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Abstract

The Bialas-Bzdak model of elastic proton-proton scattering is gener-

alized to the case when the real part of the parton-parton level forward

scattering amplitude is non-vanishing. Such a generalization enables the

model to describe well the dip region of the differential cross-section of

elastic scattering at the ISR energies, and improves significantly the abil-

ity of the model to describe also the recent TOTEM data at
√

s = 7

TeV LHC energy. Within this framework, both the increase of the total

cross-section, as well as the decrease of the location of the dip with in-

creasing colliding energies, is related to the increase of the quark-diquark

distance and to the increase of the “fragility” of the protons with in-

creasing energies. In addition, we present and test the validity of two

new phenomenological relations: one of them relates the total p+p cross-

section to an effective, model-independent proton radius, while the other

relates the position of the dip in the differential elastic cross-section to

the measured value of the total cross-section.
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1 Introduction

Diffractive scattering of energetic electrons on various nuclei allowed Hofstadter
and collaborators to determine the radius and the surface thickness of elec-
tric charge distribution inside the nuclei, and also resulted in two simple phe-
nomenological formulae: namely, that the charge radius scales with increasing
mass number as (1.07 ± 0.02)×A1/3 fm, while the surface thickness, within the
errors of the observation, is a constant of (2.4 ± 0.3) fm [1]. By increasing the
momentum of the elastically scattered particle one can probe deeper and deeper
details of matter, due to the de Broglie duality λ = ~/p between particle prop-
erties like momentum p and wave-like properties like wavelength λ. To resolve
the internal charge distribution inside atomic nuclei, Hofstadter and colleagues
used electrons with bombarding energies of E = 153− 183 MeV, corresponding
to spatial resolutions of λ ≈ 1 − 2 fm. Currently, elastic scattering of protons
on protons has been experimentally investigated by the CERN LHC experiment
TOTEM, at the colliding energies of

√
s = 7 TeV, corresponding to a spatial

resolution in the center of mass system of λ ≈ 0.05 fm, which is sufficiently
small to study the internal structure of protons.

In the present paper we exploit these experimental results and check how
far can one progress with the qualitative as well as quantitative description
of the differential cross section of elastic proton-proton scattering at ISR as
well as at CERN LHC colliding energies, covering an impressive range from√
s = 23.5 GeV to 7 TeV. Our investigations were motivated not only by the first

experimental results of TOTEM on elastic proton-proton collisions [2, 3], but
also by an inspiring series of theoretical papers by A. Bialas and A. Bzdak [4, 5,
6, 7], that considered pion-proton, proton-proton and nucleus-nucleus scattering
using a geometrical picture.

In the present investigation, following and improving the model of Bialas and
Bzdak [4, 5, 6, 7] a quark-diquark based geometrical model is used to describe
the ISR and the recent LHC TOTEM data. We will refer to this Bialas Bzdak
model as the BB model or BB, for convenience.

Note also that a diquark or correlated quark-quark structure has to be con-
sidered, given that a similar model with three independent, uncorrelated con-
stituent quarks was not able to describe the elastic pp scattering data, as pointed
out already in Ref. [8].

By definition, the earlier considered BB model has no real part, and con-
sequently it is singular at the diffractive minimum. The diffractive minimum,
the dip, was first seen in the data collected with the CERN Intersecting Storage
Rings (ISR) [9, 10]. The TOTEM data shows that the dip is shifted towards
smaller |t| values at

√
s = 7 TeV, consequently with smaller experimental er-

rors, and these data also exclude a possible vanishing value of the differential
cross-section at this dip position.

Therefore to describe the data, including the dip, is a challenging task. We
were able to fit the singular BB model to the ISR data only in the case, when
3 data points were left out from the data at the dip, and even this did not
help at LHC energies: the BB model simply failed in the dip region of TOTEM
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data [11]. A recent study [12], which extended the parton approach, using
gluon cascades, from hard processes to describe high-energy soft and semihard
processes, was also not able to describe the TOTEM data. Its 3-channel eikonal
extension with only one Pomeron missed a quantitative data description at LHC
energies [13] just as well. However, as it was demonstrated recently in Ref. [14]
using the Good-Walker formalism with a single, effective Pomeron, it is possible
to describe the pp elastic differential cross-section and the energy dependence of
the total cross-section σtot, as well as proton dissociation into low mass system
in a large energy range from CERN-ISR to LHC energies.

In another recent study, that we become aware during the finalization phase
of our manuscript, TOTEM data on the differential cross-section of elastic pp
scattering at

√
s = 7 TeV were described by a relatively simple parametriza-

tion [15] that includes two exponentials and a phase, where the first exponential
is suitably modified to take into account the detailed structure of forward scat-
tering and to include the description of the electromagnetic form-factor of the
protons.

A multi-channel eikonal model was considered and found to describe well
TOTEM elastic scattering data dσ/dt at 7 TeV and also pp scattering at 53 GeV
ISR energies with some interesting physics conclusions: in particular, Ref. [16]
pointed out that elastic, diffractive and total pp scattering cross-sections at 7
TeV within errors saturate the so-called Miettinen-Pumplin bound [17], namely

that
(σel+σdiff )

σtot
≤ 1

2 . This result is consistent with very large parton-parton
scattering cross-sections at these energies.

