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Abstract

The thermal evolution of the spectral densities derivable from the two-point
functions of the elementary and the quadratic composite fields of the O(N) model
is studied in the isosinglet channel and in the broken symmetry phase at infinite
N . The results are applied with realistic parameter values to the N = 4 case. They
provide a reasonable description of the σ meson at T = 0. Threshold enhancement
is observed around T ∼ 1.07mπ. For higher temperatures the maximum of the
spectral function in the single meson channel decreases and becomes increasingly
rounded.

1 Introduction

There is increasing interest in finding signatures for the characterisation of strongly in-
teracting matter around the transition temperature from the hadronic to the quark-gluon
regime. Density and temperature induced features of the correlations in the soft pion
spectra is a frequently discussed issue. The majority of these pions comes from resonance
decay. One expects that temperature induced shifts in the position and width of the ρ
and σ pole location is sensitively reflected in the spectra.

The effects related to the variation of the location and the width of the broad σ
resonance were investigated in the past decade systematically [1]. The main theoretical
framework of these investigations was the O(4) linear sigma-model. Various reorganisa-
tions of the perturbative series [2] were proposed for the self-energy calculations. Despite
of the rather large value of the nonlinear coupling λR ≈ O(30 − 70), one loop calcula-
tions gave important qualitative hints for the enhancement of the spectral function in
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the σ-channel near the two-pion threshold as the temperature approaches the transition
region.

In the non-relativistic context it has been recognised long time ago that in scalar
theories the hybridisation [3] of the two-point functions of the elementary and quadratic
composite fields play essential role in the determination of the elementary excitations in
the whole temperature interval of the broken symmetry phase. Neutron scattering data on
superfluid helium were successfully interpreted by taking into account the hybridisation[4].

Large N techniques are known to account for this phenomenon correctly, while ordi-
nary perturbative approaches usually miss it [3, 5].

An additional point in favour of the use of the large N expansion is that it leads to
a second order transition point in agreement with the well-known behaviour of the O(N)
model[6]. The lowest order computations done with any (even optimised) version of the
conventional perturbation theory yield a first order phase transition when the temperature
is increased.

Large N techniques are extensively studied also in connection with the out-of-
equilibrium evolution and thermalisation of relativistic Bose-condensates [7, 8, 9, 10, 11],
though the hybridisation in this respect did not receive till now much attention.

Our main goal with this investigation was to apply large N techniques for finding
the finite temperature variation of the spectral function in the elementary and quadratic
composite isosinglet channels, which influences the π − π correlations measured in heavy
ion collisions to a large extent. For this purpose the parametrisation of the linear O(4)-
symmetric meson model is chosen to reproduce as closely as possible the accepted zero
temperature fit to the complex mass, Mσ − iΓ/2 of this broad resonance [12].

In this Letter, after summarising the general formalism, mostly the results of the
chirally invariant limiting case will be discussed, where the pions are massless, since the
main ideas can be presented in this case very transparently. Results relevant for the case
with explicit symmetry breaking will be presented shortly in the concluding part of the
paper.

We shall work in the leading order large N approximation to the Schwinger-Dyson
equations of the O(4) model in the broken symmetry phase. The effect of next-to-leading
order corrections is the subject of our ongoing research.

2 The model and its renormalised dynamical equa-

tions

The Lagrangian density including a term reflecting explicit breaking of the O(N) sym-
metry is the following:

L =
1

2
[∂µφ

a∂µφa −m2φaφa]− λ

24N
(φa)2(φb)2 +

√
Nhφ1. (1)

The broken symmetry phase can be studied after an appropriate shift, by introducing the
symmetry breaking background:

φa → (
√
NΦ + φ1, φi). (2)

The quantum field representing the fluctuations of the order parameter is termed σ, while
the modes transversal to it are the Goldstone pions.
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The equation of state, which determines the absolute value of the condensate comes
from the requirement of the vanishing quantum expectation for the coefficient of the term
linear in φ1 in the shifted Lagrangian:

〈 δL
δφ1

〉 = 0 =
√
NΦ

[

m2 +
λ

6
Φ2 +

λ

6N
〈(φa)2〉 − h

Φ

]

. (3)

