments. If dimtK = 0 then the generic
f ∈ C(K) is well-known to be one-to-one (see Lemma 2.6), so every non-empty
level set is a singleton.

Assume dimtK > 0. The following results from [1] show the connection between
the topological Hausdorff dimension and the level sets of the generic f ∈ C(K).

Theorem 1.3. If K is a compact metric space with dimtK > 0 then for the generic
f ∈ C(K)

(i) dimH f−1(y) ≤ dimtH K − 1 for every y ∈ R,
(ii) for every d < dimtH K there exists a non-degenerate interval If,d such that

dimH f−1(y) ≥ d− 1 for every y ∈ If,d.

Corollary 1.4. If K is a compact metric space with dimtK > 0 then for the
generic f ∈ C(K)

sup{dimH f−1(y) : y ∈ R} = dimtH K − 1.

If K is also sufficiently homogeneous, for example self-similar, then we can ac-
tually say more.

Theorem 1.5. If K is a self-similar compact metric space with dimtK > 0 then
for the generic f ∈ C(K) and the generic y ∈ f(K)

dimH f−1(y) = dimtH K − 1.

Theorems 1.3 and 1.5 are the starting points of this paper, our primary aim is
to make these theorems more precise.

In the Preliminaries section we introduce some notation and definitions, cite
some important properties of the topological Hausdorff dimension, and prove several
technical lemmas.

In Section 3 we prove a partial converse of Theorem 1.5. We show that for the
generic f ∈ C(K) for the generic y ∈ f(K) we have dimH f−1(y) = dimtH K − 1 iff
K is homogeneous for the topological Hausdorff dimension, that is for every non-
empty closed ball B(x, r) ⊆ K we have dimtH B(x, r) = dimtH K. If K is (weakly)
self-similar then much more is true: For the generic f ∈ C(K) for every y ∈ int f(K)
we have dimH f−1(y) = dimtH K − 1. This generalizes a result of B. Kirchheim.
He proved in [8] that for the generic f ∈ C

(
[0, 1]d

)
for every y ∈ int f

(
[0, 1]d

)
we

have dimH f−1(y) = d− 1.

In Section 4 we prove that the generic f ∈ C(K) has at least one level set of
maximal Hausdorff dimension. Hence the supremum is attained in Corollary 1.4.
We construct an attractor of an iterated function system K ⊆ R

2 such that the
generic f ∈ C(K) has a unique level set of Hausdorff dimension dimtH K − 1. This
shows that the above theorem is sharp.
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Finally, in Section 5 we prove that the graph of the generic f ∈ C(K) has the
same Hausdorff and topological Hausdorff dimension asK. This generalizes a result
of R. D. Mauldin and S. C. Williams which states that the graph of the generic
f ∈ C ([0, 1]) is of Hausdorff dimension one, see [11].

2. Preliminaries

2.1. Notation and definitions. Let (X, d) be a metric space, and let A,B ⊆ X
be arbitrary sets. We denote by intA and ∂A the interior and boundary of A.
The diameter of A is denoted by diamA. We use the convention diam ∅ = 0. The
distance of the sets A and B is defined by dist(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.
Let B(x, r) = {y ∈ X : d(x, y) ≤ r} and U(x, r) = {y ∈ X : d(x, y) < r}. More
generally, we define B(A, r) = {x ∈ X : dist(x,A) ≤ r} and U(A, r) = {x ∈ X :
dist(x,A) < r}.

For two metric spaces (X, dX) and (Y, dY ) a function f : X → Y is Lipschitz if
there exists a constant C ∈ R such that dY (f(x1), f(x2)) ≤ C · dX(x1, x2) for all
x1, x2 ∈ X . The smallest such constant C is called the Lipschitz constant of f and
denoted by Lip(f). If Lip(f) < 1 then f is a contraction. A function f : X → Y is
called bi-Lipschitz if f is a bijection and both f and f−1 are Lipschitz.

If s ≥ 0 and δ > 0, then

Hs
δ(X) = inf

{
∞∑

i=1

(diamUi)
s : X ⊆

∞⋃

i=1

Ui, ∀i diamUi ≤ δ

}
,

Hs(X) = lim
δ→0+

Hs
δ(X).

The Hausdorff dimension of X is defined as

dimH X = inf {s ≥ 0 : Hs(X) = 0} ,

we adopt the convention that dimH ∅ = −1 throughout the paper. For more infor-
mation on these concepts see [5] or [9].

We define on X × Y the following metric. For all (x1, y1), (x2, y2) ∈ X × Y set

dX×Y ((x1, y1), (x2, y2)) =
√
d2X(x1, x2) + d2Y (y1, y2).

The metric space X is totally disconnected if every connected component is a
singleton.

Let X be a complete metric space. A set is somewhere dense if it is dense in a
non-empty open set, and otherwise it is called nowhere dense. We say that M ⊆ X
is meager if it is a countable union of nowhere dense sets, and a set is of second
category if it is not meager. A set is called co-meager if its complement is meager.
By Baire’s Category Theorem co-meager sets are dense. It is not difficult to show
that a set is co-meager iff it contains a dense Gδ set. We say that the generic
element x ∈ X has property P if {x ∈ X : x has property P} is co-meager. The
term ‘typical ’ is also used instead of ‘generic’. Our main example will be X = C(K)
endowed with the supremum metric (for some compact metric space K).

Let X , Y be Polish spaces. We call the set A ⊆ X analytic, if it is a continuous
image of a Polish space. We call it co-analytic if its complement is analytic. The
set A has the Baire property if A = U∆M where U is open and M is meager.
Both analytic and co-analytic sets have the Baire property. If a set is of second
category in every non-empty open set and has the Baire property then it is co-
meager. If E ⊆ X × Y , x ∈ X and y ∈ Y then let Ex = {y ∈ Y : (x, y) ∈ E}
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and Ey = {x ∈ X : (x, y) ∈ E}. Let prX : X × Y → X , prX(x, y) = x be the
projection of X × Y onto X . If E ⊆ X × Y is Borel, then prX(E) is analytic. For
more information see [7].

If K is a non-empty compact metric space then we say that K is an attractor
of an iterated function system (IFS) if there exist contractions Ψi : K → K, i ∈
{1, . . . ,m} such that K =

⋃m
i=1 Ψi(K). If the Ψi’s are also similarities then K is

self-similar.
For every α ∈ (0, 1) we construct the middle-α Cantor set Cα in the following

way. In the first step we remove the middle-α open interval ((1 − α)/2, (1 + α)/2)
from [0, 1]. After the (n − 1)st step we have 2n−1 disjoint, closed (n − 1)st level
intervals. In the nth step we remove the middle-α open intervals from each of them.
We continue this procedure for all n ∈ N

+, and the limit set is the middle-α Cantor
set. It is well-known that dimH Cα = log 2/ log(2/(1− α)).

Let us define the Smith-Volterra-Cantor set S in the following way. In the first
step we remove the open interval of length 1/4 from the middle of [0, 1]. After the
(n − 1)st step we have 2n−1 disjoint, closed (n − 1)st level intervals. In the nth
step we remove the middle open intervals of length 1/22n from each of them. We
continue this procedure for all n ∈ N

+, and the limit set is the Smith-Volterra-
Cantor set. Elementary computation shows that S has positive Lebesgue measure
(more precisely its measure is 1/2).

The nth level elementary pieces of Cα are the intersections of Cα with the nth
level intervals of Cα. This definition is also analogous for S.