A detailed analysis of the real and the imaginary part of the forward scatter-
ing amplitude was presented recently in Ref. [18, 19], where a regular dependence
of the fit parameters as a function of ln(s) was observed, and this behaviour was
found to be nearly continuous even at the lower, ISR energies, but pointing out
the opening of a new mechanism in the energy range of 100 <

√
s < 500 GeV

as indicated by a perturbation of the otherwise smooth energy dependence of
the model parameters. A qualitatively similar observation was also made in
Ref. [20], that noted that the geometrical picture of pp collisions should be
modified considerably when entering the domain of ultra-high energy collisions,
and pointed out that TOTEM data at

√
s = 7 TeV already indicate the onset

of a transition to this region.
In our present study, we investigate in detail a geometrical model of proton-

proton collisions, and indeed find that a qualitative change in elastic pp scatter-
ing can be observed when moving from the top ISR energy of 63 GeV to the LHC
energy of 7 TeV, which is particularly important when the study is focusing on
the dip region. We perform our analysis using a generalized Bialas-Bzdak model.
The BB model originates in Glauber models, which were successfully developed
to provide a geometrical as well as quantum-optical picture of nucleus-nucleus
collisions [21]. The cross-section is calculated by taking into account all possi-
ble combinations of individual inelastic processes [22, 23]. In the present work
the BB model is supplemented with real part following Ref. [24, 25]. There-
fore the ratio of the real to imaginary part of the forward scattering amplitude
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at zero momentum transfer, ρ is not zero. We refer to our model version as
αBB. In total four free model parameters are used in αBB, which is rather
small. The QCD-based, well-known model of Ref. [26], where the TOTEM data
is refitted successfully with the help of hard Pomeron exchange, uses 15 free
parameters. Another relevant QCD inspired model applies 9 free parameters,
where the Pomeron intercept and the interesting dynamical gluon mass are the
most important [27, 28].

We present two, intuitively found phenomenological relations also. The first
one suggests that the total cross-section can be estimated using an effective
proton radius, which is a combination of our three radius fit parameters. We
tested this formula with the singular, original version of the BBmodel earlier [11]
and now we present its test with the non-singular, generalized αBB model.
Similarly to the relation of the nuclear radius to the mass number found by
Hofstadter, this relation is found to be only approximate, but giving a good
estimate of the total cross section and also its increase with increasing energies
can be related to the modification of the internal structure of protons with
increasing colliding energies. The second relation shows that the position of the
dip, tdip, is related to the total cross-section, so given the total pp scattering
cross-section the position of the dip can be predicted.

2 Elastic scattering in the generalized BB model

Proton-proton scattering is described in the BB model as a collision of two
composite objects. Each of them is assumed to contain a constituent quark
and a diquark. The parametrization of the scattering situation is illustrated on
Fig. 1.

Figure 1: (color online) Snapshot, illustration of the two scattering protons,
when the proton is represented as a quark-diquark system, p = (q, d) in the
Bialas-Bzdakmodel. Both the quarks and the diquarks are assumed to scatter as
single entities, corresponding to Gaussians with radius Rq and Rd, respectively.
The quark is separated from the diquark by a distance of Rqd. All the model
parameters follow a Gaussian distribution. The impact parameter b describes
the separation of the center of masses of the two colliding protons in the plane
perpendicular to the direction of the beam. Based on Refs. [4, 5, 6, 7, 11].
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In the original BB model the interaction between quarks and diquarks is
assumed to be purely absorptive, therefore the forward scattering amplitude of
the BB model has no real part. In the present paper their formula is supple-
mented with real part. This modification significantly improves the ability of
the model to describe elastic p+ p scattering dσ/dt in the dip region.

The inelastic proton-proton cross-section in the impact parameter space for
a fixed impact parameter ~b is given by the following integral

σα(b) =

+∞
∫

−∞

...

+∞
∫

−∞

d2sqd
2s′qd

2sdd
2s′dD(~sq, ~sd)D(~sq

′, ~sd
′)σα(~sq, ~sd; ~sq

′, ~sd
′;~b) ,

(1)

where b = |~b| and the integral is taken over the two-dimensional transverse
position vectors of the quarks ~sq, ~sq

′ and diquarks ~sd, ~sd
′.

The integral describes the convolution of the quark-diquark distributions of
the two incoming protons with a σα function which in the original BB model
provides the probability of inelastic interaction at given impact parameter vec-
tor ~b and at given quark, diquark transverse positions. In the present work
this function is generalized to complex values, indicated by the subscript α,
with the more detailed motivation given after entailing the functional form of
σα. The complex valued σα function in the α = 0 case reduces to the real
valued σ(~sq, ~sd; ~sq

′, ~sd
′;~b) function of the original BB model [4, 5, 6, 7, 11]. The

introduction of the α parameter is motivated by the Glauber-Velasco model
[24, 25, 22].

Bialas and Bzdak in Ref. [4] supposed that the quark-diquark distribution
of the proton follows a Gaussian shape

D (~sq, ~sd) =
1 + λ2

πR2
qd

e−(s2q+s2d)/R
2
qdδ2(~sd + λ~sq), λ = mq/md , (2)

where Rqd is the variance of the quark and diquark distance inside the proton
and the λ parameter is the mass ratio of the quark and diquark. The value of
λ = 1/2 would indicate a weakly bound diquark. The center of mass in the
transverse plane is preserved with the help of a two-dimensional delta function.