The quadratic fluctuations of the shifted fields are computed with an accuracy O(N1),
therefore only the contribution of the pions is retained. Anticipating a non-zero Goldstone
mass due to the explicit symmetry breaking (which will be verified below) one finds the
following relation connecting renormalised quantities (only contributions proportional to
N0 are kept):

m2
R +

λR

6
Φ(T )2 +

λR

96π2
m2

G(T ) ln
m2

G(T )e

M2
0

+
λRT

2

12π2

∫

∞

mG(T )

T

dy

√

y2 − m2
G
(T )

T 2

ey − 1
=

h

Φ(T )
. (4)

Here the following renormalised couplings were introduced (momentum cut-off was applied
for the regularisation of some divergent integrals):

m2

λ
+

Λ2

96π2
− m2

R

96π2
ln

eΛ2

M2
0

=
m2

R

λR
,

1

λ
+

1

96π2
ln

eΛ2

M2
0

=
1

λR
. (5)

The issue of the normalisation point M0 will be discussed below.
At leading order (N = ∞) the only contribution to the self-energy of the Goldstone

modes comes from the tadpole diagram. Therefore one has:

G−1
G (p) = p2 −m2 − λ

6
Φ2(T )− λ

6N
〈(φa)2〉 = p2 − h

Φ(T )
. (6)

Here the sum representing the mass term was simplified in view of the equation of state
(3). This equation implies that at N = ∞ the Goldstone particle is stable and its mass,
m2

G(T ) = h/Φ(T ) increases with the temperature.
With this identification the renormalised equation of state (4) can be cast into a more

practical form by eliminating m2
R and h in favour of the T = 0 value of the condensate

(Φ0) and of the pion mass (mG0):

λR

6

Φ2
0

m2
G0

(

m4
G0

m4
G

− 1

)

+
λR

96π2

[(

m2
G

m2
G0

− 1

)

ln
m2

G0e

M2
0

+
m2

G

m2
G0

ln
m2

G

m2
G0

]

+
λRT

2

12πm2
G0

∫

∞

mG/T

dy
√

y2 −m2
G/T

2(ey − 1)−1 =
m2

G

m2
G0

− 1. (7)

This form makes it clear that after λR and M0/mG0 are chosen in the process of renor-
malisation at T = 0, one finds from this equation mG(T )/mG0 as a function of T/mG0 if
the physical input Φ3

0/h ≡ f 2
π/Nm2

π is made.
The σ propagator receives O(N0) contribution from the infinite iteration of the bubble

diagrams b(p), where on both lines Goldstone fields are propagating:

G−1
H (p) = p2 − h

Φ(T )
− λ

3
Φ2(T )

1

1− λb(p)/6
. (8)

3



Without entering its derivation we give here also the expression for the leading large N
propagator of the quadratic composite field (φaφa − 〈(φa)2〉)(x, t):

F (p) =
(p2 − h/Φ(T ))b(p)/6 + Φ2(T )/3

(p2 − h/Φ(T ))(1− λRb(p)/6)− λRΦ2(T )/3
. (9)

It has the same denominator asGH(p) making explicit the hybridisation of the two objects.
The bubble contribution with external momentum p0,p is the sum of a zero temper-

ature and a T -dependent part, b(p) = b0(p) + bT (p0,p), which read as follows:

b0(p) =
1

16π2

(

− ln
eΛ2

M2
0

+ ln
m2

G

M2
0

−
√

1− 4m2
G/p

2 ln

√

1− 4m2
G/p

2 − 1
√

1− 4m2
G/p

2 + 1

)

, (10)

bT (p) =

∫

d3q

(2π)3
1

4ω1ω2

{

(n1 + n2)

[

1

p0 − ω1 − ω2 + iǫ
− 1

p0 + ω1 + ω2 + iǫ

]

−(n1 − n2)

[

1

p0 − ω1 + ω2 + iǫ
− 1

p0 + ω1 − ω2 + iǫ

]}

, (11)

where ni = 1/(exp(βωi)− 1) and ω1 = (q2 +m2
G)

1/2, ω2 = ((q + p)2 +m2
G)

1/2. The first
term in the expression of b0(p) is cancelled in the expression of the σ propagator by the
divergence of the bare coupling λ and the inverse propagator, expressed in terms of the
renormalised quantities is finite. Note, that b0(p) has to be evaluated with mG(T )!