We adopt the convention that intervals are non-degenerate.

2.2. Properties of the topological Hausdorff dimension. The next theorems
are from [1].

Fact 2.1. For every metric space X

dimtH X = 0 ⇐⇒ dimtX = 0.

Theorem 2.2. For every metric space X

dimtX ≤ dimtH X ≤ dimH X.

Theorem 2.3. The topological Hausdorff dimension satisfies the following proper-
ties.

(i) Extension of the classical dimension. The topological Hausdorff dimen-
sion of a countable set equals zero, and for open subspaces of R

d and for
smooth d-dimensional manifolds the topological Hausdorff dimension equals
d.

(ii) Monotonicity. If X ⊆ Y are metric spaces then dimtH X ≤ dimtH Y .
(iii) Lipschitz-invariance. Let X,Y be metric spaces. If f : X → Y is a Lip-

schitz homeomorphism then dimtH Y ≤ dimtH X. If f is bi-Lipschitz then
dimtH X = dimtH Y .

(iv) Countable stability for closed sets. Let X be a separable metric space and
X =

⋃
n∈N

Xn, where Xn, n ∈ N are closed subsets of X. Then dimtH X =
supn∈N dimtH Xn.

Theorem 2.4. If X is a non-empty separable metric space then

dimtH (X × [0, 1]) = dimH X + 1.
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For compact metric spaces the infimum is attained in the definition of the topo-
logical Hausdorff dimension.

Theorem 2.5. If K is a non-empty compact metric space then

dimtH K = min{d : K has a basis U s. t. dimH ∂U ≤ d− 1 for every U ∈ U}.

2.3. Technical lemmas. The following lemma is folklore, but we could not find a
reference, so we outline a short proof.

Lemma 2.6. Let K be a compact metric space with dimtK = 0. Then the generic
f ∈ C(K) is one-to-one.

Proof. Let U be a countable basis ofK consisting of clopen sets. For every U, V ∈ U ,
U ∩ V = ∅ consider

FU,V = {f ∈ C(K) : f(U) ∩ f(V ) = ∅}.

By compactness of U and V , the sets FU,V are open. They are also dense, in fact
this is witnessed by functions of finite range. Thus the countable intersection

F =
⋂

U,V ∈U , U∩V =∅

FU,V

is co-meager in C(K), and clearly every f ∈ F is one-to-one. �

The next lemma and its consequence will be very useful throughout the paper.

Lemma 2.7. Let X,Y be complete metric spaces and let R : X → Y be a continu-
ous, open and surjective mapping.

(i) If A ⊆ X is of second category/co-meager then R(A) ⊆ Y is of second
category/co-meager.

(ii) If B ⊆ Y is of second category/co-meager then R−1(B) ⊆ X is of second
category/co-meager.

Proof. (i) First we show that if B ⊆ Y is meager then R−1(B) ⊆ X is also meager.
Clearly it is enough to prove that if B ⊆ Y is closed and nowhere dense then
R−1(B) ⊆ X is nowhere dense. Since R is continuous R−1(B) is closed. We show
that R−1(B) is nowhere dense. Assume to the contrary that there is a non-empty
open set U ⊆ R−1(B). Since the map R is open the set R(U) is non-empty and
open. Then R(U) ⊆ B implies that B is of second category, a contradiction.

Let A ⊆ X be of second category. Assume to the contrary that R(A) ⊆ Y is
meager. Then by the previous argumentR−1(R(A)) is meager and A ⊆ R−1(R(A)),
a contradiction.

Suppose that A ⊆ X is co-meager. We want to prove that R(A) ⊆ Y is also
co-meager. We may assume that A is a dense Gδ set. Assume to the contrary that
R(A) is not co-meager. As a continuous image of a Borel set R(A) is analytic, and
hence has the Baire property. Thus there exists a non-empty open set U ⊆ Y such
that R(A)∩U is meager. Since R is continuous and surjective R−1(U) is open and

non-empty. The map R̂ = R|R−1(U) : R
−1(U) → U is clearly continuous, open and

surjective. Since R(A)∩U is meager R̂−1(R(A)∩U) is meager in R−1(U). The set

A ∩R−1(U) is co-meager in R−1(U), and clearly A ∩R−1(U) ⊆ R̂−1(R(A) ∩U), a
contradiction.
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(ii) Let B ⊆ Y be of second category. Assume to the contrary that R−1(B)
is meager. Then R−1(B)c is co-meager and its R image R(R−1(B)c) ⊆ Bc is not
co-meager. This contradicts part (i) of the lemma.

Let B ⊆ Y be co-meager. Then Bc is meager, and hence R−1(Bc) is meager.
This implies that R−1(B) = X \R−1(Bc) is co-meager. �

We need the following special case.

Corollary 2.8. Let K1 ⊆ K2 be compact metric spaces and

R : C(K2) → C(K1), R(f) = f |K1
.

(i) If F2 ⊆ C(K2) is of second category/co-meager then R(F2) ⊆ C(K1) is of
second category/co-meager.

(ii) If F1 ⊆ C(K1) is of second category/co-meager then R−1(F1) ⊆ C(K2) is of
second category/co-meager.

Proof. Clearly C(K2) and C(K1) are complete metric spaces, R is continuous, and
Tietze’s Extension Theorem implies that R is surjective and open. Thus Lemma
2.7 completes the proof. �

We need the following theorem, see [10, 6.1. Thm.] for the proof.

Theorem 2.9. Let X,Y be Polish spaces, and let E ⊆ X × Y be a Borel set.
If Ex is σ-compact for all x ∈ X then the function h : X → [−1,∞] defined by
h(x) = dimH Ex is Borel measurable.

Remark 2.10. One has to be a little careful with applying this theorem in our
situation, since, unlike [10], we adopt the convention that dimH ∅ = −1. This
means that the level sets of h may need to be modified by the set {x ∈ X : Ex =
∅} = (prX(E))c. Therefore, besides referring to the proof in [10], we also have to
verify that prX(E) is Borel. But as E is Borel and Ex is σ-compact for all x ∈ X ,
this follows from [7, 18.18. Thm.].

Lemma 2.11. Let K be a compact metric space and d ∈ R. Then the set

∆ =
{
(f, y) ∈ C(K)× R : dimH f−1(y) < d

}

is Borel.

Proof. We check that the conditions of Theorem 2.9 hold for X = C(K) × R,
Y = K and E = {(f, y, z) ∈ C(K) × R × K : f(z) = y} ⊆ X × Y . Clearly
X,Y are Polish spaces and E is closed, thus Borel. For every (f, y) ∈ X the set
E(f,y) = {z ∈ K : f(z) = y} = f−1(y) is compact. Therefore Theorem 2.9 implies

that h : X → [0,∞], h((f, y)) = dimH E(f,y) = dimH f−1(y) is Borel measurable.

Thus h−1 ((−∞, d)) =
{
(f, y) ∈ C(K)× R : dimH f−1(y) < d

}
= ∆ is Borel. �

Lemma 2.12. Suppose (K, d) is a compact metric space such that for all x ∈ K
and r > 0 we have dimtB(x, r) > 0. Let C be the set of connected components of
K. Then for the generic f ∈ C(K)

⋃

C∈C

int f(C) = int f(K).

