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Abstract

A new class of accelerating, exact and explicit solutions of relativistic hydrodynamics is found —

more than 50 years after the previous similar result, the Landau-Khalatnikov solution. Surprisingly,

the new solutions have a simple form, that generalizes the renowned, but accelerationless, Hwa-

Bjorken solution. These new solutions take into account the work done by the fluid elements on

each other, and work not only in one temporal and one spatial dimensions, but also in arbitrary

number of spatial dimensions. They are applied here for an advanced estimation of initial energy

density and life-time of the reaction in ultra-relativistic heavy ion collisions.
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Fluid dynamics is beautifully simple: it is based only on local conservation of charge,

momentum and energy as well as on the additional assumption of local thermal equilibrium.

Consequently, the hydrodynamical equations do not have internal scale, and their applica-

tions range from the smallest experimentally accessible scales of physics, such as the perfect

fluid, a new form of matter created in high energy heavy ion collisions at the Relativis-

tic Heavy Ion Collider (RHIC) located in Brookhaven National Laboratory (BNL, USA),

through a glass of wine and through astrophysical and stellar objects, like stellar nebulae,

to the largest known object, the evolution of our Universe. Fluid dynamics is beautifully

and sometimes horrendously complicated: non-linear terms lead to instability, chaos, com-

plexity, formation of eddies and other beautiful flow patterns, that are observable from the

smallest to the largest scales of physics, like elliptic flow in high energy heavy ion collisions,

hurricanes, super-nova explosion, or, the Hubble flow of our Universe. Fluid dynamics is

beautifully relevant, too: presently this theory yields the best description of the single par-

ticle momentum distributions, elliptic flow patterns, and two-particle correlation data of

the thousands of elementary particles created in the Little Bangs of relativistic heavy ion

collisions at RHIC.

It is a matter of fact, that all but one of the presently known exact relativistic hydro

solutions lack an important feature: the acceleration of matter. The only exception is the

famous Landau-Khalatnikov (LK) solution, discovered more than 50 years ago [1–3]. This

solution is a 1+1 dimensional, implicitly formulated but fully analytic solution of relativis-

tic hydrodynamics. It predicts a realistic, approximately Gaussian rapidity distribution.

However, due to its extremely complicated nature, the LK solution does not allow for an

estimation of the initial energy density. Another renowned and exact solution is the 1+1 di-

mensional, boost-invariant, accelerationless Hwa-Bjorken (HB) solution [4, 5]. This solution

allowed Bjorken to give a simple estimate of the initial energy density reached in heavy ion

collisions from final state hadronic observables. It is well known, that the HB solution (in

its original form, for µB = 0) leads to a flat rapidity distribution, which is at variance with

present observations at RHIC, except perhaps when observations are limited to a narrow

region around mid-rapidity. Acceleration effects are, however, important in the estimation

of the initial energy density even at mid-rapidity, if the expanding system is finite: even the

most central fluid element performs work on the volume elements closer to the surface, and

this work reduces the internal energy of cells even at mid-rapidity. We present such a new,
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accelerating family of solutions below, and apply it to data analysis in Au+Au collisions at

RHIC. It can also be applied to test numerical solutions of relativistic hydrodynamics - no

finite, accelerating, exact solution was available before for such tests in 1+3 dimensions.

Notation and basic equations: The metric tensor is gµν = diag(1,−1,−1,−1), uµ =

γ(1,v) is the four-velocity field, v = vn is the three-velocity. The pressure is denoted by

p , the energy density by ε , the temperature by T , the charged particle density by n , the

chemical potential by µ and the entropy density by σ.

In high energy collisions, the entropy density is large, but net charge density is small. In

perfect fluids, entropy and four-momentum are locally conserved,

∂ν(σu
ν) = 0, (1)

∂νT
µν = 0, (2)

where the energy-momentum tensor is

T µν = (ε+ p)uµuν − pgµν . (3)

The relativistic Euler equation and the energy conservation law are projections of Eq. (2):

(ε+ p)uν∂νu
µ = (gµρ − uµuρ) ∂ρp, (4)

(ε+ p)∂νu
ν + uν∂νε = 0. (5)

For simplicity, let us consider the case, when all the conserved charges ci have µi = 0. Such

an approximation is common in high energy physics at RHIC, and is assumed both in the

LK and in the HB solutions. The thermodynamics of the flowing matter is characterized by

the Equations of State (EoS). Let us consider

ε− B = κ(p+B), (6)

where B stands for the bag constant and κ = 1/c2s, where cs stands for the speed of sound,

c2s = dp/dε. The bag constant B may have either a vanishing or a non-vanishing value,

characteristic for a hadronic or, for a pre-hadronic state, respectively. In what follows, d

stands for the number of spatial dimensions. In a heavy ion collision, d = 3, irrespective

of the characteristics of the flow pattern. The κ = d EoS corresponds to a gas of massless

particles (e.g photons) or an ultra-relativistic ideal gas of massive particles. In this case,
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σ ∝ T d is also true. Observe, that Eq. (6) closes Eqs. (4,5) for the pressure and the three

independent components of velocity.