The original BB model supposes that protons are scattered elastically if and
only if all of its constituents are scattered elastically [4, 5, 23, 29]

σ(~sq, ~sd; ~sq
′, ~sd

′;~b) = 1−
∏

a,b∈{q,d}

[

1− σab(~b+ ~sa
′ − ~sb)

]

, (3)

where the inelastic differential cross-sections of the constituents are parametrized
with Gaussian distributions as well

σab (~s) = Aabe
−s2/R2

ab , R2
ab = R2

a +R2
b . (4)

A detailed study of the unmodified BB model, corresponding to the α = 0
case of our present work and also to a probabilistic interpretation of the forward

5



scattering amplitude, has been completed recently in Ref. [11]. It was shown
that this model describes the main features of the dσ/dt data well in the ISR
energy range of

√
s = 23− 62 GeV, except three data points around the dip of

the dσ/dt distribution, which were omitted from the optimalization [11].
Clearly, the original BB model neglects the real part of the forward scattering

amplitude, which results in dσ/dt = 0 around the diffractive minimum, a feature
that does not correspond to the shape of pp elastic scattering data.

From this point forward, a generalized version of the BB model is discussed
which is able to describe the dip region of elastic scattering dσ/dt at ISR ener-
gies, by modifying expression (3). It takes into account, with a phenomenologi-
cally introduced parameter α, that the proton is not always scattered elastically
even if all of its constituents are scattered elastically. This generalized model is
referred to as αBB model. The αBB model is introduced with a purely imagi-
nary factor in the formula

σα(~sq, ~sd; ~sq
′, ~sd

′;~b) = (1− iα) σ(~sq, ~sd; ~sq
′, ~sd

′;~b). (5)

The new parameter α is determined from the analysis of data. The α = 0
case corresponds to a situation, when the proton always scatters elastically if
its constituents scatter elastically. Parameter α is introduced in a way that
is motivated by the α parameter of the Glauber-Velasco model of Refs. [24,
25, 22]. Parameter α can be considered as the ρ parameter of parton-parton
level scattering where ρ is the ratio of the real to imaginary part of the forward
scattering amplitude at zero momentum transfer.

From unitarity the elastic amplitude is the following

tel(b) = i
(

1−
√

1− σα(b)
)

, (6)

where the elastic amplitude tel(b) is a complex valued function in our case;
note that an imaginary unit is suppressed in the notation of the original BB
model [4, 5, 6, 7]. Important to note also that the domain of the square root in
Eq. (6) remains C even if α = 0.

Recently, the important role of the real part of the elastic scattering ampli-
tude in shaping dσ/dt at the dip and in the Orear region was highlighted in
[30, 31, 32].

In momentum transfer representation the amplitude of elastic scattering is
given with the Fourier-transformation

T (~∆) =

+∞
∫

−∞

+∞
∫

−∞

tel(b)e
i~∆·~bd2b = 2π

+∞
∫

0

tel (b)J0 (∆b) bdb , (7)

where ∆ = |~∆| and J0 is the zeroth Bessel-function of the first kind.
Finally the differential cross-section is obtained as

dσ

dt
=

1

4π
|T (∆)|2 . (8)
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The real and imaginary part combine together to describe the dip region of the
differential cross section dσ/dt, even if α is only slightly different from 0. The
results, as we shall also demonstrate below, will be qualitatively different from
the BB model.

2.1 Model p = (q, d): The diquark is assumed to scatter as

a single entity

This subsection is devoted to describe the remaining parts of the BB model
when the diquark in the proton is assumed to scatter as a single entity. In
this case the two model parameters Aqd and Add can be expressed with the
help of Aqq if one supposes an idealized situation where the constituent diquark
contains twice as many partons than the constituent quark without shadowing
effects. This assumption may decrease the number of free parameters by two.
The inelastic cross-sections

σab =

+∞
∫

−∞

+∞
∫

−∞

σab (~s) d
2s = πAabR

2
ab, a, b ∈ {q, d} , (9)

are supposed to be proportional to the parton numbers. According to the as-
sumption

σqq : σqd : σdd = 1 : 2 : 4 , (10)

which corresponds to the case of no shadowing effect in the proton-proton scat-
tering. Consequently

Aqd = Aqq

4R2
q

R2
q +R2

d

, Add = Aqq

4R2
q

R2
d

. (11)

With these ingredients the computation of Eq. (1) reduces to perform Gaus-
sian integrals. Two of the Dirac delta functions simply express the transverse
diquark coordinates with the corresponding quark coordinate using the mass
ratio λ

~sd = −λ~sq, ~sd
′ = −λ~sq

′. (12)

The remaining four Gaussian integrals lead to the following expression for
each term in the inelastic proton-proton cross-section formula (1)

4v2

π2

+∞
∫

−∞

+∞
∫

−∞

d2sqd
2s′qe

−2v(s2q+s′2q )
k,l∈
∏

{q,d}

e−ckl(b−sk+s′l)
2

=
4v2

Ω
e−b2 Γ

Ω , (13)

where

Ω = Cqd,dq

[

v + cqq + λ2cdd
]

+ (1− λ)
2
Dqd,dq ,

Γ = Cqd,dqDqq,dd + Cqq,ddDqd,dq (14)
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and

Ckl,mn = 4v + (1 + λ)
2
(ckl + cmn) , Dkl,mn = v (ckl + cmn) + (1 + λ)

2
cklcmn ,

(15)
where the ckl parameters are abbreviations. Formulas (13), (14) and (15) are
equivalent with the corresponding formulas of the original BB model [4], al-
though they are presented in a terser form.

2.2 Model p = (q, (q, q)): The diquark is assumed to scatter

as a composite object

The collision of the protons in p+ p scattering is illustrated on Fig. 2, in case
the diquark scatters as a composite object including two constituent quarks.

Figure 2: Snapshot about the two scattering protons in the p = (q, (q, q)) model.
Protons are described as a quark-diquark system, where the diquark is assumed
to scatter as a quark-quark composite object. This is an illustration only, ac-
tually all the model parameters follow a Gaussian distribution, based on Refs.
[4, 5, 6, 7, 11].

