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Abstract.

We propose a three dimensional mechanical model of embryonic tissue dynamics.

Mechanically coupled adherent cells are represented as particles interconnected with

elastic beams which can exert non-central forces and torques. Tissue plasticity is

modeled by a stochastic process consisting of a connectivity change (addition or

removal of a single link) followed by a complete relaxation to mechanical equilibrium.

In particular, we assume that (i) two non-connected, but adjacent particles can form

a new link; and (ii) the lifetime of links is reduced by tensile forces. We demonstrate

that the proposed model yields a realistic macroscopic elasto-plastic behavior and

we establish how microscopic model parameters affect the material properties at the

macroscopic scale. Based on these results, microscopic parameter values can be

inferred from tissue thickness, macroscopic elastic modulus and the magnitude and

dynamics of intercellular adhesion forces. In addition to their mechanical role, model

particles can also act as active simulation agents and modulate their connectivity

according to specific rules. As an example, anisotropic link insertion and removal

probabilities can give rise to local cell intercalation and large scale convergent extension

movements. The proposed stochastic simulation of cell activities yields fluctuating

tissue movements which exhibit the same autocorrelation properties as empirical data

from avian embryos.
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1. Introduction

Tissue engineering, the controlled construction of tissues – cells and their extracellular

matrix (ECM) environment – is a promising avenue for future biomedical innovations.

To realize this possibility, the dynamic and mutually interdependent relationship

between cell and tissue movements has to be understood. The cytoskeleton as well

as embryonic tissues are dynamic structures, capable of both relaxing and generating

mechanical stress. A key, and little explored mechanical component of sustained tissue

movement is plastic behavior [1, 2, 3, 4] – irreversible alteration of the driving force-free

tissue shape. Plasticity is clearly important during embryonic development as stresses

do not accumulate in embryonic tissues, despite the large deformations.

Deformation of physical objects subjected to external or internal forces are usually

calculated by the partial differential equations (PDE) of continuum mechanics – this

approach uses spatially resolved mechanical stress and strain tensors as model variables

[5]. Active biomechanical processes are usually modeled using a spatial decomposition

and re-assembly method [6]: if the behavior (growth, shape change) of specific parts

of the structure are known in mechanical isolation (free boundary conditions), then

constraining adjacent parts to form a smooth continuum can yield the deformation of

the whole composite structure. In this manner, one can evaluate how autonomous shape

changes in one part of the embryo (prescribed “growth laws”) can drive tissue movements

elsewhere [7, 8]. In this approach, the cellular origin of the “growth laws” is not

explained. Yet, this is a challenging problem as most often the cellular changes are not

just the scaled-down reflections of tissue deformations. For example, vertebrate embryos

elongate substantially during early development, yet cells of the epiblast maintain their

isotropic aspect ratio. Therefore, several tissue-level effects are puzzling outcomes of

cellular activities, which are “purposeful” changes in cell-cell and cell-ECM contacts.

To connect cell activity such as active intercalation or collective migration to tissue

movements it is often advantageous to model individual cells and obtain the tissue scale

behavior through computer simulations. Widely used models for cell-cell interactions

represent individual adherent cells as fluid droplets, like the cellular Potts model [9, 10]

and its grid-free version, the subcellular element model [11, 12]. These model choices

are motivated by the demonstrated non-Newtonian fluid-like behavior of simple cell

aggregates [13]. Cell-based models have been used to formulate hypotheses for cell

activity (such as chemotactic guidance) and used to develop simulations to obtain

tissue movements [14, 15, 16]. Such models are, however, not yet used to predict

mechanical stresses. Furthermore, as discussed recently [17] these simulations often

include biomechanical artifacts such as friction with a non-existing reference frame. In

particular, within the freely floating embryonic cell mass the momentum is conserved

(while the momentum is not conserved when cells can exert traction on an underlying

surface).

Another class of models used to model epithelial morphogenesis is termed “vertex

models”, in which each cell is represented by a polygon corresponding to the cell
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membrane [18, 19]. The polygon vertices are usually points belonging to the boundary

of three adjacent cells. Cell movements are due to the motion of these vertices, which in

turn are often assumed to be driven by cortical cytoskeletal contractivity, surface tension

due to intercellular adhesion and hydrostatic pressure difference between adjacent cells

[20]. Such models can also include cell neighbor exchange, perhaps the most significant

is the T1 transition in which two adjacent cells are separated by the contact of

their immediate lateral neighbors. These models are extremely suitable to describe

morphogenetic movements in Drosophila [21] and zebrafish [22], where the contractile

cytoskelton is localized in a thin cortical layer adjacent the cell membrane. While most

studies utilizing the vertex models are confined to two dimensions, a generalized vertex

model which describes cells as three dimensional prisms was also proposed [23].

In this paper we introduce a cell-resolved, three dimensional off-lattice model of

tissue layers that (i) does not assume that cytoskeletal contractility is localized in the

cortical cytoskeleton, and (ii) is computationally simpler than the 3D vertex models.

