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Abstract

All-loop asymptotic Bethe equations for a 3-parameter deformation of AdS5/CFT4

have been proposed by Beisert and Roiban. We propose a Drinfeld-Reshetikhin twist
of the AdS5/CFT4 S-matrix, together with c-number diagonal twists of the boundary
conditions, from which we derive these Bethe equations. Although the undeformed S-
matrix factorizes into a product of two su(2|2) factors, the deformed S-matrix cannot
be so factored. Diagonalization of the corresponding transfer matrix requires a general-
ization of the conventional algebraic Bethe ansatz approach, which we first illustrate for
the simpler case of the twisted su(2) principal chiral model. We also demonstrate that
the transfer matrix is spectrally equivalent to a transfer matrix which is constructed
using instead untwisted S-matrices and boundary conditions with operatorial twists.
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1 Introduction

One of the major triumphs of theoretical physics in this century has been the discovery and
exploitation of integrability in AdS/CFT. (For recent reviews, see for example [1].) This inte-
grability is remarkably robust. In particular, it seems to persist for the so-called β-deformed
AdS5/CFT4 theory [2]-[14], and even for a 3-parameter deformation [4]-[7]. However, much
remains to be understood about the integrability of the deformed theory, and we have sought
to make progress toward that end.

We focus here on the problem of deriving the Bethe equations. For the undeformed theory,
the all-loop asymptotic Bethe equations [15] have been derived [17, 23] from the AdS5/CFT4

S-matrix [16]-[22]. For the 3-parameter deformed theory, corresponding all-loop asymptotic
Bethe equations were proposed by Beisert and Roiban in [7]. A long outstanding question has
been whether it is possible to derive these deformed Bethe equations from some deformed S-
matrix. 1 Here we answer this question in the affirmative: the deformed Bethe equations can
be derived from a certain Drinfeld-Reshetikhin twist [24, 25] of the AdS5/CFT4 S-matrix,
together with c-number diagonal twists of the boundary conditions.

A key point is that, although the undeformed S-matrix factorizes into a product of two
su(2|2) factors, the deformed S-matrix cannot be so factored. Indeed, the twist matrix
connects the two su(2|2) factors, and cannot be factorized into a product of separate twist
matrices for the two su(2|2) factors. To our knowledge, such “non-factoring” twists have
not been considered previously in the literature, and it is not obvious how to diagonalize
the corresponding transfer matrix. Indeed, since the transfer matrix no longer splits into
a product of commuting left and right pieces, one would naively expect that such a twist
leads to very complicated Bethe equations. Hence, before addressing the problem of actual
interest, we first consider the simpler case of the su(2) principal chiral model with a non-
factoring twist. We develop techniques for this model which we subsequently use to solve
the twisted AdS5/CFT4 problem.

The outline of this paper is as follows. In Sec. 2 we present a heuristic argument to infer
the specific non-factoring Drinfeld-Reshetikhin twist of the su(2|2)2 S-matrix and twisted
boundary conditions which should lead to the twisted Bethe equations in [7]. In Sec. 3 we
consider the su(2) principal chiral model with a similar non-factoring twist. We develop an
algebraic Bethe ansatz method for diagonalizing the transfer matrix and deriving the Bethe
equations. In Sec. 4 we consider two copies of the Hubbard model with a non-factoring twist,
which is technically very similar to the twisted AdS5/CFT4 problem. Using the method of the
previous section together with the algebraic Bethe ansatz for the Hubbard model developed
by Martins and Ramos [26], we diagonalize the transfer matrix and derive the corresponding
Bethe equations. Finally, in Sec. 5, we consider the problem of actual interest; namely, the
AdS5/CFT4 S-matrix with a non-factoring twist. We obtain the eigenvalues of the transfer
matrix from the preceding results, and write down the corresponding Bethe equations. In
Sec. 6 we show that these Bethe equations agree with those proposed in [7]. We close in Sec.
7 with a brief discussion of our results. Some technical details are treated in Appendices A
and B. We show in Appendix C that the proposed twisted S-matrix and twisted boundary
conditions reproduce the wrapping correction not only for the Konishi operator [12] but also
for generic multiparticle states both in the su(2) and sl(2) sectors analyzed in [13, 14]. We
demonstrate in Appendix D that the transfer matrix is spectrally equivalent to a transfer

1Recently these equations were obtained from a twisted transfer matrix solution of the Y-system [13]
corresponding to operatorial twisted boundary conditions [14].
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matrix which is constructed using instead untwisted S-matrices and boundary conditions
with operatorial twists. It is the latter type of transfer matrix which is considered in [14].
Finally, in Appendix E we transform our twisted Bethe ansatz results from the “su(2)”
grading to the “sl(2)” grading.

2 Deformation from a psu(2, 2|4) perspective

The first indication of the equivalence between type-IIB string theory on an AdS5×S5 back-
ground and N = 4 supersymmetric four-dimensional Yang-Mills theory was their common
global symmetry: namely, psu(2, 2|4). On the string-theory side it is the supersymmetric
extension of the isometries of the background geometry, while on the gauge-theory side it is
the model’s superconformal invariance. This common symmetry algebra enables one to com-
pare observables: both the energy levels of the string states and the anomalous dimensions
of gauge-invariant operators are organized in the same psu(2, 2|4) multiplet. Recent studies
suggest that the complete solution of the spectral problem can be formulated in terms of the
Y -system of psu(2, 2|4), too [27]. Unfortunately, however, there has not been much progress
yet in solving directly the Y -system beyond the leading weak-coupling order [28], or outside
of the string semiclassical domain [29].

Alternatively, quantization based on the light-cone gauge has proved to be successful so
far: In solving the string σ-model one chooses a generalized light-cone gauge, which turns
the model into a massive integrable quantum field theory in a finite volume (prescribed by
the light-cone momentum), where excitations satisfy the level-matching condition. In the
infinite volume limit these excitations scatter via a factorizing scattering matrix, which can
be uniquely determined from the remaining psu(2, 2|4) → su(2|2)⊗su(2|2) global symmetry
together with crossing symmetry [16]-[22]. The resulting S-matrix can be used for any value
of the coupling, and defines the theory completely: The full particle spectrum can be read
off from its singularity structure, it governs the finite-size corrections to the energies, and via
the Thermodynamic Bethe Ansatz it describes the complete spectrum for any finite volume.
Unfortunately, the psu(2, 2|4) symmetry is broken in this description by the light-cone gauge
and is realized only implicitly in the spectrum. The analogue of this phenomenon can be
found on the gauge-theory side: In calculating the anomalous dimension of an operator, a
BPS “vacuum” state is chosen tr(ZL) which breaks the superconformal psu(2, 2|4) symmetry
down to su(2|2) ⊗ su(2|2). The broken symmetry then controls the scattering of the “ex-
citations” tr(ZL−k−2χ1Z

kχ2) over the background, and determines their scattering matrix.
The boundary condition is provided again by the physical meaning of the trace: namely, the
total momentum has to vanish. Similarly to the string case, the psu(2, 2|4) symmetry is not
manifested in the scattering matrix, but rather in the structure of the one-loop Bethe ansatz
and implicitly in the anomalous dimensions of the fields.

Integrable deformations of the psu(2, 2|4) structures appear both on the string-theory
and on the gauge-theory sides. In both cases, the su(4) part of the symmetry is Drinfeld-
Reshetikhin twisted [24, 25] by three parameters/charges corresponding to the Cartan gener-
ators. On the gauge-theory side, the authors of [7] present the deformed psu(2, 2|4) one-loop
Bethe ansatz equations and conjecture the all-loop generalizations. These Bethe ansätze
can be equivalently described by the asymptotical solution of a twisted Y -system, which
presumably originates from the twisted psu(2, 2|4) symmetry.

As the S-matrix approach has turned out to be very powerful in the undeformed case,
we pursue it for the deformed case too. For this we must understand how a twist of the
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broken psu(2, 2|4) symmetry shows up at the unbroken su(2|2)⊗ su(2|2) level. To this end,
we first analyze a toy model: an su(4)-invariant spin chain. There we identify two effects:
a twist of the scattering matrix of the excitations, and a twist of the boundary conditions.
Implementing the analogous twist at the psu(2, 2|4) level, we can infer the form of the twisted
AdS/CFT scattering matrix together with the twisted boundary conditions. In Secs. 5-7 we
test our proposal against the Bethe equations of [7] and the Lüscher corrections.

2.1 Twisted su(4) spin chain

We first recall how to break the su(4) symmetry down to su(3) by choosing a pseudovacuum,
and how the su(3)-invariant scattering matrix appears in this context. We then turn to the
twisted problem.

Suppose we would like to solve the spectral problem for an su(4) spin chain with N sites.
It is defined in terms of the su(4)-invariant S-matrix

S(u) = uI⊗ I+ iP , (2.1)

where I is the 4-dimensional identity matrix, and P is the 16× 16 permutation matrix. We
are interested in the eigenvalues of the transfer matrix

t(u) = tra(Ta(u)) = tra(
N
∏

j=1

Saj(u)) . (2.2)

These eigenvalues can be calculated by the nested algebraic Bethe ansatz method. Here we
are interested only in the first step of the nesting. This means to choose a pseudovacuum
state

|0〉 = |1, . . . , 1〉 ≡ |1N〉 , (2.3)

and to analyze the excitations (2, 3, 4) over this background, which are invariant only under
the unbroken su(3) subgroup. In keeping with this residual symmetry, we decompose the
monodromy matrix as

T(u) =









A(u) B2(u) B3(u) B4(u)
C2(u) D22(u) D23(u) D24(u)
C3(u) D32(u) D33(u) D34(u)
C4(u) D42(u) D43(u) D44(u)









, (2.4)

where the Ci’s together withDi 6=j annihilate the pseudovacuum; i.e., Ci(u)|0〉 = Di 6=j(u)|0〉 =
0. The diagonal elements of the monodromy matrix (which contribute to the trace) act
diagonally 2

A(u)|0〉 = a(u)|0〉 , Dkk(u)|0〉 = S
k1
k1(u)

N |0〉 = dk(u)|0〉 , (2.5)

and the Bi’s create the three su(3) excitations. A general multiparticle B-state has the form

Bi1(v1) . . . BiK (vK)|0〉 , (2.6)

2We use the convention S(u)mn
kl = uδmk δnl + iδnk δ

m
l .
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and we would like to diagonalize the action of A and Dkk on these states, as this is needed to
obtain the transfer matrix eigenvalues. To do so, we need the commutation relations of the
various operators, which can be obtained from the STT = TTS relations. The B-particles
are exchanged as

Bi(u)Bj(v) = (u− v)Bj(v)Bi(u) + iBi(v)Bj(u) = Skl
ij (u− v)Bl(v)Bk(u) , (2.7)

showing that they scatter on each other with the su(3)-invariant S-matrix, which we denote
by S. The action of A on the multiparticle state can be computed from

A(u)Bj(v) =
v − u+ i

v − u
Bj(v)A(u)−

i

v − u
Bj(u)A(v) . (2.8)

In computing the eigenvalue, we focus on the first “wanted” term and neglect the second “un-
wanted” one, as its contribution will vanish when vi satisfy the Bethe equations. Similarly,
the wanted terms resulting from acting with Dki are

Dki(u)Bj(v) =
1

(u− v)
[(u− v)Bj(v)Dki(u) + iBi(v)Dkj(u)] + . . .

∝ S lm
ij (u− v)Bm(v)Dkl(u) + . . . (2.9)

Clearly, the action of Dki mixes up the su(3) indices of a given state, and we have to
diagonalize the following expression

Dkk(u)Bi1(v1) . . .BiK (vK)|0〉

∝ Sk1j1
k,i1

(u− v1) . . .S
k,jK
kK−1iK

(u− vK)Bj1(v1) . . . BjK (vK)Dkk(u)|0〉+ . . . (2.10)

As Dk 6=i|0〉 = 0, the nonvanishing elements form a trace of the reduced su(3) transfer matrix

t(u) =

4
∑

k=2

Sk1j1
k,i1

(u− v1) . . .S
k,jK
kK−1iK

(u− vK)dk(u) , (2.11)

which must be diagonalized in order to finally solve the su(4) eigenvalue problem. However,
we shall not pursue this problem further here.

We now would like to instead twist the su(4) scattering matrix by a Drinfeld-Reshetikhin
twist 3

S → S̃ = FSF , F = e
i
2

∑3
i,j=1 γij(Hi⊗Hj−Hj⊗Hi) , (2.12)

where Hi are the Cartan elements of su(4): (Hi)kj = 1
2
(δi,kδi,j − δi+1,jδi+1,k). Due to the

special form of the scattering matrix, only the diagonal elements are twisted

S̃(u)mn
kl = uΓklδ

m
k δnl + iδnk δ

m
l , (2.13)

which can be encoded in the matrix Γ. We are interested in the eigenvalues of the twisted
transfer matrix

t̃(u) = tra(T̃a(u)) = tra(
N
∏

j=1

S̃aj(u)) . (2.14)

3The general notion of twisting for (quasi-triangular) quasi-Hopf algebras was introduced by Drinfeld
[24]. Reshetikhin considered [25] specific twists with elements F constructed from the Cartan generators. It
is the latter type of twist which we use here. For other applications of such twists, see for example [30]; and
for work related to quantized braided algebras, see [31].
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The pseudovacuum state |0〉 = |1, . . . , 1〉 = |1N〉 is annihilated by the generators C̃i and
D̃i 6=j, and it is an eigenstate of the diagonal elements

Ã(u)|0〉 = a(u)|0〉 , D̃kk(u)|0〉 = S̃
k1
k1(u)

N |0〉 = d̃k(u)|0〉 . (2.15)

The eigenvalues are now different for each k, and depend on the twist as d̃k(u) = (Γk1)
Ndk(u).

This indicates that the reduced symmetry is not even su(3), which can be seen also from
the way that the twisted creation operators B̃i are exchanged:

B̃i(u)B̃j(v) = (u− v)ΓijB̃j(v)B̃i(u) + iB̃i(v)B̃j(u) = S̃kl
ij (u− v)B̃l(v)B̃k(u) , (2.16)

exactly with the reduced twisted scattering matrix elements. From the point of view of the
reduced transfer matrix, the relevant commutation relation is twisted as follows

D̃ki(u)B̃j(v) ∝ (Γk1)
−1S̃ lm

ij (u− v)B̃m(v)D̃kl(u) + . . . (2.17)

It will result in the twisted reduced transfer matrix

t̃(u) =
4
∑

k=2

S̃k1j1
k,i1

(u− v1) . . . S̃
k,jK
kK−1iK

(u− vK)(Γk1)
−K d̃k(u)

=
4
∑

k=2

S̃k1j1
k,i1

(u− v1) . . . S̃
k,jK
kK−1iK

(u− vK)(Γk1)
N−Kdk(u) , (2.18)

which must still be diagonalized at the su(3) level.
Focusing on the effect of the twist, we can see the emergence of two main features: (i)

the reduced twisted scattering matrix S̃ is a reduction of the twisted scattering matrix S̃;
and (ii) there is a twisted boundary condition which depends on the number of sites N and
the number of particles K. The twisted boundary condition contains the twist factors Γk1,
which are unphysical from the reduced-space point of view, as it is spanned only by (2, 3, 4).
Let us see how we can implement a similar twist in the AdS/CFT realm, where the full
psu(2, 2|4) scattering matrix is not yet known.