Bialas and Bzdak [4] supposed that the two quarks follow a Gaussian distri-
bution inside the diquark

D ( ~sq1, ~sq2) =
1

πd2
e−(s

2
q1+s2q2)/2d2

δ2 ( ~sq1 + ~sq2) , (16)

where the transverse positions of the quarks are indicated with ~sq1, ~sq2. The
distance d is the RMS of the separation of the quarks inside the diquark. It is
defined as

d2 = R2
d −R2

q , (17)

which expresses that the diquark is composed of two quarks which are separated
by a distance d. In the present case the inelastic cross-sections σqd, σdq and σdd

have to be factorized using the σqq inelastic cross-section using expansion (3).
The formula for σqd and σdq is the following

σqd (~s) =
4AqqR

2
q

R2
d +R2

q

e
−s2 1

R2
d
+R2

q −
A2

qqR
2
q

R2
d

e−s2/R2
q , (18)
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σdd is more complicated, and is given in details in Refs. [4, 5, 6, 7, 11]. The
inelastic cross-section (1) can be calculated using the master formula (13) as
before.

Bialas and Bzdak originally used the total cross-section, the slope parameter
B, the position of the dip and the position of the first diffractive maximum after
the dip to determine the value of the fit parameters by solving 4 equations with
4 unknowns [4]. They found, that the resulting parameters provide a good
overall description of elastic scattering data at ISR energies. However, neither
the errors of the parameters nor the fit quality description with a χ2/NDF test
were provided.

In Ref. [11] to determine the errors of the original BB model parameters
a different method was applied, utilizing all the information in the data set
by a multiparameter fit. In the present study we improved not only the fitting
method, but also the BB model itself. We introduced the real part of the forward
scattering amplitude with parameter α motivated by the Glauber-Velasco model
of [24, 25]. This resulted in a new feature of the αBB model, namely the ability
to describe the data also around the diffractive minimum. Second, we have
used the CERN MINUIT fitting package [33] to determine the best values of
the model parameters together with their errors. In the next section our results
are presented, while we discuss the findings and compare them with earlier
results in the discussion part.

3 Fit results in the 0.36 to 2.5 GeV2 |t| range
In this section the results of our MINUIT fits are presented for the ISR [9, 10]
and TOTEM [2, 3] proton-proton elastic scattering data. The scenario when
the diquark is assumed to scatter as a single entity is considered first, which
is followed by the fit results for the case when the diquark is considered as
composite object. To provide a fair comparison among the model descriptions
on the different dataset at different

√
s, the |t| region of the fits is limited to

the first TOTEM publication. In the discussion section, the fit quality is also
studied in special fits to the TOTEM data in the low |t| region. As we shall see,
even the improved BB model cannot describe the TOTEM data in the whole t
region.

The results show that thanks to the new parameter α, which generates the
real part of the forward scattering amplitude, the fits improve significantly and
describe the data also in the dip region, as compared to the α = 0 case presented
in Refs [4, 5, 6, 7, 11]. This phenomenon can be interpreted such that the proton
does not necessarily scatter elastically even if all its constituents are scattered
elastically. This effect is small at lower collision energies, however it becomes,
as we shall detail, more and more prominent with increasing energies.
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4 Model p = (q, d): The diquark is assumed to

scatter as a single entity

In this subsection the fit results are collected in case the diquark is assumed to
scatter as a single entity. This version of the model was fitted to the proton-
proton elastic scattering data both at ISR [9, 10] and at LHC [2] energy as
well. The results are illustrated on Figs. 3-7 and a visualization of the model
parameters is provided on Fig. 8. The confidence levels, and model parameters
with their errors are summarized in Table 1.

The figures contain two phenomenological relations below the legend. The
first relation suggests that the total-cross section is proportional to the area of
a disk with an effective radius Reff, which is the square root of the quadratic
sum of Rq, Rd and Rqd

Reff =
√

R2
q +R2

d +R2
qd , (19)

σtot = 2πR2
eff . (20)

This formula was originally proposed for the BB model in [11], and was found
to be model independently valid in both the p = (q, d) and in the p = (q, (q, q))
models with a precision of 10 − 15%. In the current paper we validate this
formula for the α 6= 0 case.

Numerically, we have found another phenomenological formula, which indi-
cates that the |t| position of the first diffractive minimum |tdip| multiplied with
the total-cross section σtot is nearly constant

|tdip|σtot

C
≈ 1, (21)

where C = 54.8± 0.7mb GeV2. The test of these relations for each energy with
both the p = (q, d) and p = (q, (q, q)) models is given on the figures and the
results are collected and described in our Discussion part.
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Figure 3: Fit result at
√
s = 23.5 GeV in case the diquark is assumed to be a

single entity. Note that although α is not significantly different from 0, a tiny
value of α makes the fit behavior in the dip region significantly better, than the
α = 0 case, indicated by a dashed line. The lower panel shows the deviation
of the fitted theory (solid line) from the experimental data at that point. Note
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Figure 4: Same as Fig. 3, but at
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s = 30.7 GeV.