In the model proposed here, one particle represents a single cell, but in contrast with

similar cell-center or spheroid models [24, 25], the mechanical connectivity of the cells

are explicitly represented as elastic beams connecting adjacent particles. The beams

can be compressed, stretched, bent and twisted. Therefore, instead of central forces,

these links can exert torques and forces that are not parallel to the line connecting the

particles. We assume that the tissue is always in mechanical equilibrium, i.e., cellular

activity (contraction, rearrangement of the links) is slow compared to the time needed

for the environment to accommodate these changes. The great advantage of explicit

cell-cell contact representation is that we can formulate certain cell activities or plastic

stress relaxation as rule sets that specify probabilities for the removal and insertion of

links, or alter the equilibrium properties of existing links. Thus, as we demonstrate,

convergent-extension movements can be simulated by preferentially creating new links

along one direction while removing links in the perpendicular direction.

2. Model

2.1. Mechanics

In our model cells are represented as particles, characterized by their position and

orientation (rA and φA for particle A, respectively). The mechanical connection between

cells is modeled with links that can exert non-central forces and torques. As we focus

on mechanical equilibrium, the inertia (mass) of these model objects are irrelevant.

Torques are exerted if links are deformed: we envision a behavior similar to that of

coil springs. A pair of unit vectors, tA,l and nA,l, specify the mechanically neutral link

direction and orientation of link l at particle A (Fig. 1a). These vectors co-rotate with

the particle:

tA,l = R(φA)t
(0)
A,l (1)
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Figure 1. The basic mechanical model. a: Two particles, A and B are shown

interconnected with a link. At both ends of the link a pair of unit vectors,

tA,nA and tB,nB, specify the link direction and orientation. The link index

is omitted in the figure for better transparency. The direction and orientation

vectors co-rotate with the particle attached to the link. The direction of the

link at its midpoint between particles A and B is denoted by the unit vector

tAB. When the link is stress free, tA, tB and tAB, as well as nA and nB
are co-linear. b: A symmetric rotation of both particles yields torques MA

and MB acting on particles A and B, respectively. These torque vectors are

perpendicular to the plane of the figure. The unit vector pointing from particle

A to B is denoted by uAB. In this configuration the link does not exert forces

perpendicular to uAB as the net torque −(MA + MB) acting on the link is

zero. c: A lateral misalignment of the particles creates torques MA, MB and

also shear forces FA, FB acting at the particle-link junctions. d: Link torsion

is characterized by the angle between the unit vectors nA and nB. A twisted

link rotates the particles around the link axis to reduce torsion.

and

nA,l = R(φA)n
(0)
A,l (2)

where R is the rotation operator and t
(0)
A,l and n

(0)
A,l denote the neutral link directions in

the initial configuration where φA = 0.

A link l is bent if its preferred direction at the particle tA,l is distinct from its actual

direction uAB, the unit vector pointing from particle A to B (Fig. 1). We assume that

the torque exerted by such a link on particle A is

Mbend
A,l = k1(tA,l × uAB), (3)

where the microscopic bending rigidity k1 > 0 is a model parameter. Thus, a stress-free

(“straight”) link is pointing in a direction tA,l = uAB. In general, the torque (3) rotates



Tissue Plasticity and Morphogenesis 5

particle A so that tA,l aligns with uAB (Figs. 1b and c).

We choose Eq. (3) due to its simplicity. However, a real mechanical system

composed of flexible beams would exert similar torques if particles are much smaller

than the length of the interconnecting beams, and beams are softer at their ends hence

deformations are localized to the vicinity of the particles. In such cases the preferred

link direction tA,l is the tangent vector of the link l at the surface of particle A, and the

tangent vector at the midpoint, tAB,l, is well approximated by uAB.

Torsion of link l is characterized by two normal vectors, nA,l and nB,l, assigned to

each end of the link (Figs. 1a and d). Their specific orientation (normal to the link) is

irrelevant, but in the undeformed state nA,l = nB,l. For small deformations the torque

is assumed to be proportional to the torsion angle, measured as the angle between the

normal vectors as:

Mtwist
A,l = k2(nA,l × nB,l) (4)

where the model parameter k2 > 0 is the microscopic torsional stiffness.

We assume, that in a general situation the net torque of link l acting on particle A

is a superposition of the torques associated with bending and torsion:

MA,l = Mbend
A,l + Mtwist

A,l = k1(tA,l × uAB) + k2(nA,l × nB,l). (5)

Similarly, for particle B at the other end of the link l:

MB,l = k1(tB,l × uBA) + k2(nB,l × nA,l), (6)

where uBA = −uAB.