Remark 2.13. If K0 is the triadic Cantor set then K = K0×[0, 1] has uncountably
many connected components but it is a ‘homogeneous’ self-similar set. Lemma 2.12
actually holds for arbitrary compact metric spaces, but we will not need this fact.
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Proof of Lemma 2.12. Consider

F =

{
f ∈ C(K) :

⋃

C∈C

int f(C) = int f(K)

}
,

and for all n ∈ N
+ let

Fn = {f ∈ C(K) : ∀y ∈ f(K) \B (∂f(K), 1/n) , ∃C ∈ C s. t. y ∈ int f(C)} .

We must prove that F is co-meager in C(K). Since F =
⋂

n∈N+ Fn, it is enough to

show that the Fn’s are co-meager in C(K). Let us fix n ∈ N
+ and let f0 ∈ C(K)

and ε > 0 be arbitrary. It is sufficient to show that there is a non-empty ball
B(g0, r0) ⊆ Fn ∩B(f0, 4ε).

Since f0 is uniformly continuous on K there is a δ1 > 0 such that if x, z ∈ K
and d(x, z) ≤ δ1 then |f0(x) − f0(z)| ≤ ε. By the compactness of K there is a

finite set {x1, ..., xk} such that
⋃k

i=1B(xi, δ1) = K. Choose 0 < δ2 < δ1 such that
the balls B(xi, δ2) are disjoint. The conditions of the lemma imply that for every
i ∈ {1, . . . , k} we have dimtB(xi, δ2/2) > 0. Thus there exist non-trivial connected
components Ci of B(xi, δ2/2) for all i ∈ {1, . . . , k}, see [4, 6.2.9. Thm.]. For all
i ∈ {1, . . . , k} let us choose ui, vi ∈ Ci, ui 6= vi and select εi ∈ [ε, 2ε] such that the
set

E = {f0(xi) + εi : i = 1, . . . , k} ∪ {f0(xi)− εi : i = 1, . . . , k}

has 2k many elements. Let θ = min{d(x, y) : x, y ∈ E, x 6= y} > 0. Clearly
for all x ∈ B(xi, δ1), i ∈ {1, . . . , k} we have f0(x) ∈ [f0(xi) − ε, f0(xi) + ε] ⊆
[f0(xi) − εi, f0(xi) + εi]. Hence Tietze’s Extension Theorem implies that there

exists a g0 ∈ C(K) such that g0(x) = f0(x) if x ∈ K \
⋃k

i=1 U(xi, δ2) and for all
i ∈ {1, . . . , k} we have g0(ui) = f0(xi)− εi, g0(vi) = f0(xi) + εi and

(2.1) g0(x) ∈ [f0(xi)− εi, f0(xi) + εi] , x ∈ B(xi, δ1).

Therefore, using that the oscillations of f0 on the B(xi, δ1)’s are at most ε and
εi ≤ 2ε for all i ∈ {1, . . . , k}, we have g0 ∈ B(f0, 3ε). Set r0 = min {ε, θ/6, 1/(3n)}.
Since B(g0, r0) ⊆ B(g0, ε) ⊆ B(f0, 4ε), it is enough to prove that B(g0, r0) ⊆ Fn.
Let f ∈ B(g0, r0) and y0 ∈ f(K) \ B(∂f(K), 1/n), that is, B(y0, 1/n) ⊆ int f(K).
It is enough to verify that there is an i ∈ {1, . . . , k} such that y0 ∈ int f(Ci).
(Note that every Ci is contained in a member of C.) Let us choose z0 ∈ K with
f(z0) = y0 and fix i ∈ {1, . . . , k} such that z0 ∈ B(xi, δ1). Then equation (2.1) and
f ∈ B(g0, r0) imply that y0 ∈ [f0(xi)− εi − r0, f0(xi) + εi + r0].

First assume that y0 ∈ (f0(xi)− εi + r0, f0(xi) + εi − r0) = (g0(ui) + r0, g0(vi)−
r0). Then f ∈ B(g0, r0) and the connectedness of Ci imply y0 ∈ (f(ui), f(vi)) ⊆
int f(Ci).

Finally, suppose that y0 ∈ [f0(xi)− εi − r0, f0(xi)− εi + r0] or

(2.2) y0 ∈ [f0(xi) + εi − r0, f0(xi) + εi + r0].

We may assume by symmetry that (2.2) holds. Since y0 + 3r0 ∈ B(y0, 1/n) ⊆
int f(K), there exists z1 ∈ K such that f(z1) = y0 + 3r0 and j ∈ {1, . . . , k} such
that z1 ∈ B(xj , δ1). From f ∈ B(g0, r0) and (2.1) it follows that

(2.3) y0 + 3r0 ∈ [f0(xj)− εj − r0, f0(xj) + εj + r0] .

Equation (2.2) implies y0 + 3r0 > f0(xi) + εi + r0, thus we have j 6= i. Equation
(2.2) also implies |y0 − (f0(xi) + εi)| ≤ r0. Therefore the triangle inequality and
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the definition of θ yield

|y0 − (f0(xj)− εj)| ≥ |(f0(xj)− εj)− (f0(xi) + εi)| − |y0 − (f0(xi) + εi)|

≥ θ − r0 > 4r0.(2.4)

Then (2.3) implies y0 < f0(xj) + εj − r0 and y0 ≥ f0(xj) − εj − 4r0, thus (2.4)
yields y0 ∈ (f0(xj)− εj + r0, f0(xj) + εj − r0) = (g0(uj) + r0, g0(vj)− r0) . Hence
f ∈ B(g0, r0) and the connectedness of Cj imply y0 ∈ (f(uj), f(vj)) ⊆ int f(Cj).
This completes the proof. �

Lemma 2.14. Let K be a compact metric space with a fixed x0 ∈ K. Let Kn ⊆ K,
n ∈ N be compact sets such that

(i) dimtKn > 0 for all n ∈ N and
(ii) diam (Kn ∪ {x0}) → 0 if n→ ∞.

Then for the generic f ∈ C(K) we have f(x0) ∈ f(Kn) for infinitely many
n ∈ N.

Proof. Clearly it is enough to show that the sets

FN = {f ∈ C(K) : f(x0) /∈ f(Kn) for all n ≥ N}

are nowhere dense in C(K) for all N ∈ N. Let f0 ∈ C(K) and ε > 0 be arbitrary,
it is enough to find a ball in B(f0, 2ε) \FN . The compact Kn’s have positive topo-
logical dimension, therefore they are not totally disconnected, see [4, 6.2.9. Thm.].
Let us choose a non-trivial connected component Cn ⊆ Kn for every n ∈ N. We can
choose by (ii) an n0 ∈ N such that n0 ≥ N and diam f0 (Cn0

∪ {x0}) < ε. Tietze’s
Extension Theorem implies that there is an f ∈ B(f0, ε) such that diam f(Cn0

) > 0
and f(x0) is the midpoint of f(Cn0

). If δ = min
{
ε, 14 diam f(Cn0

)
}
then for all

g ∈ B(f, δ) we have g(x0) ∈ g(Cn0
) ⊆ g(Kn0

), so g /∈ FN . Thus B(f, δ) ⊆
B(f0, 2ε) \ FN . �

The following lemma is probably known, but we could not find an explicit refer-
ence, so we outline its proof.

Lemma 2.15. The Smith-Volterra-Cantor set S is an attractor of an IFS.