We discuss below exact solutions of relativistic perfect fluid hydrodynamics in 1+1 di-

mensions and spherical solutions in 1+d dimensions as well. The notation r stands for the rz

spatial coordinate in 1+1 dimensions, and for the radial coordinate in 1+d dimensions. We

use the well-known Rindler coordinates (τ and η), which naturally fit to the Hwa-Bjorken

solution in the forward light-cone:

r = τ sinh η , t = τ cosh η. (7)

We rewrite the equations of hydrodynamics in Rindler coordinates for a special case, when

v = tanhΩ(η), i.e. the Ω fluid rapidity depends only on η. Eqs. (4-6) the yield the following

equations for p(τ, η) and Ω(η):

(κ+ 1)
dΩ

dη
= −τ

p

∂p

∂τ
− coth(Ω− η)

1

p

∂p

∂η
, (8)

κ+ 1

κ

dΩ

dη
= −τ

p

∂p

∂τ
− tanh(Ω− η)

1

p

∂p

∂η
− κ + 1

κ

d− 1

sinh η

sinh Ω

cosh(Ω− η)
. (9)

In what follows, we specify full solutions of relativistic hydrodynamics, that are valid in

the complete forward light-cone.

The new class of accelerating solutions is given by the following velocity and pressure

fields:

v = tanh λη, (10)

p = p0

(τ0
τ

)λdκ+1

κ
(

cosh
η

2

)−(d−1)φλ

− B. (11)

The constants λ, d, κ and φλ are constrained, lines (a)–(e) of Table I show the cases that

satisfy the hydrodynamical equations. Line (a) stands for the well known Hwa-Bjorken

solution [4, 5], also called as Hubble solution when d = 3. Our new, λ 6= 1 solutions are

listed in lines (b)–(e) of Table I. They describe accelerating flow, indicated by the curvature

of the fluid world lines and expressed mathematically by uµ∂µu
ν 6= 0. Case (b), where λ = 2

is shown in Fig. 1. Its fluid world lines, r(t) evolve as

r(t) =
1

a0
(
√

1 + (a0t)2 + 1) , a0 =
2r0

|r20 − t20|
, (12)

where r0 and t0 specify the initial condition. These are trajectories with constant a0 acceler-

ation in the local rest frame. Both the λ = 1 , and λ = 2 cases can be extended to external
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Case: λ d κ φλ

(a) 1 ∈ R ∈ R 0

(b) 2 ∈ R d 0

(c) ∈ R 1 1 0

(d) 1
2 ∈ R 1 κ+1

κ

(e) 3
2 ∈ R

4d−1
3

κ+1
κ

TABLE I: The new family of solutions is given by lines (b)-(e), while case (a) is the Hwa-Bjorken-

Hubble solution.

(|r| > t) solutions that are uniformly accelerating, hence they contain event horizons. This

property of the uniform acceleration was utilized recently by Kharzeev and Tuchin [11] to

describe thermalization in heavy ion reactions via the Unruh effect. Case (c) describes a

one dimensional fluid, with a special EoS of κ = 1, but its parameter of acceleration, λ can

be chosen arbitrarily. After our derivation of cases (b) and (c), T. S. Biró pointed out [6],

that the λ = 1/2, κ = 1 and the λ = 3/2, κ = 11/3, d = 3 cases are also solutions. We

have generalized them for any d ∈ R, as shown in lines (d) and (e). The exponent φλ is

introduced to indicate, that the pressure is explicitly dependent on space-time rapidity η in

these cases, and the pressure tends to zero for large values of |η|. Thus cases (d) and (e)

are finite solutions. Note that in d = 3 dimensions, case (e) has ε− 3p > 0, similarly to the

lattice QCD EoS.

Even when one considers the case, that λ can be a λ(τ) function, and the pressure

may have a form of p = H(τ)U(η) − B, that conditions generalize the actual solutions of

eqs. (10,11), we have proven that no non-trivial, additional to Table I solutions exist in this

more general class. Our proof was easily obtained from a second order Taylor expansion of

the hydrodynamical equations, but is not detailed here.