If a link l exerts forces FA,l and FB,l as well as torques MA,l and MB,l at its

endpoints (Fig. 1c), the link is in mechanical equilibrium if

FA,l + FB,l = 0 (7)

and

MA,l + MB,l + (rB − rA)× FB,l = 0. (8)

To determine the force FA,l = −FB,l, we introduce a unit vector orthogonal both

to nA,l and uAB as

n′A,l = nA,l × uAB. (9)

We decompose the forces into orthogonal components as

FA,l = F
‖
A,luAB + F⊥A,lnA,l + F⊥′A,ln

′
A,l. (10)

Substituting the composition (10) into Eq. (8) yields

MA,l + MB,l − (rB − rA)× (F⊥A,lnA,l + F⊥′A,ln
′
A,l) = 0. (11)

After evaluating the cross products we obtain

MA,l + MB,l = |rB − rA|(F⊥A,ln′A,l − F⊥′A,lnA,l), (12)
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hence

F⊥A,l =
(MA,l + MB,l)n

′
A,l

|rB − rA|
(13)

and

F⊥′A,l = −(MA,l + MB,l)nA,l
|rB − rA|

. (14)

Finally, F
‖
A,l is determined by Hook’s law as

F
‖
A,l = k3(|rB − rA| − `l), (15)

where `l is the equilibrium length of link l and k3 > 0 is the microscopic elastic modulus,

the third model parameter.

Thus, two particles A and B interconnected by link l are characterized by rA, rB,

tA,l, nA,l, tB,l, nB,l and `0. Given these quantities, equations (5), (6), (13), (14) and

(15) allow the calculation of the 9 components of FA = −FB, and of MA and MB.

2.2. Mechanical equilibrium

A particle may be attached to multiple links and also be the subject of external forces

or torques. Net forces

Fi = Fext
i +

∑
l∈Li

Fi,l (16)

and torques

Mi = Mext
i +

∑
l∈Li

Mi,l (17)

are calculated by summation over Li, the set of links associated with particle i. In

mechanical equilibrium Fi and Mi are zero for each particle i. The equilibrium

configuration, however, is difficult to obtain directly due to the nonlinear dependence of

the forces on particle positions. Instead, we utilized the following overdamped relaxation

process:

ṙi = PiFi (18)

and

φ̇i = QiMi. (19)

where Pi and Qi are projector matrices to constrain the movement and rotation of

node i, respectively. For unconstrained particles Pi and Qi are identity matrices. As

the particles rotate, the unit vectors of neutral link direction t
(l)
i and orientation n

(l)
i

associated to link l and particle i are updated according to (1) and (2).

For a given initial condition, the configuration corresponding to mechanical

equilibrium is calculated by solving the coupled ordinary differential equations (18)

and (19) by a fourth order Runge-Kutta method. The relaxation was terminated when

the magnitude of the net total force and torque in the system fell below a threshold

value.
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2.3. Initial condition, connectivity

Two dimensional initial conditions were generated by randomly positioning N particles

in a square of size L =
√
N . Thus, the spatial scale unit of the simulations is set as

the average cell size, ∼10 µm and the simulated 2D cell density is 1 cell/unit area. In

the initial condition we enforced that the distance of two adjacent particles is greater

than dmin = 0.8. Particles that are Voronoi neighbors are connected by links when their

distance is less than dmax = 2. This rule yields a mean link length of d0 ≈ 1.2. For

a stress-free initial configuration we set the t
(0)
i,l , n

(0)
i,l vectors as well as the equilibrium

link lengths `l so that no internal forces or torques are exerted in the system.

2.4. Plasticity

Tissue plasticity is modeled by specific rules that reconfigure the links. As cells can both

form new intercellular adhesions and remodel existing ones, in our model the topology

of connections changes in time. In particular, we assume that the lifetime of a link is

reduced by tensile forces. For a given link, l, the probability of its removal during a

short time interval ∆t follows Bell’s rule [26] as

pl∆t = AeFl/F
∗
∆t, (20)

where F ∗ is a threshold value, and A is a scaling factor which sets the fragility of the

connections.

Two adjacent particles (Voronoi neighbors), i and j, can establish new contacts if

their distance di,j is less than dmax . During a short time interval ∆t, the probability of

this event is a decreasing function of the distance:

qi,j∆t = B

(
1− di,j

dmax

)
∆t. (21)

The scaling factor B represents the level of cellular protrusive activity devoted to

scanning the environment and the ability to form intercellular contacts.

Simulations are event-driven: using the probability distributions (20) and (21),

we generate the next event µ and waiting time τ according to the stochastic Gillespie

algorithm [27]. The waiting time until the next event is chosen from the distribution

logP (τ) =
−τ∑

l pl +
∑

i,j qi,j
(22)

where the sums are evaluated using all possible particle pairs i, j not connected by a

link as well as enumerating existing links l.

After each event, the system is relaxed into a mechanical equilibrium. A new link

is assumed to be stress free immediately after insertion. Cells, however, are expected to

maintain a certain area or volume, characterized by the mean stress free link length d0.

To reflect this process in our model, the equilibrium length of each link evolves in time

according to the stochastic dynamics

d`l
dt

= C(d0 − `l) + ξ (23)
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where ξ is an uncorrelated white noise with variance σ.

The simulation time is set by the A and B parameters. We set our time unit as

1/B ≈ 1s, the time needed for two adjacent cells to establish a mechanical link. The

time needed for a cell-cell contact to mature is B/C ≈ 1min. We also set the lifetime

of an unloaded link to B/A ≈ 1min, thus two cells pulled away by a force F ∗ separate

in ∼ 20s.

