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Abstract. One of the most remarkable social phenomena is the formation of

communities in social networks corresponding to families, friendship circles, work

teams, etc. Since people usually belong to several different communities at the same

time, the induced overlaps result in an extremely complicated web of the communities

themselves. Thus, uncovering the intricate community structure of social networks

is a non-trivial task with great potential for practical applications, gaining a notable

interest in the recent years. The Clique Percolation Method (CPM) is one of the

earliest overlapping community finding methods, which was already used in the analysis

of several different social networks. In this approach the communities correspond to

k-clique percolation clusters, and the general heuristic for setting the parameters of

the method is to tune the system just below the critical point of k-clique percolation.

However, this rule is based on simple physical principles and its validity was never

subject to quantitative analysis. Here we examine the quality of the partitioning

in the vicinity of the critical point using recently introduced overlapping modularity

measures. According to our results on real social- and other networks, the overlapping

modularities show a maximum close to the critical point, justifying the original criteria

for the optimal parameter settings.

http://arxiv.org/abs/1308.3340v1
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1. Introduction

A widely used tool for the study of social phenomena is provided by networks, based on

the fundamental concept of mapping the connections among people into a graph. Due to

the developments in Information Technology, our social activities and relations generate

various forms of data on the large scale. On the one hand this offers a gold mine for

research, and on the other hand it can cause non-trivial data handling problems. The

network approach has turned out to be very successful in the study of large scale social

data, marked by investigations on mobile-phone networks [1, 2, 3, 4], e-mail networks

[5, 6, 7, 8], co-authorship networks [9, 10, 11, 12, 13, 14] and online social networks

[15, 16, 17, 18, 19]. We note that the idea of representing a complex system with a

network is frequently used in various other fields as well, including biology, computer

science, economy, etc. According to a very recent survey [20], the network approach

can be useful also in the description of the collective motion of dynamically interacting

agents. A highly interesting feature of real networks is that in spite of their independent

origin, they show many universal features, characterised by a low average distance

combined with a high average clustering coefficient, anomalous degree distributions,

spreading phenomena and correlations [21, 22, 23, 24, 25].

One of the most widely studied area of complex network research is devoted to

communities, (also called as modules, clusters, cohesive groups, etc.), associated with

more highly interconnected parts [26, 27, 28, 29, 30, 31, 32, 33, 34, 35], (for a detailed

review on communities see Ref.[36]). Such building blocks (functionally related proteins

[37, 38], industrial sectors [39], interconnected Autonomous Systems in the Internet [40],

similar blogs on the World Wide Web [41, 42], etc.) can play a crucial role in forming the

structural and functional properties of the involved networks. Another field of growing

interest in complex network theory is related to hierarchy [43, 44, 45, 46, 47, 48], and

the presence of communities in networks is one of the relevant and informative signature

of the hierarchical nature of complex systems [37, 49, 50].

Communities play a central role in social network research as well, where they can

correspond to families, friendship circles, professional teams, or on a larger scale to

fan clubs, institutions, etc. [51, 52]. These different types of modules show non-trivial

behaviour from several aspects. E.g., the time evolution of smaller collaborative or

friendship circles shows significant differences when compared to larger communities

like institutions [53]. Another surprising result is the dissasortativity of the graph

of communities in highschool friendship networks [54], especially in the light of the

assortative nature of social networks in general. Very large scale social communities are

also highly interesting, e.g., in a study concerning the mobile phone network of Belgian

users the arising communities contained only adjacent municipalities, and the only

community running across the “linguistic border” between the Walloon- and Flemish

regions was the one related to the Brussels and surroundings [55].

Motivated by the importance of community finding in social networks, (and in

complex networks in general), here we focus on a theoretical problem related to the
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quality of partitioning. First of all, we point out that in case of social networks,

allowing overlaps between the communities is crucial, as we are all members of our

family, friendship circle, working group, etc., at the same time in parallel. (Several

results suggest that overlaps between communities are important also in biology, where

e.g., proteins can be part of more than one functional unit [56]). One of the first

algorithms allowing shared members between the communities was given by the clique

percolation method (CPM). Here the basic building blocks of the communities are given

by k-cliques, (complete sub-graphs of k-nodes), and communities are associated with

k-clique percolation clusters. The usual rule for finding the optimal partitioning in

this approach is to tune the system to the critical point of k-clique percolation. (In

case of e.g., weighted networks this can be achieved by applying an appropriate weight

threshold). The reasoning behind this rule is based on simple “physical” principles:

the emergence of a giant percolating community would merge (and make invisible)

many smaller communities, thus, to find a community structure as highly structured

as possible, one has to be at the critical point, where the rising of a giant k-clique

percolation cluster is just avoided.