The phenomenologically most interesting object is the spectral function of the order
parameter field σ, defined as

ρH(p0,p, T ) = −1

π
ImGH(p0,p, T ). (12)

For non-zero T ρH has a singularity at p0 = 0 due to the Bose-Einstein factor n(βp0/2).
In the chiral limit h = 0 this point coincides with the two-pion threshold. In order to
make the effects related to the physical excitations visible around this point in Fig.1 we
show ρ1(p0, 0, T )T

2
c ≡ (1−exp(−p0/2T ))ρH(p0, 0, T )T

2
c . The curves are drawn for various

temperatures below Tc and a representative value of λR = 310.
The temperature dependence of the order parameter needed for its evaluation is ob-

tained from the equation of state which simplifies in this case [6] to

Φ2(T )

T 2
c

=
1

12

(

1− T 2

T 2
c

)

, T 2
c = 12Φ2

0. (13)

The shape of the spectral density starts with a broad bump at T = 0 which is shifted
towards lower frequencies when the temperature is increased. Already for T = 0 ρH has
finite value at p0 = 0, where its value is gradually increasing. At a temperature T ∼ 0.7Tc

the bumpy structure at finite p0 completely disappears and a simple Lorentzian shape
develops with its maximum located at the threshold.

This evolution can be transparently interpreted if the temperature dependent location
of the physical pole of the σ propagator is found. The physical pole is located in the lower
half of the complex p0-plane, therefore one is faced with the analytical continuation of
bT (p) into the lower p0-halfplane, since originally it is defined only in the upper halfplane
by the Landau-prescription: ǫ > 0. As becomes clear, this threshold enhancement is the
manifestation of the gradual chiral symmetry restoration as T tends to Tc.
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Figure 1: Temperature dependence of the modified spectral function ρ1 in the σ meson
channel for h = 0

3 The physical quasiparticle excitation in the σ chan-

nel

Below we give some details concerning the temperature variation of the excitation spectra
and the interpretation of the spectral function with its help in the chiral limit (h = 0).
One starts with the analysis at T = 0, where one fixes the renormalised parameters
m2

R, λR, remaining after h was set to zero. The renormalised mass is related to the size of
the condensate (or in view of (13) to Tc) by the well-known equation: −m2

R/Φ
2
0 = λR/6.

λR will be chosen from a range where one finds for Γ/Mσ values which are the closest
to the experimental one. For this we determine the T = 0 pole of the σ propagator by
looking for the zeros of G−1

H in terms of renormalised quantities:

G−1
H (p) = p2 − λR

3
Φ2

0

1

1− λR ln(−p2/M2
0 )/96π

2
= 0. (14)

The physical solution at rest of this equation is parametrised by putting p = 0, p0 =
M0 exp(−iϕ0), π/2 > ϕ0 > 0. (One can find its mirror solution in the third quarter). The
notation shows, that the absolute value of the pole is chosen for the normalisation point
defined in (5) and used in (10). If a physically satisfactory solution is found for some value
λR with this normalisation point, the renormalisation group invariance of (14) ensures that
for a different choice of M0 the same ratio Γ/Mσ is found at some appropriately shifted
value of λR. In this way the actual value of λR cannot be said to be large or small!

Since in view of (4) in the chiral limit one has a very simple equation for the critical
temperature, our solution provides the mass Mσ = M0 cosϕ0 and the imaginary part
M0 sinϕ0 in proportion of the critical temperature. It is interesting to note that using for√
NΦ = 2Φ the experimental value of fπ, eq.(13) gives Tc = 161 MeV, while the lattice

simulations yield (173± 8) MeV [13]. The agreement is much better than expected. The
real and imaginary parts of the complex physical pole are shown in Fig.2 as a function of
λR.

5



0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600 700
λR

h≠0 Mσ/fπ     
h=0 Mσ/fπ     
h=0 -Γ/(2fπ)  
h≠0 -Γ/(2fπ)  
ln(ML(T)/Mσ)

Figure 2: The imaginary and real parts of the physical poles at T = 0 in the chiral limit
and also for h 6= 0. Also shown is the logarithm of the tachyon pole position in proportion
to the mass of σ for various temperatures below Tc and for h = 0

In addition to the physical zeros of the inverse propagator scalar theories are known
to have a tachyonic zero on the positive imaginary axis (p0 = iML) (see [8] and references
therein), which makes the theory unstable. Therefore the theory can be used as an
effective theory until the physical scale M0 is acceptably smaller than ML. The position
of the tachyonic zero is also found from (14). (The fact that the tachyonic pole shows
up also in GH not only in F is a manifestation of hybridisation). It is clear from Fig.2
that for λR ≤ 400 one has ML/M0 > 4 and the effective approach is well justified. The
representative value λR = 310 corresponds to a ratio Mσ/Γ = 1 at T = 0. The value of
Mσ is estimated to be 7Φ0 ∼ 350 MeV.