3. Results

3.1. Elastic parameters

To establish the connection between the macroscopic material parameters such as

Young’s modulus and the microscopic model parameters k1, k2 and k3, we simulated

elastic deformations in response to uniaxial tension, in-plane shear and (three

dimensional) plate bending. The simulations started from a stress-free initial condition

and the same microscopic parameters were assigned to each particle. During these

simulations the connectivity of the particles and the equilibrium link properties do not

change, hence the system exhibits a pure elastic behavior. The forces and torques exerted

by the links are proportional to the microscopic parameters k1, k2 and k3. Thus, in the

simulations we set the scale of forces as F0 = k3d0, i.e., the force required to extend

a cell twofold along one direction. This choice of force unit allowed us to perform the

simulations with k3 = 1.

3.1.1. Uniaxial tension. We applied external, outward-directed forces on particles that

are on the left and right side of the test object (Fig. 2a, inset). The external force acting

on particle i is

Fext
i =


−(Fleft, 0, 0), for xi < 0.1L

(Fright, 0, 0), for xi > 0.9L

(0, 0, 0), otherwise.

(24)

Parameters Fleft and Fright are chosen in such a way that the net external force is zero

and the magnitude of external forces acting on either side is F∑
i

|Fext
i | = 2F . (25)

After obtaining mechanical equilibrium, we determined the axial elongation ∆L

and transverse contraction ∆W . The 2D elastic (Young’s) modulus was calculated from

the engineering stress and strain as

E2D =
F/L

∆L/L
=
F

∆L
= 1/a (26)

where a is the slope of a linear fit over the ∆L vs F data points, obtained in the range

of 0 < F/F0 < 3.2. Similarly, the 2D Poisson’s ratio is obtained as

ν2D = −∆W

∆L
= b/a, (27)
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Figure 2. Simulations of uniaxial stretch. The dimensionless 2D Young’s

modulus (E2D/k3; in panel a) and the 2D Poisson’s number (b) are plotted

as a function of the bending rigidity parameter k1/k3. The inset in panel (a)

depicts a typical configuration of the stretched sample. Black arrows indicate

the external forces prescribed during the simulation. The color of the links

indicate compression (red), tension (green) or being at the neutral length d0
(blue).
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Figure 3. The 2D shear modulus, G2D, as obtained from simulations. The

green line indicates G = E/2(1 + ν), the relation expected to hold for elastic

parameters of a homogenous and isotropic material. The inset depicts a typical

configuration of the sheared structure using the color-convention of Fig. 2.

where b is the slope of a linear fit over the ∆W vs F data points.

Since the deformation is planar, interparticle links do not twist. Therefore, E2D

and ν2D do not depend on the value of k2. The bending rigidity parameter k1, however,

can substantially influence both material parameters (Fig. 2). For k1 � k3, the external

forces are mainly balanced by the elongation of the interparticle links. In this regime

thus E2D ≈ k3. The 2D Poisson’s ratio is well approximated by 1/[2tg(π/3)] ≈ 0.29,

the change in the aspect ratio of a triangular lattice when stretched in one direction

while keeping the length unchanged for the rest of lattice links. In contrast, for k1 & k3
bending rigidity of the nodes substantially influences the elastic behavior of the system.

Interestigly, ν2D < 0 for k1 � k3 as link angles are maintained to such an extent that

uniaxial stretching will result in an isotropic expansion of the entire mesh. As this

regime is biophysically implausible, we restrict the bending rigidity parameter in the

k1 < k3 (28)

regime.
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3.1.2. In-plane shear. In these simulations external shear forces were applied in two

layers as

Fext
i =


−(Fleft, 0, 0), for yi < 0.1L

(Fright, 0, 0), for yi > 0.9L

(0, 0, 0), otherwise,

(29)

so that the net external force is zero, and the total force is given by (25). To

avoid rotation of the simulated system, particles subjected to external forces were also

constrained to move along the x axis.

The shear deformation was quantified using the mean displacements ∆x of the

stripes where forces were acting. The 2D shear modulus was calculated as

G2D =
F/L

∆x/L
=

1

c
(30)

where c is the slope of a linear fit over the ∆x vs F data points. The obtained shear

moduli are well approximated by

G2D = E2D/2(1 + ν), (31)

the relation expected for an isotropic homogeneous linear elastic solid (Fig. 3).

3.1.3. Bending. To calibrate the bending rigidity of the modeled tissue layer, we

simulated a plate immobilized along one side and bent by a perpendicular force exerted

at the opposite side. The loading force was localized at the rightmost 10% of the

particles, acting in a direction perpendicular to the plane of the particles (Fig. 4).

Simulations revealed that the longitudinal cross section of the deflected monolayer

is well approximated by a cubic function – as expected from a beam with finite thickness.

Thus, despite the fact that in our model bending rigidity does not arise through the

Euler-Bernoulli/Love-Kirchhoff mechanism, we defined and used the modulus EI to

relate the deflection z to the loading force F as

z = F L3

3EI
. (32)

This “effective” bending modulus can be tuned over several orders of magnitude, and

it is a monotonic, nonlinear function of the microscopic model parameters k1 and k2
(Fig. 4). When torsion of the links is negligible (k2 � k1), the bending modulus EI

is proportional to the microscopic bending modulus k1. In contrast, when k2 < k1 the

macroscopic curvature of the simulated sheet is mainly accommodated by torsion of the

links, hence in this regime EI depends less on the value of k1.