2.2 Proposed twists for AdS/CFT

We would like to develop the AdS/CFT case in parallel to our su(4) example. The full sym-
metry of the model which we wish to twist is the implicit psu(2, 2|4) symmetry. According to
[7], one should twist the su(4) R-symmetry subgroup (which corresponds to the isometries of
the S5 part of AdS5 × S5) by its charges R1, R2, R3. Let us suppose that the full psu(2, 2|4)
scattering matrix S were known. Let us twist it with the charges as follows

S̃ = FSF , F = e
i
2

∑3
i,j=1 γij(Ri⊗Rj−Rj⊗Ri) . (2.19)

Here S describes how in the gauge-theory side the excitations X1 = X,X2 = Y,X3 =
Z,Ψ, D, . . . scatter on each other; and the action of the charges on the scalars are given by

Ri|Xj〉 = δij |Xj〉 . (2.20)

In describing the AdS/CFT integrable model, the pseudovacuum is usually chosen to be
|0〉 = |ZJ〉. We are interested in the remaining degrees of freedom, which we consider to be
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excitations over this background. Clearly, in the undeformed case this choice of the vacuum
breaks the psu(2, 2|4) symmetry down to su(2|2) ⊗ su(2|2), and this reduced symmetry is
what labels the excitations:

(1, 2, 3, 4)⊗ (1̇, 2̇, 3̇, 4̇) , (2.21)

where as usual the R-symmetry acts in the first two components. Choosing X = 11̇ and
Y = 21̇, one can see that

R1 = 1⊗ h+ h⊗ 1 , R2 = 1⊗ h− h⊗ 1 , R3 = 0 , (2.22)

where h = diag(1
2
,−1

2
, 0, 0).

The two effects of the twist implemented on S by F read on the reduced level as follows.
First, consider how the reduced scattering matrix is twisted. Since R3 = 0, the twist factors
given by γ13 and γ23 have no effect, while the γ12 twist propagates directly through. This
means that the reduction of the unknown twisted scattering matrix S̃ must be simply the
Drinfeld-Reshetikhin twist of the reduced scattering matrix,

S̃ = FSF F = eiγ12(R1⊗R2−R2⊗R1) = e2iγ12(h⊗1⊗1⊗h−1⊗h⊗h⊗1) , (2.23)

where S is the su(2|2) ⊗ su(2|2)-invariant AdS/CFT scattering matrix. Second, consider
the twists of the boundary conditions for the particles, which come from the charge of the
background and the commutation relations of the operators. Both have the form

e2i(γ13R1+γ23R2)J = e2i(γ13−γ23)(h⊗1)J+2i(γ13+γ23)(1⊗h)J = e2i(γ13−γ23)Jh ⊗ e2i(γ13+γ23)Jh , (2.24)

where J , being the R3 charge of the background, is related to the volume of our theory.
As previewed in the Introduction, the twist matrix F in (2.23) connects the two su(2|2)

factors in S, and cannot be factorized into a product of separate twist matrices for the two
su(2|2) factors. In order to learn how to handle such twists, we consider in the following
section the analogous problem for a simpler model.

3 Twisting the su(2) principal chiral model

We define the su(2)-invariant S-matrix S(u) by

S(u) = S0(u) [u I⊗ I+ iP] (3.1)

where I is the 2×2 unit matrix, P is the 4×4 permutation matrix, and S0(u) is some scalar
factor whose explicit value will not concern us here. This S-matrix acts on V ⊗ V , where
V is a 2-dimensional vector space. The S-matrix S(u) of the su(2) principal chiral model is
given by a tensor product of two copies of S(u) [32, 33]. That is,

Sa ȧ b ḃ(u) = Sab(u)Sȧḃ(u) . (3.2)

Our convention is to arrange the four vector spaces on which S acts in the order Va ⊗ Vȧ ⊗
Vb ⊗ Vḃ. Hence,

S1234(u) = S13(u)S24(u) . (3.3)
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Starting from S12 = S ⊗ I⊗ I, one can sequentially construct

S13 = P23S12P23 ,

S23 = P12S13P12 ,

S24 = P34S23P34 , (3.4)

where P12 = P ⊗ I⊗ I, etc.
In view of our proposal (2.23), we consider the Drinfeld-Reshetikhin twist

S̃(u) = F S(u)F , (3.5)

where the twist matrix F is given by

F = eiγ1(h⊗I⊗I⊗h−I⊗h⊗h⊗I) , (3.6)

where γ1 is a twist parameter, and h is the diagonal matrix

h = diag(
1

2
,−

1

2
) . (3.7)

As already mentioned, I is the 2 × 2 unit matrix. Note that F cannot be factored between
the two su(2) factors.

We consider the transfer matrix 4

t̃(u) = traȧ MaȧT̃aȧ(u) , (3.8)

where the monodromy matrix is constructed from the twisted S-matrix as follows

T̃aȧ(u) = S̃a ȧ 1 1̇(u) · · · S̃a ȧ L L̇(u) . (3.9)

The matrix Maȧ, which acts only in the auxiliary space and serves to twist the boundary
conditions, is given by (see (2.24))

M = eiγ2h ⊗ eiγ3h = diag
(

ei(γ2+γ3)/2, ei(γ2−γ3)/2, ei(γ3−γ2)/2, e−i(γ2+γ3)/2
)

, (3.10)

where γ2, γ3 are additional twist parameters. The twisted S-matrix S̃(u) by construction
[25] obeys the Yang-Baxter equation, and therefore, the twisted monodromy matrix obeys
the usual intertwining relation 5

S̃a ȧ b ḃ(u− v) T̃aȧ(u) T̃bḃ(v) = T̃bḃ(v) T̃aȧ(u) S̃a ȧ b ḃ(u− v) . (3.11)

Also
[

S̃(u) ,M ⊗M
]

= 0; and therefore [34], the transfer matrix (3.8) has the commutativity

property
[

t̃(u) , t̃(v)
]

= 0. The main problem is to determine the eigenvalues of the transfer
matrix. Since it is not evident how to solve this problem, it is helpful to begin with the
untwisted case.

4Ultimately, we shall need the eigenvalues of an inhomogeneous transfer matrix, with inhomogeneities θj
at each site j. But once one understands how to solve the homogeneous problem, it is trivial to generalize
to the inhomogeneous case.

5Our case does not seem to be related to quantized braided algebras where the Yang-Baxter equation is
also braided.
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3.1 Untwisted case: conventional approach

We now consider the untwisted case; i.e., γi = 0, and therefore both F and M are 1. In this
case, the monodromy matrix is given by

Taȧ(u) = Sa ȧ 1 1̇(u) · · · Sa ȧ L L̇(u)

= Sa1(u)Sȧ1̇(u) . . . SaL(u)SȧL̇(u)

= Sa1(u) . . . SaL(u) Sȧ1̇(u) . . . SȧL̇(u)

= Ta(u) Tȧ(u) . (3.12)

Hence,

T =

(

A B
C D

)

⊗

(

Ȧ Ḃ

Ċ Ḋ

)

=









AȦ AḂ BȦ BḂ

AĊ AḊ BĊ BḊ

CȦ CḂ DȦ DḂ

CĊ CḊ DĊ DḊ









(3.13)

The transfer matrix therefore factors into a product of two commuting pieces

t(u) = traȧ Taȧ(u) =
[

A(u) +D(u)
][

Ȧ(u) + Ḋ(u)
]

. (3.14)

We make the ansatz that the eigenstates of the transfer matrix are given by

|Λ〉 =
m
∏

j=1

B(uj)|0〉 ⊗
ṁ
∏

k=1

Ḃ(u̇k)|0̇〉 , (3.15)

where |0〉 and |0̇〉 are states with all spins up.
Evidently, the problem has factored into two copies of the XXX spin-1/2 chain, whose

solution is well known. The eigenvalues Λ(u) of the transfer matrix can therefore be easily
written down,

Λ(u) = S0(u)
2L

[

(u+ i)L
m
∏

j=1

(

u− uj − i

u− uj

)

+ uL
m
∏

j=1

(

u− uj + i

u− uj

)

]

×

[

(u+ i)L
ṁ
∏

k=1

(

u− u̇k − i

u− u̇k

)

+ uL
ṁ
∏

k=1

(

u− u̇k + i

u− u̇k

)

]

. (3.16)

In principle, one should derive the Bethe equations by carefully tracking the “unwanted”
terms, and demanding that they cancel; however, this is a tedious computation. In practice,
it is much simpler to impose the requirement that the poles of the eigenvalues should cancel.6

6Actually, since here the eigenvalues (3.16) factor into a product

Λ(u) = λ(u)λ̇(u) ,

we encounter the following interesting subtlety. One possibility (which we believe is the correct one) is to
separately require the cancellation of poles in λ(u) and λ̇(u), which leads to (3.17). Alternatively, one could
require only the cancellation of poles in Λ(u), which is a weaker condition. This leads to additional (spurious)
Bethe ansatz-like equations which couple the left and right Bethe roots. We conclude that, although the
trick of obtaining the Bethe equations by requiring cancellation of poles can save a lot of effort, it should be
applied with care.
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In this way, we readily obtain the following Bethe equations: 7

(

uj + i

uj

)L

=
m
∏

j′ 6=j

uj − uj′ + i

uj − uj′ − i
,

(

u̇k + i

u̇k

)L

=
ṁ
∏

k′ 6=k

u̇k − u̇k′ + i

u̇k − u̇k′ − i
. (3.17)

For further details, see Appendix A in [33] and Appendix C in [35].

3.2 Untwisted case: new approach

We have described above the “obvious” way to solve the untwisted problem. However, this
approach cannot be used to solve the twisted problem, since then the transfer matrix does
not factor into left and right pieces. So, now we want to solve the untwisted problem again
but in a different way, without exploiting the factorizability of the transfer matrix. The basic
idea is to develop an algebraic Bethe ansatz for the “full” monodromy matrix (3.13).

Using the well-known exchange relations between A,B,C,D, together with the result
(3.13), it is not difficult to show that (see Appendix A)

T11(u) T13(v) =
u− v − i

u− v
T13(v) T11(u) +

i

u− v
T13(u) T11(v) ,

T11(u) T12(v) =
u− v − i

u− v
T12(v) T11(u) +

i

u− v
T12(u) T11(v) ,

T22(u) T12(v) =
u− v + i

u− v
T12(v) T22(u)−

i

u− v
T12(u) T22(v) ,

T33(u) T13(v) =
u− v + i

u− v
T13(v) T33(u)−

i

u− v
T13(u) T33(v) , (3.18)

where now the subscripts refer to matrix elements of the monodromy matrix regarded as a
4 × 4 matrix of operators. In each exchange relation, the first (“diagonal”) term gives the
“wanted” contribution, and the second term gives “unwanted” contributions. With more
effort, one can also show that (see again Appendix A)

T22(u) T13(v) =
u− v − i

u− v
T13(v) T22(u) +

i(u− v − i)

(u− v)2
T14(v) T21(u)

+
i

u− v
T24(u) T11(v)−

i

u− v
T12(u) T23(v)−

1

(u− v)2
T14(u) T21(v) ,

T33(u) T12(v) =
u− v − i

u− v
T12(v) T33(u) +

i(u− v − i)

(u− v)2
T14(v) T31(u)

+
i

u− v
T34(u) T11(v)−

i

u− v
T13(u) T32(v)−

1

(u− v)2
T14(u) T31(v) ,

T44(u) T12(v) =
u− v + i

u− v
T12(v) T44(u) +

i(u− v + i)

(u− v)2
T14(v) T42(u)

−
i

u− v
T34(u) T22(v)−

i

u− v
T24(u) T32(v) +

1

(u− v)2
T14(u) T42(v) ,

T44(u) T13(v) =
u− v + i

u− v
T13(v) T44(u) +

i(u− v + i)

(u− v)2
T14(v) T43(u) (3.19)

−
i

u− v
T24(u) T33(v)−

i

u− v
T34(u) T23(v) +

1

(u− v)2
T14(u) T43(v) ,

7These equations may look strange. However, they can be recast in the more familiar (symmetric) form
by shifting all the Bethe roots by i/2; i.e., uj 7→ uj − i/2 , u̇j 7→ u̇j − i/2.
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where again only the first (diagonal) term gives the “wanted” contribution.
We make the ansatz that the eigenstates of the transfer matrix are given by (cf., (3.15))

|Λ〉 =
m
∏

j=1

T13(uj)

ṁ
∏

k=1

T12(u̇k)
(

|0〉 ⊗ |0̇〉
)

, (3.20)

We observe that the vacuum state is an eigenstate of the diagonal elements of the mon-
odromy matrix,

T11(u)
(

|0〉 ⊗ |0̇〉
)

= S0(u)
2L (u+ i)2L

(

|0〉 ⊗ |0̇〉
)

,

T22(u)
(

|0〉 ⊗ |0̇〉
)

= S0(u)
2L (u+ i)LuL

(

|0〉 ⊗ |0̇〉
)

,

T33(u)
(

|0〉 ⊗ |0̇〉
)

= S0(u)
2L (u+ i)LuL

(

|0〉 ⊗ |0̇〉
)

,

T44(u)
(

|0〉 ⊗ |0̇〉
)

= S0(u)
2L u2L

(

|0〉 ⊗ |0̇〉
)

, (3.21)

The transfer matrix is evidently given by the sum of the diagonal elements of the mon-
odromy matrix,

t(u) = T11(u) + T22(u) + T33(u) + T44(u) . (3.22)

Acting with this operator on the states (3.20), we use (in the standard way) the first term
of the exchange relations (3.18), (3.19) together with (3.21) to obtain the eigenvalue,

t(u)|Λ〉 = S0(u)
2L
{

(u+ i)2L
m
∏

j=1

(

u− uj − i

u− uj

) ṁ
∏

k=1

(

u− u̇k − i

u− u̇k

)

+(u+ i)LuL
m
∏

j=1

(

u− uj − i

u− uj

) ṁ
∏

k=1

(

u− u̇k + i

u− u̇k

)

+(u+ i)LuL
m
∏

j=1

(

u− uj + i

u− uj

) ṁ
∏

k=1

(

u− u̇k − i

u− u̇k

)

+u2L
m
∏

j=1

(

u− uj + i

u− uj

) ṁ
∏

k=1

(

u− u̇k + i

u− u̇k

)

}

|Λ〉+ “unwanted” . (3.23)

We observe that the eigenvalue coincides with our previous result (3.16), and so we again
obtain the Bethe equations (3.17).