Although the above approach for setting the parameters of the CPM was successful

in producing meaningful communities in many real networks, the quality of the

partitioning obtained this way was never compared to the results for different parameter

settings. Thus, in this paper we examine the quality of the communities in the

vicinity of the critical point of k-clique percolation. For quantifying the quality of

the community partitions, we rely on various recently introduced modularity measures

[57, 58, 59, 60, 35, 61], all designed specially for overlapping communities. (The concept

of maximising a real valued modularity function for finding the best community partition

is a very popular approach in general, and is also used in non-overlaping clustering

problems.) The motivation of our research is the following: Since the idea of tuning

the k-clique percolation to the critical point and modularity maximisation are two

independent principles aimed at the same target, (i.e., finding optimal community

partitions), it is an interesting question whether they show any consistency with each

other? I.e., if the partitioning is optimal at the critical point also from the point of

modularity, we should observe a maximum in the modularity. We note however that this

maximum should be treated as a “local” maximum, or more precisely as a maximum

amongst the CPM partitions obtained at different stages of the k-clique percolation

transition. The global maximum for the modularity may correspond to a partition

(amongst all possible community partitions) which contains communities that are not

k-clique percolation clusters.

The paper is organised as follows. In Sect.2. we describe the CPM in short, while

in Sect.3. we overview the different overlapping modularity measures. In Sect.4. we

examine the behaviour of the listed modularities in the vicinity of the critical point of

k-clique percolation in real networks, and finally we conclude in Sect.5.
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2. The Clique Percolation Method

As mentioned in Sect.1., the community definition in this approach is based on k-cliques.

A k-clique is a sub-graph with maximal possible link density, (i.e., every member of a

k-clique is connected to every other member), therefore, it is a good starting point

for defining communities. However, a method accepting only complete sub-graphs

as communities would be too restrictive. Therefore, k-cliques are “loosen up” in the

following way. Two k-cliques are considered adjacent if they share k − 1 nodes, and a

community is defined as the union of k-cliques that can be reached from each other

through a series of adjacent k-cliques. In other words, a community is equivalent

to a k-clique percolation cluster. We note that a k-clique percolation cluster is very

much like a regular edge percolation cluster in the k-clique adjacency graph, where the

nodes represent the k-cliques of the original network, and there is a link between two

nodes, if the corresponding two k-cliques are adjacent. The two main advantages of

the community definition above is its local nature that it allows overlaps between the

communities: a node can be part of several k-clique percolation clusters at the same

time.

When applied to weighted networks the CPM method can have two parameters:

the k-clique size k, and a weight threshold w∗ (links weaker than w∗ are ignored). When

k and w∗ are very high, only a few disintegrated community remain, while for low k

and w∗ in many cases we see a giant community arising, spreading over the majority

of the network. When varying the weight threshold at a fixed k, the transition from

the dispersed communities to the giant community is analogous to a percolation phase

transition. (E.g., previous work has shown that the k-clique percolation transition in the

Erdős-Rényi graph is a generalisation of the regular edge percolation transition [62, 63]).

The criterion for finding the optimal value of w∗ is based on the aim to find a community

structure as highly as possible: when the threshold is high we neglect too many links

(and communities), while the giant community appearing at low w∗ values can smear out

the details by merging (and making invisible) the smaller communities. Thus, former

works suggested adjusting w∗ close to the critical point of k-clique percolation, where we

take into account as many links as possible without allowing the emergence of a giant

community.

