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Abstract If one has to attain high accuracy over long timescales during the numerical

computation of the N-body problem, the method called Lie-integration is one of the

most effective algorithms. In this paper we present a set of recurrence relations with

which the coefficients needed by the Lie-integration of the orbital elements related

to the spatial N-body problem can be derived up to arbitrary order. Similarly to the

planar case, these formulae yields identically zero series in the case of no perturbations.

In addition, the derivation of the formulae has two stages, analogously to the planar

problem. Namely, the formulae are obtained to the first order, and then, higher order

relations are expanded by involving directly the multilinear and fractional properties

of the Lie-operator.

Keywords N-body problem · Planetary systems · numerical methods · Lie-integration

1 Introduction

In terms of effectiveness, the method of Lie-integration is one of the most compet-

itive algorithms for numerical computation of gravitational N-body dynamics. Un-

like the “classical” ways for numerical integration, this method computes the Taylor-

coefficients of the solution (see Gröbner & Knapp, 1967). Hence, the integration itself

is relatively straightforward once these coefficients are known. The derivation of the

Taylor-coefficients for a particular ẋi = fi(x1, . . . , xN ) ordinary differential equation is

based on the so-called Lie-operator. Recalling the basics of this method, we define this

operator as

L :=

N
∑

i=1

fi
∂

∂xi
, (1)
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and by involving this definition, an advancement by ∆t of the ordinary differential

equation can be written as

xi(t+∆t) = exp(∆tL)xi(t) =

∞
∑

k=0

∆tk

k!
Lkxi(t). (2)

The numerical method called Lie-integration is the finite approximation of the above

equation for exponential expansion (up to a certain order which can either be fixed

or be adaptively varied, see also Sec. 3.1 in Pál, 2010). In order to effectively obtain

these coefficients, recurrence formulae can be applied for the Cartesian coordinates

of the orbiting bodies which are directly bootstrapped with the initial conditions.

Such formulae are known for the gravitational N-body problem (Hanslmeier & Dvorak,

1984; Pál & Süli, 2007). A similar kind of relation has been obtained for the restricted

three-body problem (Delva, 1984), and relativistic and non-gravitational effects (such

as Yarkovsky force) can be included as well (Bancelin, Hestroffer, & Thuillot, 2012).

In addition, semi-analytic calculations can also be performed to obtain parametric

derivatives of observables with respect to orbital elements (Pál, 2010).

In this paper we present such recurrence formulae for the orbital elements in the

case of spatial gravitational N-body problem. Recently, the relations for planar orbital

elements have been derived (Pál, 2014). Therefore, our goal now is to extend these

relations to the third dimension by including the orbital elements related to the orbital

inclination and ascending node. It should be noted, however, that the relations are not

obtained for the longitude of ascending node directly, since it is meaningless in the

i → 0 limit.

In the following section, Sec. 2, we describe the problem itself and the recurrence

relations for the Cartesian coordinates and velocities. The discussion of the spatial

problem is split into three parts. Sec. 3 details the angular momentum vector and the

related orbital orientation. The next part, Sec. 4 shows how the orbital eccentricity

can be treated in the spatial problem. The set of relations is ended with the mean

longitude (Sec. 5). In Sec. 6 we demonstrate how higher order derivatives are obtained.

Our conclusions are summarized in Sec. 7.

2 The N -body problem

If we consider Cartesian coordinates and velocities, the recurrence relations for the

spatial gravitational N-body problem have the same structure as in the planar case.

Similarly to Pál (2014), let us fix one of the bodies (e.g. the Sun in the case of the

Solar System) at the center and this body is orbited by N additional ones, indexed by

1 ≤ i ≤ N . In total, we deal with 1+N bodies, having a mass ofM andmi, respectively.