12



0 0.5 1 1.5 2 2.5

]
2

/d
t f

or
 p

ro
to

ns
 [m

b/
G

eV
σ

d

-6
10

-5
10

-410

-3
10

-210

-110

1

10

210
Data points

Fitted theory

Extrapolation

=0α

=52.8 GeVs p+p, diquark as a single entity at   →p+p 

MINOS: successful
2 2.50 GeV≤ -t ≤Fit range: 0.36 

 / NDF = 62.29/35= 1.782χ

CL = 0.305 %

ERROR MATRIX ACCURATE 

  1.7 mb± = 35.0 
tot

σ

 0.004± = 0.025 ρ  = 0.952
eff

Rπ/2
tot,exp

σ

 = 1.05
C

tot,exp
σ|

dip
|t

 = 0.50 λ

 0.01 fm± = 0.26 qR

 0.01 fm± = 0.73 dR

 0.01 fm± = 0.35 qdR

 = 1.00 qqA

 0.01 ± = 0.02 α

]2-t [GeV
0 0.5 1 1.5 2 2.5(d

at
a 

- 
th

eo
ry

) 
/ e

rr
or

-10

-5

0

5

10

Figure 5: Same as Fig. 3, but at
√
s = 52.8 GeV.

13



0 0.5 1 1.5 2 2.5

]
2

/d
t f

or
 p

ro
to

ns
 [m

b/
G

eV
σ

d

-6
10

-5
10

-410

-3
10

-210

-110

1

10

210
Data points

Fitted theory

Extrapolation

=0α

=62.5 GeVs p+p, diquark as a single entity at   →p+p 

MINOS: successful
2 2.50 GeV≤ -t ≤Fit range: 0.36 

 / NDF = 52.09/35= 1.492χ

CL = 3.157 %

ERROR MATRIX ACCURATE 

  1.7 mb± = 44.3 
tot

σ

 0.002± = 0.013 ρ  = 0.912
eff

Rπ/2
tot,exp

σ

 = 1.05
C

tot,exp
σ|

dip
|t

 = 0.50 λ

 0.01 fm± = 0.29 qR

 0.01 fm± = 0.77 dR

 0.01 fm± = 0.29 qdR

 = 1.00 qqA

 0.01 ± = 0.01 α

]2-t [GeV
0 0.5 1 1.5 2 2.5(d

at
a 

- 
th

eo
ry

) 
/ e

rr
or

-10

-5

0

5

10

Figure 6: Same as Fig. 3, but at
√
s = 62.5 GeV.
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Figure 7: Fit result at
√
s = 7 TeV in case the diquark is assumed to interact

as a single entity. Note that the p = (q, d) version of the αBB model fails in
the low-|t| region, where σtot,exp of Ref. [3] is underestimated. This may be the
reason why

σtot,exp

2πReff
is only 42% close to 1.
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√
s [GeV] 23.5 30.7 52.8 62.5 7000

Rq [fm] 0.27 ± 0.01 0.25 ± 0.01 0.26 ± 0.01 0.29 ± 0.01 0.34 ± 0.01
Rd [fm] 0.71 ± 0.01 0.71 ± 0.01 0.73 ± 0.01 0.77 ± 0.01 0.78 ± 0.01
Rqd [fm] 0.30 ± 0.01 0.34 ± 0.01 0.35 ± 0.01 0.29 ± 0.01 0.61 ± 0.01

α 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.16 ± 0.01

χ2/NDF 59.58/46 29.89/34 62.29/35 52.09/35 166.32/74
CL [%] 8.63 66.94 0.30 3.16 0.00

Table 1: The
√
s dependence of the confidence levels and the fit parameters in

case the diquark is assumed to be a single entity, where the parameters Aqq = 1
and λ = 0.5 are fixed. The diquark size, as well as the inelasticity parameter
α increase significantly with

√
s, indicating that the proton became larger and

less elastic as
√
s is increased to LHC energies.

Figure 8: Visualization of the fit results in case the diquark is assumed to be a
single entity.
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5 Model p = (q, (q, q): diquark scatters as com-

posite object

The MINUIT fit results are presented as in the previous subsection, except that
it is assumed that the diquark scatters as a composite object which contains
two quarks. This version of the model was fitted to the proton-proton elastic
scattering data both at ISR [9, 10] and at LHC [2] energy as well. The results
are illustrated on Figs. 9-13, while the visualization of the obtained parameters
is given on Fig. 14. The confidence levels, and model parameters with their
errors are summarized in Table 2.
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Figure 9: Fit result at
√
s = 23.5 GeV in case the diquark is assumed to be a

composite object. Note that even a small α 6= 0 value may make a big difference
in the dip region. The fit becomes acceptable without a need to remove data
points in this region. The fit quality parameters as well as two phenomenological
relations are also indicated around the legend of the figure. Dashed line indicates
the fit result when the parameter α is set to zero.
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Figure 10: Same as Fig. 9, but at
√
s = 30.7 GeV.
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Figure 11: Same as Fig. 9, but at
√
s = 52.8 GeV.
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Figure 12: Same as Fig. 9, but at
√
s = 62.5 GeV.
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Figure 13: Same as Fig. 9, but at the LHC energy of
√
s = 7 TeV. The

extrapolation to low |t| values indicates, that the total cross-section is under
estimated by the αBB model, fitted in the intermediate 0.36 ≤ −t ≤ 2.5 GeV2

region. Note that the p = (q, (q, q)) version of the αBB model fails in the low-|t|
region, where σtot,exp of Ref. [3] is underestimated. This may be the reason why
σtot,exp

2πReff
is only 53% close to 1.
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√
s [GeV] 23.5 30.7 52.8 62.5 7000

Rq [fm] 0.28 ± 0.01 0.28 ± 0.01 0.28 ± 0.01 0.29 ± 0.01 0.29 ± 0.01
Rd [fm] 0.73 ± 0.01 0.74 ± 0.01 0.76 ± 0.01 0.76 ± 0.01 0.63 ± 0.01
Rqd [fm] 0.21 ± 0.01 0.23 ± 0.01 0.25 ± 0.01 0.23 ± 0.01 0.73 ± 0.01

α 0.01 ± 0.01 0.00 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.42 ± 0.02

χ2/NDF 71.96/46 38.47/34 48.96/35 82.00/35 274.44/74
CL [%] 0.85 27.42 5.88 0.00 0.00

Table 2: The
√
s dependence of the confidence levels and the fit parameters

in case the diquark is assumed to be a composite entity, where the parameters
Aqq = 1 and λ = 0.5 are fixed. Note that the quark-diquark distance Rqd

increases significantly at the LHC, but note also that the fit quality is not
statistically acceptable at 7 TeV.