The bending modulus EI also allows one to associate an effective layer thickness w

to a set of microscopic model parameters. For a homogenous elastic material of thickness

w and the same lateral size L the second moment of the cross-sectional area is

I =
1

12
Lw3. (33)
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Figure 4. Plate bending. a: Macroscopic bending rigidity, EI, vs the

microscopic bending rigidity k1 for various values of k2 indicated by red to

green colors. The inset depicts a typical simulation configuration. b: The

thickness w of a plate that exhibits the same bending and Young’s moduli as

presented in panel (a) and Fig. 2a.
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If the stretch data shown in Fig. 2 were measured on the same material with a cross

section of wL, then its (three dimensional) Young’s modulus was

E =
F/Lw
∆L/L

= E2D/w. (34)

Using the bending modulus values EI shown in Fig. 4, and substituting E and I into

(32) we obtain

z = F 4L2

E2Dw2
(35)

yielding

w = 2L

√
1

E2D

F
z
. (36)

As an example, the parameters k1 = k2 = 10−2k3 are consistent with a plate that is

composed of columnar cells with an aspect ratio of 1:3 (Fig. 4b).

These results allow further refinement of our force scale F0 = k3d0 as follows.

According to Fig. 2, the 2D Young’s modulus is well approximated by k3 in the k1 � k3
regime. The corresponding 3D elastic modulus is then E = k3/w. For the avian epiblast

both E and w values are reported in the literature. Using the values of E0 ≈ 1 kPa [28]

and w0 ≈ 30µm [29], we obtain

F0 = k3d0 ≈ E0w0d0 = 300nN (37)

for the value of our force unit.

3.2. Plastic behavior

Link remodeling allows the simulation of elasto-plastic behavior. As the probability

of link removal depends on its load, mechanical stresses are thus accommodated and

relaxed in an irreversible process. To characterize macroscopic plastic behavior, we

simulated two standard, external force-driven processes: force relaxation within a pre-

stressed configuration and creep under uniaxial tension. In both scenarios the initial

condition involved external forces that pulled longitudinal links with an average force

of F0.

3.2.1. Relaxation of mechanical tension. To investigate how the simulated structure

can relax mechanical stresses, first an elastic mechanical equilibrium was obtained in

the presence of external uniaxial tensile forces according to (24). Then, both sides of

the stretched sample were fixed in space by replacing the external forces of Eq (24) by

stiff springs as

Fext
i = −k0(ri − r

(0)
i ) (38)

where the parameter k0 = 10k3 sets the stiffness of the constraint and r
(0)
i denotes

the position of particle i at the onset of the plastic relaxation process. This initial

condition was used for the plasticity algorithm that generated a series of link removal
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Figure 5. The external force required to maintain a pre-set stretch is decreasing

in time. A stretched configuration (shown in Fig. 2) served as the initial

condition for the simulations. Particles that had been subjected to external

fores were fixed in space (marked by rectangles in the inset). The magnitudes

of the external forces required to maintain this constraint are shown normalized

to their initial, pre-relaxation values. Data were obtained from stochastic

simulations with three choices of the force threshold parameter F∗. Each

data point is an average of three independent simulation runs. Error bars

indicate standard deviation. The solid curves are exponential functions with

characteristic decay times of τ = 30s (red), 50s (green) and 70s (blue). The

inset depicts a late-stage configuration when only 10% of the initial external

force is needed to maintain the pre-set constrain.

and insertion events, each followed by updating the configuration to reflect the new

mechanical equilibrium. In each configuration, we evaluated the external forces that

were needed to maintain the pre-set extension. As Fig. 5 demonstrates, the net force

exerted at either side decays in time as an exponential function to a positive value (the

yield stress), and the characteristic time is approximately proportional to the critical

force parameter F∗. The magnitude of the characteristic times are in good agreement

with the experimental data of [13]. During the process particles are rearranged in such

a way that the isotropy of link lengths (i.e. cell shape) is restored. The shortening of

the longitudinal links was achieved by intercalation: cells in adjacent rows moved into a

single row. Hence, in this setting cell intercalation is driven by an external mechanical

load. Forces do not diminish completely as the stressed bonds are likely to form again if
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Figure 6. Creep during uniaxial tension. The strain of the sample is plotted

as a function of time for three force threshold parameters F∗, indicated with

distinct colors. Each data point is an average of at least three independent

simulation runs. Error bars indicate standard deviation. The inset depicts the

configuration after the appearance of necking.

the mechanical stress within the simulated tissue is too small to move particles further

apart.

3.2.2. Creep under constant tension. In a set of complementary simulations the loaded

edges were hardened to prevent detachment of the particles. Thus, particles exposed to

external forces maintained their orientation by setting Qi to null matrices in Eq. (19)

and were connected by more stable links (i.e., links with increased F ∗ parameter). In

these simulations the sample gradually extends and narrows (Fig. 6). The initial strain

rate is set by the magnitude of the external load and F ∗. However, as links are removed

faster than new ones are inserted, the strain rate increases with time (necking).