3. Modularity measures

3.1. The modularity by Girvan and Newman

The most popular quality function for community partitions is given by the modularity

of Newman and Girvan [64], comparing the fraction of links inside the communities to the

expected fraction of links in a random graph where the individual node degrees are equal

to the node degrees in the original network. The basic idea behind this approach is that

the number of links inside well defined communities should be significantly larger than

what we would except at random. The random null model serving as the reference point
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is given by the configuration model [65], where the probability for having a connection

between nodes i and j with degrees di and dj is given by didj/4M
2, where M denotes

the total number of links. Accordingly, the expected fraction of links inside community

α is expressed by first summing up the node degrees in α as dα =
∑

i∈α di, and simply

writing (dα/2M)2. Based on the above, the modularity can be given as

Q =
K∑

α=1

Qα =
K∑

α=1


 lα
M

−

(
dα
2M

)
2

 , (1)

where lα denotes the number of links inside community α, (and lα/M is simply the

fraction of links in α). We note that (1) can be also rewritten in a form with summation

over the individual nodes as

Q =
1

2M

∑

ij

(
Aij −

didj
2M

)
δ(αi, αj), (2)

where Aij stands for the adjacency matrix, (Aij = 1 if i and j are linked, otherwise

Aij is zero), and δ(αi, αj) ensures the exclusion of terms where i and j are in different

communities.

3.2. Fuzzy modularity

The original modularity (1-2) defined for “crisp” partitions can be generalised for

overlapping communities in different ways. A straight forward solution was proposed by

Nepusz et al.[57] defining a fuzzy partition matrix uαi in the following way. The column

i of uαi is listing how the membership of node i is divided amongst the communities,

0 ≤ uαi ≤ 1, (3)
K∑

α=1

uαi = 1, (4)

i.e., uαi = 0 when it is not a member at all in community α, whereas a non-zero uαi signs

a belonging to α in some extent. In the limiting case of a crisp partition all entries except

one in the column become zero, and the entry corresponding to the sole community of

the node becomes one. In parallel, the row α of uαi is listing the membership values of

the nodes in community α. The row sum
∑N

i=1
uαi can be treated as the generalisation

of the community size.

By introducing a scalar product between the column vectors of uαi we obtain a

similarity measure between the nodes defined as

sij =
K∑

α=1

uαiuαj, (5)

where the summation is running over the communities. When nodes i and j have

non-zero memberships in absolutely different communities, sij = 0, while larger sij
values usually indicate more similar memberships vectors. In the limiting case of crisp

partitions sij = 1 if and only if i and j belong to the same community, or in other



Overlapping modularity at the critical point of k-clique percolation 6

words, sij becomes equivalent to δ(αi, αj). This observation leads naturally to the idea

of replacing δ(αi, αj) by sij in (2) for gaining an overlapping modularity measure as

Qf =
1

2M

∑

ij

(
Aij −

didj
2M

)
sij. (6)

A very nice feature of the fuzzy modularity obtained in this way is that in case of crisp

partitions it is equivalent to the original modularity by Newman given in (1-2).

However, not all overlapping community detection algorithms evaluate uαi

explicitly, instead they provide only the list of members in each community. In this

case several possibilities open up for calculating uαi. The simplest idea is to divide the

membership values of the nodes equally amongst their communities independently of

the underlying network topology [66] as

uαi =
1

qi
, (7)

where qi denotes the number of communities i participates in. To take into account the

number of links between the community members and the communities Chen et al.[58]

instead proposed

uαi =

∑
j∈αAij∑

α′

∑
j∈α′ Aij

. (8)

An even more sophisticated approach is suggested by Shen et al.[59], considering the

maximal cliques in the network and summing over all neighbours of a given member i

inside the community α as

uαi =
1

ui

∑

j∈α

Cα
ij

Cij
Aij , (9)

where Cα
ij denotes the number of maximal cliques in α containing the link (i, j), and Cij

stands for the total number of maximal cliques in the network containing the link (i, j).

The pre-factor 1/ui is for normalisation and can be calculated as

ui =
K∑

α=1

∑

j∈α

Cα
ij

Cij

Aij . (10)

The most general formulation of the fuzzy modularity (6) was given by Nicosia

et al.[60], where the concept of comparing the observed number of links between

community members to expectation values based on random null-models was extended

to overlapping communities.