Proof. In the nth step of the construction we remove 2n−1 many disjoint open
intervals of length an = 1/22n, the remaining 2n disjoint, closed nth level intervals
are of length bn = 1

2n

(
1−

∑n
i=1 2

i−1ai
)
= 1/2n+1 + 1/22n+1. Let π : S → {0, 1}N

be the natural homeomorphism, that is, for x ∈ S and n ∈ N we define π(x)(n), as
follows. There is a unique nth level interval In and a unique (n+1)st level interval
In+1 such that x ∈ In and x ∈ In+1. Then In+1 is either the left or the right hand
side interval of In. If it is the left hand side interval then π(x)(n) = 0, otherwise
π(x)(n) = 1. Let

ϕ1 : S → S ∩ [0, 1/2] , ϕ1(x) = π−1 (0̂ π(x)) ,

ϕ2 : S → S ∩ [1/2, 1] , ϕ2(x) = π−1 (1̂ π(x))(2.5)

be the natural homeomorphisms onto the left and the right half of S (whereˆstands
for concatenation). Clearly, S = ϕ1(S) ∪ ϕ2(S), so it is sufficient to prove that ϕ1

and ϕ2 are contractions. By symmetry it is enough to show that ϕ1 is a Lipschitz
map with Lip(ϕ1) ≤ 1/2, that is, for all x, z ∈ S

(2.6) |ϕ1(x) − ϕ1(z)| ≤
|x− z|

2
.



9

The endpoints of the intervals at the construction are dense in S. Thus we may
assume for the proof of (2.6) that x, z are both endpoints of some nth level intervals
and x < z. Let us assume that in the interval [x, z] there are βn = βn,x,z many
intervals of length bn and there are αi = αi,x,z many open intervals of length ai, i ∈
{1, . . . , n}. In the interval [ϕ1(x), ϕ1(z)] there are βn many closed intervals of length
bn+1 and there are αi many open intervals of length ai+1, i ∈ {1, . . . , n}. These
intervals are disjoint, and their union is [x, z] and [ϕ1(x), ϕ1(z)] (apart from the
endpoints x, z and ϕ1(x), ϕ1(z)), respectively. We obtain |x−z| = βnbn+

∑n
i=1 αiai

and |ϕ1(x)−ϕ1(z)| = βnbn+1 +
∑n

i=1 αiai+1. Hence for (2.6) it is enough to prove
that bn+1 ≤ bn/2 and ai+1 ≤ ai/2 for all i ∈ {1, . . . , n}, but it is clear from the
definitions of the bn’s and the an’s. �

3. Level sets on fractals

Let K be a compact metric space. If dimtK = 0 then the generic continuous
function is one-to-one on K by Lemma 2.6, hence every non-empty level set is a
single point.

Thus in the sequel we assume that dimtK > 0.

Definition 3.1. If K is a compact metric space then let

suppK = {x ∈ K : ∀r > 0, dimtH B(x, r) = dimtH K} .

We say that K is homogeneous for the topological Hausdorff dimension if suppK =
K.

Remark 3.2. The stability of the topological Hausdorff dimension for closed sets
clearly yields suppK 6= ∅. If K is self-similar then it is also homogeneous for the
topological Hausdorff dimension.

We proved in [1] that if K is homogeneous for the topological Hausdorff di-
mension then for the generic f ∈ C(K) for the generic y ∈ f(K) we have
dimH f−1(y) = dimtH K − 1. Now we prove the opposite direction.

Theorem 3.3. Let K be a compact metric space with dimtK > 0. The following
statements are equivalent.

(i) For the generic f ∈ C(K) for the generic y ∈ f(K) we have dimH f−1(y) =
dimtH K − 1.

(ii) K is homogeneous for the topological Hausdorff dimension.

Proof. (ii) ⇒ (i): See [1, Thm. 6.22.].
(i) ⇒ (ii): Assume to the contrary that K \ suppK 6= ∅. Then there exist

f0 ∈ C(K) and ε0 > 0 such that for all f ∈ B(f0, ε0) we have f(K)\f (suppK) 6= ∅.
Let us choose for all f ∈ B(f0, ε0) an interval If such that If ∩ f (suppK) = ∅ and
If ∩ f(K \ suppK) 6= ∅. Let us define for all n ∈ N

+

Kn = {x ∈ K : dist(x, suppK) ≥ 1/n}.

Then the Kn’s are compact and
⋃

n∈N+ Kn = K \suppK. The definition of suppK
and the compactness of Kn imply that Kn can be covered with finitely many closed
balls of topological Hausdorff dimension less than dimtH K. Then the stability of
the topological Hausdorff dimension for closed sets implies

(3.1) dimtH Kn < dimtH K (n ∈ N
+).
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For all n ∈ N
+ let

Fn =
{
f ∈ C(Kn) : dimH f−1(y) ≤ dimtH Kn − 1 for all y ∈ R

}
.

Define Rn : K → Kn, Rn(f) = f |Kn
and let F =

⋂
n∈N+ R−1

n (Fn). Theorem 1.3
yields that the Fn’s are co-meager in C(Kn), and it follows from Corollary 2.8 that
the R−1

n (Fn)’s are co-meager in C(K). As F is the intersection of countable many
co-meager sets, it is also co-meager in C(K). If f ∈ B(f0, ε) and y ∈ If ∩f(K) then
the definition of If and the compactness of f−1(y) imply that there is an nf,y ∈ N

+

such that f−1(y) ⊆ Knf,y
. If f ∈ F then for all y ∈ If ∩ f(K) the definition of

nf,y, the definition of F and (3.1) imply

dimH f−1(y) = dimH

(
f−1(y) ∩Knf,y

)
≤ dimtH Knf,y

− 1

< dimtH K − 1.

This contradicts (i), and the proof is complete. �

B. Kirchheim showed in [8] that for the generic f ∈ C
(
[0, 1]d

)
for every y ∈

int f
(
[0, 1]d

)
we have dimH f−1(y) = d − 1. We generalize this result for weakly

self-similar compact metric spaces.

Definition 3.4. Let K be a compact metric space. We say that K is weakly self-
similar if for all x ∈ K and r > 0 there exist a compact set Kx,r ⊆ B(x, r) and a
bi-Lipschitz map φx,r : Kx,r → K.

Remark 3.5. If K is self-similar then it is also weakly self-similar. If K is weakly
self-similar then it is also homogeneous for the topological Hausdorff dimension.

Theorem 3.6. Let K be a weakly self-similar compact metric space. Then for the
generic f ∈ C(K) for any y ∈ int f(K)

dimH f−1(y) = dimtH K − 1.

Proof. If dimtK = 0 then the generic f ∈ C(K) is one-to-one, and f(K) is nowhere
dense. Thus int f(K) = ∅, and the statement is obvious.

Next we assume dimtK > 0. Theorem 1.3 implies that for the generic f ∈ C(K)
for all y ∈ R we have dimH f−1(y) ≤ dimtH K − 1, thus we only need to verify the
opposite inequality.

Fact 2.1 implies dimtH K > 0. It follows from the weak self-similarity of K that
for all x ∈ K and r > 0 we have dimtH B(x, r) = dimtH K > 0. Then applying
Fact 2.1 again we obtain that dimtB(x, r) > 0. If C denotes the set of connected
components of K then Lemma 2.12 yields that for the generic f ∈ C(K) we have⋃

C∈C int f(C) = int f(K).
Thus it is enough to prove that for the generic f ∈ C(K) for every y ∈⋃

C∈C int f(C) we have dimH f−1(y) ≥ dimtH K − 1.
Let us choose a sequence 0 < dn ր dimtH K and let us fix n ∈ N

+. Theorem 1.3
implies that for the generic f ∈ C(K) there exists an interval If,dn

such that for
all y ∈ If,dn

we have dimH f−1(y) ≥ dn − 1. By Baire’s Category Theorem there
are m2 < m1 < M1 < M2 such that

Hn = {f ∈ C(K) : f(K) ⊆ [m2,M2], ∀y ∈ [m1,M1], dimH f−1(y) ≥ dn − 1}
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is of second category. Note that dn > 0 implies that for every f ∈ Hn we have
[m1,M1] ⊆ f(K). Let us also define the following set.