3.3 Twisted case

We are finally ready to tackle the twisted case. We have verified that only the diagonal
elements of the monodromy matrix T̃ (3.9) are affected by the twist (3.6). (This result is a
consequence of the special structure of the S-matrix.) Hence, we can hope that the exchange
relations (3.18), (3.19) suffer only deformations of the coefficients; and this is exactly what
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we find. Indeed, with the help of Mathematica, we find

T̃11(u) T̃13(v) = eiγ1
(

u− v − i

u− v
T̃13(v) T̃11(u) +

i

u− v
T̃13(u) T̃11(v)

)

,

T̃11(u) T̃12(v) = e−iγ1

(

u− v − i

u− v
T̃12(v) T̃11(u) +

i

u− v
T̃12(u) T̃11(v)

)

,

T̃22(u) T̃12(v) = e−iγ1

(

u− v + i

u− v
T̃12(v) T̃22(u)−

i

u− v
T̃12(u) T̃22(v)

)

,

T̃33(u) T̃13(v) = eiγ1
(

u− v + i

u− v
T̃13(v) T̃33(u)−

i

u− v
T̃13(u) T̃33(v)

)

, (3.24)

and

T̃22(u) T̃13(v) = e−iγ1
(u− v − i

u− v
T̃13(v) T̃22(u) +

i(u− v − i)

(u− v)2
T̃14(v) T̃21(u)

+ eiγ1
i

u− v
T̃24(u) T̃11(v)−

i

u− v
T̃12(u) T̃23(v)−

1

(u− v)2
T̃14(u) T̃21(v)

)

,

T̃33(u) T̃12(v) = eiγ1
(u− v − i

u− v
T̃12(v) T̃33(u) +

i(u− v − i)

(u− v)2
T̃14(v) T̃31(u)

+ e−iγ1
i

u− v
T̃34(u) T̃11(v)−

i

u− v
T̃13(u) T̃32(v)−

1

(u− v)2
T̃14(u) T̃31(v)

)

,

T̃44(u) T̃12(v) = eiγ1
u− v + i

u− v
T̃12(v) T̃44(u) +

i(u− v + i)

(u− v)2
T̃14(v) T̃42(u)

−
i

u− v
T̃34(u) T̃22(v)−

i

u− v
T̃24(u) T̃32(v) +

1

(u− v)2
T̃14(u) T̃42(v) ,

T̃44(u) T̃13(v) = e−iγ1
u− v + i

u− v
T̃13(v) T̃44(u) +

i(u− v + i)

(u− v)2
T̃14(v) T̃43(u)

−
i

u− v
T̃24(u) T̃33(v)−

i

u− v
T̃34(u) T̃23(v) +

1

(u− v)2
T̃14(u) T̃43(v) . (3.25)

Moreover, the vacuum eigenvalues (3.21) become

T̃11(u)
(

|0〉 ⊗ |0̇〉
)

= S0(u)
2L (u+ i)2L

(

|0〉 ⊗ |0̇〉
)

,

T̃22(u)
(

|0〉 ⊗ |0̇〉
)

= S0(u)
2L eiγ1L (u+ i)LuL

(

|0〉 ⊗ |0̇〉
)

,

T̃33(u)
(

|0〉 ⊗ |0̇〉
)

= S0(u)
2L e−iγ1L (u+ i)LuL

(

|0〉 ⊗ |0̇〉
)

,

T̃44(u)
(

|0〉 ⊗ |0̇〉
)

= S0(u)
2L u2L

(

|0〉 ⊗ |0̇〉
)

. (3.26)

The twisted transfer matrix (3.8) is given by

t̃(u) = ei(γ2+γ3)/2T̃11(u) + ei(γ2−γ3)/2T̃22(u) + ei(γ3−γ2)/2T̃33(u) + e−i(γ2+γ3)/2T̃44(u) . (3.27)

Using a similar ansatz as before (3.20), namely,

|Λ̃〉 =
m
∏

j=1

T̃13(uj)
ṁ
∏

k=1

T̃12(u̇k)
(

|0〉 ⊗ |0̇〉
)

, (3.28)
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we find that the eigenvalues of the twisted transfer matrix are given by

Λ̃(u) = S0(u)
2L

{

(u+ i)2Lei(γ2+γ3)/2eiγ1(m−ṁ)

m
∏

j=1

(

u− uj − i

u− uj

) ṁ
∏

k=1

(

u− u̇k − i

u− u̇k

)

+(u+ i)LuLei(γ2−γ3)/2eiγ1L e−iγ1(m+ṁ)
m
∏

j=1

(

u− uj − i

u− uj

) ṁ
∏

k=1

(

u− u̇k + i

u− u̇k

)

+(u+ i)LuLei(γ3−γ2)/2e−iγ1L eiγ1(m+ṁ)

m
∏

j=1

(

u− uj + i

u− uj

) ṁ
∏

k=1

(

u− u̇k − i

u− u̇k

)

+u2Le−i(γ2+γ3)/2e−iγ1(m−ṁ)
m
∏

j=1

(

u− uj + i

u− uj

) ṁ
∏

k=1

(

u− u̇k + i

u− u̇k

)

}

. (3.29)

Remarkably, although the transfer matrix does not seem to factor into two pieces, the eigen-
values do:

Λ̃(u) = S0(u)
2L

[

c1(u+ i)L
m
∏

j=1

(

u− uj − i

u− uj

)

+ c−1
1 uL

m
∏

j=1

(

u− uj + i

u− uj

)

]

×

[

c2(u+ i)L
ṁ
∏

k=1

(

u− u̇k − i

u− u̇k

)

+ c−1
2 uL

ṁ
∏

k=1

(

u− u̇k + i

u− u̇k

)

]

, (3.30)

where

c1 = eiγ2/2eiγ1L/2e−iγ1ṁ , c2 = eiγ3/2e−iγ1L/2eiγ1m . (3.31)

We can obtain the Bethe equations (as in the untwisted case) using the shortcut of requiring
that the poles cancel, 8

(

uj + i

uj

)L

= e−iγ2e−iγ1L e2iγ1ṁ
m
∏

j′ 6=j

uj − uj′ + i

uj − uj′ − i
,

(

u̇k + i

u̇k

)L

= e−iγ3eiγ1L e−2iγ1m
ṁ
∏

k′ 6=k

u̇k − u̇k′ + i

u̇k − u̇k′ − i
. (3.32)

The eigenvalues (3.30) and Bethe equations (3.32) are the main results of this section. Grat-
ifyingly, these results are simple deformations of the corresponding untwisted results (3.16)
and (3.17), respectively.

The generalization to the case of an inhomogeneous chain, with inhomogeneity θl at site
l, is now straightforward. It amounts to making the replacements

(u+ i)L 7→
L
∏

l=1

(u− θl + i) , uL 7→
L
∏

l=1

(u− θl) , S0(u)
2L 7→

L
∏

l=1

S0(u− θl)
2 (3.33)

8The result (3.32) is similar in structure to the Bethe ansatz result of quantum braided algebras [31].
This may indicate that quantum braided algebras can be equivalently described by unbraided algebras, but
with twisted R-matrices.
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in the expression (3.30) for the eigenvalues. Thus, the eigenvalues are given by

Λ̃(u) =
L
∏

l=1

S0(u− θl)
2 (3.34)

×

[

c1

L
∏

l=1

(u− θl + i)
m
∏

j=1

(

u− uj − i

u− uj

)

+ c−1
1

L
∏

l=1

(u− θl)
m
∏

j=1

(

u− uj + i

u− uj

)

]

×

[

c2

L
∏

l=1

(u− θl + i)
ṁ
∏

k=1

(

u− u̇k − i

u− u̇k

)

+ c−1
2

L
∏

l=1

(u− θl)
ṁ
∏

k=1

(

u− u̇k + i

u− u̇k

)

]

.

The equations for the auxiliary Bethe roots become

L
∏

l=1

(

uj − θl + i

uj − θl

)

= e−iγ2e−iγ1L e2iγ1ṁ
m
∏

j′ 6=j

uj − uj′ + i

uj − uj′ − i
,

L
∏

l=1

(

u̇k − θl + i

u̇k − θl

)

= e−iγ3eiγ1L e−2iγ1m
ṁ
∏

k′ 6=k

u̇k − u̇k′ + i

u̇k − u̇k′ − i
. (3.35)

Finally, the Bethe-Yang equations corresponding to the middle node are given by

e−ipkL = Λ̃(θk)

= −ei(γ2+γ3)/2eiγ1(m−ṁ)

L
∏

l 6=k

S0(θk − θl)
2(θk − θl + i)2

×
m
∏

j=1

(

θk − uj − i

θk − uj

) ṁ
∏

k=1

(

θk − u̇k − i

θk − u̇k

)

, (3.36)

where L is the length of the ring with the L particles of rapidities θ1, . . . , θL.

4 Twisting two copies of the Hubbard model

We have seen that, for the su(2) principal chiral model, we were able to obtain the Bethe
equations for the case of a non-factoring twist by developing an algebraic Bethe ansatz based
on the “full” monodromy matrix of the two S-matrix factors. In this section we shall follow
the same approach for two copies of the Hubbard model with a non-factoring twist, which
is technically very similar to the twisted AdS5/CFT4 problem. For a single copy of the
Hubbard model, the algebraic Bethe ansatz was worked out in the paper by Martins and
Ramos [26], which hereafter we denote by MR.

Let S(λ, µ) be the 16× 16 R-matrix of the Hubbard model, which was found by Shastry
[36]. In the notation of MR

S(λ, µ) = PRg(λ, µ) , (4.1)

where Rg(λ, µ) is given in MR (18), and P is the graded permutation matrix,

P =
4
∑

a,b=1

(−1)p(a)p(b)eab ⊗ eba , (4.2)
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where the gradings are given by

p(1) = p(4) = 0 , p(2) = p(3) = 1 , (4.3)

and eab are the standard elementary matrices with matrix elements

(eab)ij = δa,iδb,j . (4.4)

Paralleling our discussion of the su(2) principal chiral model, we introduce the tensor
product of two such S-matrices,

Sa ȧ b ḃ(λ, µ) = Sab(λ, µ)Sȧḃ(λ, µ) . (4.5)

We consider the Drinfeld-Reshetikhin-twisted S-matrix

S̃(λ, µ) = F S(λ, µ)F , (4.6)

where the twist matrix F is again given by

F = eiγ1(h⊗I⊗I⊗h−I⊗h⊗h⊗I) , (4.7)

except h is now the diagonal matrix

h = diag(
1

2
, 0, 0,−

1

2
) , (4.8)

and I is the 4×4 unit matrix. Note that F cannot be factored into matrices acting separately
on the 13 space and the 24 space.

The main problem is to determine the eigenvalues of the transfer matrix

t̃(λ) = straȧ MaȧT̃aȧ(λ) , (4.9)

where the monodromy matrix is given by

T̃aȧ(λ) = S̃a ȧ 1 1̇(λ, 0) · · · S̃a ȧ L L̇(λ, 0) , (4.10)

and the matrix Maȧ is given by

eiγ2h ⊗ eiγ3h . (4.11)

We follow the same approach as for the twisted su(2) principal chiral model. The first step
is to understand the untwisted case.

4.1 Untwisted case

We now consider the untwisted case; i.e., γi = 0, and therefore both F and M are 1. In this
case, the monodromy matrix is given by (see (3.12)),

Taȧ(λ) = Ta(λ) Tȧ(λ) . (4.12)
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We label the matrix elements of Ta(λ) as in MR (21); and similarly for the matrix elements
of Tȧ(λ), except we also decorate those with a dot. Hence,

T (λ) =









B B1 B2 F
C1 A11 A12 B∗

1

C2 A21 A22 B∗
2

C C∗
1 C∗

2 D









⊗









Ḃ Ḃ1 Ḃ2 Ḟ

Ċ1 Ȧ11 Ȧ12 Ḃ∗
1

Ċ2 Ȧ21 Ȧ22 Ḃ∗
2

Ċ Ċ∗
1 Ċ∗

2 Ḋ









. (4.13)

We regard T (λ) as a 16×16 matrix of operators. We denote these operators by their matrix
elements, i.e., Tj,k(λ), where j, k ∈ {1, . . . , 16}. In particular,

T1,1(λ) = B(λ) Ḃ(λ) , T1,2(λ) = B(λ) Ḃ1(λ) , T1,3(λ) = B(λ) Ḃ2(λ) ,

T1,5(λ) = B1(λ) Ḃ(λ) , T1,9(λ) = B2(λ) Ḃ(λ) . (4.14)

Since the one-particle states are given by MR (44), it is reasonable to consider the tensor-
product states

|Φ〉 =
[

T1,5(λ1)F
1 + T1,9(λ1)F

2
]

[

T1,2(λ̇1)Ḟ
1 + T1,3(λ̇1)Ḟ

2
]

(

|0〉 ⊗ |0̇〉
)

. (4.15)

The exchange relations of the diagonal elements Tj,j(λ) with the creation operators
T1,2(µ), T1,3(µ), T1,5(µ), T1,9(µ) are discussed in Appendix A. We explicitly record here just
the “wanted” (diagonal) terms,

Tj,j(λ) T1,2(µ) = fl(j)(λ, µ) T1,2(µ) Tj,j(λ) + . . . ,

Tj,j(λ) T1,3(µ) = gl(j)(λ, µ) T1,3(µ) Tj,j(λ) + . . . ,

Tj,j(λ) T1,5(µ) = fk(j)(λ, µ) T1,5(µ) Tj,j(λ) + . . . ,

Tj,j(λ) T1,9(µ) = gk(j)(λ, µ) T1,9(µ) Tj,j(λ) + . . . , j = 1, . . . , 16, (4.16)

where k(j) and l(j) are functions of j such that 9

j = 4(k − 1) + l , j = 1, . . . , 16, k , l ∈ {1, 2, 3, 4} , (4.17)

and we have defined fi(λ, µ) and gi(λ, µ) by

f1(λ, µ) = g1(λ, µ) =
iα2(µ, λ)

α9(µ, λ)
,

f2(λ, µ) = g3(λ, µ) = −
iα1(λ, µ)

α9(λ, µ)
,

f3(λ, µ) = g2(λ, µ) = −
iα1(λ, µ)

α9(λ, µ)
b̄(λ, µ) ,

f4(λ, µ) = g4(λ, µ) = −
iα8(λ, µ)