3.3. Alternative ideas for modularity

Instead of generalising the terms in the original modularity (1-2), another option for

constructing a measure for the quality of overlapping partitions is to build up a formula

based on “first principles”, i.e., combining terms expressing various criteria for well

behaving communities with possible overlaps. Here we overview two different approaches

along this line.
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3.3.1. Partition density by Ahn et al. A very interesting approach for revealing

overlapping communities was suggested by Ahn et al. [35], based on clustering the links

instead of the nodes. In this approach link pairs sharing a node are ordered according to

the similarity between the neighbourhoods of their other end points. By using a single-

linkage hierarchical clustering based on this similarity, we obtain a link dendrogram,

and cutting this dendrogram at some threshold yields overlapping communities for the

nodes. For determining the optimal cut, Ahn et al. defined the partition density for an

individual community α as

Dα =
Mα − (Nα − 1)

Nα(Nα − 1)/2− (Nα − 1)
, (11)

where Nα andMα denote the number of nodes and links inside α respectively. Assuming

that α is connected, 0 ≤ Dα ≤ 1, i.e., when α is tree-like, Dα = 0, whereas a fully

connected community receives Dα = 1. The partition density D for the whole system

is given by the average of Dα, weighted by the fraction of links inside the communities

[35]:

D =
K∑

α=1

Mα

M
Dα =

2

M

K∑

α=1

Mα
Mα − (Nα − 1)

(Nα − 2)(Nα − 1)
. (12)

A very nice feature of (12) compared to e.g., (1-2) is its local nature, preventing the

emergence of the resolution limit observed in case of the original modularity [67].

3.3.2. The overlapping modularity by Lázár et al. Another alternative for the

overlapping modularity was proposed by Lázár et al.[61]. The first criterion for obtaining

a well defined community in this approach is that the members should devote the

majority of their links to the community rather than other parts of the network. To

quantify this aspect, the contribution of member i to the modularity of its community

α is calculated by comparing the number of its neighbours inside α to the number of its

neighbours outside α as
∑
j∈α

Aij −
∑
j /∈α

Aij

di
. (13)

Thus, the contribution becomes negative when i has more neighbours outside α. In

case of overlapping nodes belonging to multiple communities we also have to divide the

formula above by qi, corresponding to the number of communities of i.

A further simple criterion for decent communities is to have a relatively large link

density. Thus, the modularity of community α is given by the average of (13) over the

community members, multiplied by the link density inside α as

Qov

α =




1

Nα

∑

i∈α

∑
j∈α

Aij −
∑
j /∈α

Aij

di · qi




Mα(
Nα

2

) , (14)
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where Nα and Mα denote the number of nodes and links inside α respectively. The

overall modularity of a given partition is simply the average of Qov

α over the communities

given by

Qov =
1

K

K∑

α=1

Qov

α =
1

K

K∑

α=1

∑
i∈α

∑
j∈α

Aij−
∑
j /∈α

Aij

di·qi

Nα

Mα(
Nα

2

) . (15)

Since
(
1

2

)
is not defined, Qov

α for communities corresponding to single nodes is zero

by definition. However, in order to avoid partitions having only a few communities

with very high Qov

α values, Lázár et al. suggested collecting all unclassified nodes and

communities corresponding to single nodes into a separate community. A nice feature

of (13-15) is that it does not require normalised membership values for the nodes, which

makes it possible that e.g., high degree members can contribute more to the modularity

of their community compared to low degree nodes.

We note that a slight drawback of (15) is that it does not take into account the size

of the communities, every community is treated equally when calculating the average.

This can cause problems when a giant community has emerged spreading over the whole

system in the following way. The individual modularity for the giant community given

by (14) is almost surely low, since the link density inside cannot be significantly larger

than the overall link density in the network. However, as long as there are still at

least a few small good quality communities around, the modularity of the whole system

can remain high if the contributions from the small communities to (15) suppress the

single low quality contribution from the giant community. In order to prevent very large

communities from “hiding” their contribution in the overall modularity in this manner

we propose an alternative version for for Qov. Instead of treating the communities

equally, we weight them by the fraction of contained links obtaining

Q̂ov =
K∑

α=1

Mα

M
Qov

α . (16)

The weighted average above is very similar in nature to (12), used for calculating the

overall partition density D from the Dα defined for the individual communities.

4. Applications

We studied the behaviour of the overlapping modularities described in Sect.3. for

partitions obtained by the CPM in a couple of real networks. As mentioned in Sect.1.,

the question of main interest here is whether we find a (local or even global) maximum

in the modularity in the vicinity of the critical point of k-clique percolation. Since the

networks we studied were all weighted, our method for tuning the system to the critical

point was the application of a weight threshold, as explained in Sect.2. However, due to

the different origin, the total range and the distribution of the link weights was varying

from system to system. To treat all networks we investigated in the same framework, we
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ordered the links in each system according to their weights, and subsequently removed

them in this order starting from the lowest link weights. For this deterministic removal

process the control parameter of the phase transition is given by the fraction of removed

links, f . (A considerable advantage of this approach is that it can be used also for

un-weighted networks with random link removal processes).