If we denote the coordinates and velocities of the ith body by (xi, yi, zi) and (ẋi, ẏi, żi),

we can define the central and mutual distances ρi and ρij as ρ2i = x2i + y2i + z2i and

ρ2ij = (xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2, the inverse cubic distances φi = ρ−3

i and

φij = ρ−3
ij and the standard gravitational parameters µi = G(M +mi). The quantities

Λi = xiẋi+yiẏi+ziżi, and Λij = (xi−xj)(ẋi− ẋj)+(yi−yj)(ẏi− ẏj)+(zi−zj)(żi−

żj) are also employed in the series of recurrence relations. With these quantities, the
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recurrence relations for the xi coordinates and ẋi velocities can be written as

Ln+1xi = Lnẋi, (3)

Ln+1ẋi = −µi

n
∑

k=0

(

n

k

)

LkφiL
n−kxi

−
∑

j 6=i

Gmj

n
∑

k=0

(

n

k

)

[

LkφijL
n−k(xi − xj) + LkφjL

n−kxj

]

, (4)

while the relations for yi and zi also have the same structure. The relations for the

reciprocal cubic distances can be computed in a similar manner as it is done in the

planar case, for instance, using Eqs. (3)–(6) from Pál (2014). Once the recurrence

relations are obtained and evaluated with the appropriate initial conditions, temporal

evolution can be computed with the finite approximation of

xi(t+∆t) = exp (∆tL) xi(t) =

∞
∑

k=0

(∆t)k

k!
Lkxi(t) ≈

kmax
∑

k=0

(∆t)k

k!
Lkxi(t). (5)

Here the summation limit kmax refers to the maximum integration order. Of course,

this calculation is performed not only for the xi coordinates but for all of the Cartesian

coordinates and velocities.

3 The angular momentum and the orientation of the orbit

In the following, we detail the computations and relations comprehending the orbital

angular momentum and the orientation of the orbit.

3.1 Angular momentum

In the case of the planar problem, the angular momentum is a pseudoscalar since it is

the Hodge-dual of a skew-symmetric tensor of rank 2. In the spatial case, the angular

momentum is still a skew-symmetric tensor of rank 2, hence it will have a 3 component

dual in a form of a pseudovector. For the ith body, let us denote these 3 components

by Cxi, Cyi and Czi, respectively. These are computed as

Cxi = yiżi − ziẏi, (6)

Cyi = ziẋi − xiżi, (7)

Czi = xiẏi − yiẋi. (8)

The first order Lie-derivatives of these pseudovector components can similarly be com-

puted like the pseudoscalar angular momentum in the planar case, viz.

LCxi =
∑

j 6=i

Gmj φ̂ijS
[x]
ij , (9)

LCyi =
∑

j 6=i

Gmj φ̂ijS
[y]
ij , (10)

LCzi =
∑

j 6=i

Gmj φ̂ijS
[z]
ij , (11)
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where S
[x]
ij , S

[y]
ij and S

[z]
ij are defined as

S
[x]
ij = yizj − ziyj , (12)

S
[y]
ij = zixj − xizj , (13)

S
[z]
ij = xiyj − yixj , (14)

and φ̂ij = φij − φj . In order to compute the magnitude of the angular momentum

vector, Ci, we can employ two approaches, as well. First, using the fact that C2
i is the

sum of squares of the pseudovector components Cxi, Cyi and Czi, we can write

1

2
L
(

C2
i

)

= CiLCi = CxiLCxi +CyiLCyi + CziLCzi. (15)

The second alternative is to exploit Lagrange’s identity for cross products, namely

1

2
C2
i =

1

2
Ci ·Ci =

1

2
(ri × ṙi) · (ri × ṙi) =

1

2
r
2
i ṙ

2
i −

1

2
(ri · ṙi)

2 =
1

2
ρ2iU

2
i −

1

2
Λ2
i , (16)

where U2
i = ẋ2i + ẏ2i + ż2i . Here, ρ2iU

2
i can be written as 2µiρi−Hiρ

2
i where Hi is twice

the negative specific energy, Hi = 2µi/ρi − U2
i . Since both Hi and Λi are scalars, the

planar and spatial forms of the first Lie-derivatives are going to be the same:

LHi = 2
∑

j 6=i

Gmj

[

φijΛi − φ̂ijΛ̂ji

]

, (17)

LΛi =

(

U2
i −

µi

ρi

)

+
∑

j 6=i

Gmj

[

φ̂ijRij − φijρ
2
i

]

. (18)

Here Rij = xixj + yiyj + zizj and Λ̂ji = xj ẋi + yj ẏi + zj żi (see also Pál, 2014). Using

the relation 1
2L(ρ

2
i ) = Λi, the above two equations and Eq. (16), it can be seen that

1

2
L
(

C2
i

)

=
∑

j 6=i

Gmj φ̂ij

[

ρ2i Λ̂ji − ΛiRij

]

. (19)

We should emphasize here that although |Czi| is equal to Ci in the planar limit1,

it does not mean that expressions valid in the planar case could automatically be

extended into the spatial form if such expressions are functions of pseudoscalars. In

the calculations presented in Pál (2014), such differences were tacitly ignored, therefore

one should examine the individual terms before applying these in the third dimension.

In fact, Ci =
√

C2
i is a scalar (hence Eq. 19 is valid in both the planar and spatial

cases), but Czi is not – despite the validity of Eq. (11) for the angular momentum in

the planar case.

1 When zi → 0 and żi → 0 for all 1 ≤ i ≤ N .
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3.2 The orientation of the orbit

Using the well known relations for the longitude of the ascending node Ω and the incli-

nation i, one can compute these by knowing the components of the angular momentum

pseudovector:

sin ii cosΩi = −
Cyi

Ci
, (20)

sin ii sinΩi = +
Cxi

Ci
, (21)

cos ii =
Czi

Ci
. (22)

We note that in the case of small inclinations, the longitude of ascending node is not

so well constrained, so in order to avoid roundoff errors or parametric singularities, it

is easier to use the Lagrangian orbital elements sin ii cosΩi and sin ii sinΩi instead of

the angles. Due to the simple relations between the Lagrangian orbital elements and

the components of the angular momentum pseudovector, it is also sufficient to deal

purely with the Cxi, Cyi and Czi terms.

3.3 Lie-series for fractions

In the above relations for the Lagrangian ascending node and inclination, fractions

appear for quantities whose Lie-series are known. Although recurrence relations for

such fractions can be computed in two steps (first by computing the denominator’s

reciprocal, then multiply it using the Leibniz’ product rule with the numerator), it

can be performed in a single step. Let us have two quantities, A and B for which the

relations are known up to the order n. It can be shown by mathematical induction

that the nth Lie-derivative of A/B = AB−1 can be written as a function of the Lie-

derivatives of A, B up to the order n and AB−1 up to the order n− 1:

Ln(AB−1) = (LnA)B−1 −B−1
n
∑

k=1

(

n

k

)

Ln−k(AB−1)LkB. (23)

Employing this relation reduces the number of auxiliary quantities that would otherwise

have to be introduced for the computation of (more complex) recurrence relations.

4 Eccentricity and related quantities

In the spatial case, the longitude of pericenter, ̟ is defined as the sum of longitude

of ascending node Ωi and the argument of pericenter, ωi, namely ̟i = Ωi + ωi. This

definition yields the continuity of the longitude of pericenter in the planar limit of

ii → 0 when both Ωi and ωi are meaningless. Once ̟i is obtained, the Lagrangian

orbital elements ki and hi are defined accordingly, i.e.