α7(λ, µ)
. (4.18)

Moreover, αi(λ, µ) are defined in MR (A.1)-(A.9), and b̄(λ, µ) is defined in MR (27).
We observe that the pseudovacuum state |0〉⊗|0̇〉 is an eigenstate of the diagonal elements

of the monodromy matrix,

Tj,j(λ)
(

|0〉 ⊗ |0̇〉
)

=
[

φk(j)(λ)φl(j)(λ)
]L (

|0〉 ⊗ |0̇〉
)

, j = 1, . . . , 16, (4.19)

9Hence, (k, l) = (1, 1) for j = 1; and (k, l) = (1, 2) for j = 2, etc.
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where we have defined φi(λ) by

φ1(λ) = ω1(λ) , φ2(λ) = φ3(λ) = ω2(λ) , φ4(λ) = ω3(λ) , (4.20)

and ωi(λ) are given by

ω1(λ) = α2(λ, 0) , ω2(λ) = −iα9(λ, 0) , ω3(λ) = α7(λ, 0) . (4.21)

The transfer matrix is given by

t(λ) = T1,1(λ)− T2,2(λ)− T3,3(λ) + T4,4(λ)

− [T5,5(λ)− T6,6(λ)− T7,7(λ) + T8,8(λ)]

− [T9,9(λ)− T10,10(λ)− T11,11(λ) + T12,12(λ)]

+ T13,13(λ)− T14,14(λ)− T15,15(λ) + T16,16(λ) , (4.22)

where the signs are due to the supertrace. Acting with this operator on the states (4.15),
we use (in the standard way) the first term of the exchange relations (4.16), together with
the pseudovacuum eigenvalues (4.19), to obtain the eigenvalue. Upon factoring the result,
we obtain

Λ(λ) =
[

ω1(λ)
L

(

iα2(λ1, λ)

α9(λ1, λ)

)

+ ω3(λ)
L

(

−iα8(λ, λ1)

α7(λ, λ1)

)

−ω2(λ)
L

(

−iα1(λ, λ1)

α9(λ, λ1)

)

Λ(1)(λ, λ1)
]

×
[

ω1(λ)
L

(

iα2(λ̇1, λ)

α9(λ̇1, λ)

)

+ ω3(λ)
L

(

−iα8(λ, λ̇1)

α7(λ, λ̇1)

)

−ω2(λ)
L

(

−iα1(λ, λ̇1)

α9(λ, λ̇1)

)

Λ(1)(λ, λ̇1)
]

, (4.23)

where, as in MR (51),

Λ(1)(λ, λ1) = 1 + b̄(λ, λ1) , Λ(1)(λ, λ̇1) = 1 + b̄(λ, λ̇1) . (4.24)

On the basis of MR, we assume that this result can be extrapolated to the general case:

Λ(λ) =
[

ω1(λ)
L

n
∏

j=1

(

iα2(λj , λ)

α9(λj, λ)

)

+ ω3(λ)
L

n
∏

j=1

(

−iα8(λ, λj)

α7(λ, λj)

)

−ω2(λ)
L

n
∏

j=1

(

−iα1(λ, λj)

α9(λ, λj)

)

Λ(1)(λ, {λk})
]

×
[

ω1(λ)
L

ṅ
∏

j=1

(

iα2(λ̇j, λ)

α9(λ̇j, λ)

)

+ ω3(λ)
L

ṅ
∏

j=1

(

−iα8(λ, λ̇j)

α7(λ, λ̇j)

)

−ω2(λ)
L

ṅ
∏

j=1

(

−iα1(λ, λ̇j)

α9(λ, λ̇j)

)

Λ(1)(λ, {λ̇k})
]

. (4.25)

As expected, this is just the product of two copies of the result for a single copy of Hubbard,
given in MR (89). Note that Λ(1)(λ, {λk}) are the eigenvalues of the auxiliary transfer matrix
MR (92). They are given by MR (99), and there is a similar expression for Λ(1)(λ, {λ̇k}).
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The Bethe equations can again be obtained using the shortcut that there should be a
cancellation of the poles in the eigenvalues of the transfer matrix; this leads to MR (90),
(102),

(

ω1(λj)

ω2(λj)

)L

= Λ(1)(λj, {λk}) =
m
∏

l=1

1

b̄(µl, λj)
,

(

ω1(λ̇j)

ω2(λ̇j)

)L

= Λ(1)(λ̇j, {λ̇k}) =
ṁ
∏

l=1

1

b̄(µ̇l, λ̇j)
. (4.26)

To obtain this result, one needs the following properties of the functions αi

α9(µ, λ) = −α9(λ, µ) , α1(µ, λ) = α2(λ, µ) , (4.27)

which follow from their definitions, given in MR Appendix A. The Bethe equations for the
auxiliary problem are given by MR (100), and a similar set for the dotted roots.

4.2 Twisted case

We turn now to the twisted case, for which the monodromy matrix is given by (4.10). The
exchange relations suffer only deformations of the coefficients. In particular, the “wanted”
terms become (cf. (4.16))

T̃j,j(λ) T̃1,2(µ) = e−iζk(j)γ1/2fl(j)(λ, µ) T̃1,2(µ) T̃j,j(λ) + . . . ,

T̃j,j(λ) T̃1,3(µ) = e−iζk(j)γ1/2gl(j)(λ, µ) T̃1,3(µ) T̃j,j(λ) + . . . ,

T̃j,j(λ) T̃1,5(µ) = eiζl(j)γ1/2fk(j)(λ, µ) T̃1,5(µ) T̃j,j(λ) + . . . ,

T̃j,j(λ) T̃1,9(µ) = eiζl(j)γ1/2gk(j)(λ, µ) T̃1,9(µ) T̃j,j(λ) + . . . , j = 1, . . . , 16, (4.28)

where we have defined

ζ1 = 1 , ζ2 = ζ3 = 0 , ζ4 = −1 . (4.29)

The pseudovacuum eigenvalues are now given by (cf. (4.19))

T̃j,j(λ)
(

|0〉 ⊗ |0̇〉
)

= ei(ζk(j)−ζl(j))γ1L/2
[

φk(j)(λ)φl(j)(λ)
]L (

|0〉 ⊗ |0̇〉
)

, j = 1, . . . , 16. (4.30)

We remind the reader that k(j) and l(j) are defined by (4.17).
Proceeding as in the untwisted case, one easily finds that the eigenvalues of the twisted

transfer matrix (4.9) are given by

Λ̃(λ) =
[

c1 ω1(λ)
L

n
∏

j=1

(

iα2(λj, λ)

α9(λj, λ)

)

+ c−1
1 ω3(λ)

L
n
∏

j=1

(

−iα8(λ, λj)

α7(λ, λj)

)

−ω2(λ)
L

n
∏

j=1

(

−iα1(λ, λj)

α9(λ, λj)

)

Λ(1)(λ, {λk})
]

×
[

c2 ω1(λ)
L

ṅ
∏

j=1

(

iα2(λ̇j , λ)

α9(λ̇j, λ)

)

+ c−1
2 ω3(λ)

L
ṅ
∏

j=1

(

−iα8(λ, λ̇j)

α7(λ, λ̇j)

)

−ω2(λ)
L

ṅ
∏

j=1

(

−iα1(λ, λ̇j)

α9(λ, λ̇j)

)

Λ(1)(λ, {λ̇k})
]

, (4.31)
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where

c1 = eiγ2/2eiγ1L/2e−iγ1ṅ/2 , c2 = eiγ3/2e−iγ1L/2eiγ1n/2 . (4.32)

It is very important to observe that the matrix r̂ given in MR (26) does not get deformed
by the twist. Hence, the eigenvalues of the auxiliary transfer matrix also do not get deformed.
Again using the shortcut, we find from (4.31) that the Bethe equations are given by

eiγ2/2eiγ1L/2e−iγ1ṅ/2

(

ω1(λj)

ω2(λj)

)L

= Λ(1)(λj, {λk}) =
m
∏

l=1

1

b̄(µl, λj)
,

eiγ3/2e−iγ1L/2eiγ1n/2

(

ω1(λ̇j)

ω2(λ̇j)

)L

= Λ(1)(λ̇j, {λ̇k}) =
ṁ
∏

l=1

1

b̄(µ̇l, λ̇j)
. (4.33)

Their structure is similar to those for the twisted su(2) principal chiral model (3.32). The
Bethe equations for the auxiliary problem are again given by MR (100).

5 Twisting AdS5/CFT4

We finally come to the AdS/CFT case. Let S(p1, p2) be the graded su(2|2) S-matrix in
[18, 23], and let S(p1, p2) be the su(2|2)2 S-matrix,

Sa ȧ b ḃ(p1, p2) = Sab(p1, p2)Sȧḃ(p1, p2) . (5.1)

We consider the Drinfeld-Reshetikhin twist of this S-matrix

S̃(p1, p2) = F S(p1, p2)F , (5.2)

where the twist matrix F is given by (see (2.23))

F = eiγ1(h⊗I⊗I⊗h−I⊗h⊗h⊗I) . (5.3)

Here h is the diagonal matrix 10

h = diag(
1

2
,−

1

2
, 0, 0) , (5.4)

and I is again the 4 × 4 unit matrix. In Appendix B we verify that the twisted S-matrix
has the standard crossing symmetry; hence, the scalar factor S0 is exactly the same as the
untwisted one and independent of the deformation parameter. The (inhomogeneous) transfer
matrix is given by

t̃(λ) = straȧ MaȧS̃aȧ11̇(λ, p1) . . . S̃aȧNṄ(λ, pN) , (5.5)

where the matrix Maȧ is given by (see (2.24))

M = ei(γ3−γ2)Jh ⊗ ei(γ3+γ2)Jh , (5.6)

10The difference between (4.8) and (5.4) is due to a difference in basis: as already noted in (4.3), in [26]
the gradings are (0,1,1,0), while in [18] the gradings are (0,0,1,1).
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and J is the angular momentum charge.
Let us briefly recall the untwisted case γi = 0. Based on the Hubbard-model results in

MR [26], Martins and Melo obtain in [23] the eigenvalues of the su(2|2) transfer matrix.
Hereafter we denote the latter reference by MM. Indeed, the eigenvalues of the transfer
matrix for a single copy of Hubbard are given by MR (89), MR (99), which can be rewritten
as MM (30). Martins and Melo argue that MM (30) leads to the eigenvalues of the su(2|2)
transfer matrix in MM (32).

Turning now to the twisted case, we use the same logic to conclude that our result (4.31)
for twisted Hubbard implies that the eigenvalues of the twisted AdS/CFT transfer matrix
(5.5) are given by (cf. MM (32))

Λ̃(λ) =

N
∏

i=1

S0(λ, pi)
2

[

c1

N
∏

i=1

[

x−(pi)− x+(λ)

x+(pi)− x−(λ)

]

η(pi)

η(λ)

m1
∏

j=1

η(λ)
x−(λ)− x+(λj)

x+(λ)− x+(λj)

−
N
∏

i=1

x+(λ)− x+(pi)

x−(λ)− x+(pi)

1

η(λ)

{

m1
∏

j=1

η(λ)

[

x−(λ)− x+(λj)

x+(λ)− x+(λj)

] m2
∏

l=1

x+(λ) + 1
x+(λ)

− µ̃l +
i
2g

x+(λ) + 1
x+(λ)

− µ̃l −
i
2g

+

m1
∏

j=1

η(λ)

[

x+(λj)−
1

x+(λ)

x+(λj)−
1

x−(λ)

]

m2
∏

l=1

x−(λ) + 1
x−(λ)

− µ̃l −
i
2g

x−(λ) + 1
x−(λ)

− µ̃l +
i
2g

}

+ c−1
1

N
∏

i=1

[

1− 1
x−(λ)x+(pi)

1− 1
x−(λ)x−(pi)

]

[

x+(pi)− x+(λ)

x+(pi)− x−(λ)

]

η(pi)

η(λ)

m1
∏

j=1

η(λ)

[

x+(λj)−
1

x+(λ)

x+(λj)−
1

x−(λ)

]]

×

[

c2

N
∏

i=1

[

x−(pi)− x+(λ)

x+(pi)− x−(λ)

]

η(pi)

η(λ)

ṁ1
∏

j=1

η(λ)
x−(λ)− x+(λ̇j)

x+(λ)− x+(λ̇j)

−
N
∏

i=1

x+(λ)− x+(pi)

x−(λ)− x+(pi)

1

η(λ)

{

ṁ1
∏

j=1

η(λ)

[

x−(λ)− x+(λ̇j)

x+(λ)− x+(λ̇j)

]

ṁ2
∏

l=1

x+(λ) + 1
x+(λ)

− ˙̃µl +
i
2g

x+(λ) + 1
x+(λ)

− ˙̃µl −
i
2g

+

ṁ1
∏

j=1

η(λ)

[

x+(λ̇j)−
1

x+(λ)

x+(λ̇j)−
1

x−(λ)

]

ṁ2
∏

l=1

x−(λ) + 1
x−(λ)

− ˙̃µl −
i
2g

x−(λ) + 1
x−(λ)

− ˙̃µl +
i
2g

}

+ c−1
2

N
∏

i=1

[

1− 1
x−(λ)x+(pi)

1− 1
x−(λ)x−(pi)

]

[

x+(pi)− x+(λ)

x+(pi)− x−(λ)

]

η(pi)

η(λ)

ṁ1
∏

j=1

η(λ)

[

x+(λ̇j)−
1

x+(λ)

x+(λ̇j)−
1

x−(λ)

]]

, (5.7)

where

c1 = eiγ1N/2e−iγ1ṁ1/2ei(γ3−γ2)J/2 , c2 = e−iγ1N/2eiγ1m1/2ei(γ3+γ2)J/2 . (5.8)
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The corresponding Bethe equations are therefore (cf. MM (33)):

c1

N
∏

i=1

[

x+(λj)− x−(pi)

x+(λj)− x+(pi)

]

η(pi) =

m2
∏

l=1

x+(λj) +
1

x+(λj)
− µ̃l +

i
2g

x+(λj) +
1

x+(λj)
− µ̃l −

i
2g

,

j = 1, . . . , m1,

c2

N
∏

i=1

[

x+(λ̇j)− x−(pi)

x+(λ̇j)− x+(pi)

]