For each given value of f , the communities were extracted with the help of

CFinder [68], a freely downloadable implementation of the CPM. To monitor the k-

clique percolation transition, we calculated the relative size of the largest community

αG given by SG ≡ NαG
/N , corresponding to the order parameter, (which is 1 if the

largest community includes all nodes, and is of the order of 1/N when f → 1.) However,

probably the most widely used method for determining the critical fraction of removed

links fc is via the susceptibility, χ. This quantity can be defined as the expected change

in the size of the largest community αG when merging with another community chosen

at random with a probability proportional to the community size:

χ =
∑

α6=αG

N2

α∑
α6=αG

Nα

. (17)

At the critical point χ is diverging in the thermodynamic limit, which is manifested in

a sharp peak for finite size systems.

Beside calculating SG and χ, for a given value of the removed fraction of links f we

also evaluated the overlapping modularity measures discussed in Sect.3., (taking into

account only the remaining links and omitting the already removed ones). For clarity,

in Table 1. we summarise their notion and defining formulae used in this paper.

The family of fuzzy modularities, Qf , QC and QS are generalisations of the original

Qf Fuzzy modularity by Nepusz et al. [57] given in Eq.(6),

where the partition matrix uαi is evaluated according to Eq.(7)

QC Fuzzy modularity by Chen et al. [58], given in Eq.(6),

where the partition matrix uαi is evaluated according to Eq.(8)

QS Fuzzy modularity by Shen et al. [59], given in Eq.(6),

where the partition matrix uαi is evaluated according to Eq.(9)

D Partition density by Ahn et al. [35], given in Eq.(12)

Qov Overlapping modularity by Lázár et al. [61], given in Eq.(15)

Q̂ov Overlapping modularity by Lázár et al. modified, given in Eq.(16)

Table 1. Summary of the examined overlapping modularity measures. The three

fuzzy modularities, Qf , QC and QS are very similar in nature, originating from the Q

introduced by Girvan and Newman [64] and formulated in Eq.(6). The only difference

between them is in the evaluation of the partition matrices. The partition density D

was introduced for “link-based” communities, and hence, it is based on the internal

link density of communities. Finally, the overlapping modularity by Lázár et al., Qov,

and also its modified version Q̂ov proposed here provide a third alternative approach

by combining different requirements for overlapping communities.
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non-overlapping modularity by Girvan and Newman [64]. The sole difference between

these three quantities lies in the evaluation of the partition matrices, uαi, needed for the

calculation of the similarity sij between the nodes in Eq.(5). The obtained sij are then

plugged into Eq.(6) for all three quantities. The partition density, D, was introduced

by Ahn et al.[35] for measuring the quality of overlapping “link-communities”, and

hence, it relies heavily on the link density inside the communities. Finally, the

original- and slightly modified version of the overlapping modularity by Lázár et al.

[61] were formulated by mixing multiple requirements towards meaningful overlapping

communities.

Furthermore, we also evaluated the modularities when the giant percolating

community was omitted in the calculation. A community spreading over the vast

majority of the nodes is a singular object. In contrast, the modularity measures were

designed for quantifying meaningful partitions, and are not expected to handle singular

communities like the giant k-clique percolation cluster correctly. A very simple idea to

get around this problem is to consistently disregard αG when calculating the modularity

measures.

4.1. The studied networks

The list of studied networks was the following:

• The social network between students of the University of California, (UNICAL),

constructed from an online message record [69]. The database contained 1899 users

forming altogether 13833 connections, where the weight of a link corresponded to

the total number of characters sent between the two endpoints.

• The social network between scientists based on co-authorship given by publications

in the Los-Alamos e-print archive under “astro-ph” (Astrophysics), from 1995 to

1999 [70]. Here the network was obtained by projecting the bipartite graph of

authors and articles onto the single mode graph of authors. The link weights were

calculated according to

wij =
∑

k

ÂikÂjk
∑

l Âlk − 1
, (18)

where Âik denotes the adjacency matrix of the bipartite graph, (i.e., Âik = 1 if

scientist i is a co-author of article k). The resulting co-authorship network contained

16046 nodes and 121251 links.

