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One exciting possibility of new physics beyond the StandardModel is that the fundamental Higgs

sector is replaced by a strongly-interacting gauge theory,known as technicolor. A viable theory

must break chiral symmetry dynamically, like in QCD, to generate Goldstone bosons which be-

come the longitudinal components of theW± andZ. By measuring the eigenvalues of the Dirac

operator, one can determine if chiral symmetry is in fact spontaneously broken. We simulate

SU(3) gauge theory withns= 2 and 3 staggered flavors in the fundamental representation,corre-

sponding toNf = 8 and 12 flavors in the continuum limit. Although our first findings show that

both theories are consistent with dynamically broken chiral symmetry and QCD-like behavior,

flavor breaking effects in the spectrum may require further clarifications before final conclusions

can be drawn. We also compare various improved staggered actions, to suppress this potentially

large flavor breaking.
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Figure 1: The conformal window forSU(N) gauge theories withNf techniquarks in various representations,
from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index
symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive
alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-
interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories
with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in
a technicolor theory, to provide the technipions which generate theW± andZ masses and break
electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-
surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the
theory (extended technicolor) to generate quark masses, without generating large flavor-changing
neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, dueto the exploration of various tech-
niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with
electroweak constraints. If a theory is almost conformal, it is possible this generates additional
energy scales, which could help in building the extended technicolor sector. There are estimates
of which theories are conformal for various representations, shown in Fig. 1. ForSU(N) gauge
theory, if the number of techniquark flavors is less than somecritical number, conformal and chiral
symmetries are broken and the theory is QCD-like. For futuremodel-building, it is crucial to go be-
yond these estimates and determine precisely where the conformal windows are. There have been
a number of recent lattice simulations of technicolor theories, attempting to locate the conformal
windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvaluesλ of the Dirac operator and chiral symmetry breaking
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Figure 2: The integrated distribution of the two lowest eigenvalue quartets, from simulations ofns = 2
Asqtad staggered flavors. This is compared to RMT withNf = 2 and 8, corresponding to the strong and
weak coupling limits.

is succinctly given in the Banks-Casher relation [9],

Σ =−〈Ψ̄Ψ〉= lim
λ→0

lim
m→0

lim
V→∞

πρ(λ )
V

. (2.1)

To generate a non-zero densityρ(0), the smallest eigenvalues must become densely packed as
the volume increases, with an eigenvalue spacing∆λ ≈ 1/ρ(0) = π/(ΣV). This allows a crude
estimate of the quark condensateΣ. One can do much better by exploring theε-regime: If chiral
symmetry is spontaneously broken, tune the volume and quarkmass such that

1
Fπ

≪ L ≪
1

mπ
, (2.2)

so that the pion is much lighter than the physical value, and finite-volume effects are dominant [10].
The chiral Lagrangian,

L =
F2

π
4

Tr(∂µU∂µU†)+
Σ
2

Tr[M(U +U†)], U = exp

[

iπaTa

Fπ

]

(2.3)

is dominated by the zero-momentum mode from the mass term andall kinetic terms are suppressed.
In this limit, the distributions of the lowest eigenvalues are identical to those of random matrix the-
ory (RMT), a theory of large matrices obeying certain symmetries [11]. To connect with RMT, the
eigenvalues and quark mass are rescaled asz= λΣV andµ = mΣV, and the eigenvalue distribu-
tions also depend on the topological chargeν and the number of quark flavorsNf . RMT is a very
useful tool to calculate analytically all of the eigenvaluedistributions. The eigenvalue distributions
in various topological sectors are measured via lattice simulations, and via comparison with RMT,
the value of the condensateΣ can be extracted. This method has been successfully used in anumber
of lattice QCD studies, for example in dynamical overlap fermion simulations [12].
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Figure 3: The integrated distribution of the two lowest eigenvalue quartets, from simulations ofns = 3
Asqtad staggered flavors. This is compared to RMT withNf = 3 and 12, corresponding to the strong and
weak coupling limits.

3. Simulations and analysis

For SU(3) gauge theory with quarks in the fundamental representation, various methods sug-
gest that the critical number of flavors separating conformal and QCD-like behavior is between
8 and 12. In order to study this interesting region, we simulate ns = 2 and 3 staggered fermion
flavors, corresponding toNf = 8 and 12 flavors in the continuum limit. (We do not take roots of
the determinant of the staggered Dirac operator). We have also simulatedSU(3) gauge theory with
Nf = 2 flavors in the 2-index symmetric representation, using dynamical overlap fermions, which
is described in [13]. We use the Asqtad staggered action [14], which includes improvements to
reduce the violations of flavor symmetry (“taste breaking”)at finite lattice spacing. This action is
very well tested and has been heavily used in large scale simulations of lattice QCD [15]. There
have been detailed comparisons of staggered eigenvalues with the Asqtad action to RMT [16], but
only in the quenched approximation.