η(pi) =

ṁ2
∏

l=1

x+(λ̇j) +
1

x+(λ̇j)
− ˙̃µl +

i
2g

x+(λ̇j) +
1

x+(λ̇j)
− ˙̃µl −

i
2g

,

j = 1, . . . , ṁ1,
m1
∏

j=1

µ̃l − x+(λj)−
1

x+(λj )
+ i

2g

µ̃l − x+(λj)−
1

x+(λj)
− i

2g

=

m2
∏

k=1
k 6=l

µ̃l − µ̃k +
i
g

µ̃l − µ̃k −
i
g

, l = 1, . . . , m2,

ṁ1
∏

j=1

˙̃µl − x+(λ̇j)−
1

x+(λ̇j )
+ i

2g

˙̃µl − x+(λ̇j)−
1

x+(λ̇j)
− i

2g

=

m2
∏

k=1
k 6=l

˙̃µl − ˙̃µk +
i
g

˙̃µl − ˙̃µk −
i
g

, l = 1, . . . , ṁ2. (5.9)

In terms of the notation in MM (45), (46), and using the fact η(λ) = eiλ/2, these Bethe
equations become 11

c1e
iP
2

N
∏

i=1

[

x+(λ
(1)
j )− x−(pi)

x+(λ
(1)
j )− x+(pi)

]

=

m
(1)
2
∏

l=1

x+(λ
(1)
j ) + 1

x+(λ
(1)
j )

− µ̃l
(1) + i

2g

x+(λ
(1)
j ) + 1

x+(λ
(1)
j

)
− µ̃l

(1) − i
2g

,

j = 1, . . . , m
(1)
1 , (5.10)

c2e
iP
2

N
∏

i=1

[

x+(λ
(2)
j )− x−(pi)

x+(λ
(2)
j )− x+(pi)

]

=

m
(2)
2
∏

l=1

x+(λ
(2)
j ) + 1

x+(λ
(2)
j )

− µ̃l
(2) + i

2g

x+(λ
(2)
j ) + 1

x+(λ
(2)
j )

− µ̃l
(2) − i

2g

,

j = 1, . . . , m
(2)
1 , (5.11)

m
(α)
1
∏

j=1

µ̃
(α)
l − x+(λ

(α)
j )− 1

x+(λ
(α)
j )

+ i
2g

µ̃
(α)
l − x+(λ

(α)
j )− 1

x+(λ
(α)
j )

− i
2g

=

m
(α)
2
∏

k=1
k 6=l

µ̃
(α)
l − µ̃

(α)
k + i

g

µ̃
(α)
l − µ̃

(α)
k − i

g

, l = 1, . . . , m
(α)
2 ; α = 1, 2 ,

(5.12)

where P =
∑N

k=1 pk is the total momentum. Following the change in notation in MM
(47)-(49), (51), so that

N = K4 , m
(1)
1 = K1 +K3 , m

(2)
1 = K5 +K7 , m

(1)
2 = K2 , m

(2)
2 = K6 , (5.13)

and the coefficients (5.8) are given by

c1 = eiγ1(K4−K5−K7)/2ei(γ3−γ2)J/2 , c2 = e−iγ1(K4−K1−K3)/2ei(γ3+γ2)J/2 , (5.14)

11Note that mj 7→ m
(1)
j , ṁj 7→ m

(2)
j for j = 1, 2.
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Eqs. (5.10), (5.11) become (cf. MM (52))

c1e
−iP/2

K4
∏

i=1

1− g2

x−

4,ix1,j

1− g2

x+
4,ix1,j

=

K2
∏

l=1

u1,j − u2,l +
i
2

u1,j − u2,l −
i
2

, j = 1, . . . , K1 (5.15)

c1e
iP/2

K4
∏

i=1

x−
4,i − x3,j

x+
4,i − x3,j

=

K2
∏

l=1

u3,j − u2,l +
i
2

u3,j − u2,l −
i
2

, j = 1, . . . , K3 (5.16)

c2e
iP/2

K4
∏

i=1

x−
4,i − x5,j

x+
4,i − x5,j

=

K6
∏

l=1

u5,j − u6,l +
i
2

u5,j − u6,l −
i
2

, j = 1, . . . , K5 (5.17)

c2e
−iP/2

K4
∏

i=1

1− g2

x−

4,ix7,j

1− g2

x+
4,ix7,j

=

K6
∏

l=1

u7,j − u6,l +
i
2

u7,j − u6,l −
i
2

, j = 1, . . . , K7 (5.18)

The undeformed eqs. (5.12) become the same as MM (53), namely,

K1
∏

j=1

u2,l − u1,j +
i
2

u2,l − u1,j −
i
2

K3
∏

j=1

u2,l − u3,j +
i
2

u2,l − u3,j −
i
2

=

K2
∏

k=1
k 6=l

u2,l − u2,k + i

u2,l − u2,k − i
, l = 1, . . . , K2

K5
∏

j=1

u6,l − u5,j +
i
2

u6,l − u5,j −
i
2

K7
∏

j=1

u6,l − u7,j +
i
2

u6,l − u7,j −
i
2

=

K6
∏

k=1
k 6=l

u6,l − u6,k + i

u6,l − u6,k − i
, l = 1, . . . , K6 (5.19)

Finally, we consider the equations for the type-4 Bethe roots (i.e., corresponding to the
middle node of the Dynkin diagram). These come from the Bethe-Yang equations (cf. (3.36))

e−ipkL = Λ̃(pk)

= c1c2

N
∏

i=1

[

S0(pk, pi)
x−(pi)− x+(pk)

x+(pi)− x−(pk)

η(pi)

η(pk)

]2

×
m1
∏

j=1

η(pk)
x−(pk)− x+(λj)

x+(pk)− x+(λj)

ṁ1
∏

j=1

η(pk)
x−(pk)− x+(λ̇j)

x+(pk)− x+(λ̇j)
, (5.20)

where we have used our result (5.7) for Λ(λ). Setting

L = −J (5.21)

as proposed by MM, substituting the result for the scalar factor from MM (36), and changing
notations as above, we obtain (cf. MM (50))

eipk[J+K4−
1
2
(K3−K1)−

1
2
(K5−K7)] = c1c2e

iP

K4
∏

i=1
i 6=k

[

x+
4,k − x−

4,i

x−
4,k − x+

4,i

]





1− g2

x+
4,kx

−

4,i

1− g2

x−

4,kx
+
4,i



 [σ(pk, pi)]
2

×
K3
∏

j=1

x−
4,k − x3,j

x+
4,k − x3,j

K1
∏

j=1

1− g2

x−

4,kx1,j

1− g2

x+
4,kx1,j

×
K5
∏

j=1

x−
4,k − x5,j

x+
4,k − x5,j

K7
∏

j=1

1− g2

x−

4,kx7,j

1− g2

x+
4,kx7,j

, k = 1, . . . , K4 . (5.22)

21



♥ ♥ ♥ ♥ ♥ ♥ ♥�❅ �❅ �❅ �❅− + −

Figure 1: Dynkin diagram of su(2, 2|4).

For the undeformed case γi = 0, one recovers the corresponding Bethe equations of Beisert
and Staudacher [15] by setting P = 0 and recalling the result for the angular momentum
charge

J = L−K4 +
1

2
(K3 −K1) +

1

2
(K5 −K7) , (5.23)

where we denote by L the parameter used in [15, 7] to identify the length of the chain.
The twisted transfer matrix eigenvalue (5.7), which we have obtained from diagonalizing

the twisted transfer matrix (5.5) based on the twisted scattering matrix (5.2) and the twisted
boundary condition (5.6), is equivalent to the transfer matrix eigenvalue proposed in [13];
and for the special case of β-deformation, it is equivalent to the result in [14].

6 Comparison with BR

The paper [7] of Beisert and Roiban, to which we refer by BR, proposes a three-parameter
(γ1 , γ2 , γ3) deformation of the all-loop asymptotic Bethe equations of Beisert and Staudacher
[15]. The β-deformation [2] corresponds to a special case with N = 1 supersymmetry,

γ1 = γ2 = γ3 = 2πβ . (6.1)

The deformed all-loop Bethe equations are given by BR (5.39)

ei(AK)0 U0 = 1, ei(AK)j Uj(xj,k)
7
∏

j′=1

Kj′
∏

k′=1

(j′,k′)6=(j,k)

uj,k − uj′,k′ +
i
2
Mj,j′

uj,k − uj′,k′ −
i
2
Mj,j′

= 1 , (6.2)

where

U0 =

K4
∏

k=1

x+
4,k

x−
4,k

, U1(x) = U−1
3 (x) = U−1

5 (x) = U7(x) =

K4
∏

k=1

Saux(x4,k, x) (6.3)

and

U4(x) = Us(x)

(

x−

x+

)L K1
∏

k=1

S−1
aux(x, x1,k)

K3
∏

k=1

Saux(x, x3,k)

K5
∏

k=1

Saux(x, x5,k)

K7
∏

k=1

S−1
aux(x, x7,k). (6.4)

Moreover,

Saux(x1, x2) =
1− g2/x+

1 x2

1− g2/x−
1 x2

, Us(x) =

K4
∏

k=1

σ(x, x4,k)
2 . (6.5)
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For the “su(2)” grading with η1 = η2 = +1 which we consider here, Mj,j′ is the Cartan
matrix specified by Fig. 1 (see Eq. (5.1) in [15]), and the twist matrix A is given 12 by BR
(5.24). It then follows from BR (4.27) that

(AK)0 =
1

2

[

γ2 (−K1 −K3 +K5 +K7)

+γ3 (K1 +K3 − 2K4 +K5 +K7)
]

, (6.7)

(AK)2 = (AK)6 = 0 , (6.8)

(AK)1 +
1

2
(AK)0 = −

1

2
[(γ3 − γ2)J + γ1 (K4 −K5 −K7)] , (6.9)

(AK)3 −
1

2
(AK)0 = (AK)1 +

1

2
(AK)0 , (6.10)

(AK)5 −
1

2
(AK)0 = −

1

2
[(γ3 + γ2)J − γ1 (K4 −K1 −K3)] , (6.11)

(AK)7 +
1

2
(AK)0 = (AK)5 −

1

2
(AK)0 , (6.12)

(AK)4 + (AK)0 = γ3J −
1

2
γ1 (K5 +K7 −K1 −K3) . (6.13)

Note that Eqs. (6.2) and (6.3) imply that the total momentum P is given by

P = −(AK)0 . (6.14)

We now compare the BR Bethe equations with the ones which we derived in the previous
section.

The fact that Eqs. (5.19) are not deformed matches with (6.8) and (6.2) with j = 2, 6.
In order to facilitate the further comparisons, let us rewrite Eqs. (5.15) - (5.18) in the

form (6.2):

c−1
1 eiP/2

K4
∏

i=1

1− g2

x+
4,ix1,j

1− g2

x−

4,ix1,j

K2
∏

l=1

u1,j − u2,l +
i
2

u1,j − u2,l −
i
2

= 1, j = 1, . . . , K1 , (6.15)

c−1
1 e−iP/2

K4
∏

i=1

x+
4,i − x3,j

x−
4,i − x3,j

K2
∏

l=1

u3,j − u2,l +
i
2

u3,j − u2,l −
i
2

= 1, j = 1, . . . , K3 , (6.16)

c−1
2 e−iP/2

K4
∏

i=1

x+
4,i − x5,j

x−
4,i − x5,j

K6
∏

l=1

u5,j − u6,l +
i
2

u5,j − u6,l −
i
2

= 1, j = 1, . . . , K5 , (6.17)

c−1
2 eiP/2

K4
∏

i=1

1− g2

x+
4,ix7,j

1− g2

x−

4,ix7,j

K6
∏

l=1

u7,j − u6,l +
i
2

u7,j − u6,l −
i
2

= 1, j = 1, . . . , K7 . (6.18)

Substituting for P using (6.14), and noting the identities (proved using (5.14), (5.23) and
(6.7)-(6.12)),

c−1
1 eiP/2 = ei(AK)1 , c−1

1 e−iP/2 = ei(AK)3 , c−1
2 e−iP/2 = ei(AK)5 , c−1

2 eiP/2 = ei(AK)7 ,(6.19)

12This matrix is given in terms of the parameters (δ1, δ2, δ3), which are related to (γ1 , γ2 , γ3) through
Eqs. BR (5.2) and BR (5.3); i.e.,

γ1 = −δ1 − 2δ2 − δ3 , γ2 = −δ1 − δ3 , γ3 = −δ1 + δ3 . (6.6)
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we see that Eqs. (6.15)-(6.18) match with (6.2) with j = 1, 3, 5, 7 respectively. Moreover,
the identity

c1c2e
iP = ei(AK)4 (6.20)

implies that (5.22) matches with (6.2) with j = 4. In summary, provided we take P as in
(6.14), the Bethe equations of Sec. 5 match with those in BR.

7 Discussion

We have shown that the Beisert-Roiban Bethe equations (6.2) for the 3-parameter deforma-
tion of AdS5/CFT4 can be derived from the S-matrix with the Drinfeld-Reshetikhin twist
(5.2)-(5.4), together with the c-number twist (5.6) of the boundary conditions. This result
places the twisted Bethe equations on a firmer conceptual footing. Our result also reproduces
the proposed twisted transfer matrix eigenvalue of [13]. As explained in Appendix C, this
result also justifies the deformed S-matrix elements used in [12] to compute the anomalous
dimension of the Konishi operator in β-deformed N = 4 SYM via the Lüscher formula.
Indeed, we can recover with our approach the Lüscher correction for all known cases in the
literature, both su(2) and sl(2).

We demonstrate in Appendix D that the transfer matrix is spectrally equivalent to a
transfer matrix which is constructed using instead untwisted S-matrices and boundary con-
ditions with operatorial twists. It is the latter type of transfer matrix which is considered in
[14]. A similar spectral equivalence was noted for the β-deformed su(2) sector at one loop in
[3]. Finally, in Appendix E we transform our twisted Bethe ansatz results from the “su(2)”
grading to the “sl(2)” grading, and show that the results agree with both [7] and [14].

The scattering matrix is a fundamental object in integrable systems and can be checked
by various means. As its semiclassical limit corresponds to time delays, it would be nice
to check our proposal against a classical string theory calculation based directly on the
Lunin-Maldacena [4] background.
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A Derivation of the exchange relations

An important ingredient of the algebraic Bethe ansatz approach is the set of exchange
relations which are obeyed by the matrix elements of the monodromy matrix. Here we
explain how to derive the exchange relations used in this paper.

A.1 su(2) principal chiral model

The exchange relations for the spin-1/2 XXX quantum spin chain are well known (see, for
example, [37]). We shall need the relations between the diagonal operators A,D and the
creation operator B

A(u)B(v) =
u− v − i

u− v
B(v)A(u) +

i

u− v
B(u)A(v) , (A.1)

D(u)B(v) =
u− v + i

u− v
B(v)D(u)−

i

u− v
B(u)D(v) , (A.2)

as well as relations among the diagonal operators,

[A(u) , A(v)] = [D(u) , D(v)] = 0 , (A.3)

D(u)A(v) = A(v)D(u) +
i

u− v
(B(v)C(u)− B(u)C(v)) . (A.4)

The same relations hold for the corresponding dotted operators Ȧ, Ḃ, Ċ, Ḋ; and the dotted
and undotted operators commute with each other.