Figure 14: Visualization of the fit results in case the diquark is assumed to be
a composite object.
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6 Total cross-section estimation based on TOTEM

data in low |t| range
Note that even the generalized αBB model failed on the TOTEM data when it
was fitted in the 0.36 ≤ −t ≤ 2.5 GeV2 region. In this section we investigate the
fit range dependence of this negative result. The total cross-section is estimated
based on the small |t| data which was measured by the TOTEM experiment.
The fit is repeated in a low |t| range of 0.0 ≤ −t ≤ 0.8 GeV2 and the total
cross-section value is included into the fits as one additional data point to show
how well it can be described by the αBB model. The results are illustrated in
Figs. 15 and 16.

In the low |t|-range a reasonable description can be achieved with the single
entity version of the model, while surprisingly a less convincing result is obtained
when the diquark is assumed to be composite. However, when the fits are limited
to the low |t| region, the extrapolated fits deviate from the data significantly in
the large |t| region for both the p = (q, d) and the p = (q, (q, q)) model.

Note also that we could not find a fit with statistically acceptable quality,
when the fit region was increased to 0.0 ≤ −t ≤ a GeV2, where a > 0.8 GeV2.
This indicates that the αBB model does not describe TOTEM elastic scattering
data in the whole measured t range.
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Figure 15: Fit result at 7 TeV in the low |t| range of 0.0 ≤ −t ≤ 0.8 GeV2,
including the measured total cross-section value, as additional data point. The
diquark is assumed to be a single entity.
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Figure 16: Same as Fig. 15, but for the p = (q, (q, q)) model.

7 Discussion

Firstly, the αBB model is compared to the interesting model of Grichine, Starkov
and Zotov [34], which is based on a quark-diquark representation of the pro-
ton. In their model the amplitude of the proton-proton elastic scattering is
described with one- and two-pomeron exchange between the quark and diquark
constituents. In total they apply only two fit parameters, which are the quark
and diquark radii. However, due to the Pomeron parametrization, their theoret-
ical curve misses the description of the diffractive minimum. On Fig. 17(a) our
result is provided at 7 TeV in the 0.16 ≤ −t ≤ 2.5 GeV2 range. This Fig. 17(a),
as well as our Figs. 9-13 indicate, that we have improved significantly on the
description of the dip region using a generalized Bialas-Bzdak model. Although
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the fit quality improved and become reasonable in the dip region, we still could
not find a reasonable description of the TOTEM dataset, that would work both
in the low-|t|, in the dip and in the large-|t| region. For example, if the low-|t| re-
gion is not included in the fit, this region is under-estimated by the extrapolated
curve and also the total cross-section is under-estimated by 17.7 %. Fig 17(b)
indicates, that if we include the measured total cross-section to the fit as an
additional data point, but still keeping the fitted t range to 0.16 ≤ |t| ≤ 2.5
GeV2, the description improves at the low values of |t| but the fit deviates more
from the data in the dip region. The radius parameter of the quarks Rq and
that of the diquarks Rd together with the quark-diquark distance Rqd increase
after adding the measured total cross-section.
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Figure 17: Fit result at 7 TeV in the 0.16 ≤ −t ≤ 2.5 GeV2 range shown on the
left hand side plot (a). The case when the measured total cross-section is added
to the fit as one additional data point is shown on the right hand side plot (b).
The diquark is assumed to be a single entity.

The errors and the confidence levels are not provided in the paper of Gri-
chine, Starkov and Zotov [34], however on a qualitative level apparently the αBB
model compares well with the inspiring result of Grichine and collaborators.

After the model comparison we turn to discuss the center of mass energy√
s dependence of our model parameters. The

√
s dependence of the quark and

diquark radius parameters Rq, Rd, together with the quark-diquark distance
Rqd is shown on Fig. 18, for both the single and composite diquark model. The
results indicate that the quark and diquark radius parameters Rq and Rd are
nearly constant, while the distance of the constituents Rqd is increasing with
increasing collision energy

√
s.
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Figure 18: The
√
s dependence of the parameters Rq, Rd, Rqd. The symbol

size is greater than the errors from the fit on several data points. Note that the
most significant change is the increase of Rqd at LHC energies.
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Figure 19: The
√
s dependence of the parameter α. This plot indicates, that

α becomes more important at LHC energies, than at ISR, indicating that it is
more probable at LHC that a proton does not scatter elastically even if all of
its constituents happened to scatter elastically. According to these results, the
pp collisions become more and more “fragile” with increasing

√
s.

Although parameter α is introduced to have a successful data description at
the dip region, and it can be considered as the ρ parameter of parton-parton
level scattering (where ρ is the ratio of the real to imaginary part of the forward
scattering amplitude at zero momentum transfer), our method to introduce α is
based on an analogy with the Glauber-Velasco model and can be considered valid
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in the leading order, |α| << 1 limit only. Future work is needed to investigate,
if terms that are non-linear functions of α, can be derived that can improve
the agreement with the Bialas-Bzdak model not only in the dip but also in the
whole experimentally available |t| region at LHC energies.