At finite temperature we are interested in the temperature dependence of the σ-pole
at rest, therefore we set p = 0 in (11). The analytic continuation onto the lower plane
can be carried out by adding to the expression of bT valid in the upper halfplane a term
which makes its imaginary part continuous when one approaches the real p0-axis either
from the upper or the lower halfplane:

b>T (p0) =
1

8π2

∫

∞

0

dx
1

ex − 1

[ 1

z − x
− 1

z + x

]

, z =
p0
2T

, Im p0 > 0,

b<T (p0) = b>T (p0)−
i

4π

1

exp(z)− 1
, Im p0 < 0, Re p0 > 0. (15)

The roots are parametrised the same way as in the T = 0 case, p0 = M(T ) exp(−iϕ).
After one determines Φ(T ) from Eq.(13), from the complex equation

1− λR

96π2

(

ln
M2(T )

M2
0

− i(2ϕ+ π)
)

− λR

3

Φ2(T )

M2(T )
e2iϕ − λR

6
b>T (p0 = Me−iϕ)

+ i
λR

24π

1

exp(M exp(−iϕ)/2T )− 1
= 0 (16)

one can find the complex pole as a function of the temperature. All quantities are mea-
sured in units of Tc ∼ Φ0.
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Also at finite temperature one can study the tachyon solution in the upper halfplane
using b>T (iML). One might wonder if the temperature dependence of the tachyonic pole
does not restrict further the coupling range where the effective use of the scalar theory
is consistent. The broadening in Fig.2 of the line corresponding to the tachyonic pole
reflects the slight decrease of its mass scale with increasing temperature. However, it is
clear that in the region λR < 400, where the effective approach is consistent for T = 0,
the position of the tachyon pole is practically unchanged.

Similarly, one can look directly for physical roots along the negative imaginary axis.
Then using b<T from (15) one finds that above a well-defined Timag(λR) < Tc the physical
pole becomes purely imaginary: −iM(T ). If µ ≡ M(T )/2T << 1, for the highest
occupied low frequency region, one can use the expansion of the Bose-Einstein factors
appearing in the last two terms of (16) with respect to the powers of µ and keep the
leading terms:

1− λR

48π2
ln

2Tµ

M0

+
λR

3

Φ2(T )

4T 2

1

µ2
− λR

48π

1

µ
= 0. (17)

This equation could have been derived directly, if one would have applied from the be-
ginning the same approximation in Eq.(11). Clearly, the region around the origin (the
critical region) can be analysed also directly with help of this simpler equation. Note
that one has to go one step beyond the classical approximation to achieve a consistent
approach.

The general pattern of the trajectory of the physical pole with increasing temperature
was the following. The real part of its position started to diminish when T was raised.
In this way the broad bump of the spectral function moves towards the origin, and its
width is increasing due to the slight increase of its imaginary part. Depending on λR the
root reaches at some Timag < Tc the negative imaginary axis and collides with its mirror
root arriving from the third quarter. Each one is joining smoothly the trajectory of one
of the pair of imaginary roots which appear just at Timag and move opposite directions.
We observe that the σ-bump gets lost in the background before the temperature reaches
Timag. The root approaching the origin along the imaginary axis produces in the spectral
function a shrinking shape which becomes a Lorentzian only very close to Tc. Eventually
for T = Tc it builds up a term proportional to δ(p0)/p0.

We see that the complex pole of the σ-propagator qualitatively accounts for the be-
haviour of the spectral function near and below the critical point as well. Note that the
other pole moving away from the origin along the imaginary axis as well as the tachyon
disappear from GH at Tc. They remain poles of F only.