The exchange relations between the diagonal operators Tjj and the creation operators
T12, T13 can be classified into two types, depending on whether they make use of (A.3) or
(A.4). The former are very simple, and are given in (3.18); the latter are more complicated,
and are given in (3.19).

The first exchange relation in (3.18) can be easily derived using (A.1) and (A.3):

T11(u) T13(v) = A(u) Ȧ(u)B(v) Ȧ(v)

= A(u)B(v) Ȧ(u) Ȧ(v)

=

[

u− v − i

u− v
B(v)A(u) +

i

u− v
B(u)A(v)

]

Ȧ(u) Ȧ(v)

=
u− v − i

u− v
T13(v) T11(u) +

i

u− v
T13(u) T11(v) , (A.5)

and the remaining relations in (3.18) can be derived in a similar way.
The derivation of the first exchange relation in (3.19) also begins in a similar way:

T22(u) T13(v) = A(u) Ḋ(u)B(v) Ȧ(v)

= A(u)B(v) Ḋ(u) Ȧ(v)

=

[

u− v − i

u− v
B(v)A(u) +

i

u− v
B(u)A(v)

]

Ḋ(u) Ȧ(v)

=
u− v − i

u− v
B(v)A(u)Ḋ(u) Ȧ(v) +

i

u− v
T24(u) T11(v) . (A.6)
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We next observe that the first term on the RHS can be re-expressed using (A.4) as follows

u− v − i

u− v
B(v)A(u)Ḋ(u) Ȧ(v)

=
u− v − i

u− v
B(v)A(u)

[

Ȧ(v) Ḋ(u) +
i

u− v
Ḃ(v) Ċ(u)−

i

u− v
Ḃ(u) Ċ(v)

]

=
u− v − i

u− v
T13(v) T22(u) +

i(u− v − i)

(u− v)2
T14(v) T21(u)

−
i(u− v − i)

(u− v)2
B(v)A(u) Ḃ(u) Ċ(v) . (A.7)

Finally, we use again (A.1) to re-write the final term in (A.7) as

−
i(u− v − i)

(u− v)2
B(v)A(u) Ḃ(u) Ċ(v)

= −
i(u− v − i)

(u− v)2

[

u− v

u− v − i
A(u)B(v)−

i

u− v − i
B(u)A(v)

]

Ḃ(u) Ċ(v)

= −
i

u− v
T12(u) T23(v)−

1

(u− v)2
T14(u) T21(v) . (A.8)

Combining the results (A.6)-(A.8), we arrive at the first exchange relation in (3.19). The
remaining relations in (3.19) can be derived in a similar way.

We remark that one can generate many other ( “bad”) exchange relations which differ
from those given in (3.19). What singles out those in (3.19) is that the diagonal term gives
the “wanted” contribution, while the rest of the terms give “unwanted” contributions. To
get this right, it helps to know the desired final result, which was first found by other means
in Sec 3.1. A further useful check is that these exchange relations have simple deformations
(3.25), which does not seem to be the case for “bad” exchange relations.

A.2 Two copies of the Hubbard model

The exchange relations between the diagonal operators B,Ajj, D and the creation operators
Bj are given in MR (34)-(36). For example,

B(λ)Bj(µ) =
iα2(µ, λ)

α9(µ, λ)
Bj(µ)B(λ)−

iα5(µ, λ)

α9(µ, λ)
Bj(λ)B(µ) , j = 1, 2, (A.9)

Ajj(λ)Bj(µ) = −
iα1(λ, µ)

α9(λ, µ)
Bj(µ)Ajj(λ) +

iα5(λ, µ)

α9(λ, µ)
Bj(λ)Ajj(µ) , j = 1, 2,(A.10)
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where there is no sum over repeated indices. We shall also need exchange relations among
the diagonal operators (see (12.D.1) in [38]),

B(λ)B(µ) = B(µ)B(λ) , (A.11)

Ajj(λ)B(µ) = B(µ)Ajj(λ)−
iα5(λ, µ)

α9(λ, µ)
(Bj(µ)Cj(λ)− Bj(λ)Cj(µ)) , j = 1, 2, (A.12)

Ajj(λ)D(µ) = D(µ)Ajj(λ)−
iα5(λ, µ)

α9(λ, µ)

(

C∗
j (µ)B

∗
j (λ)− C∗

j (λ)B
∗
j (µ)

)

, j = 1, 2,(A.13)

D(λ)B(µ) = B(µ)D(λ)−
α4(λ, µ)

α7(λ, µ)
(F (λ)C(µ)− F (µ)C(λ)) (A.14)

−
iα10(λ, µ)

α7(λ, µ)
(B∗

1(λ)C2(µ)−B∗
2(λ)C1(µ) +B1(µ)C

∗
2(λ)− B2(µ)C

∗
1(λ)) .

The same relations hold for the corresponding dotted operators.
The exchange relations between the diagonal operators Tj,j and the creation operators

T1,2, T1,3, T1,5, T1,9 can be classified into four types, depending on which of the four relations
(A.11)-(A.14) they make use of. The relations of the first type which make use of (A.11) are
the simplest; while the relations of the fourth type which make use of (A.14) are the most
complicated. All of these relations can be derived using the same procedure which we used
for the principal chiral model.

Here is an example of the first type:

T1,1(λ) T1,2(µ) = B(λ) Ḃ(λ)B(µ) Ḃ1(µ)

= B(λ)B(µ) Ḃ(λ) Ḃ1(µ)

= B(λ)B(µ)

[

iα2(µ, λ)

α9(µ, λ)
Ḃ1(µ) Ḃ(λ)−

iα5(µ, λ)

α9(µ, λ)
Ḃ1(λ) Ḃ(µ)

]

=
iα2(µ, λ)

α9(µ, λ)
T1,2(µ) T1,1(λ)−

iα5(µ, λ)

α9(µ, λ)
T1,2(λ) T1,1(µ) , (A.15)

where we have used (A.9) to pass to the third line.
For an example of the second type, let us consider

T2,2(λ) T1,5(µ) = B(λ) Ȧ11(λ)B1(µ) Ḃ(µ)

= B(λ)B1(µ) Ȧ11(λ) Ḃ(µ)

=

[

iα2(µ, λ)

α9(µ, λ)
B1(µ)B(λ)−

iα5(µ, λ)

α9(µ, λ)
B1(λ)B(µ)

]

Ȧ11(λ) Ḃ(µ)

=
iα2(µ, λ)

α9(µ, λ)
B1(µ)B(λ) Ȧ11(λ) Ḃ(µ)−

iα5(µ, λ)

α9(µ, λ)
T2,6(λ) T1,1(µ) .(A.16)

The first term on the RHS can be re-expressed using (A.12) as follows

iα2(µ, λ)

α9(µ, λ)
B1(µ)B(λ) Ȧ11(λ) Ḃ(µ)

=
iα2(µ, λ)

α9(µ, λ)
B1(µ)B(λ)

[

Ḃ(µ) Ȧ11(λ)−
iα5(λ, µ)

α9(λ, µ)

(

Ḃ1(µ) Ċ1(λ)− Ḃ1(λ) Ċ1(µ)
)

]

=
iα2(µ, λ)

α9(µ, λ)
T1,5(µ) T2,2(λ) +

α2(µ, λ)α5(λ, µ)

α9(µ, λ)α9(λ, µ)
T1,6(µ) T2,1(λ)

−
α2(µ, λ)α5(λ, µ)

α9(µ, λ)α9(λ, µ)
B1(µ)B(λ) Ḃ1(λ) Ċ1(µ) . (A.17)
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Finally, we use again (A.9) to re-write the final term in (A.17) as

−
α2(µ, λ)α5(λ, µ)

α9(µ, λ)α9(λ, µ)
B1(µ)B(λ) Ḃ1(λ) Ċ1(µ)

=
iα5(λ, µ)

α9(λ, µ)

[

B(λ)B1(µ) + i
α5(µ, λ)

α9(µ, λ)
B1(λ)B(µ)

]

Ḃ1(λ) Ċ1(µ)

=
iα5(λ, µ)

α9(λ, µ)
T1,2(λ) T2,5(µ)−

α5(µ, λ)α5(λ, µ)

α9(µ, λ)α9(λ, µ)
T1,6(λ) T2,1(µ) (A.18)

Combining the results (A.16)-(A.18), we arrive at the exchange relation

T2,2(λ) T1,5(µ) =
iα2(µ, λ)

α9(µ, λ)
T1,5(µ) T2,2(λ) +

α2(µ, λ)α5(λ, µ)

α9(µ, λ)α9(λ, µ)
T1,6(µ) T2,1(λ)

+
iα5(µ, λ)

α9(µ, λ)
T2,6(λ) T1,1(µ) +

iα5(λ, µ)

α9(λ, µ)
T1,2(λ) T2,5(µ)

−
α5(µ, λ)α5(λ, µ)

α9(µ, λ)α9(λ, µ)
T1,6(λ) T2,1(µ) . (A.19)

An example of an exchange relation of the fourth type, which can be derived in a similar
manner using (A.10) and (A.14), is

T8,8(λ) T1,5(µ) = −
iα1(λ, µ)

α9(λ, µ)
T1,5(µ) T8,8(λ) +

iα5(λ, µ)

α9(λ, µ)
T4,8(λ) T5,5(µ)

−
iα1(λ, µ)α4(λ, µ)

α9(λ, µ)α7(λ, µ)
T1,8(µ) T8,5(λ)−

α1(λ, µ)α10(λ, µ)

α9(λ, µ)α7(λ, µ)
(T1,6(µ) T8,7(λ)− T1,7(µ) T8,6(λ))

−
α4(λ, µ)

α7(λ, µ)
T5,8(λ) T4,5(µ)−

iα10(λ, µ)

α7(λ, µ)
(T6,8(λ) T3,5(µ)− T7,8(λ) T2,5(µ)) (A.20)

+
iα5(λ, µ)α4(λ, µ)

α9(λ, µ)α7(λ, µ)
T1,8(λ) T8,5(µ) +

α5(λ, µ)α10(λ, µ)

α9(λ, µ)α7(λ, µ)
(T2,8(λ) T7,5(µ)− T3,8(λ) T6,5(µ)) .

It is not feasible to present all 64 exchange relations in their entirety. Nevertheless, the
“wanted” (diagonal) terms of all these exchange relations are given in (4.16).

B Crossing symmetry

We verify here that the twisted S-matrix (5.2) has the standard crossing symmetry property.
For a single copy of the untwisted su(2|2) S-matrix in the elliptic parametrization [21], the
crossing relation [19] is given by

C−1
1 St1

12(z1, z2)C1S12(z1 + ω2, z2) = I12 , C−1
1 St1

12(z1, z2)C1S12(z1, z2 − ω2) = I12 , (B.1)

where C is the 4× 4 matrix given by

C =

(

σ2 0
0 iσ2

)

, (B.2)

and σ2 is the second Pauli matrix.
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We write the full untwisted su(2|2)2 S-matrix (5.1) as

S1234(z1, z2) = S13(z1, z2)S24(z1, z2) . (B.3)

One can easily check that it obeys the crossing relation

C−1
1 C−1

2 St1t2
1234(z1, z2)C1C2S1234(z1 + ω2, z2) = I1234 , (B.4)

and a similar second relation. We write the twisted S-matrix (5.2) as

S̃1234(z1, z2) = F1234 S1234(z1, z2)F1234 , (B.5)

It should obey the same crossing relation, i.e.,

C−1
1 C−1

2 S̃t1t2
1234(z1, z2)C1C2S̃1234(z1 + ω2, z2) = I1234 . (B.6)

We find that the twist matrix F (5.3) obeys the relation

C−1
1 C−1

2 F1234C1C2 = F−1
1234 . (B.7)

Using this identity, one can check that the crossing relation (B.6) is indeed satisfied.

C Lüscher correction

We show here that the proposed twisted scattering matrix and twisted boundary condition
reproduce the wrapping correction not only for the Konishi operator [12] but also for generic
multiparticle states both in the su(2) and in the sl(2) sectors analyzed in [13, 14].

Let us start with the su(2) sector. It consists of identical particles carrying the labels
11̇ = X . In the Lüscher correction, we need the scattering matrix of the X particle on the
mirror boundstates. Since only the R1 charge gives a nonvanishing contribution on X , the
twist factor of the scattering matrix will be

F = eiγ12I⊗R2 = qI⊗R2 , (C.1)

where in the last equality we focus on the β-deformation only: γ12 =
1
2
γ = πβ, and q = eiπβ.

Evaluating R2 on the mirror boundstates gives the following twist of the S-matrix elements:

|Bk〉I |Bk〉II |Fk〉I |Fk〉II
1 1 1 q q−1

|Ḃk〉I |Ḃk〉II |Ḟk〉I |Ḟk〉II
1̇ 1 1 q−1 q

Taking into account that the scattering is diagonal in this sector, the wrapping correction
for N particles of type 11̇ will contain the N th power of the above expressions.

Additionally, we also have to remember that the mirror boundstate should satisfy the
twisted boundary condition, which for γ23 = γ13 =

1
2
γ reads as: q4J (h⊗1). In detail, we have

|Bk〉I |Bk〉II |Fk〉I |Fk〉II
BC 1 1 1 1

|Ḃk〉I |Ḃk〉II |Ḟk〉I |Ḟk〉II
BC 1 1 q2J q−2J

Combining the two results, we can equivalently describe our deformation with a different
twisted boundary condition (BC ′) given by

|Bk〉I |Bk〉II |Fk〉I |Fk〉II
BC ′ 1 1 qN q−N

|Ḃk〉I |Ḃk〉II |Ḟk〉I |Ḟk〉II
BC ′ 1 1 q2J−N q−2J+N

which completely agrees with the su(2) part of Table 1 in [14]. As the scatterings in the
sl(2) sectors are not twisted, our twisted boundary conditions are equivalent to the sl(2)
part of Table 1 in [14].
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D Operatorial twists of the boundary conditions

We demonstrate here that our transfer matrix, which is constructed with twisted S-matrices
and boundary conditions with c-number twists, is spectrally equivalent to a transfer matrix
which is constructed with untwisted S-matrices and boundary conditions with operatorial

twists. It is the latter type of transfer matrix which is considered in [14]. Moreover, we show
directly that the same twisted Bethe equations can also be derived starting from the latter
transfer matrix.