3.3. Cell movements and active cell adhesion control

Model particles can be also considered as simulation agents, executing certain prescribed

actions in addition to passively responding to the mechanical forces exerted. Such

actions may involve the modulation of link parameters such as the equilibrium link

length or the neutral link direction. Furthermore, the probabilities associated with

the formation or severance of links may also be controlled. These potential control
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Figure 7. Convergent-extension movements driven by active intercalation. a:

initial configuration. b: configuration after 300 link insertion or removal events.

c: Particle displacements indicate the lateral contraction and axial elongation.

mechanisms allow the simulation of various cell autonomous behavior and their collective

effects.

3.3.1. Active intercalation. Anisotropic cell activities were suggested to drive active

intercalation movements of early vertebrate embryos [30]. In our model link removal

events allow adjacent particles to rearrange their connections. To model active

intercalation we assume that cells are more likely to extend processes and establish

intercellular contacts along a selected direction (p). Thus Eq. (21) is expanded as

qi,j∆t = B

(
1− di,j

dmax

)(
1− α + α(ui,jp)2

)
∆t, (39)

where 0 ≤ α ≤ 1 is a parameter tuning the strength of anisotropy. Similarly, links

perpendicular to p are expected to be less stable, reflected by the modified expression

(20)

pl∆t = AeFl/F
∗ (

1− α(ulp)2
)

∆t. (40)

Simulations performed with orientation-dependent link probabilities (α = 1),

and with random cell detachments as a driving mechanism, yield both the local

cell intercalation and the gradual elongation and lateral contraction (i.e., convergent-

extension movements) of the tissue (Fig. 7).

3.3.2. Autocorrelation functions. The spatial and temporal correlations of tissue

movements can be used to characterize both simulations (Fig. 8) and empirical data

[17]. For an arbitrary quantity φ(x, t), temporal autocorrelations are calculated using

Ct(φ, τ) =
〈φ(x, t′)φ(x, t)〉x,|t′−t|∈B(τ)

〈φ2(x, t)〉x,t
, (41)
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Figure 8. Autocorrelation functions of tissue movements obtained in a system

of N = 1100 particles. Temporal (a,c) and spatial (b,d) autocorrelations are

plotted for both velocities v (a,b) and velocity fluctuations V (c,d). Velocities

are calculated as displacements during a time interval ∆t. Data are shown for

three time intervals, ∆t = 10s (red) 30s (green) and 100s (blue). The linear

size of the system was L = 33.

where 〈...〉x,t denotes averaging over all possible locations x and time points t. In the

nominator of (41) the time points t and t′ are restricted so that their difference falls into

a bin B(x) = [x− b;x+ b]. Similarly, for spatial autocorrelations we evaluate

Cr(φ, r) =
〈φ(x, t)φ(x′, t)〉|x−x′|∈B(r),t

〈φ2(x, t)〉x,t
, (42)

Velocities were obtained as

vi(t) =
xi(t+ ∆t)− xi(t)

∆t
, (43)

where the ∆t time interval is a parameter. Particle velocities, driven by link remodeling

events and subsequent relaxation to mechanical equilibrium, exhibit both sustained

temporal and long-range spatial correlations (Fig. 8). The latter extend over distances

comparable to the size of the simulated system. Correlations increase for velocities

calculated with longer ∆t values. Hence, instantaneous velocity fields are dominated by

mechanical adaptation to random link remodeling events. However, a longer time lag

suppresses the noise and the resulting velocity fields are characteristic for the overall
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tissue movements that are highly correlated both in time and space. Thus, our stochastic

simulation rules yield persistent large-scale (multi-cellular) motion patterns.

The presence of a sustained movement pattern motivates to define velocity

fluctuations as

Vi(t) = vi(t)− vi (44)

where vi = 〈vi(t)〉t is the sustained drift velocity of particle i. The velocity fluctuations,

mainly adjustments due to changes in connectivity, do not show long range temporal

correlations (Fig. 8c). The finite correlation time ∼ 2min reflects the link length

adjustment rule (23). Velocity fluctuations, however, continue to exhibit long-range

spatial correlations (Fig. 8d), due to the strong mechanical coupling within the system.

4. Discussion

4.1. Tissue plasticity

The plastic behavior of cell aggregates was well studied in a series of experiments where

aggegates were compressed in an apparatus where both the compression force as well

as the shape of the deformed sample could be precisely monitored [13]. Under these

circumstances, a short compression elicits an elastic (reversible) deformation. In this

elastic regime the deformation is homogenous within the aggregate: individual cells are

also compressed along one direction. In contrast, when the compression is maintained

for several hours, the force needed to maintain the deformation decreases in time. This

decrease is close to exponential, and the behavior is plastic in the sense that after

removing the compression force, the aggregate remains in the new equilibrium shape

for several hours. Confocal microscopy revealed that cells within the aggregate regained

their isotropic shapes – hence they remodeled their intercellular connections. These

empirical findings, including the time scale of the plastic relaxation process, are well

reproduced by our model (Fig. 5).