Becausens = 2 and 3 staggered flavors have not been simulated with this action before, a
large scan of the parameter space of the bare couplings was required. Hence our first runs were on
small volumes 104, where we also gained experience on the dependence of the Hybrid Monte Carlo
algorithm [17] on the quark mass and the discretization of the trajectory length. Once we generated
large thermalized ensembles, we calculated the lowest eigenvalues of the Dirac operator using
the PRIMME package [18]. In the continuum limit, the staggered eigenvalues form degenerate
quartets, with restored flavor symmetry. In Figs. 2 and 3, we show the integrated distributions of
the two lowest eigenvalue quartet averages,

∫ λ

0
pk(λ ′)dλ ′, k= 1,2 (3.1)
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Figure 4: Comparison of different improvements of the staggered Dirac operator. The eigenvalues are
calculated on the same ensemble of gauge configurations, which were generated using the Asqtad action.

for ensembles withns = 2 and 3 staggered flavors respectively. Both simulations have quark mass
ma= 0.01, and the respective bare couplings areβ = 3.9 and 1.9. All low eigenvalues have small
chirality, with no indication of non-zero topology. We see that the quark mass is less than the av-
erage smallest eigenvalue, which is necessary to probe the behavior of the eigenvalue distributions
in the chiral limit. To compare with RMT, we varyµ = mΣV until we satisfy

〈λ1〉sim

m
=

〈z〉rmt

µ
, (3.2)

where〈λ1〉sim is the lowest quartet average from simulations and the RMT average〈z〉rmt depends
implicitly on µ andNf . With this optimal value ofµ , we can predict the distributionspk(λ ′) and
compare to the simulations.

In both cases, we see quite good agreement between simulations and RMT with the corre-
sponding number of flavors in the continuum limit i.e.Nf = 8 and 12. This is somewhat surprising.
From the eigenvalues themselves, one can directly see that flavor breaking is significant, since
degenerate quartets are not yet formed. A previous eigenvalue study used unimproved staggered
quarks in dynamical fermion simulations [19]. They found excellent agreement with RMT but only
if Nf had the same value as the number of staggered flavorsns. We also find that, at strong coupling,
RMT with the continuum valueNf = 4ns does not describe the data. On coarse lattices, the flavor
breaking is very large and only one pion can be tuned to theε-regime for each staggered flavor.
One has to go to weak coupling and finer lattices, where flavor breaking decreases, to recover the
correct number of light pions.

These results indicate that both theNf = 8 and 12 flavor theories with fundamental quarks have
a non-zero quark condensateΣ i.e. chiral symmetry is spontaneously broken. If this conclusion
holds against further studies of flavor breaking effects, our Nf = 8 result will lend considerable
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Figure 5: The lowest eigenvalues calculated on two ensembles withns = 1 staggered flavor, with stout
smearing used both in the sea and valence quark. The lattice volume is 124.

support to the findings of [5, 7], but theNf = 12 spectrum would be inconsistent with the statement
of [5] that this theory is conformal.

4. Staggered improvement

Since flavor breaking can have a dramatic effect on the eigenvalues, we are investigating var-
ious improvements of the staggered action, to bring the simulations closer to the continuum limit.
In Fig. 4, we compare mixed actions, with gauge configurations generated using the Asqtad action,
while the eigenvalues are those of various improved staggered Dirac operators. This figure is for
ns = 1 staggered flavor atβ = 6.8 and volume 104. The appearance of eigenvalue quartets which
are clearly separated is a clear indication of reduced flavorbreaking. Both HYP-smearing [20] and
stout-smearing [21] seem to bring significant improvement relative to the Asqtad operator, while
HISQ fermions [22] do not show as clear an improvement.

We also show in Fig. 5 the effect of using stout-smearing bothin the sea and valence quark. As
we go to weaker coupling towards the continuum limit, the eigenvalue quartet structure emerges
clearly. Comparison of the improved eigenvalues with RMT isongoing.

5. Conclusions

Knowledge of the conformal window is essential to build viable candidates of strongly inter-
acting physics beyond the Standard Model, and lattice simulations will play a crucial role. Our
technique of studying the eigenvalue properties complements other lattice approaches, such as cal-
culating the beta function of the renormalized coupling, looking for finite-temperature transitions,
or extracting the mass spectrum. This will hopefully lead toconsensus about the nature of these
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new theories. Our first study gives an indication thatSU(3) gauge theory withNf = 8 and 12
flavors are both QCD-like, non-conformal theories. We are investigating various improvements to
reduce flavor-breaking lattice artifacts and allow us to reach a stronger conclusion.
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