D.1 su(2) principal chiral model

For the case of the su(2) principal chiral model, the transfer matrix is given by (3.8). Let us
now streamline the notation, and denote aȧ by A, and jj̇ by j for j = 1, . . . , L. The transfer
matrix (3.8) then takes the form

t̃(u) = trAMA T̃A(u) , T̃A(u) =
L
∏

j=1

S̃Aj(u) , (D.1)

where

S̃Aj(u) = FAj SAj(u)FAj . (D.2)

The F -matrix satisfies [25]

F12 F13 F23 = F23 F13 F12 , (D.3)

as well as

S12(u)F13 F23 = F23 F13 S12(u) . (D.4)

This equation means that the twist appears as a seam (defect) in the spin chain, whose
location can be changed without altering the spectrum [39]. To see this, we observe that
under spectral equivalence (≡) the S-matrix and the F -matrix acting in different quantum
spaces commute,

S12(u)F13 = F23(F13 S12(u))F
−1
23 ≡ F13 S12(u) . (D.5)

The same is true for F -matrices,

F12 F13 = F23(F13 F12)F
−1
23 ≡ F13 F12 . (D.6)

The transfer matrix (D.1) can therefore be written as

t̃(u) = trAMA

L
∏

j=1

FAj SAj(u)FAj

≡ trAMA

L
∏

j=1

F 2
Aj

L
∏

j=1

SAj(u)

= trA M̃A TA(u) , (D.7)
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where

M̃A = MA

L
∏

j=1

F 2
Aj , TA(u) =

L
∏

j=1

SAj(u) . (D.8)

This shows that the transfer matrix (D.1) (which is constructed with the twisted S-matrices
S̃ and the matrix MA which acts only on the auxiliary space) is spectrally equivalent to the
transfer matrix (D.7) (which is constructed with the untwisted S-matrices S and the matrix
M̃A which acts also on all the quantum spaces). 13

Let us now explicitly evaluate M̃A. The F -matrix (3.6) can be rewritten as

FAj = eiγ1(HAḢj−ḢAHj) , (D.9)

where we have defined H = h⊗ I and Ḣ = I⊗ h. Hence,

L
∏

j=1

F 2
Aj = ei2γ1[HA

∑L
j=1 Ḣj−ḢA

∑L
j=1 Hj] . (D.10)

Moreover, MA (3.10) can be rewritten as

MA = eiγ2HA+iγ3ḢA . (D.11)

Hence, M̃A in (D.8) is given by

M̃A = ei(γ2+2γ1
∑L

j=1 Ḣj)HA+i(γ3−2γ1
∑L

j=1 Hj)ḢA

= ei(γ2+2γ1Ṡz)h ⊗ ei(γ3−2γ1Sz)h , (D.12)

where the spin operators are given by

Sz =
L
∑

j=1

Hj , Ṡz =
L
∑

j=1

Ḣj . (D.13)

Evidently, M̃A contains spin operators which act on the quantum space.
Finally, let us derive the Bethe equations corresponding to the transfer matrix (D.7).

Using (D.12), we see that this transfer matrix is given by

t̃(u) = e
i
2 [γ2+γ3+2γ1(Ṡz−Sz)]T11(u) + e

i
2 [γ2−γ3+2γ1(Ṡz+Sz)]T22(u)

+ e
i
2 [γ3−γ2−2γ1(Ṡz+Sz)]T33(u) + e−

i
2 [γ2+γ3+2γ1(Ṡz−Sz)]T44(u) . (D.14)

Recall that the spin operators satisfy the commutation relations

[Sz , B(u)] = −B(u) , [Sz , A(u)] = [Sz , D(u)] = 0 , (D.15)

and similarly for the operators with dots. Hence, the commutation relations of the spin
operators with the creation operators are given by

[Sz , T13(u)] = −T13(u) , [Sz , T12(u)] = 0
[

Ṡz , T13(u)
]

= 0 ,
[

Ṡz , T12(u)
]

= −T12(u) . (D.16)

13A similar observation has been made by Foerster, Links and Roditi [30].
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Moreover, acting on the pseudovacuum,

Sz(|0〉 ⊗ |0̇〉) =
L

2
(|0〉 ⊗ |0̇〉) , Ṡz(|0〉 ⊗ |0̇〉) =

L

2
(|0〉 ⊗ |0̇〉) . (D.17)

Therefore, acting on a general state (3.20),

eiγS
z

|Λ〉 = eiγ(
L
2
−m)|Λ〉 , eiγṠ

z

|Λ〉 = eiγ(
L
2
−ṁ)|Λ〉 . (D.18)

Acting with the transfer matrix (D.14) on a general state (3.20), we see (using also the
untwisted exchange relations (3.18), (3.19) and the pseudovacuum eigenvalues (3.21)) that
the corresponding eigenvalues are given by the same expression (3.29) which we obtained
before. Hence, we arrive at the same twisted Bethe equations as before.

D.2 Two copies of the Hubbard model

For the case of two copies of the Hubbard model, the same argument as above implies that
the transfer matrix (4.9) is spectrally equivalent to

t̃(λ) = straȧ M̃aȧTaȧ(λ) , (D.19)

where the monodromy matrix Taȧ(λ) is not twisted, but the diagonal matrix M̃ contains
spin-like operators which act on the quantum space,

M̃ = ei(γ2+γ1η̇z)h ⊗ ei(γ3−γ1ηz)h , (D.20)

where the ηz operator is defined in MR (136). The matrix h is now given by (4.8).
The operator ηz has the following property given in MR (139)

[

ηz , ~B(λ)
]

= − ~B(λ) . (D.21)

Hence, the commutation relations of ηz and η̇z with the creation operators are given by

[ηz , T1,2(λ)] = [ηz , T1,3(λ)] = 0 , [ηz , T1,5(λ)] = −T1,5(λ) , [ηz , T1,9(λ)] = −T1,9(λ) ,

[η̇z , T1,2(λ)] = −T1,2(λ) , [η̇z , T1,3(λ)] = −T1,3(λ) , [η̇z , T1,5(λ)] = [η̇z , T1,9(λ)] = 0 .

(D.22)

Moreover, acting on the pseudovacuum,

ηz(|0〉 ⊗ |0̇〉) = L(|0〉 ⊗ |0̇〉) , η̇z(|0〉 ⊗ |0̇〉) = L(|0〉 ⊗ |0̇〉) . (D.23)

Therefore, acting on a general state,

eiγη
z

|Λ〉 = eiγ(L−n)|Λ〉 , eiγη̇
z

|Λ〉 = eiγ(L−ṅ)|Λ〉 . (D.24)

Acting with the transfer matrix (D.19) on a general state, we find (using also the untwisted
exchange relations (4.16) and the pseudovacuum eigenvalues (4.19)) that the corresponding
eigenvalues are given by the same expression (4.31) which we obtained before. Hence, we
arrive at the same twisted Bethe equations as before.
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D.3 AdS/CFT

For the AdS/CFT case, it now follows that the transfer matrix (5.5) is spectrally equivalent
to

t̃(λ) = straȧ M̃aȧSaȧ11̇(λ, p1) . . . SaȧNṄ(λ, pN) , (D.25)

where the matrix M̃aȧ is given by

M̃ = ei[(γ3−γ2)J+γ1η̇z ]h ⊗ ei[(γ3+γ2)J−γ1ηz ]h , (D.26)

and h is given by (5.4). This leads to the same eigenvalues (5.7), and therefore the BR Bethe
equations.

E sl(2) grading

Here we transform our twisted Bethe ansatz results from the “su(2)” grading to the “sl(2)”
grading, and show that the results agree with both [7] and [14].

We recall that the eigenvalues of the twisted AdS/CFT transfer matrix (5.5) in the su(2)
grading are given by (5.7), which we now abbreviate as follows

Λ̃su2(λ) =

N
∏

i=1

S0(λ, pi)
2 [Λ1(λ)− Λ2(λ)− Λ3(λ) + Λ4(λ)]

[

Λ̇1(λ)− Λ̇2(λ)− Λ̇3(λ) + Λ̇4(λ)
]

(E.1)

In order to obtain the corresponding expression in the sl(2) grading, we perform a dualization
on the fermionic roots x+(λj) [17, 40] by noting that the first Bethe equation in (5.9) is an
algebraic equation q(x+(λj)) = 0, where q(x) is given by

q(x) = c1

N
∏

i=1

η(pi)(x− x−(pi))

m2
∏

l=1

x

(

x+
1

x
− µ̃l −

i

2g

)

−
N
∏

i=1

(x− x+(pi))

m2
∏

l=1

x

(

x+
1

x
− µ̃l +

i

2g

)

. (E.2)

Note that we have included a factor xm2 to ensure that q(x) is a polynomial in x of degree
N + 2m2. This polynomial has m1 roots x+(λj) and m̃1 additional roots x+(λ̃j), where
m̃1 = N + 2m2 −m1. It can therefore be written also in the following factorized form

q(x) = c

m1
∏

j=1

(

x− x+(λj)
)

m̃1
∏

j=1

(

x− x+(λ̃j)
)

, (E.3)

where c is some non-vanishing constant. The equality of (E.2) and (E.3) implies that the
function Q(x) defined by

Q(x) =

m1
∏

j=1

1

(x− x+(λj))

m̃1
∏

j=1

1
(

x− x+(λ̃j)
)

[

c1

N
∏

i=1

η(pi)(x− x−(pi))

m2
∏

l=1

x

(

x+
1

x
− µ̃l −

i

2g

)

−
N
∏

i=1

(x− x+(pi))

m2
∏

l=1

x

(

x+
1

x
− µ̃l +

i

2g

)

]

(E.4)
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is independent of x. The identities following from Q (x+(λ)) = Q (x−(λ)) and Q (1/x+(λ)) =
Q (1/x−(λ)) imply that

Λ1(λ)− Λ2(λ) = η(λ)m1−N

N
∏

i=1

x+(λ)− x−(pi)

x−(λ)− x+(pi)

m1
∏

j=1

x−(λ)− x+(λj)

x+(λ)− x+(λj)

×

[

c1

N
∏

i=1

η(pi)−
N
∏

i=1

x+(λ)− x+(pi)

x+(λ)− x−(pi)

m2
∏

l=1

x+(λ) + 1
x+(λ)

− µ̃l +
i
2g

x+(λ) + 1
x+(λ)

− µ̃l −
i
2g

]

= −η(λ)2m2

[

x−(λ)

x+(λ)

]m2 m̃1
∏

j=1

1

η(λ)

x+(λ)− x+(λ̃j)

x−(λ)− x+(λ̃j)

×

[

1− c1

N
∏

i=1

η(pi)
x−(λ)− x−(pi)

x−(λ)− x+(pi)

m2
∏

l=1

x−(λ) + 1
x−(λ)

− µ̃l −
i
2g

x−(λ) + 1
x−(λ)

− µ̃l +
i
2g

]

≡ Λ̃1(λ)− Λ̃2(λ) , (E.5)

and

− Λ3(λ) + Λ4(λ) = η(λ)m1−N
N
∏

i=1

x+(λ)− x+(pi)

x−(λ)− x+(pi)

m1
∏

j=1

1
x+(λ)

− x+(λj)
1

x−(λ)
− x+(λj)

×

[

−
m2
∏

l=1

x−(λ) + 1
x−(λ)

− µ̃l −
i
2g

x−(λ) + 1
x−(λ)

− µ̃l +
i
2g

+ c−1
1

N
∏

i=1

1− 1
x−(λ)x+(pi)

1− 1
x−(λ)x−(pi)

η(pi)

]

= −η(λ)2m2

[

x−(λ)

x+(λ)

]m2 m̃1
∏

j=1

1

η(λ)

1
x−(λ)

− x+(λ̃j)

1
x+(λ)

− x+(λ̃j)

N
∏

i=1

x−(λ)− x−(pi)

x−(λ)− x+(pi)

×

[

−c−1
1

N
∏

i=1

η(pi)

m2
∏

l=1

x+(λ) + 1
x+(λ)

− µ̃l +
i
2g

x+(λ) + 1
x+(λ)

− µ̃l −
i
2g

+

N
∏

i=1

1− 1
x+(λ)x−(pi)

1− 1
x+(λ)x+(pi)

]

≡ −Λ̃3(λ) + Λ̃4(λ) , (E.6)

respectively. Performing an analogous dualization for the roots x+(λ̇j) in Λ̇1(λ)− Λ̇2(λ) and

−Λ̇3(λ) + Λ̇4(λ), and recalling that η(λ) =
√

x+(λ)
x−(λ)

, we arrive at the desired result for the
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dual eigenvalues of the twisted AdS/CFT transfer matrix

Λ̃sl2(λ) =
N
∏

i=1

S0(λ, pi)
2

[

m̃1
∏

j=1

1

η(λ)

x+(λ)− x+(λ̃j)

x−(λ)− x+(λ̃j)
−

N
∏

i=1

x−(λ)− x−(pi)

x−(λ)− x+(pi)
η(pi)

×

{

c1

m̃1
∏

j=1

1

η(λ)

[

x+(λ)− x+(λ̃j)

x−(λ)− x+(λ̃j)

]

m2
∏

l=1

x−(λ) + 1
x−(λ)

− µ̃l −
i
2g

x−(λ) + 1
x−(λ)

− µ̃l +
i
2g

+ c−1
1

m̃1
∏

j=1

1

η(λ)

[

x+(λ̃j)−
1

x−(λ)

x+(λ̃j)−
1

x+(λ)

]

m2
∏

l=1

x+(λ) + 1
x+(λ)

− µ̃l +
i
2g

x+(λ) + 1
x+(λ)

− µ̃l −
i
2g

}

+
N
∏

i=1

[

1− 1
x+(λ)x−(pi)

1− 1
x+(λ)x+(pi)

]

[

x−(pi)− x−(λ)

x+(pi)− x−(λ)

] m̃1
∏

j=1

1

η(λ)

[

x+(λ̃j)−
1

x−(λ)

x+(λ̃j)−
1

x+(λ)

]]

×

[ ˙̃m1
∏

j=1

1

η(λ)

x+(λ)− x+(
˙̃
λj)

x−(λ)− x+(
˙̃
λj)

−
N
∏

i=1

x−(λ)− x−(pi)

x−(λ)− x+(pi)
η(pi)

×







c2

˙̃m1
∏

j=1

1

η(λ)

[

x+(λ)− x+( ˙̃λj)

x−(λ)− x+( ˙̃λj)

]

ṁ2
∏

l=1

x−(λ) + 1
x−(λ)

− ˙̃µl −
i
2g

x−(λ) + 1
x−(λ)

− ˙̃µl +
i
2g

+ c−1
2

˙̃m1
∏

j=1

1

η(λ)





x+( ˙̃λj)−
1

x−(λ)

x+(
˙̃
λj)−

1
x+(λ)





ṁ2
∏

l=1

x+(λ) + 1
x+(λ)

− ˙̃µl +
i
2g

x+(λ) + 1
x+(λ)

− ˙̃µl −
i
2g







+
N
∏

i=1

[

1− 1
x+(λ)x−(pi)