Exponential relaxation of shear stress, characteristic for the Maxwell fluid, has been

proposed to model embryonic tissues. Such behavior can arise by a sufficient number

of cell divisions or apoptoses within the tissue [3], or by a mechanical load-dependent

remodeling of intercellular connections [1, 2]. In our simulations, in accord with the

continuum theory by Preziosi et al [1, 2], the stress does not diminish completely. We

attribute this effect to an inherent granularity within the model. A stretched link is

replaced in a T1 transition (Fig. 9) by the following sequence of events: 1) a stretched

link is removed. 2) The distance between the previously interconnected particles is

increased in the new mechanical equilibrium. 3) The resulting “gap” (or soft patch) is

filled in by a new link connecting cells in the orthogonal direction. This last step occurs

only if the local deformation in step 2 alters distances to an extent that the two particles

that were interconnected by the removed link do not remain Voronoi neighbors. Thus,

in our model a yield stress, below which the tissue response is elastic, arises naturally.
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Figure 9. Cell neighbor exchange in a T1 transition. a: In the vertex model a

polygonal boundary is eliminated, then a new boundary segment forms between

cells that were previously non-adjacent. Vertices are represented by filled

circles. In the model proposed here a stretched connection between two adjacent

cells is removed. As the link was load-bearing, a mechanical equilibrium yields

a new configuration where the previously adjacent cells move away, while their

neighbors move closer in a direction perpendicular to the direction of the

removed link. The central “hole” in the second configuration indicates a soft

patch into which adjacent cells can protrude. Finally, a new link can connect

previously non-adjacent particles. Particles are represented by open circles,

black segments indicate the links between particles. Gray polygons are cell

shapes that are not resolved in the model.

4.2. Intercellular forces

Bell’s rule of force-mediated bond dissociation (20) and the corresponding exponential

lifetime of adhesion links [26] is supported by dynamic force microscopy experiments

[31]. The reported studies indicated a single molecule rupture force (corresponding to

F ∗ for a single molecule) around 10 pN. As a cell may display 105 adhesion molecules on

its membrane [32], two adjacent cells may be linked by 104 adhesion molecules. Thus,

the rupture force needed to separate two cells is 100 nN if we assume that separation

breaks each adhesion bond between the two cells. When cells are pulled apart slowly,

a much lower force is sufficient as adhesion molecules can spontaneously unbind: for

example, embryonic zebrafish cells can be separated by 10 nN forces [22]. In our model

the separation of a strained intercellular contact is assumed to be instantaneous (not

resolved by the dynamics), we estimate F ∗ ≈ 100nN , which in our force units translates

into F ∗ ≈ F0/3, a value used for simulations in Figs. 5-7.
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4.3. Tissue movements

The emergence of tissue movements from the collective action of its constituent cells

is one of the central questions of developmental biology. Imaging studies established

that during later stages of development involving a well-crosslinked matrix the cells

and their immediate extracellular matrix surroundings move as a composite material

[33, 34], while during earlier stages individual cell motility is superimposed on a larger

scale tissue movement [35, 36]. Hence the body plan of early amniote embryos do not

appear to be established by “conventional” cell motility – i.e., cells migrating on an

external substrate to pre-defined positions following environmental cues. Instead, germ

layers and the entire embryo morphology are molded to a large extent by cell-exerted

mechanical forces (stresses) and their controlled dissipation/relaxation.

Anisotropic cell behavior has been proposed previously to explain convergent-

extension movements [14, 37, 21, 15, 16]. Here we demonstrated that anisotropic

cell activity can be formulated within our proposed model, and the simulations yield

velocity autocorrelations comparable with those reported for avian embryos [17]. In

particular, particle image velocimetry revealed that the displacements of morphogenetic

tissue movements are smooth in space and tissue movements are correlated even at

locations separated by several hundred micrometers, comparable to the size of the

embryo. Velocity vectors, however, strongly fluctuate in time. The autocorrelation

time of the velocity fluctuations was reported to be less than a minute. Our model

suggest that fluctuations with a short correlation time can be generated by sudden

cellular detachment/reattachment events occurring at random positions – the driving

mechanism of tissue movements. The long correlation length is consistent with the idea

that the tissue is in mechanical equilibrium, therefore a local change in cell traction is

expected to immediately alter tissue deformations elsewhere.

In summary, we demonstrated that the proposed model yields a realistic elasto-

plastic behavior with exponential relaxation of tensile stresses above an intrinsic

threshold value. Due to the simplicity of the model, microscopic parameter values can be

inferred from tissue thickness, its macroscopic elastic modulus and Poisson’s number and

the magnitude and dynamics of intercellular adhesion forces. The proposed stochastic

simulation of cell activities gives rise to fluctuating tissue movements, which exhibit the

same autocorrelation properties as the empirically obtained data. This model, therefore,

can serve as a mechanically correct basis for cell-resolved or agent-based future studies

focusing on tissue morphogenesis.
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during early embryogenesis. Phys Biol, 8(4):045006, Aug 2011.

[18] H. Honda and G. Eguchi. How much does the cell boundary contract in a monolayered cell sheet?

J Theor Biol, 84(3):575–588, Jun 1980.