• The word association network obtained from the South Florida Free Association

norms list (containing 10617 nodes and 63788 links), where the weight of a link from

one word to another indicated the frequency that the people in the survey associated

the end point of the link with its start point [71]. Since we were interested in un-

directed networks, the final weight of the links corresponded to the sum of the

weights in the two opposite directions.
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4.2. Results

In this section we show the results obtained by omitting the giant community in the

calculation of the fuzzy modularities. The same figures for the “full” modularities

including also αG are given in the Appendix. We present our findings only for k = 3 or

k = 4, since the low number and small size of the communities at larger k values made

the precise location of the critical point impossible in the systems we studied. In all of

our experiments, the resolution in the removed fraction of links, f , was set to 0.005.

We begin with the results for the word association network in Fig.1., since the

critical behaviour of the k-clique percolation transition is a far more transparent and

articulate here compared to the other systems investigated in this paper.

In Fig.1a we plot the relative size of the largest community, SG, (corresponding to

the order parameter of the k-clique percolation transition), as a function of f , at k = 3.

In this panel we also show the relative size of the total coverage of communities in the

network, denoted by SC . (Due to the community definition originating in k-cliques, a

part of the nodes may not belong to any communities in case of the CPM, and the size of

this fraction is given by 1−SC .) Starting with a value very close to 1 at f = 0, both SG

and SC show a slowly decreasing tendency, turning into a steep decay in the vicinity of

the critical point, where the two curves separate from each other due to the faster change

in SG. To pinpoint the critical point of the k-clique percolation more precisely, in Fig.1b

we display the susceptibility χ as a function of f , showing a very sharp peak at fc. The

behaviour of the various overlapping modularities can be followed in Fig.1c, where each

modularity measure is rescaled by its maximal value and is plotted as a function of f .

The fuzzy modularities Qf , QC and QS show rather smooth curves with single (global)

maximums very close to fc. Although we can observe an unimodal shape for also the

partition density D, in this case the position of the maximum is shifted slightly towards

higher f values. Nevertheless, this maximum is also consistent with fc. Interestingly,

the modularity by Lázár et al., Qov shows a monotonously increasing tendency as a

function of f , with no maximum in the vicinity of the critical point. In our opinion, this

is due to the equal treatment of the communities irrespectively of the community size,

“hiding” the giant community with low quality among the better quality communities of

normal size. When switching from Qov to Q̂ov, also taking into account the community

sizes in the averaging, we regain the unimodal shape with a maximum very close to the

maximum of D, in consistency with the position of the critical point.

In Fig.2. we display our results for the co-authorship network at k = 4. The

percolation transition here is far less pronounced compared to the word association

network. E.g., the relative size of the giant community, SG is far below 1 even at f = 0,

as shown in Fig.2a. Although we observe a peak in the susceptibility, χ, (Fig.2b), its

width compared to its magnitude reveals a significantly broader nature compared to

the very sharp peak seen in Fig.1b. The corresponding overlapping modularities (scaled

by their maximal values) are depicted in Fig.2c, as functions of f . Interestingly, QS

and the partition density, D have global maximums consistent with the critical fc, and
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Figure 1. Results for the word association network at k = 3, with a resolution

in the fraction of removed links, f , set to 0.005. (Please note that symbols on the

plots appear at a smaller frequency, as they are intended only for making the different

curves more distinguishable). a) The relative size of the largest community, SG, and

the relative size of the total coverage of the communities, SC , as functions of f . b) The

susceptibility, χ, as a function of f , showing a significant sharp peak at the critical

point. c) The different overlapping modularities, each scaled by its maximal value, as

functions of f . The Qf , QC and QS have maximums very close to the critical point,

and these maximums are quite very pronounced as well. The partition density D and

the modified modularity by Lázár et al., Q̂ov, have also significant maximums close

to the critical point, however their position is slightly shifted towards higher f . The

original modularity by Lázár et al., Qov shows a more or less monotonously increasing

tendency as a function of f .
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Figure 2. Results for the co-authorship network at k = 4, with a resolution in the

fraction of removed links, f , set to 0.005. a) The relative size of the largest community,