Gn =

{
f ∈ C(K) : ∀y ∈

⋃

C∈C

(f(C) \B(∂f(C), 1/n)) , dimH f−1(y) ≥ dn − 1

}
.

It is sufficient to verify that Gn is co-meager, since by taking the intersection of
the sets Gn for all n ∈ N

+ we obtain the desired co-meager set in C(K). In order
to prove this we show that Gn contains ‘certain copies’ of Hn. First we need the
following lemma.

Lemma 3.7. Hn and Gn have the Baire property.

Proof of Lemma 3.7. Lemma 2.11 implies that Γn = {(f, y) ∈ C(K) × R :
dimH f−1(y) < dn−1} is Borel. Then Hn = {f ∈ C(K) : f(K) ⊆ [m2,M2]}∩{f ∈
C(K) : ∀y ∈ [m1,M1], dimH f−1(y) ≥ dn − 1}. The first term of the intersection
is clearly closed. It is sufficient to prove that the second one has the Baire prop-

erty. It equals
(
prC(K)

(
(C(K)× [m1,M1]) ∩ Γn

))c
, which is the complement of

the projection of a Borel set. Hence it is co-analytic, and therefore has the Baire
property.

The set

∆n =

{
(f, y) ∈ C(K)× R : y ∈

⋃

C∈C

(
f(C) \B(∂f(C), 1/n)

)}

is clearly open. Then Gn =
(
prC(K) (Γn ∩∆n)

)c
, which is the complement of

the projection of a Borel set. Thus it is co-analytic, and therefore has the Baire
property. �

Now we return to the proof of Theorem 3.6. Consider Gn (note that we already
fixed n), our aim is to show that Gn is co-meager. Since Gn has the Baire property,
it is enough to prove that Gn is of second category in every non-empty open subset
of C(K). Let f0 ∈ C(K) and 0 < ε < 1/n be fixed. We want to show that
Gn ∩B(f0, ε) is of second category.

The continuity of f0 and the compactness of K imply that there are finitely
many distinct x1, ..., xk ∈ K and positive r1, ..., rk such that

(3.2) K =

k⋃

i=1

B(xi, ri)

and for each i ∈ {1, . . . , k} the oscillation of f0 on B(xi, ri) is less than

(3.3) ω =
ε(M1 −m1)

2(M2 −m2)
<
ε

2
.

Choose positive r′1, ..., r
′
k such that the balls B(xi, r

′
i) ⊆ B(xi, ri) are disjoint.

Using the weak self-similarity property we can choose for every i ∈ {1, . . . , k} a set
Ki ⊆ B(xi, r

′
i) and a bi-Lipschitz map φi : Ki → K. Let us fix i ∈ {1, . . . , k}. We

define the affine function ψi : R → R such that

(3.4) ψi ([m1,M1]) = [f0(xi)− ω, f0(xi) + ω].

Suppose f ∈ Hn and consider f̂i ∈ C(Ki) defined by

f̂i = ψi ◦ f ◦ φi.
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The form of ψi, (3.4) and (3.3) imply

diam f̂i(Ki) = diamψi(f(K)) ≤ diamψi ([m2,M2])

=
M2 −m2

M1 −m1
diamψi ([m1,M1])

=
M2 −m2

M1 −m1
2ω = ε.

Then f0(Ki) ⊆ [f0(xi)− ω, f0(xi) + ω] ⊆ f̂i(Ki) and the above inequality yield for
all x ∈ Ki

(3.5)
∣∣∣f0(x)− f̂i(x)

∣∣∣ ≤ ε.

Set

F̂i = {ψi ◦ f ◦ φi : f ∈ Hn}.

It follows from (3.5) that F̂i ⊆ B (f0|Ki
, ε). The maps φi : Ki → K and ψi : R → R

are homeomorphisms, hence the map Gi : C(K) → C(Ki), Gi(f) = ψi ◦ f ◦ φi is
also a homeomorphism. Since Hn is of second category in C(K), we obtain that

F̂i = Gi(Hn) is of second category in C(Ki). Set

Fi =
{
f ∈ B(f0, ε) : f |Ki

∈ F̂i

}
.

The map R̂i : B(f0, ε) → B (f0|Ki
, ε), R̂i(f) = f |Ki

is clearly continuous, and by
Tietze’s Extension Theorem it is also surjective and open. Thus Lemma 2.7 (ii)

implies that Fi = R̂−1
i

(
F̂i

)
is of second category in B(f0, ε). Set

F =
k⋂

i=1

Fi.

Clearly F ⊆ B(f0, ε).

Lemma 3.8. F is of second category in B(f0, ε).

Proof of Lemma 3.8. Let

R : B(f0, ε) → B
(
f0|⋃k

i=1
Ki
, ε
)
, R(f) = f |⋃k

i=1
Ki

and for all i ∈ {1, . . . , k}

Ri : B
(
f0|⋃k

i=1
Ki
, ε
)
→ B (f0|Ki

, ε) , Ri(f) = f |Ki
.

Clearly the map R is continuous, open and surjective. Since F =

R−1
(⋂k

i=1 R
−1
i

(
F̂i

))
, it follows from Lemma 2.7 (ii) that it is enough to prove

that
⋂k

i=1 R
−1
i

(
F̂i

)
is of second category in B

(
f0|⋃k

i=1
Ki
, ε
)
. Lemma 3.7 implies

that Hn and hence F̂i has the Baire property for every i ∈ {1, . . . , k}. Thus there

is a non-empty open set Ui ⊆ C(Ki) such that F̂i is co-meager in Ui. The sets Ki,

i ∈ {1, . . . , k} are disjoint. Hence
⋂k

i=1 R
−1
i (Ui) ⊆ B

(
f0|⋃k

i=1
Ki
, ε
)
is a non-empty

open set, and
⋂k

i=1 R
−1
i

(
F̂i

)
is co-meager in

⋂k
i=1 R

−1
i (Ui). Therefore, it is of

second category in B
(
f0|⋃k

i=1
Ki
, ε
)
. �
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Now we return to the proof of Theorem 3.6. We prove that F ⊆ Gn and then
Lemma 3.8 will imply that Gn is of second category in B(f0, ε). Assume that
g ∈ F . Let y0 ∈

⋃
C∈C (g(C) \B(∂g(C), 1/n)) be arbitrary. Then there is a C0 ∈ C

such that B(y0, 1/n) ⊆ int g(C0). The connectedness of C0 and g ∈ B(f0, ε) yield
y0 ∈ f0(C0) ⊆ f0(K). Hence the definition of ω and (3.2) imply that there is an
i ∈ {1, . . . , k} such that y0 ∈ [f0(xi) − ω, f0(xi) + ω]. The definition of F yields

that there exists an f ∈ Hn such that g|Ki
= ψi ◦ f ◦ φi = f̂i. Then (3.4) implies

ψ−1
i (y0) ∈ [m1,M1], and f ∈ Hn implies dimH f−1

(
ψ−1
i (y0)

)
≥ dn − 1. By the

bi-Lipschitz property of φi we infer

dimH g−1(y0) ≥ dimH f̂−1
i (y0) = dimH φ−1

i

(
f−1

(
ψ−1
i (y0)

))

= dimH f−1
(
ψ−1
i (y0)

)
≥ dn − 1.