1− 1
x+(λ)x+(pi)

]

[

x−(pi)− x−(λ)

x+(pi)− x−(λ)

] ˙̃m1
∏

j=1

1

η(λ)





x+( ˙̃λj)−
1

x−(λ)

x+(
˙̃
λj)−

1
x+(λ)





]

, (E.7)

where the twist factors can be expressed in terms of m̃1 and ˙̃m1 as follows

c1 = ei(γ3−γ2)J/2eiγ1(
˙̃m1−2ṁ2)/2 , c2 = ei(γ3+γ2)J/2e−iγ1(m̃1−2m2)/2 . (E.8)

If we identify c1 (c2) with eiαl (eiαr), the eigenvalue of the “left (right) wing” transfer
matrix matches the expression (8.1) of [14] with Q = 1, once we map x± → x∓, g → −g/2,

x+(λ̃j) → y1j (x+( ˙̃λj) → y2j ), µ̃l → w1
l ( ˙̃µl → w2

l ), and N = KI, m̃1 = KII
1 , m2 = KIII

1

( ˙̃m1 = KII
2 , ṁ2 = KIII

2 ):

T l
1,1(v | ~u) =

KII
1
∏

i=1

y1i −x−

y1i −x+

√

x+

x−
+

+

KII
1
∏

i=1

y1i −x−

y1i −x+

√

x+

x−

[

x++ 1
x+

−y1i−
1

y1
i

x++ 1
x+

−y1i −
1

y1
i

− 2i
g

] KI
∏

i=1

[

(x−−x−

i
)(1−x−x+

i
)

(x+−x−

i )(1−x+x+
i )

x+

x−

]

−

KII
1
∏

i=1

y1i −x−

y1i −x+

√

x+

x−

KI
∏

i=1

x+−x+
i

x+−x−

i

√

x−

i

x+
i

×

×







eiαl

KIII
1
∏

i=1

w1
i−x+− 1

x+
− i

g

w1
i−x+− 1

x+
+ i

g

+e−iαl

KII
1
∏

i=1

y1i +
1

y1
i

−x+− 1
x+

y1i +
1

y1
i

−x+− 1
x+

+ 2i
g

KIII
1
∏

i=1

w!
i−x+− 1

x+
+ 3i

g

w1
i−x+− 1

x+
+ i

g







, (E.9)
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where we use the identities:

yi−x−

yi−x+

[

x++ 1
x+

−yi−
1
yi

x++ 1
x+

−yi−
1
yi

− 2i
g

]

=
yi−

1
x+

yi−
1

x−

,
(x−−x−

i )(1−x−x+
i )

(x+−x−

i )(1−x+x+
i )

x+

x−
=

(x+−x+
i )

(

1− 1

x−x
+
i

)

(x+−x−

i )

(

1− 1

x−x
−

i

) ,

wi−x+− 1
x+

+ 3i
g

wi−x+− 1
x+

+ i
g

=
wi−x−− 1

x−
+ i

g

wi−x−− 1
x−

− i
g

. (E.10)

The Bethe equations corresponding to the eigenvalues (E.7) are given by:

c1

N
∏

i=1

[

x+(λ̃j)− x−(pi)

x+(λ̃j)− x+(pi)

]

η(pi) =

m2
∏

l=1

x+(λ̃j) +
1

x+(λ̃j)
− µ̃l +

i
2g

x+(λ̃j) +
1

x+(λ̃j)
− µ̃l −

i
2g

,

j = 1, . . . , m̃1,

c2

N
∏

i=1

[

x+( ˙̃λj)− x−(pi)

x+( ˙̃λj)− x+(pi)

]

η(pi) =
ṁ2
∏

l=1

x+(
˙̃
λj) +

1

x+(
˙̃
λj)

− ˙̃µl +
i
2g

x+( ˙̃λj) +
1

x+( ˙̃λj)
− ˙̃µl −

i
2g

,

j = 1, . . . , ˙̃m1,

c21

m̃1
∏

j=1

µ̃l − x+(λ̃j)−
1

x+(λ̃j)
+ i

2g

µ̃l − x+(λ̃j)−
1

x+(λ̃j)
− i

2g

=
m2
∏

k=1
k 6=l

µ̃l − µ̃k +
i
g

µ̃l − µ̃k −
i
g

, l = 1, . . . , m2,

c22

˙̃m1
∏

j=1

˙̃µl − x+(
˙̃
λj)−

1

x+(
˙̃
λj)

+ i
2g

˙̃µl − x+( ˙̃λj)−
1

x+( ˙̃λj)
− i

2g

=

m2
∏

k=1
k 6=l

˙̃µl − ˙̃µk +
i
g

˙̃µl − ˙̃µk −
i
g

, l = 1, . . . , ṁ2. (E.11)

which match the equations (8.2) in [14], via the identifications used above. Following the

change in notation in MM (47)-(49), (51), so that m̃1 7→ m̃
(1)
1 , m2 7→ m

(1)
2 , ˙̃m1 7→ m̃

(2)
1 , ṁ2 7→

m
(2)
2 and

N = K4 , m̃
(1)
1 = K̃1 + K̃3 , m̃

(2)
1 = K̃5 + K̃7 , m

(1)
2 = K2 , m

(2)
2 = K6 , (E.12)

then the coefficients (E.8) are given by

c1 = ei(γ3−γ2)J/2eiγ1(K̃5+K̃7−2K6)/2 , c2 = ei(γ3+γ2)J/2e−iγ1(K̃1+K̃3−2K2)/2 , (E.13)

and the first two equations in (E.11) become

c1e
−iP/2

K4
∏

i=1

1− g2

x−

4,ix1̃,j

1− g2

x+
4,ix1̃,j

K2
∏

l=1

u1̃,j − u2,l −
i
2

u1̃,j − u2,l +
i
2

= 1, j = 1, . . . , K̃1 (E.14)

c1e
iP/2

K4
∏

i=1

x−
4,i − x3̃,j

x+
4,i − x3̃,j

K2
∏

l=1

u3̃,j − u2,l −
i
2

u3̃,j − u2,l +
i
2

= 1, j = 1, . . . , K̃3 (E.15)

c2e
iP/2

K4
∏

i=1

x−
4,i − x5̃,j

x+
4,i − x5̃,j

K6
∏

l=1

u5̃,j − u6,l −
i
2

u5̃,j − u6,l +
i
2

= 1, j = 1, . . . , K̃5 (E.16)

c2e
−iP/2

K4
∏

i=1

1− g2

x−

4,ix7̃,j

1− g2

x+
4,ix7̃,j

K6
∏

l=1

u7̃,j − u6,l −
i
2

u7̃,j − u6,l +
i
2

= 1, j = 1, . . . , K̃7 (E.17)
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while the last two can be written as

c−2
1

K̃1
∏

j=1

u2,l − u1̃,j −
i
2

u2,l − u1̃,j +
i
2

K̃3
∏

j=1

u2,l − u3̃,j −
i
2

u2,l − u3̃,j +
i
2

K2
∏

k=1
k 6=l

u2,l − u2,k + i

u2,l − u2,k − i
= 1, l = 1, . . . , K2(E.18)

c−2
2

K̃5
∏

j=1

u6,l − u5̃,j −
i
2

u6,l − u5̃,j +
i
2

K̃7
∏

j=1

u6,l − u7̃,j −
i
2

u6,l − u7̃,j +
i
2

K6
∏

k=1
k 6=l

u6,l − u6,k + i

u6,l − u6,k − i
= 1, l = 1, . . . , K6(E.19)

Moreover, the equations for the type-4 Bethe roots turn out to be undeformed:

e−ipkL = Λ̃sl2(pk) =
N
∏

i=1

S2
0(pk, pi)

m̃1
∏

j=1

1

η(pk)

x+(pk)− x+(λ̃j)

x−(pk)− x+(λ̃j)

˙̃m1
∏

j=1

1

η(pk)

x+(pk)− x+(
˙̃
λj)

x−(pk)− x+(
˙̃
λj)

.(E.20)

One can recover the equations (E.11) and (E.20) also by dualizing directly (using the relations
(E.5), (E.6)) the corresponding Bethe equations in the su(2) grading, namely (5.9) and (5.20).
Setting again L = −J , substituting the result for the scalar factor in MM (36) and changing
notations, we obtain

eipk[J+
1
2
(K̃3−K̃1)+

1
2
(K̃5−K̃7)] =

K4
∏

i=1
i 6=k

[

x−
4,k − x+

4,i

x+
4,k − x−

4,i

]





1− g2

x+
4,kx

−

4,i

1− g2

x−

4,kx
+
4,i



 [σ(pk, pi)]
2

×
K̃3
∏

j=1

x+
4,k − x3̃,j

x−
4,k − x3̃,j

K̃1
∏

j=1

1− g2

x+
4,kx1̃,j

1− g2

x−

4,kx1̃,j

×
K̃5
∏

j=1

x+
4,k − x5̃,j

x−
4,k − x5̃,j

K̃7
∏

j=1

1− g2

x+
4,kx7̃,j

1− g2

x−

4,kx7̃,j

, k = 1, . . . , K4 .(E.21)

We can now recover the corresponding untwisted Bethe equations of Beisert and Staudacher
[15] in the grading η1 = η2 = −1 by setting P = 0 and recalling (see (5.6) in [15]) the
definition of the angular momentum charge for that grading

J = L −
1

2
(K̃3 − K̃1)−

1

2
(K̃5 − K̃7) . (E.22)

E.1 Comparison with BR

Since BR [7] does not explicitly consider the all-loop twisted Bethe equations in the sl2
grading, a little more effort is required to make the comparison. The BR Bethe equations in
this grading are still given by (6.2), where now

U1̃(x) = U−1
3̃

(x) = U−1
5̃

(x) = U7̃(x) =

K4
∏

k=1

S−1
aux(x4,k, x) (E.23)
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Figure 2: Dynkin diagram of su(2, 2|4) for η1 = η2 = −1.

and

U4(x) = Us(x)

(

x−

x+

)L K4
∏

k=1

S2
aux(x, x4,k)

K̃1
∏

k=1

Saux(x, x1̃,k)

K̃3
∏

k=1

S−1
aux(x, x3̃,k)

×
K̃5
∏

k=1

S−1
aux(x, x5̃,k)

K̃7
∏

k=1

Saux(x, x7̃,k). (E.24)

(The quantities U0 , Saux , Us are the same as before, see (6.3), (6.5).)
For the sl2 grading with η1 = η2 = −1 which we now consider, Mj,j′ is the Cartan matrix

specified by Fig. 2 (see Eq. (5.1) in [15]). The twist matrix A is given by BR (5.19) 14

A = δ1
(

qpq
T

q2 − qq2q
T

p

)

+ δ2
(

qq2q
T

q1 − qq1q
T

q2

)

+ δ3
(

qq1q
T

p − qpq
T

q1

)

, (E.25)

where we take the three charge vectors to be

qq1 = ( 0|+1,−2,+1, 0, 0, 0, 0),

qp = (+1| 0,+1,−1, 0,−1,+1, 0),

qq2 = ( 0| 0, 0, 0, 0,+1,−2,+1), (E.26)

such that the Dynkin labels [q1, p, q2] in the grading η1 = η2 = −1 (see, for instance, Eq.
(5.3) in [15]) can be extracted as

qq1 ·K = q1, qp ·K = p, qq2 ·K = q2 , (E.27)

where now K = (L| K̃1, K2, K̃3, K4, K̃5, K6, K̃7). Explicitly, the twisting matrix A reads

A =















0 −δ3 +2δ3 −δ3 0 +δ1 −2δ1 +δ1
+δ3 0 +δ3 −δ3 0 −δ2 − δ3 +2δ2 + δ3 −δ2
−2δ3 −δ3 0 +δ3 0 +δ1 + 2δ2 + 2δ3 −2δ1 − 4δ2 − 2δ3 +δ1 + 2δ2
+δ3 +δ3 −δ3 0 0 −δ1 − δ2 − δ3 +2δ1 + 2δ2 + δ3 −δ1 − δ2
0 0 0 0 0 0 0 0

−δ1 +δ2 + δ3 −δ1 − 2δ2 − 2δ3 +δ1 + δ2 + δ3 0 0 +δ1 −δ1
+2δ1 −2δ2 − δ3 +2δ1 + 4δ2 + 2δ3 −2δ1 − 2δ2 − δ3 0 −δ1 0 +δ1
−δ1 +δ2 −δ1 − 2δ2 +δ1 + δ2 0 +δ1 −δ1 0















.

14We note that Eqs. (6.2) for η1 = η2 = −1 can be alternatively obtained by writing Eqs. (6.1) in [41]
with η = −1, setting their twists as

ei(φi−φi+1) = e−i(AK)i ,

and, as suggested there, exchanging the twists φ1 ↔ φ2, φ3 ↔ φ4, φ5 ↔ φ6, φ7 ↔ φ8.
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It then follows from (6.6) and BR (4.27) that

(AK)0 =
1

2

[

γ2

(

K̃1 + K̃3 − K̃5 − K̃7 − 2K2 + 2K6

)

+γ3

(

−K̃1 − K̃3 − K̃5 − K̃7 + 2K2 + 2K6

)

]

, (E.28)

(AK)1 −
1

2
(AK)0 =

1

2

[

(γ3 − γ2)J + γ1

(

K̃5 + K̃7 − 2K6

)]

, (E.29)

(AK)2 = −2

[

(AK)1 −
1

2
(AK)0

]

, (E.30)

(AK)3 +
1

2
(AK)0 = (AK)1 −

1

2
(AK)0 , (E.31)

(AK)4 = 0 . (E.32)

(AK)5 +
1

2
(AK)0 =

1

2

[

(γ3 + γ2)J − γ1

(

K̃1 + K̃3 − 2K2

)]

, (E.33)

(AK)6 = −2

[

(AK)5 +
1

2
(AK)0

]

, (E.34)

(AK)7 −
1

2
(AK)0 = (AK)5 +

1

2
(AK)0 . (E.35)

As already noted in (6.14), the total momentum is given by P = −(AK)0.
We now compare the BR Bethe equations with the ones which we derived above by

dualization. The fact that Eqs. (E.21) are not deformed matches with (E.32) and (6.2) with
j = 4. Substituting for P using (6.14), and noting the following identities (proved using
(E.8), (E.22) and (E.28)-(E.35)),

c1e
−iP/2 = ei(AK)1 , c1e

iP/2 = ei(AK)3 , c2e
iP/2 = ei(AK)5 , c2e

−iP/2 = ei(AK)7 ,

c−2
1 = ei(AK)2 , c−2

2 = ei(AK)6 , (E.36)

we see that Eqs. (E.14)-(E.19) match with (6.2) with j = 1, 3, 5, 7, 2, 6 respectively.
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