SG and the relative size of the total coverage of the communities, SC in the network

as functions of f . Note that in this case SG remains significantly lower than 1 in the

whole range of f . b) The susceptibility, χ, as a function of f . The peak signalling

the critical point is far less significant compared to the case of the word association

network shown in Fig.1. c) The different overlapping modularities, each scaled by its

maximal value, as functions of f . The Qf shows a decreasing tendency in the entire f

range, while QC has a very weak and protracted maximum in the vicinity of fc. This

maximum is more prominent (and is closer to the critical point) for QS and also for

the partition density D. Finally, the original modularity by Lázár et al. does not show

any relevant maximum, while in case of Q̂L we can observe a very weak maximum

similar to that of QC .
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also a very weak global maximum can be observed slightly below fc for Q
C and Q̂L. In

contrast, the rest of the modularities show no relevant maximum. (Extrema at either

f = 0 or f = 1 are discarded).

Finally, in Fig.3. we show the results for the UNICAL network. Similarly to the co-

authorship network, the k-clique percolation transition is far less pronounced compared

to the word-association network. Although the relative size of the giant community, SG

is reaching 1 at f = 0, (Fig3a), the overall shape of the curve shows a constant decay

between f = 0 and fc, in contrast to the very slow decay turning into a sudden drop at

the critical point seen in Fig.1a. Furthermore, the susceptibility, χ displayed in Fig.3b

shows a peak with a height smaller by an order of magnitude acompanied by roughly the

same width compared to the peak in Fig.1b for the word association network. In Fig.3c

we plotted the corresponding overlapping modularities as functions of f . All three fuzzy

modularities (Qf , QC and QS) and also the partition density D show slightly varying

curves with an overall unimodal shape, and their maximums is very close to the critical

point. In contrast, Qov and Q̂ov display no relevant maximum.

According to our results detailed in the Appendix, when including also the giant

community in the evaluation of the modularities, the maximum for most of the measures

is shifted either to f = 0 or to f = 1. These correspond to trivial optima, i.e., either

all of the links have to be kept, or all of them has to be deleted to achieve maximal

modularity. An interesting exception is provided by the partition density, D, for which

we observed maximums in full consistency with the critical point for all networks we

investigated.

In summary, the overall behaviour of the various different overlapping modularities

support the basic assumption that the optimal partitioning for the CPM is obtained

in the vicinity of the critical point of k-clique percolation. However, the consistency

between the position of the critical point and the maximums of the modularities can be

best observed for systems showing a sharp, fully fledged phase transition. Furthermore,

one has to take into account how the modularities are actually evaluated. The most

reassuring results were given by the partition density, D, providing a global maximum

always in consistency with the critical point. When omitting the giant percolating

community from the calculation, the fuzzy modularities, Qf , QC and QS also showed

a prominent maximums very close to fc in case of the word association network and

the UNICAL network, while QC and QS showed consistency with the critical point also

for the co-authorship network. The original overlapping modularity by Lázár et al.,

Qov showed a rather monotonous behaviour in all systems we investigated, lacking any

relevant maximum other than f = 0 or f = 1. This is mainly due to the fact that

the averaging over the community-vise individual modularities in (15) does not take

into account the community size. When switching to Q̂ov incorporating size dependent

weights, we observed a significant maximum close to the critical point in case of the

word association network, and this maximum remained at its place even when including

also the giant community in the calculation.
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Figure 3. Results for the UNICAL network at k = 3, with a resolution in the fraction

of removed links, f , set to 0.005. a) The relative size of the largest community, SG

and the relative size of the total coverage of the communities, SC in the network

as functions of f . b) The susceptibility, χ, as a function of f . Similarly to the co-

authorship network, the peak at the critical point is far less pronounced here compared

to word-association network shown in Fig.1. c) The different overlapping modularities,

each scaled by its maximal value, as functions of f . In this case the fuzzy modularities

Qf , QC , QS , and also the partition density have a roughly unimodal shape with a

global maximum very close to the critical point. The Qov and Q̂ov have rather varying

shapes without any relevant global maximum.
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5. Conclusions

Motivated by the importance of overlapping community finding methods in social

networks, we studied the behaviour of various overlapping modularity measures in the

vicinity of the critical point of k-clique percolation. According to our analysis of real

social- and other networks, the overlapping modularities showed large maximums close

to the critical point when the critical behaviour of the phase transition was prominent

and articulate. However in some of the networks we could observe only blurred, slightly

ambiguous phase transitions. Nevertheless, a part of the involved modularity measures

still displayed a maximum in consistency with the likely position of the critical point,

while the others showed no relevant maximums at all. These findings provide a strong

quantitative validation for the former heuristic for setting the parameters of the CPM,

suggesting that the quality of the partitioning is best in the vicinity of the critical point

of k-clique percolation.