Therefore g ∈ Gn, and hence F ⊆ Gn. This completes the proof of Theorem 3.6. �

It is natural to ask what we can say about the level sets of every f ∈ C(K).
Clearly we cannot hope that for every y ∈ int f(K) the level set f−1(y) is of
small Hausdorff dimension, since f can be constant on a large set. The opposite
direction is less trivial, it is easy to prove that for every f ∈ C

(
[0, 1]2

)
for every

y ∈ int f
(
[0, 1]2

)
we have dimH f−1(y) ≥ 1 = dimtH [0, 1]2 − 1. This is not true

in general even for connected self-similar metric spaces. We have the following
counterexample.

Example 3.9. Let K = C × [0, 1], where C is the von Koch curve. Clearly, K is a
connected self-similar metric space. Let h : C → [0, 1] be a homeomorphism and let
f : K → [0, 1], f(x, y) = h(x). Theorem 2.4 implies that dimtH K = dimH C + 1 =
log 4
log 3 + 1. For all y ∈ [0, 1] we have dimH f−1(y) = 1 < log 4

log 3 = dimtH K − 1.

4. Level sets of maximal dimension

Let K be a compact metric space. If dimtK = 0 then the generic f ∈ C(K) is
one-to-one by Lemma 2.6, thus every non-empty level set is a single point.

Assume dimtK > 0. Corollary 1.4 states that for the generic f ∈ C(K) we
have supy∈R dimH f−1(y) = dimtH K−1. First we prove that in this statement the
supremum is attained.

Theorem 4.1. Let K be a compact metric space with dimtK > 0. Then for the
generic f ∈ C(K)

max
y∈R

dimH f−1(y) = dimtH K − 1.

Proof. By Theorem 1.3 it is sufficient to prove that for the generic f ∈ C(K) there
exists a level set of Hausdorff dimension at least dimtH K − 1. Let us fix x0 ∈
suppK. We will show that for the generic f ∈ C(K) we have dimH f−1(f(x0)) ≥
dimtH K − 1. The following lemma is the heart of the proof.

Lemma 4.2. Let K1 ⊆ K be compact metric spaces with x0 ∈ K \K1. Let d ∈ R

be such that dimtH B(x, r) > d for all x ∈ K1 and r > 0. Then for the generic
f ∈ C(K) either dimH f−1(f(x0)) ≥ d− 1 or f(x0) /∈ f(K1).

Proof of Lemma 4.2. If d ≤ 0 then the statement is vacuous, so we may assume
d > 0. We must prove that the set

F =
{
f ∈ C(K) : dimH f−1(f(x0)) ≥ d− 1 or f(x0) /∈ f(K1)

}
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is co-meager in C(K). Let K2 = B(K1, ε0) with such a small ε0 > 0 that x0 /∈ K2.
Consider

Γ =
{
(f, y) ∈ C(K2)× R : dimH f−1(y) ≥ d− 1 or y /∈ f(K1)

}
.

First assume that Γ is co-meager in C(K2) × R. Then we prove that F ⊆ C(K)
is also co-meager. Let R : C(K) → C(K2)× R, R(f) = (f |K2

, f(x0)). Clearly R is
continuous, and Tietze’s Extension Theorem implies that R is surjective and open.
Thus Lemma 2.7 implies that F = R−1(Γ) is co-meager.

Finally, we prove that Γ is co-meager in C(K2)× R. Lemma 2.11 easily implies
that Γ is Borel, thus has the Baire property. Hence it is enough to prove by the
Kuratowski-Ulam Theorem [7, 8.41. Thm.] that for the generic f ∈ C(K2) for
the generic y ∈ R we have (f, y) ∈ Γ. Let {zn}n∈N+ be a dense set in K1 and
for i, j ∈ N

+ let us define Bi,j = B(zi, 1/j) if 1/j ≤ ε0, and Bi,j = K2 otherwise.
Then for all i, j ∈ N

+ we have Bi,j ⊆ K2 and the conditions of the lemma yield
dimtH Bi,j > d. Let Ri,j : C(K2) → C(Bi,j), Ri,j(f) = f |Bi,j

and let

Gi,j =
{
f ∈ C(Bi,j) : ∃I interval s.t. ∀y ∈ I dimH f−1(y) ≥ d− 1

}
.

Set

G =
⋂

i,j∈N+

R−1
i,j (Gi,j).

It follows from Theorem 1.3 that Gi,j is co-meager in C(Bi,j) for every i, j ∈ N
+.

Corollary 2.8 implies that R−1
i,j (Gi,j) is co-meager in C(K2), and as a countable

intersection of co-meager sets G is also co-meager in C(K2). We fix f ∈ G. It is
sufficient to verify that Γf = {y ∈ R : (f, y) ∈ Γ} is co-meager. Let U ⊆ R be
an arbitrary open interval. It is enough to prove that Γf ∩ U contains an interval.
If there exists y0 ∈ U such that y0 /∈ f(K1) then there is a δ > 0 such that
B(y0, δ) ∩ f(K1) = ∅, so B(y0, δ) ∩ U is an interval in Γf ∩ U . Thus we may
assume U ⊆ f(K1). Then there exist i0, j0 ∈ N

+ such that B0 = Bi0,j0 satisfies
f(B0) ⊆ U . The definition of G implies that there is an interval If |B0

⊆ U such
that for all y ∈ If |B0

we have

dimH f−1(y) ≥ dimH(f |B0
)−1(y) ≥ d− 1.

Hence If |B0
⊆ Γf ∩ U , and this completes the proof. �

Now we return to the proof of Theorem 4.1. It follows from Fact 2.1 that
dimtH K > 0. Since dimtH B(x0, 1/n) = dimtH K for all n ∈ N

+, the countable
stability of the topological Hausdorff dimension for closed sets implies the following.
For all n ∈ N

+ there exist rn > 0 such that the sets Cn = B(x0, 1/n) \ U(x0, rn)
satisfy dimtH Cn > 0 and dimtH Cn → dimtH K as n→ ∞. For all n ∈ N

+ we put

Kn = {x ∈ Cn : ∀r > 0, dimtH(Cn ∩B(x, r)) ≥ dimtH Cn − 1/n} .

Clearly, the Kn’s are compact. First we prove that for all n ∈ N
+ we have

dimtH Kn = dimtH Cn > 0. The definition of Kn and the Lindelöf prop-
erty of Cn \ Kn imply that there are closed balls Bi, i ∈ N in Cn such that
dimtH Bi ≤ dimtH Cn − 1/n and

⋃
i∈N

Bi = Cn \Kn. Applying the countable sta-
bility of the topological Hausdorff dimension for the closed sets {Bi : i ∈ N}∪{Kn}
yields dimtH Kn = dimtH Cn.