(

ki
hi

)

= ei

(

cos̟i

sin̟i

)

. (24)
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It can also be deduced that if the ith orbit is rotated around the line of its nodes into

the reference plane then ̟i, and hence ki and hi are not altered. The aforementioned

rotation depends only on the components of the angular momentum vector. Hence,

we can write the related rotation matrix as the function of the Cxi, Cyi and Czi

components as























1−
C2
xi

C2
i + CiCzi

−CxiCyi

C2
i + CiCzi

−
Cxi

Ci

−
CxiCyi

C2
i + CiCzi

1−
C2
yi

C2
i +CiCzi

−
Cyi

Ci

Cxi

Ci

Cyi

Ci

Czi

Ci























(25)

For instance, the coordinate xi located in the ith orbital plane is transformed into:

x′i = xi −
C2
xi

C2
i + CiCzi

xi −
CxiCyi

C2
i +CiCzi

yi −
Cxi

Ci
zi. (26)

By exploiting the fact that Cxixi +Cyiyi +Czizi = 0, the above equation can greatly

be simplified:

x′i = xi −
Cxizi

Ci + Czi
. (27)

The similar structure can be used for the yi coordinate and the velocity components are

also transformed similarly since Cxiẋi +Cyiẏi +Cziżi is also 0. Due to the previously

noted invariance of the ki and hi elements, these can be computed as

(

ki
hi

)

=
Ci

µi

(

+ẏ′i
−ẋ′i

)

−
1

ρi

(

x′i
y′i

)

. (28)

If we substitute Eq. 27 (and the similar relations for yi, ẋi and ẏi) into the above

equation we get

(

ki
hi

)

=
Ci

µi

[(

+ẏi
−ẋi

)

−

(

+pyi
−pxi

)

żi

]

−
1

ρi

[(

xi
yi

)

−

(

pxi
pyi

)

zi

]

, (29)

where we defined
(

pxi
pyi

)

=
1

Ci + Czi

(

Cxi

Cyi

)

. (30)

We note that these pxi and pyi quantities are also integrals of motion and can be

computed purely from the inclination and longitude of ascending node (but not as

simple as in Eqs. 20 or 21). Let us also define the quantities axi, ayi, azi as

axi =
∑

i6=j

Gmj [φ̂ijxj − φijxi], (31)

ayi =
∑

i6=j

Gmj [φ̂ijyj − φijyi], (32)

azi =
∑

i6=j

Gmj [φ̂ijzj − φijzi]. (33)
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Using the previously introduced variables, we can compute the first order Lie-

derivatives of ki and hi as

Lki = +

[

LCi

µi
ẏi +

Ci

µi
ayi

]

− py

[

LCi

µi
żi −

Ci

µi
azi

]

−

[

+
Ci

µi
Lpyiżi −

zi
ρi

Lpxi

]

,(34)

Lhi = −

[

LCi

µi
ẋi +

Ci

µi
axi

]

+ px

[

LCi

µi
żi −

Ci

µi
azi

]

−

[

−
Ci

µi
Lpxiżi −

zi
ρi

Lpyi

]

.(35)

Here, the first order derivatives Lpxi and Lpyi can be computed as

(

Lpxi
Lpyi

)

=
1

Ci + Czi

[(

LCxi

LCyi

)

− (LCi + LCzi)

(

pxi
pyi

)]

. (36)

The derivation of the above equations is similar to the steps performed in Pál (2014).

The above two equations for Lki and Lhi are clearly zero if mutual perturbations are

omitted since then LCi, axi, ayi, azi, Lpxi and Lpyi are zero.

As an alternative, one can compute the Lie-derivatives of the Laplace-Runge-Lenz

vector. In the spatial case, this vector is defined as

ei =
1

µi
(ṙi ×Ci)−

ri

ρi
, (37)

while all of its components,

exi =
1

µi
(Cziẏi −Cyiżi)−

xi
ρi

, (38)

eyi =
1

µi
(Cxiżi − Cziẋi)−

yi
ρi

, (39)

ezi =
1

µi
(Cyiẋi − Cxiẏi)−

zi
ρi

(40)

are integrals of motion. The Lie-derivatives of each of these components have the same

structure and can be obtained in a similar manner to the planar case. The first order

Lie-derivatives of the (exi, eyi, ezi) components are

Lexi =
1

µi

[

LCziẏi + Cziayi − LCyiżi − Cyiazi
]