[19] Alexander G Fletcher, Miriam Osterfield, Ruth E Baker, and Stanislav Y Shvartsman. Vertex

models of epithelial morphogenesis. Biophys J, 106(11):2291–2304, Jun 2014.

[20] Reza Farhadifar, Jens-Christian Rper, Benoit Aigouy, Suzanne Eaton, and Frank Jlicher. The

influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr

Biol, 17(24):2095–2104, Dec 2007.



Tissue Plasticity and Morphogenesis 22

[21] Matteo Rauzi, Pascale Verant, Thomas Lecuit, and Pierre-Franois Lenne. Nature and anisotropy

of cortical forces orienting drosophila tissue morphogenesis. Nat Cell Biol, 10(12):1401–1410,

Dec 2008.

[22] Jean-Lon Maitre, Hlne Berthoumieux, Simon Frederik Gabriel Krens, Guillaume Salbreux, Frank

Jlicher, Ewa Paluch, and Carl-Philipp Heisenberg. Adhesion functions in cell sorting by

mechanically coupling the cortices of adhering cells. Science, 338(6104):253–256, Oct 2012.

[23] Hisao Honda, Masaharu Tanemura, and Tatsuzo Nagai. A three-dimensional vertex dynamics

cell model of space-filling polyhedra simulating cell behavior in a cell aggregate. J Theor Biol,

226(4):439–453, Feb 2004.

[24] D. Drasdo and G. Forgacs. Modeling the interplay of generic and genetic mechanisms in cleavage,

blastulation, and gastrulation. Dev Dyn, 219(2):182–191, Oct 2000.

[25] Ignacio Ramis-Conde, Dirk Drasdo, Alexander R A Anderson, and Mark A J Chaplain. Modeling

the influence of the e-cadherin-beta-catenin pathway in cancer cell invasion: a multiscale

approach. Biophys J, 95(1):155–165, Jul 2008.

[26] G. I. Bell. Models for the specific adhesion of cells to cells. Science, 200(4342):618–627, May

1978.

[27] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of

Physical Chemistry, 81(25):2340–2361, 1977.

[28] Ubirajara Agero, James A Glazier, and Michael Hosek. Bulk elastic properties of chicken embryos

during somitogenesis. Biomed Eng Online, 9:19, 2010.

[29] R. Bellairs and M. Osmond. The atlas of chick development. Academic Press, San Diego, CA,

1998.

[30] Octavian Voiculescu, Federica Bertocchini, Lewis Wolpert, Ray E Keller, and Claudio D Stern. The

amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature,

449(7165):1049–1052, Oct 2007.

[31] Xiaohui Zhang, Susan E Craig, Hishani Kirby, Martin J Humphries, and Vincent T Moy. Molecular

basis for the dynamic strength of the integrin alpha4beta1/vcam-1 interaction. Biophys J,

87(5):3470–3478, Nov 2004.

[32] Ramsey A Foty and Malcolm S Steinberg. Cadherin-mediated cell-cell adhesion and tissue

segregation in relation to malignancy. Int J Dev Biol, 48(5-6):397–409, 2004.

[33] Bertrand Benazeraf, Paul Francois, Ruth E Baker, Nicolas Denans, Charles D Little, and Olivier

Pourquie. A random cell motility gradient downstream of fgf controls elongation of an amniote

embryo. Nature, 466(7303):248–252, Jul 2010.

[34] Anastasiia Aleksandrova, Andras Czirok, Andras Szabo, Michael B Filla, M. Julius Hossain, Paul F

Whelan, Rusty Lansford, and Brenda J Rongish. Convective tissue movements play a major

role in avian endocardial morphogenesis. Dev Biol, 363(2):348–361, Mar 2012.

[35] Evan A Zamir, Andras Czirok, Cheng Cui, Charles D Little, and Brenda J Rongish. Mesodermal

cell displacements during avian gastrulation are due to both individual cell-autonomous and

convective tissue movements. Proc Natl Acad Sci U S A, 103(52):19806–19811, Dec 2006.

[36] Evan A Zamir, Brenda J Rongish, and Charles D Little. The ecm moves during primitive streak

formation–computation of ecm versus cellular motion. PLoS Biol, 6(10):e247, Oct 2008.

[37] Mark Zajac, Gerald L Jones, and James A Glazier. Simulating convergent extension by way of

anisotropic differential adhesion. J Theor Biol, 222(2):247–259, 2003.


	1 Introduction
	2 Model
	2.1 Mechanics
	2.2 Mechanical equilibrium
	2.3 Initial condition, connectivity
	2.4 Plasticity

	3 Results
	3.1 Elastic parameters
	3.1.1 Uniaxial tension.
	3.1.2 In-plane shear.
	3.1.3 Bending.

	3.2 Plastic behavior
	3.2.1 Relaxation of mechanical tension.
	3.2.2 Creep under constant tension.

	3.3 Cell movements and active cell adhesion control
	3.3.1 Active intercalation.
	3.3.2 Autocorrelation functions.


	4 Discussion
	4.1 Tissue plasticity
	4.2 Intercellular forces
	4.3 Tissue movements