During the time evolution of heavy ion collisions at RHIC, and during the quark-hadron

transition in the early Universe, the chemical potentials of conserved charges are very small,

p ≃ p(T, µi = 0). In this case, (1 + κ)p = σT . The entropy conservation, Eq. (1) can be

solved for σ, and comparing with (1 + κ)p = σT yields

σ = σ0νσ(s)

(

p+B

p0

)
κ

κ+1

, T =
T0

νσ(s)

(

p+B

p0

)
1

κ+1

, (13)
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FIG. 1: (Color online) Fluid trajectories of the λ = 2 solution.

where (1 + κ)p0 = T0σ0, and p(τ, η) is given by Eq. (11). Here we have introduced a scaling

function νσ(s), that can be any positive function that satisfies νσ(0) = 1. The scaling

variable s has, by definition, a vanishing comoving derivative: ∂s
∂t

+ (v∇)s = 0. For λ = 1

we find that s(τ, η) = η. For λ 6= 1 the scaling variable is

s(τ, η) =
(τ0
τ

)λ−1

sinh ((λ− 1) η) . (14)

The scaling function νσ(s) > 0 appears similarly how it shows up also in accelerationless

solutions [7–10].

In case of mixtures , where various non-vanishing conserved charges ni with µi 6= 0 are

present and contribute to the pressure, the more general form of the thermodynamic poten-

tial, p = p(T, µi) = (Tσ+
∑

i µini)/(1+κ)−B leads to similar exact solutions of relativistic

hydrodynamics, but new, arbitrary scaling functions νi(s) > 0 appear, with ni ∝ νi(s) and

µi ∝ 1
νi(s)

. These forms solve the continuity equations for ni and Eqs. (4-5).

The rapidity distribution, dn
dy

is given below for case (c) of Table I in a Boltzmann ap-

proximation. We consider the νσ(s) = 1 case, when our solutions also solve the Landau-

Khalatnikov equation, ∂νTuµ = ∂µTu
ν. The freeze-out temperature is T (η = 0, τ = τf ) =

Tf , where subscript f stands for freeze-out. We assume, that the freeze-out hypersurface is

pseudo-orthogonal to uµ. With a saddle-point integration in η, for m/Tf ≫ 1, where m is

the particle mass, λ > 0.5, µi = 0 and νσ(s) = 1 we got

dn

dy
≈ dn

dy

∣

∣

∣

y=0
cosh±α

2
−1

( y

α

)

e
− m

Tf
[coshα( y

α)−1]
, (15)

with α = 2λ−1
λ−1

. The “Gaussian width” of this distribution is ∆y2 = α
m/Tf∓1/2+1/α

. The

upper sign is for the 1 + 1 dimensional case, the lower sign is for the case when the 1 + 1
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FIG. 2: (Color online) Normalized rapidity distributions from the new solutions in 1+1 dimensions

for various λ, Tf and m values. Thick lines show the result of numerical integration, thin lines the

analytic approximation from Eq. (15). For λ > 1 and not too big Tf it can be used within about

10 % error.

dimensional solution is embedded in the 1 + 3 dimensional space-time. In this latter case,

the transverse mass distribution is integrated in a saddle-point approximation from m to

infinity. The resulting rapidity distribution has a minimum at y = 0, if ∆y2 < 0, it is flat if

∆y2 = 0, i.e. λ = 1, or λ = 1
2

(

1 +
Tf

2m∓Tf+Tf

)

, otherwise it is nearly Gaussian, as illustrated

in Fig. 2.

Let us now estimate the energy density reached in heavy ion reactions, just after ther-

malization (τ = τ0 ≈ 1 fm/c). Let us focus on a thin transverse piece of produced matter at

mid-rapidity, illustrated by Fig. 2 of Ref. [5]. The radius R of this slab is estimated by the

radius of the colliding hadrons or nuclei, its volume is dV = (R2π)τdη. The energy content

in this slab is dE = 〈mt〉dn, where 〈mt〉 is the average transverse mass at y = 0, so similarly

to Bjorken, the initial energy density is

ε0 =
〈mt〉

(R2π)τ0

dn

dη0
. (16)

For accelerationless, boost-invariant Hwa-Bjorken flows η0 = ηf = y, however, for our

accelerating solution we have to apply a correction factor of
∂ηf
∂η0

∂y
∂ηf

= (τf/τ0)
λ−1 (2λ− 1).

Thus the initial energy density ε0 can be accessed by an advanced estimation εc as

εc
εBj

= (2λ− 1)

(

τf
τ0

)λ−1

, εBj =
〈mt〉

(R2π)τ0

dn

dy
. (17)

Here εBj is the Bjorken estimation, which is recovered if dn
dy

is flat (i.e. λ = 1), but if

λ > 1, ε0 is under-estimated by the Bjorken formula. Fig. 3 shows our fits to BRAHMS
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FIG. 3: (Color online) Panel (a): dn/dy data of negative pions, as measured by the BRAHMS

collaboration [12] in central (0-5%) Au+Au collisions at
√
sNN = 200 GeV, fitted with Eq. (15)

(1+3 dimensional case). The fit range was −3 < y < 3, to exclude target and projectile rapidity

region, CL = 0.6 %. Panel (b): εc/εBj ratio as a function of τf/τ0.

dn/dy data [12]. Using the Bjorken estimate of εBj = 5 GeV/fm3 as given in Ref. [13], and

τf/τ0 = 8 ± 2 fm/c, we find an initial energy density of εc = (2.0 ± 0.1)εBj = 10.0 ± 0.5

GeV/fm3. If the evolution deviates from a 1+1 dimensional perfect flow, then our estimation

is only a lower limit for the initial energy density.