, (41)

Leyi =
1

µi
[LCxiżi +Cxiazi − LCziẋi − Cziaxi] , (42)

Lezi =
1

µi

[

LCyiẋi + Cyiaxi − LCxiẏi − Cxiayi
]

. (43)

In a practical implementation, one could choose whether to compute the Lagrangian

orbital elements ki, hi or the components of the vector ei. Due to the constraint

Ci · ei = Cxiexi + Cyieyi + Cziezi = 0, (44)

these two sets of variables are equivalent. The first order Lie-derivatives of both (ki, hi)

and (exi, eyi, ezi) are multilinear expressions of terms whose derivatives are known in

advance. Therefore, higher order derivatives can be computed in a straightforward

manner: either using Eq. (24) of Pál (2014) or by introducing auxiliary variables and

exploit the product rule for differentials.
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5 Mean longitude

In order to compute the Lie-derivatives of the mean longitude, we can employ two

different approaches. First, similarly to Pál (2014), we write a relatively complex equa-

tion for it and then take the full derivative. Here we follow an alternative approach.

First, let us write the mean longitude in the form of λi = Mi + ̟i, where Mi is the

mean anomaly2 and ̟i = arg(ki, hi) is the longitude of pericenter. Then take the first

order Lie-derivatives of both, coadd them in the hope that in the circular limit, the

sum LMi + L̟i would not be meaningless. Finally, we use this first order derivative

in order to obtain the recurrence relations for higher order Lie-derivatives.

According to Kepler’s equation, the mean anomaly is computed as Mi = Ei −

ei sinEi where the eccentric anomaly is written in the form of

Ei = arg(ei cosEi, ei sinEi). (45)

Although Ei is still meaningless in the ei → 0 limit, the terms ei cosEi and e sinEi

can be computed using the basic relations of two-body kinematics even in the circular

case:

ei cosEi = 1−
ρi
ai

= 1−
ρiHi

µi
, (46)

ei sinEi =
ΛiJi
Ci

, (47)

where Ji :=
√

1− e2i (similarly to the definition used in Pál, 2014). Then, the first

order Lie-derivative of Mi is going to be

LMi = L arg(ei cosEi, ei sinEi)− L(ei sinEi) =

=
ei cosEiL(ei sinEi)− ei sinEiL(ei cosEi)

e2i
− L(ei sinEi). (48)

After multiplying by e2i and substituting Eqs. (46) and (47), we get

e2iLMi =

(

1−
ρiHi

µi

)

L

(

ΛiJi
Ci

)

+
ΛiJi
Ci

L

(

ρiHi

µi

)

− (1− J2
i )L

(

ΛiJi
Ci

)

. (49)

The expansion of the above equation yields the form

e2iLMi = µ2
i
J3
i

C3
i

e2i +
J3
i

Ci

(

1−
ρiµi

C2
i

)

LΛpi +

(

1 +
ρiµi

C2
i

)

JiΛiCi

2µ2
i

LHi. (50)

In this expansion, we use the quantity LΛpi which is defined as follows. Since Λi is not

an integral of motion, we split LΛi into two parts, viz.

LΛi =

(

U2
i −

µi

ρi

)

+
∑

i6=j

Gmj

[

φ̂ijRij − φijρ
2
i

]

=

(

U2
i −

µi

ρi

)

+ LΛpi (51)

and then define LΛpi accordingly. Eq. (50) for the mean anomaly has three parts. The

first one correspond to Kepler’s third law after dividing by e2i . Despite the fact that

2 Note that the symbol M represents the central mass while the symbols Mi (with a single
index) denote the mean anomalies.
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in the non-perturbed case, the other two parts are zero, in the perturbed case (when

LΛpi 6= 0 or LHi 6= 0), the multipliers are only O(ei) functions, not O(e2i ) functions,

therefore LMi is meaningless in the e0 → 0 limit.