The α parameter as a function of
√
s is plotted on Fig. 19, which shows

the increasing role of this parameter at LHC energies. The increase of α can
be interpreted as the proton become more and more fragile with increasing

√
s.

The evolution of the ρ parameter is summarized on Fig. 20 and the obtained
values are collected in Table 3 and 4, for the single and composite diquark case,
respectively. These two tables also contain the results of the phenomenological
relation Eq. (20), which shows that the relation between the measured total
cross-section σtot,exp and the effective radius Reff is well satisfied in case of ISR
energies. Fig. 21 indicates, that the σtot/2πR

2
eff ratio is approximately constant,

that is independent of
√
s as well as from the particular choice of the p = (q, d)

or the p = (q, (q, q)) model of the proton. The agreement is less convincing at√
s = 7 TeV, however, at this energy, the vanishing confidence level indicates,

that the fit quality is not statistically acceptable. On the other hand this fit still
can be considered reasonable, and compares well to recent interesting results of
Grichine and collaborators [34].
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Figure 20: The
√
s dependence of the parameter ρ.
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The second phenomenological relation Eq. (21), which relates the position of
the first diffractive minimum tdip and the total cross-section, is model indepen-
dent, and well satisfied for both ISR and LHC energies, according to Table 5 and
Fig. 22. This relation (21) was motivated by the formulae of photon scattering
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on a black disk, where the elastic differential cross-section is [35]

dσblack

dt
= πR4

[

J1(qR)

qR

]2

, (22)

and the total cross-section

σtot,black = 2πR2 . (23)

In this simple theoretical model the position of the first diffractive minimum,
following from Eq. (22), and the total cross-section Eq. (23) satisfies

Cblack = |tdip,black| · σtot,black = 2πj21,1(~c)
2 ≈ 35.9mb GeV2 , (24)

where j1,1 is the first root of the Bessel function J1(x).
In case of the phenomenological relation Eq. (21) the constant C was fitted

to the measured data, to obtain the best possible description. It is clear that
this fitted constant C = 54.8 ± 0.7mb GeV2 is significantly different from the
number Cblack of Eq. (24) one may expect from light scattering on a black disc.

In this sense, although Eq. (21) is satisfied by ISR as well as TOTEM data,
the value of the constant indicates a more complex scattering phenomena, than
the photon black disc scattering, mentioned above.

The observed |tdip|σtot ≈ C relationship may in fact be a reflection of a
deeper scaling property of the differential cross section of elastic p+p scattering.
To guide our intuition, it is again useful to consider the scattering of light on a
black disk. The differential cross-section (22) can be expressed in terms of the
momentum transfer t = −q2

dσblack

dt
=

πR2

|t| J1(
√

|t|R)2 =
σtot,black

2|t| J1

(
√

|t|σtot,black

2π

)2

. (25)

The result Eq. (25) can be scaled to a universal scaling curve

|t|
σtot,black

dσblack

dt
=

1

2
J1

(
√

|t|σtot,black

2π

)2

=
1

2
J1

(
√

y

2π

)2

= Fblack(y), (26)

where Fblack(y) is a dimensionless function of the variable y = |t|σtot,black, and is
the same for all black discs regardless of their radius. The function Fblack(y) can
be expressed in terms of the dimensionless variable z = |t|/|tdip,black| = y/Cblack.
From Eq. (24) and Eq. (26)

|t||tdip,black|
Cblack

dσblack

dt
=

1

2
J1

(

√

zCblack

2π

)2

= Gblack(z) , (27)

Both of the above dimensionless functions can be generalized to the real
experimental case, leading to F (y) and G(z), where y = |t|σtot and z = y/C.
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We have thus plotted both the F (y) and the G(z) functions for all the ISR and
LHC data available for us. The results are shown on Fig. 23, where the scaling
functions of the black disc Fblack(y) and Gblack(z) are also presented. The plots
indicate, that ISR and LHC data on dσ/dt approximately satisfy these newly
found scaling relation, but with some scaling violating terms.
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Figure 23: The F (y) and G(z) scaling functions showing the ISR and TOTEM
data. The scaling functions of the black disc Fblack(y) and Gblack(z) are also
shown.

The data indicate that the proton-proton elastic differential cross-section
dσ/dt data collapse to an energy independent scaling function at the ISR ener-
gies of 23.5 - 62.5 GeV, and data at

√
s = 7 TeV are significantly and qualita-

tively different, move closer to the scaling functions that characterize the black
disc limit. However, even at

√
s = 7 TeV, the data are significantly different

from the scaling function of the black disc limit. In particular, the secondary
minimum of the black disc limit is not observed, so scaling violating terms are
still important. It remains to be seen if this trend of approaching better the
black disc limit continues with increasing colliding energies, or not. Plotting the
F (z) and the G(z) scaling functions seems to be a useful tool to investigate, to
understand how the data approach this possible limiting behaviour.

The purpose of our manuscript was to improve the Bialas-Bzdak model in
the dip region, where the original model was singular. Indeed, we report on a
successful and significant improvement of the data description in the dip region
from a generalized Bialas-Bzdak model in this manuscript. We do not claim
several things: we for example do not claim that this is the only imaginable
model and possible improved other models, like models with n Pomerons and m
Odderons should not be considered in the future. As there are several possibil-
ities to improve on the description of the TOTEM data, our choice to improve
on the Bialas-Bzdak model by adding a small real part to the forward scattering
amplitude is just one of the possibilities even if this consideration is based on a
physical motivation.