Life-time determination: For a Hwa-Bjorken type of accelerationless, coasting longitu-

dinal flow, Sinyukov and Makhlin [14] determined the longitudinal length of homogeneity

as Rlong =
√

Tf

mt
τBj . Here mt is the transverse mass and τBj is the (Bjorken) freeze-out

time. However, if the flow is accelerating, the estimated origin of the trajectories is shifted,

so the life-time of the reaction is under-estimated by τBj . (This was pointed out also in

refs. [15–18].) From our solution (c) we obtain

Rlong =

√

Tf

mt

τc
λ

⇒ τc = λτBj . (18)

BRAHMS data of Fig. 3 yield λ = 1.18±0.01, and imply a 18 ±1 % increase in the estimated

τc.

Relation to earlier solutions: In our case, similarly to the Hwa-Bjorken case, the initial

condition can be given on a τ = τ0 hypersurface in the forward light-cone, or on any

τ0(η) continuous Cauchy-surface. Note, however, that we discuss smooth initial conditions

on this initial hypersurface, hence the Landau solution, that starts from a step function,

a finite box filled with a constant energy density, will not be part of the new family of

solutions presented below: in our case, we solve the same dynamical equations as Landau
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and Khalatnikov, but with modified boundary conditions. Another similarity to the Landau-

Khalatnikov solution is that in certain limiting cases, we obtain nearly Gaussian rapidity

distributions. Our rapidity distributions are characterized by two parameters, the scale

(rapidity density at mid-rapidity) and a shape parameter, which measures the acceleration

effects. In the accelerationless case, the Hwa-Bjorken limit is recovered exactly, both for

the flow profile in the forward light-cone, and for the flat rapidity density. We however

find external solutions too, that are valid outside the light-cone. Similarly to the Landau-

Khalatnikov solution, the initial condition outside the light-cone can be specified at t = 0,

where the matter is at rest, v(t = 0, r) = 0. However, in our case, the initial energy

density has an inhomogeneous distribution even in the case of these external solutions,

hence p(t = 0, r) is never a step function in our family of solutions, in contrast to the

Landau initial conditions. It is also interesting to mention, that in the case of our solutions

in the future light cone, the acceleration tends to zero for late times at any given location,

but this limit is not uniform. For example, in case of the λ = 2 solutions, the acceleration

vanishes for late times at any position, but it remains constant along the fluid lines.

In summary, we have presented a new family of accelerating, exact and simple solutions

of relativistic hydrodynamics. These new solutions are simple, although their finding was

a complicated process that lasted for decades. BRAHMS pointed out before [12], that the

rapidity distribution of negative pions in Au+Au collisions at
√
sNN = 200 GeV is flatter

than a Gaussian, but not completely flat, hence neither the Landau-Khalatnikov, nor the

Hwa-Bjorken solution describes it. Our new exact solutions describe well these BRAHMS

observations. We have found that at least 10±0.5 GeV/fm3 initial energy densities are

reached at τ0 = 1 fm in Au+Au collisions at RHIC. We have also given an advanced estimate

of the life-time of the reaction. Both estimates include work effects for the first time, and

connect initial conditions and final hadronic observables with simple and explicit formulas.

As an outlook, the results presented here could be applied to advanced estimates of initial

energy densities in relativistic heavy ion reactions from CERN SPS through RHIC to LHC.

In the limit when the rapidity distribution is flat, the Bjorken energy density estimate is

recovered. However, for rapidity distribution with a finite width, an advanced formula is

found, which yields increased values of the initial energy density as compared to the Bjorken

estimate.

Although we have proven, that our solutions are unique in the considered general class of

9



parametric solutions of hydrodynamics, more work is necessary to investigate the stability

and possible further generalizations of these solutions. In particular, exact solutions are with

ellipsoidal symmetry and relativistic acceleration are yet to be found, but would be most

interesting, as they could provide new insights to the connection between elliptic flow data

and initial conditions. Also, exact solutions with more general equations of state would be

most interesting. These could allow for the investigation of the dependencies on the speed

of sound of the initial energy density estimates.

A more detailed and significantly longer description of the results summarized above is

being prepared and will be submitted for a publication separately.
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