Then Fact 2.1 implies dimtKn > 0, and theKn’s satisfy the conditions of Lemma
2.14. Applying Lemma 2.14 for the sequence 〈Kn〉n∈N+ and the compact set K, and
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applying Lemma 4.2 for allKn ⊆ K with dn = dimtH Cn−2/n simultaneously imply
that for the generic f ∈ C(K) we have f(x0) ∈ f(Kn) for infinitely many n ∈ N

+,
and for every n ∈ N

+ either dimtH f−1(f(x0)) ≥ dn − 1 or f(x0) /∈ f(Kn). Hence
there is a subsequence 〈ni〉i∈N (that depends on f) such that dimtH f−1(f(x0)) ≥
dni

− 1 for all i ∈ N, that is

dimtH f−1(f(x0)) ≥ lim
i→∞

(dimtH Cni
− 2/ni − 1) = dimtH K − 1.

This concludes the proof. �

Remark 4.3. Note that we proved the following stronger statement. Let K be a
compact metric space with dimtK > 0. Set for all x ∈ K

Fx =
{
f ∈ C(K) : dimH f−1(f(x)) = dimtH K − 1

}
.

Then Fx is co-meager in C(K) for every x ∈ suppK.

The following example shows that the sets Fx, x ∈ suppK depend on x indeed
in general.

Example 4.4. Let K be a self-similar compact metric space with dimtK > 1. It
is well-known and easy to prove that for the generic f ∈ C(K) the maximum is
attained at a unique point, say xf . By Theorem 2.2 for the generic f ∈ C(K) we
have dimH f−1(f(xf )) = 0 < dimtK − 1 ≤ dimtH K − 1, thus f /∈ Fxf

. Clearly,
suppK = K, therefore

⋂
x∈suppK Fx =

⋂
x∈K Fx is of first category in C(K).

The following theorem shows that we cannot strengthen Theorem 4.1 in general,
since there exists a compact metric space K such that the generic f ∈ C(K) has a
unique level set of maximal Hausdorff dimension. Moreover,K will be the attractor
of an iterated function system, so it will be ‘homogeneous’ to some extent.

Theorem 4.5. There exists a compact set K ⊆ R
2 such that K is an attractor

of an iterated function system and the generic f ∈ C(K) has a unique level set of
Hausdorff dimension dimtH K − 1.

Proof. Let S and C be the Smith-Volterra-Cantor set and the middle-thirds Cantor
set, respectively. Let

ψ1 : C → C ∩ [0, 1/3] , ψ1(x) = x/3,

ψ2 : C → C ∩ [2/3, 1] , ψ2(x) = x/3 + 2/3(4.1)

be the natural similarities of C.
Let us define αn < 1 (n ∈ N

+) such that αn ց 1/3 as n → ∞. Let Cn = Cαn
,

n ∈ N
+ be the middle-αn Cantor sets. Then clearly dimH Cn ր dimH C as n→ ∞.

It is easy to verify that the natural homeomorphisms φn : C → Cn, n ∈ N
+ are

Lipschitz maps. For r > 0 we denote by Cr
n the set that is similar to Cn, furthermore

Cr
n ⊆ [0, r] and diamCr

n = r. We define positive numbers rn, n ∈ N
+ such that the

following conditions hold for every n ∈ N
+.

(i) There are Lipschitz maps with Lipschitz constant at most 1/2 which map the
nth level elementary pieces of S onto [0, rn].

(ii) There are Lipschitz maps with Lipschitz constant at most 1/2 which map the
nth level elementary pieces of C onto Crn

n .
(iii)

∑∞
i=n ri ≤ 1/22n+2.
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The nth level elementary pieces of S are isometric. They are of positive Lebesgue
measure, since S is of positive measure. It is well-known that every measurable
set with positive measure can be mapped onto [0, 1] by a Lipschitz map [1, Lemma
3.10.], hence (i) can be satisfied if rn is small enough. Moreover, (ii) follows from
the Lipschitz property of φn for small enough rn, and (iii) is straightforward.

K0

K1

K2
x∞

✻

✲

Figure 1. Illustration to the construction of K

Let K0 = S × C, x∞ = (2 +
∑∞

i=1 ri, 0) and for all n ∈ N
+ let

In =
[
2 +

∑n−1
i=1 ri, 2 +

∑n
i=1 ri

]
,

Kn = In × Crn
n ,

K =
∞⋃

n=0

Kn ∪ {x∞},

K̃n =

∞⋃

i=n

Ki ∪ {x∞},

K̂n =

n⋃

i=0

Ki.

Clearly, all the sets defined above are compact.
First we prove that K is an attractor of an IFS. Recall that the ϕi’s and ψj ’s

are the natural homeomorphisms of S and C, respectively. For the more precise
definition see (2.5) and (4.1) again. Let us define for i, j ∈ {1, 2} the maps Ψi,j :
K → K0 such that

Ψi,j(x) =

{
(0, 0) if x ∈ K \K0,

(ϕi(x), ψj(x)) if x ∈ K0.

Clearly, the Ψi,j ’s are Lipschitz maps with Lip(Ψi,j) ≤ 1/2, and⋃
i,j∈{1,2} Ψi,j(K) = K0. For all n ∈ N

+ and (i, j) ∈ {(1, 2), (2, 1), (2, 2)} let us

define the sets Ki,j,n to be the top left, the top right and the bottom right nth level
‘elementary pieces’ of the bottom left (n− 1)st ‘elementary piece’ of K0, that is,

Ki,j,n =
(
ϕn−1
1 ◦ ϕi

)
(S)×

(
ψn−1
1 ◦ ψj

)
(C).
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These are clearly disjoint subsets of K0. It follows from (i) and (ii) that for all
n ∈ N

+ and (i, j) ∈ {(1, 2), (2, 1), (2, 2)} there exist surjective Lipschitz maps

ϕi,n :
(
ϕn−1
1 ◦ ϕi

)
(S) → In and ψj,n :

(
ψn−1
1 ◦ ψj

)
(C) → Crn

n

with Lipschitz constant at most 1/2. Let Ψ: K → K \K0 be the following map.

Ψ(x) =

{
x∞ if x ∈ K \K0 or x = (0, 0),

(ϕi,n(x), ψj,n(x)) if x ∈ Ki,j,n.

The Ki,j,n’s, K \ K0 and {(0, 0)} are disjoint sets with union K, so Ψ is well-
defined. Clearly Ψ maps Ki,j,n onto Kn, and hence Ψ(K) = K \K0. Thus K =⋃

i,j∈{1,2} Ψi,j(K) ∪ Ψ(K). Therefore, it is enough to prove that Ψ is a Lipschitz

map with Lip(Ψ) ≤ 1/2, that is for all x, z ∈ K

(4.2) |Ψ(x)−Ψ(z)| ≤
|x− z|

2
.

If x, z ∈ K \K0 then Ψ(x) = Ψ(z) = x∞, thus (4.2) follows.
If x ∈ K0 and z ∈ K \K0, then clearly |x− z| ≥ 1. On the other hand, (iii) implies

|Ψ(x)− Ψ(z)| ≤ diam(K \K0) ≤

√√√√
(

∞∑

i=1

ri

)2

+ (r1)2

< 2
∞∑

i=1

ri ≤ 1/8,

therefore (4.2) follows.
If x = (x1, x2) ∈ K0 and z = (z1, z2) ∈ K0 then we may assume that

(4.3) max{|z1|, |z2|} ≤ max{|x1|, |x2|}.