The first order Lie-derivative of the mean longitude can only be computed if e2iL̟i

is added to Eq. (50). The derivative of ̟i is computed using the relation

e2iL̟i = kiLhi − hiLki. (52)

It can be shown that if we add Eq. (52) to the equation related to the mean anomaly (see

Eq. 50), all of theO(ei) terms cancel and Lλi is continuous in the ei → 0 limit. Without

going into the details, here we present the results of this computation. Similarly to the

planar case, Lλi is written into two parts: the first part corresponds to Kepler’s third

law while the another terms depend only on the mutual perturbations. Namely,

Lλi =
1

µi
H

3/2
i + A0ρ

2
i

∑

j 6=i

Gmjφij + AA

∑

j 6=i

Gmj φ̂ij(Cxixj + Cyiyj) +

+Az

∑

j 6=i

Gmj φ̂ijzj + AP

∑

j 6=i

Gmjφ̂ijRij + AL

∑

j 6=i

Gmj φ̂ijΛ̂ji (53)

The expressions for A0, AA, Az, AP and AL are the following:

A0 =
1

Ci

(

g−2
i − g−1

i

1 + Ji
+ 2Ji

)

, (54)

AA =
zi

(1 + cos ii)2C
2
i

, (55)

Az =
zi

(1 + cos ii)Ci
, (56)

AP =
1

Ci

(

J2
i (gi − 1)

1 + Ji
− 2

)

+
zi
[

C2
i Λiżi − µ2

i (2g
−1
i − J2

i )zi
]

C5
i (1 + cos ii)2

, (57)

AL =
ΛiCi(1 + gi)

µ2
i (1 + Ji)

+
zi
[

−C4
i g

2
i żi + Λiµ

2
i zi
]

C3
i µ

2
i (1 + cos ii)2

, (58)

where the dimensionless quantity gi is defined as gi := µiρiC
−2
i .

One should note that the quantity A0 equals to the quantity with the same name

used in Eq. (49) of Pál (2014). We should also warn the reader that in the purely planar

case, the expansion of Lλi involved the quantity Ĉji := xj ẏi−yj ẋi. Since this quantity

behaves as a pseudoscalar in the purely planar case, it has no direct counterpart in the

framework of the spatial problem. Hence, in Eq. (53) we express Lλi as the function of

Λ̂ji instead of such pseudoscalar-like quantities. Therefore, the equivalence of Eq. (53)

here and Eq. (49) of Pál (2014) is not obvious at the first glance in the limit of z → 0

and ż → 0. Nevertheless, one could verify this equivalence by considering the relation

Λ̂2
ji + Ĉ2

ji = ρ2jU
2
i (where Ĉji cannot even be defined in the spatial case).

We should note that some of the A∗ terms explicitly contain the third coordinate,

zi and/or its derivative, żi. Therefore, in a perturbed system, the time derivative of the

mean longitude is not a scalar and this is only invariant for a subgroup of the group

SO(3) of proper rotations. This subgroup is the SO(2) rotations around the z± axis.

On the contrary, the expression for the derivative of mean anomaly, LMi (see Eq. 50) is

a function of scalars. Hence, LMi is invariant under arbitrary SO(3) transformations.
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6 Higher order derivatives

Higher order Lie-derivatives can then almost automatically be derived since all of the

corresponding expressions contain multilinear, power and fractional terms for which

recurrence relations are known. The bilinear relation follows Leibniz’ product rule, for

fractions one can use the derivation presented in Sec. 3.3 while for powers, one can

involve Eq. (51) of Pál (2014). In brief, one can conclude that the Lie-derivatives of

any rational function can be computed once the Lie-derivatives of the terms appearing

in the function are known in advance.