One can ask the question, why and at what range of four momentum transfer
|t| such a simple model should work. Apparently, for sufficiently large |t| we start
to probe a distance that becomes smaller than 0.2 fm, the size of a constituent
quark in the Bialas-Bzdak picture, or, the even larger diquark scale. Thus,
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√
s [GeV] 23.5 30.7 52.8 62.5 7000

ρ 0.01 ± 0.01 0.01 ± 0.01 0.03 ± 0.01 0.01 ± 0.01 0.21 ± 0.01
σtot,exp/2πR

2
eff 0.92 ± 0.01 0.93 ± 0.03 0.95 ± 0.03 0.91 ± 0.03 1.42 ± 0.05

Table 3: The ρ parameter and the σtot,exp/2πR
2
eff ratio in case the diquark is

assumed to be a single entity. Fit range is the same 0.36 ≤ −t ≤ 2.5 GeV2 for
all datasets. Note that the fit quality is not acceptable at

√
s = 7 TeV.

√
s [GeV] 23.5 30.7 52.8 62.5 7000

ρ 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.53 ± 0.02
σtot,exp/2πR

2
eff 0.95 ± 0.01 0.93 ± 0.01 0.94 ± 0.01 0.96 ± 0.01 1.53 ± 0.06

Table 4: The ρ parameter and the σtot,exp/2πR
2
eff ratio, the diquark is assumed

to be a composite entity. Fit range is the same 0.36 ≤ −t ≤ 2.5 GeV2 for all
datasets. Note that the fit quality is not acceptable at

√
s = 7 TeV.

√
s [GeV] 23.5 30.7 52.8 62.5 7000

|tdip|σtot,exp

C 1.03 ± 0.04 1.05 ± 0.04 1.05 ± 0.04 1.05 ± 0.05 0.95 ± 0.02

Table 5: The
|tdip|σtot,exp

C ratio, model independently. Precise up to 5% (within
errors).

for a large enough |t| the simple Bialas-Bzdak model, and even its generalized
version presented in the current manuscript, is expected to fail. Indeed, TOTEM
observed that above the dip structure the functional form of the differential
cross-section changes, and can be described with a power law |t|−n with an
exponent n = 7.8 ± 0.3stat ± 0.1syst for |t|-values between 1.5 GeV2 and 2.0
GeV2 [2].

This TOTEM result on the large |t| elastic scattering is consistent with the
perturbative QCD prediction, based on a spin-1 gluon exchange picture, that
predicted an energy independent power-low tail of the dσ/dt distribution with
n = 8.0 [36].

8 Conclusion and outlook

In this work we have generalized the geometrical Bialas-Bzdak model of elastic
proton-proton scattering by allowing for a real part of the forward scattering
amplitude using the same geometrical picture, but assuming that a proton-
proton scattering may become inelastic even in the case when all scattering of
the constituents of the colliding protons is elastic (but not completely collinear).
This generalization resulted in a successful description of the dip region of elas-
tic proton-proton scattering in the ISR energy region and resulted in a signif-
icant, qualitative improvement of the ability of this model to describe elastic
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proton-proton scattering at 7 TeV colliding energies as measured by the TOTEM
Collaboration at CERN LHC. We have also found that the generalized Bialas-
Bzdak model can describe only the small |t| data set and therefore the total
cross-section σtot at LHC, if the fit range is limited to a relatively low |t| range.
However, even this generalized Bialas-Bzdak model fails, if the large |t| region
data of TOTEM is included, more precisely we find no good quality fits in the
0.0 ≤ −t ≤ a GeV2 region, where a > 0.8 GeV. This result can be interpreted
as a qualitative change in elastic proton-proton scattering at the 7 TeV LHC en-
ergies as compared to the top ISR energies, due to the opening of a new channel
in this reaction. It would be interesting to collect data at RHIC and at lower
LHC energies to determine the energy region where this transition happens and
the new physics channel opens.

Based on the geometrical picture behind the Bialas-Bzdak model, we have
identified and tested the validity of two simple phenomenological formulas. Our
first formula relates the total proton-proton scattering cross-section to an effec-
tive radius, that is the quadratic sum of the radii of a quark and a diquark as
well as the distance between the center of mass of the diquark and the quark
inside the proton. Regardless of the detailed structure of the diquarks, and inde-
pendently of the values of the real part of the forward scattering amplitude, this
formula gives a model independent estimate for the total cross-section with a
typical 10 % precision at ISR energies, that becomes worse at LHC energies, but
our data analysis nevertheless suggests that the increase of the total cross-section
of proton-proton scattering is mainly due to the increase of the quark-diquark
separation with increasing colliding energies, while the size of the constituent
quarks and diquarks is approximately independent of the colliding energies. Our
second formula establishes a relation between the total cross-section of proton-
proton scattering and the position of the dip in the differential cross-section: in
particular, we find that the product of these two quantities is a model indepen-
dent constant. We also demonstrated that this formula is remarkably precise,
it is satisfied by the ISR data within one standard deviations, while at LHC the
formula is also satisfied by the data within 3 standard deviations.

Given that the energy dependence of the total cross-section is very well
described by linear or quadratic polynomials in ln(s), or by Glauber Monte-
Carlo simulations in case of proton-nucleus and nucleus-nucleus collisions, our
result can in principle be well used to predict the position of the dip in the
differential cross section of elastic scattering at various energies and colliding
systems. A detailed application of this relation to predict the dip position in
p-Pb elastic scattering will be presented elsewhere [37].
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