In the vicinity of the critical point, where the ξ = T/8πΦ2(T ) is the dominant length
scale and the condition p0, |p| << T is fulfilled, one can derive an equation also for the
soft modes with nonzero momentum:

− 3i|p|ξ p
2
0 − p2

|p|2 ln
p0 − |p|
p0 + |p| −

1

4π

(p20 − p2)ξ

Tc
ln

p20 − p2

T 2
c

= 1. (18)

Its solution in the approximation, when on the left hand side only the first term is retained
exhibits the form of dynamical scaling [14, 15]: p0 = |p|z̃f(|p|ξ) with z̃ = 1. The second
term provides the leading correction to scaling. In O(N) models, the dynamical exponent
z = d/2 has been obtained for finite N on the basis of scaling and renormalisation group
arguments, where in our case d = 3 [16, 17, 18]. For the correct interpretation of the
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Figure 3: The spectral functions for the linear sigma model with realistic couplings and
explicit symmetry breaking. On the left figure the imaginary part in the σ-channel, on
the right the same for the composite channel is shown

situation it is important that there are two distinct hydrodynamical regions in the O(N)
model for large N [16]. (The system studied in [16] can be regarded as a lattice regularised
version of the linear σ-model). In the true critical region z = d/2 is valid, in a precritical
region z̃ = 1 − 8Sd/Nd + O(1/N2), where Sd = 2/π2 for d = 3. The first region shrinks
when N becomes large and completely disappears at N = ∞. Furthermore, it has been
found that z̃ agrees with the dynamical exponent determined for the quasiparticles, that
is outside the hydrodynamical regime, at least to O(1/N)[19]. Details of the application
of this analysis to the present case will be published in our forthcoming paper.

4 The case of the explicit breaking of chiral symme-

try

Finally, we wish to discuss shortly the results of the application of the leading large N
solution of the O(N) model to the low lying effective π − σ system where an explicit
symmetry breaking is necessary.

Since in this case one cannot speak of any phase transition, it is more sensible to look
for the roots of G−1

H (p0, 0) in proportion to Φ0 ≡ fπ/2. The value m2
G0/Φ

2
0 ≈ 9.06 is fixed

by phenomenology and choosing λR with the restriction M0/ML ≤ 4, one can find the
zero temperature position of the σ-pole. In Fig.2 its real and imaginary parts are already
shown as a function of λR together with the results obtained for h = 0. In the region
of λR allowed the ratio Mσ/Γσ moves away from the phenomenologically preferred range
(Mσ = 3.95fπ,Mσ/Γ ∼ 1.4) emphasising the need for a next-to-leading order calculation.

Now Φ(T ) is determined from (7). The spectral function of the single σ-channel is
shown in the left of Fig.3 for various values of the temperature in the transition range
T = (0 − 1.2)mG0 with λR = 400. The location of its maximum at T = 0 is correlated
with the location of the T = 0 pole. Maximal threshold enhancement [20] is observed in
the close neighbourhood of 1.074mG0 with the spectral function numerically exhibiting
a cuspy form, with a very narrow width. However, when the temperature is further
increased, the maximum is pulled away from the actual position of the threshold and a
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broad rounded structure is seen. We return to the detailed interpretation of this structure
in terms of the pole trajectories in a forthcoming publication.

As we have mentioned above also the spectral function belonging to the propagator
(9) of the composite field can be constructed to leading order in N . The corresponding
spectral function reflects the excitations in the composite (φa)2 channel. Its temperature
dependent deformation is displayed on the right hand of Fig.3 for the same (realistic)
parameters as used in case of ρH above. Its behaviour is rather similar to the single
meson spectral function. No signal of any meson-meson bound state can be observed.
The only difference one notices is that for large frequencies this function approaches a
constant, which reflects mostly the large residuum of the tachyon pole in this propagator.

5 Conclusions

We have described the temperature dependence of the elementary excitations of the O(4)
model in the leading order of the 1/N expansion. For the chirally symmetric case a very
suggestive picture of the complex pole evolution makes unique the interpretation of the
change of shape of the single-particle spectral function when the temperature approaches
the critical point.

The restrictions on the range of the scalar self-coupling λR arising from the requirement
of keeping distance from the tachyonic pole, for a fixed normalisation point M0 prevent
us in finding a fully realistic σ-particle mass at T = 0 when the physical pion mass is the
input. We have found that the threshold enhancement in both the elementary and the
composite spectral functions is maximal at some Tenh < mG0. Beyond this temperature
the cuspy maximum becomes rounded again. We believe that this qualitative feature
remains valid when the next to leading order corrections will be included.
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