Actually, higher order relations for the angular momentum based on Eqs. (9)-(11)

can be written as

Ln+1Cxi =
∑

j 6=i

Gmj

n
∑

k=0

(

n

k

)

Ln−kφ̂ijL
kS

[x]
ij , (59)

Ln+1Cyi =
∑

j 6=i

Gmj

n
∑

k=0

(

n

k

)

Ln−kφ̂ijL
kS

[y]
ij , (60)

Ln+1Czi =
∑

j 6=i

Gmj

n
∑

k=0

(

n

k

)

Ln−kφ̂ijL
kS

[z]
ij , (61)

where the corresponding derivatives of Lkφ̂ij are known from earlier works

(Hanslmeier & Dvorak, 1984; Pál & Süli, 2007; Pál, 2014) while

LnS
[x]
ij =

n
∑

k=0

(

n

k

)

(

Ln−kyiL
kzj − Ln−kziL

kyj

)

, (62)

LnS
[y]
ij =

n
∑

k=0

(

n

k

)

(

Ln−kziL
kxj − Ln−kxiL

kzj

)

, (63)

LnS
[z]
ij =

n
∑

k=0

(

n

k

)

(

Ln−kxiL
kyj − Ln−kyiL

kxj

)

. (64)

Higher order relations for the Lagrangian orbital elements k and h are obtained by

expanding the bi- and trilinear terms of Eqs. (34) and (35). This expansion has the

following substeps:

– First, the fraction Ln
[

(Ci + Czi)
−1
]

is needed to be computed, using the rule pre-

sented in Sec. 3.3. Here, the numerator is 1 (with zero Lie-derivatives), so Eq. (23)

can further be simplified. Alternatively, Eq. (51) of Pál (2014) can be used consid-

ering the exponent of p = −1.

– Once Ln
[

(Ci + Czi)
−1
]

is known, Ln+1pxi and Ln+1pxi are derived using the

trilinear Leibniz’ product rule for Eq. 36.

– The higher order derivatives of the accelerations axi, ayi and azi are obtained using

Leibniz’ rule for two multiplicands, following Eqs. (31)-(33).

– Once these three above steps are done, all of the terms are known appearing in

Eqs. (34) and (35). Hence, the trilinear rule should be applied.

In a practical implementation, a programmer needs to treat
[

(Ci + Czi)
−1
]

as a sepa-

rate variable and store it accordingly in conjunction with its higher order derivatives.
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In addition, a trilinear expansion can also be speeded up if a product like Ln(ABC)

is expanded in two bilinear substeps, namely first one compute Ln(AB) in the usual

manner then Ln(ABC) is written as

Ln(ABC) =

n
∑

k=0

(

n

k

)

Ln−k(AB)LkC. (65)

This kind of optimization reduces the number of operations from O(n2) to O(n),

however, auxiliary variables and the respective arrays are needed to be introduced.

The higher order relations for Ln+1λi can also be considered similarly since the

terms appearing in Eq. (53) are bi-, tri- or quadrilinear functions of the terms Ax and

quantities for which the recurrence relations have already been obtained. The terms

A0, AA, Az, AP and AL are complex expressions, however, these are still rational

functions of quantities for which the recurrence series are known.

7 Summary

This paper completes the recurrence relations for the Lie-derivatives of the osculating

orbital elements in the case of the spatial N-body problem. These relations can be

exploited to integrate directly the equations of motions that are parameterized via the

orbital elements. Qualitatively, the advantages and disadvantages of this approach are

the same what has been concluded for the planar problem. Namely, evolving orbital

elements instead of Cartesian components results in larger stepsizes. On the other hand,

the complex implementation and the need of more computing power (for the actual

evaluation a single step) could yield only marginal benefit. An initial implementation

for a demonstration and validation of the formulae presented in this article can be

downloaded from our web page3 as well as these codes are available upon request.

They are also included in the supplement appended to the electronic version of the

paper.

Correspondingly to the planar case, coordinates and velocities do appear in the

recurrence relations but in a form of purely auxiliary quantities. Further studies can

therefore focus on the elimination of the need of coordinates. This is particularly in-

teresting in the case of mean longitude where the third direction is preferred. Such

derivations might significantly reduce the computing demands as well.

Acknowledgments. The author would like to thank A. László for his helpful com-
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