This work was supported by the European Union and co-financed by the European

Social Fund (grant agreement no. TAMOP 4.2.1/B-09/1/KMR-2010-0003) and by the

Hungarian National Science Fund (OTKA K105447).
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Appendix

Here we show the results for the modularities presented in Figs.1-3. when the giant

percolating community is also included in the calculation. For simplicity we also re-

plotted the relative size of the giant component, SG, and the susceptibility, χ, as

functions of f for each system.

In Fig.4. we show the results for the word association network. The three fuzzy

modularities, (Qf , QC and QS), show an overall decreasing tendency with a strong

change in the slope at the critical point for QC and QS. In contrast, the partition density

D and the two variations for the overlapping modularity by Lázár et al., QL and Q̂L

behave similarly to the case shown in Fig.1c: D and Q̂L have prominent maximums in

consistency with fc, while QL shows an increasing tendency as a function of f .

In Fig.5. we display the results for the co-authorship network. Here the fuzzy

modularities, (Qf , QC and QS), show a smoothly and slowly decreasing curve in the

entire f range. Similarly to the case of the word association network, the shape of the

curves for D, QL and Q̂L are less affected by the inclusion of αG in the calculation: D

has a global maximum in the vicinity of fc and QL shows an almost constant behaviour

with a sudden increase for large f . For Q̂L, the very weak maximum in Fig.2c has been

flattened, however, a steeply decreasing function can still be observed above fc.

Finally, in Fig.6. we show the results for the UNICAL network. Again, the fuzzy

modularities, (Qf , QC and QS), display a smoothly decreasing tendency. However, for

QC and QS the slope becomes higher close to the critical point, similarly to the case

shown in Fig.4c. The partition density, D, has an overall unimodal shape with smaller

fluctuations and a global maximum quite close to the critical point. The Qov and Q̂ov

display no relevant maximum, with Q̂ov actually arriving to a minimum close to fc. The

explanation of this effect is yet unresolved and waits for future work.
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Figure 4. Results for the word association network at k = 3 when including also

αG in the evaluation of the modularities. a) The relative size and relative coverage

of αG, as functions of the fraction of removed links, f , (same as in Fig.1a). b) The

susceptibility, χ, as a function of f (same as in Fig.1b). c) The different overlapping

modularities, each scaled by its maximal value, as functions of f . The Qf , QC and

QS show a decreasing tendency, with a more steep drop at fc in case of QC and QS .

The partition density D and the modified modularity by Lázár et al., Q̂ov, still have

significant maximums at a position consistent with the critical point. The original

modularity by Lázár et al., Qov shows an increasing tendency as a function of f ,

similarly as in case of Fig.1c.
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Figure 5. Results for the co-authorship network at k = 4. a) The relative size and

relative coverage of αG, as functions of the fraction of removed links, f , (same as

in Fig.2a). b) The susceptibility, χ, as a function of f (same as in Fig.2b) c) The

different overlapping modularities, each scaled by its maximal value, as functions of

f . The fuzzy modularities, Qf , QC and QS show a slowly decreasing tendency, while

the partition density D has a global maximum relatively close to the critical point.

The modularity QL is more or less constant except for the very large f region where

it becomes increasing. In contrast, Q̂L is close to 1 below fc, and starts decreasing

above.
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Figure 6. Results for the UNICAL network at k = 3. a) The relative size and

relative coverage of αG, as functions of the fraction of removed links, f , (same as

in Fig.3a). b) The susceptibility, χ, as a function of f (same as in Fig.3b). c) The

different overlapping modularities, each scaled by its maximal value, as functions of f .

Similarly to Fig.4c, the fuzzy modularities Qf , QC and QS show a decreasing tendency

with a steeper drop in QC and QS at the critical point. The partition density, D has

retained its overall unimodal shape with a global maximum in consistency with fc.

The original- and modified modularity by Lázár et al. show rather varying curves with

no relevant maximum.
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