If x = (0, 0) then z = (0, 0) and we are done. We may assume x ∈ Ki,j,n, where
n ∈ N

+ and (i, j) ∈ {(1, 2), (2, 1), (2, 2)}. If z ∈ Ki,j,n then (4.2) follows, since Ψ
is Lipschitz on Ki,j,n with Lipschitz constant at most 1/2. Hence we may assume

z ∈ K \Ki,j,n. Then (4.3) implies Ψ(x),Ψ(z) ∈ K̃n. By the definition of K̃n and
(iii)

|Ψ(x)− Ψ(z)| ≤ diam K̃n < 2

∞∑

i=n

ri ≤ 1/22n+1.

The minimum distance between distinct nth level elementary pieces of S and C is
1/22n and 1/3n, respectively. Since K0 = S × C,

|x− z| ≥ dist (Ki,j,n,K \Ki,j,n)

≥ dist (Ki,j,n,K0 \Ki,j,n) ≥ 1/22n.

These imply (4.2), and hence K is an attractor of an IFS.
Finally, we prove that the generic f ∈ C(K) has a unique level set of Hausdorff

dimension dimtH K − 1.
By Theorem 4.1 the generic f ∈ C(K) has at least one level set of Hausdorff

dimension dimtH K − 1. Hence it is enough to show that for the generic f ∈ C(K)
for all y 6= f(x∞) we have dimH f−1(y) < dimtH K − 1. From Fact 2.1 follows
dimtH K0 = 0, clearly dimtH{x∞} = 0 and Theorem 2.4 implies dimtH Kn − 1 =
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dimH Cn. This, together with the countable stability of the topological Hausdorff
dimension for closed sets and the definition of Cn yield

dimtH K − 1 = sup
n∈N+

dimtH Kn − 1 = sup
n∈N+

dimH Cn = dimH C.

Assume to the contrary that there exists F ⊆ C(K) such that F is of second
category and for every f ∈ F there exists yf 6= f(x∞) such that dimH f−1(yf ) =
dimH C. Then f−1(yf ) ⊆ K \ {x∞}, and by the compactness of f−1(yf ) there

exists an nf ∈ N
+ such that f−1(yf ) ⊆ K̂nf

. Set

Fn =
{
f ∈ F : f−1(yf ) ⊆ K̂n

}
.

Since F =
⋃∞

n=1 Fn, there exists n0 ∈ N
+ such that Fn0

is of second category in
C(K). We obtain from Corollary 2.8 (i) that

F̂n0
=
{
f |K̂n0

: f ∈ Fn0

}

is of second category in C
(
K̂n0

)
. The definition of F̂n0

implies that for every

f ∈ F̂n0
we have dimH f−1(yf ) = dimH C. By Theorem 1.3 for the generic f ∈

C
(
K̂n0

)
every level set is of Hausdorff dimension at most

dimtH K̂n0
− 1 = sup

1≤n≤n0

dimtH Kn − 1 = dimH Cn0
< dimH C,

a contradiction. This concludes the theorem. �

Question 4.6. Does there exist an attractor of an injective iterated function system
K such that the generic f ∈ C(K) has a unique level set of Hausdorff dimension
dimtH K − 1?

5. The dimension of the graph of the generic continuous function

The graph of the generic f ∈ C([0, 1]) is of Hausdorff dimension one, this is a
result of R. D. Mauldin and S. C. Williams [11, Thm. 2.]. We generalize the cited
theorem for arbitrary compact metric spaces. Let K be a compact metric space,
then for the generic f ∈ C(K) the graph of f is of Hausdorff dimension dimH K.
We prove an analogous theorem for the topological Hausdorff dimension, for the
generic f ∈ C(K) the graph of f is of topological Hausdorff dimension dimtH K.

Definition 5.1. If f ∈ C(K) let us define

f̃ : K → graph(f), f̃(x) = (x, f(x)).

Clearly f̃ is continuous and one-to-one, so it is a homeomorphism between K
and graph(f).

Theorem 5.2. If K is a compact metric space then for the generic f ∈ C(K)

dimH graph(f) = dimH K.

Theorem 5.2 follows from the following more general theorem applied with C =
K. We need this slight generalization in order to prove Theorem 5.4.

Theorem 5.3. If C ⊆ K are compact metric spaces then for the generic f ∈ C(K)

dimH graph(f |C) = dimH C.
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Proof of Theorem 5.3. First note that graph(f |C) = f̃(C). For every f ∈ C(K) the

map f̃−1 is a projection from f̃(C) onto C. Since the Hausdorff dimension cannot

increase under a Lipschitz map, dimH f̃(C) ≥ dimH C. For the opposite direction
it is enough to prove that

F =
{
f ∈ C(K) : dimH f̃(C) ≤ dimH C

}

is a dense Gδ set in C(K). We may assume dimH C <∞. First we show that F is
a Gδ set. Let us define for all n ∈ N

+

Fn =
{
f ∈ C(K) : H

dimH C+1/n
1/n

(
f̃(C)

)
< 1/n

}
.

As f̃(C) is compact, it is straightforward that the Fn’s are open and clearly F =⋂
n∈N+ Fn. Thus F is a Gδ set.

Finally, we show that F is dense in C(K). If f ∈ C(K) is Lipschitz, then clearly f̃

is Lipschitz with Lip(f̃) ≤ Lip(f)+ 1, and hence dimH f̃(C) ≤ dimH C. Therefore,
it is enough to prove that G = {f ∈ C(K) : f is Lipschitz} is dense in C(K). This
fact is well-known but one can also see it directly, since it is easy to show that
cf ∈ G, f + g ∈ G and fg ∈ G for all f, g ∈ G and c ∈ R. Therefore, G forms a
subalgebra in C(K). Finally, we may assume #K ≥ 2, and the Lipschitz functions
{ϕx0

}x0∈K , ϕx0
: K → R, ϕx0

(x) = dK(x0, x) show that G separates points of K
and G vanishes at no point of K. Hence the Stone-Weierstrass Theorem [2, 12.9.]
implies that G is dense. This completes the proof. �

Theorem 5.4. If K is a compact metric space then for the generic f ∈ C(K)

dimtH graph(f) = dimtH K.

Proof. For every f ∈ C(K) the map f̃−1 is an injective projection from graph(f)
onto K, hence it is a Lipschitz homeomorphism. Thus Theorem 2.3 implies that
dimtH graph(f) ≥ dimtH K. For the opposite direction choose a basis U of K such
that dimH ∂U ≤ dimtH K − 1 for all U ∈ U , we can do this by Theorem 2.5. We
may assume that U is countable. Suppose U ∈ U is arbitrary. By applying Theorem
5.3 for C = ∂U we infer that there exists a co-meager set FU ⊆ C(K) such that

for all f ∈ FU we have dimH f̃(∂U) = dimH(∂U) ≤ dimtH K − 1. The basis U is
countable, and hence F =

⋂
U∈U FU is co-meager in C(K). Assume f ∈ F , it is

enough to prove that dimtH graph(f) ≤ dimtH K. Since f̃ is homeomorphism we

obtain that V =
{
f̃(U) : U ∈ U

}
is a basis of graph(f) and ∂f̃(U) = f̃(∂U) for all

U ∈ U . That is,

dimH ∂V = dimH ∂f̃(U) = dimH f̃(∂U) = dimH ∂U ≤ dimtH K − 1

for all V = f̃(U) ∈ V . Thus dimtH graph(f) ≤ dimtH K, and this completes the
proof. �
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Alfréd Rényi Institute of Mathematics, PO Box 127, 1364 Budapest, Hungary and
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