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a Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences
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Abstract

Suppose that the vertices of a graph G are colored with two colors in an unknown way.
The color that occurs on more than half of the vertices is called the majority color (if it
exists), and any vertex of this color is called a majority vertex. We study the problem of
finding a majority vertex (or show that none exists), if we can query edges to learn whether
their endpoints have the same or different colors. Denote the least number of queries needed
in the worst case by m(G). It was shown by Saks and Werman that m(Kn) = n − b(n),
where b(n) is the number of 1’s in the binary representation of n.

In this paper we initiate the study of the problem for general graphs. The obvious
bounds for a connected graph G on n vertices are n− b(n) ≤ m(G) ≤ n− 1. We show that
for any tree T on an even number of vertices we have m(T ) = n− 1, and that for any tree
T on an odd number of vertices, we have n − 65 ≤ m(T ) ≤ n − 2. Our proof uses results
about the weighted version of the problem for Kn, which may be of independent interest.
We also exhibit a sequence Gn of graphs with m(Gn) = n−b(n) such that Gn has O(nb(n))
edges and n vertices.
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1 Introduction

Given a set X of n balls and an unknown coloring ofX with a fixed set of colors, we say that a ball
x ∈ X is a majority ball if its color class contains more than |X|/2 balls. The majority problem
is to find a majority ball (or show that none exists). In the basic model of majority problems,
one is allowed to ask queries of pairs (x, y) of balls in X to which the answer tells whether the
color of x and y is the same or not, which we denote by SAME and DIFF, respectively. The
answers are given by an Adversary whose goal is to force us to use as many questions as possible.
It is an easy exercise to see that if the number of colors is two, then in a non-adaptive search (all
queries must be asked at once) the minimum number of queries to solve the majority problem is
n−1, unless n is odd, in which case n−2 queries suffice. On the other hand, Fisher and Salzberg
[8] proved that if we do not have any restriction on the number of colors, ⌈3n/2⌉ − 2 queries
are necessary and sufficient to solve the majority problem adaptively (the answer to a query is
known before asking the next one). If the number of colors is two, then Saks and Werman [15]
proved that the minimum number of queries needed in an adaptive search is n− b(n), where b(n)
is the number of 1’s in the binary form of n (we note that there are simpler proofs of this result,
see [1, 13, 16]). There are several other generalizations of the problem, which include more colors
[2, 4, 9, 11], larger queries [3, 4, 6, 7, 10, 11, 12], non-adaptive [1, 5, 9], weighted versions [9].

In the present paper we study the adaptive majority problem for two colors when we restrict
the set of pairs that can be queried to the edges of some graph G on n vertices. The original
majority problem, where we can ask any pair, corresponds to G = Kn. To distinguish between
the version when we are restricted to the edges of a graph, and the original, unrestricted version,
we call the colored objects vertices and balls, respectively.

Notice that it is possible to solve the majority problem (with any number of queries) if and
only if G is connected when n is even, and if and only if G has at most two components when n
is odd. For any such graph, denote the minimum number of queries needed to solve the majority
problem in the worst case by m(G). Obviously we have n − b(n) = m(Kn) ≤ m(G) ≤ n − 1
(moreover, m(G) ≤ n− 2 when n is odd). Our main results are the following.

Theorem 1.1. For every tree T on an even number n of vertices m(T ) = n− 1 and
for every tree T on an odd number n of vertices m(T ) ≥ n− 65.

The constant 65 is probably far from optimal, it is possible that m(T ) ≥ n−3 holds for every
tree, but we could not even prove this for paths.

We also study the least number of edges a graph must have if we can solve the majority
problem as fast as in the unrestricted case, i.e., when m(G) = n− b(n).

Theorem 1.2. For every n, there is a graph G with n vertices and O(nb(n)) edges such that
m(G) = n− b(n).

It would be interesting to determine whether this bound can be improved to O(n), or show
a superlinear lower bound.
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The proof of Theorem 1.1 uses a weighted version of the original (i.e., G = Kn case of the)
majority problem, which is defined in the next section. We think these results are interesting on
their own.

In the following, we always suppose that only two colors are used, which we call red and blue.
When both colors contain the same number of balls, then we call the coloring balanced.

2 Weighted majority problems

Now we define a new variant of the majority problem, where the balls are given different weights.
More precisely, given k balls with non-negative integer weights w1, . . . , wk, a ball i is a (weighted)
majority ball if the weight of its color class is more than

∑k
i=1wi/2. The (weighted) majority

problem is to find a majority ball (or show that none exists).
Note that during the running of an adaptive algorithm solving the non-weighted majority

problem, at any point the information obtained so-far can be represented by a graph whose
vertices are all balls, and the queries asked are edges labeled with DIFF or SAME. Since now
we study the majority problem only for two colors, we can deduce from the labels of the edges
the color partition inside every component. Denote the difference between the sizes of the color
classes in each component by wi. Finishing the algorithm from a given state is equivalent to
solving the majority problem with the weights wi.

1 Similarly, in the weighted version when we
ask a ball with weight wi and a ball with weight wj, we can consider the answer as merging the
two balls into a ball with weight wi+wj or |wi−wj |, depending on the answer. We will say that
the new ball contains the two previous balls.

A set of k balls with given weights w1, . . . , wk can be represented by a vector w = (w1, . . . , wk).
We denote the number of queries needed to solve the weighted majority problem in the worst case
by m(w). So, with this notation, the result of Saks and Werman for the non-weighted problem
can be written as m(1, . . . , 1) = k − b(k). Note that m(w) ≤ k − 1 and if

∑k
i=1wi is odd, then

m(w) ≤ k − 2 (if k ≥ 2).
The weighted problem was first studied in [9], where the following proposition (which also

implies the result of Saks and Werman) was proved, generalizing a result of [13] (which built on
[14]) about the non-weighted variant. Let µ(k) denote the largest l such that 2l divides k (and
define µ(0) = ∞). For w = (w1, . . . , wk) denote by p the number of balanced colorings and by pi
the number of (non-balanced) colorings such that wi is in the majority class.2

Proposition 2.1. (i) m(w) ≥ k − µ(p).
(ii) m(w) ≥ k − 1− µ(pi) for every i ≤ k.

1This is explained in more details in Section 3.
2Beware that in [9] a slightly different notation was used, where p denoted the number of balanced 2-partitions,

which is half of the number of balanced colorings, and part (ii) of Proposition 2.1 was not explicitly stated.
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It was also shown in [9] that m(w) = k − µ(p) for µ(p) ≤ 2, but not in general, e.g., for
w = {1, 2, 3, 4, 5, 6, 7} we have 8 balanced colorings, but m(w) = 5 > 7− µ(8).

Our main results about the weighted majority problem are exact bounds for some special w.
They are based on the following lemma.

Lemma 2.2. (i) If w1 = · · · = w2n = 1 and
∑k

i=1wi = 2n+1, then m(w) = k − 1.

(ii) If w1 = · · · = w2n = 1,
∑k

i=1wi = 2n+1 + 1 and wk 6= 2n, then m(w) = k − 2.

Note that wk 6= 2n implies k > 2n + 1, as wi 6= 0.

Proof. For both statements we use Proposition 2.1. Let us start with (i). We are going to
calculate µ(p). First color only the balls whose index is from {2n + 1, . . . , k}. Denote by B
and R, respectively, the blue and red balls whose index is from {2n + 1, . . . , k}. Let x :=
|∑i∈B wi −

∑

i∈R wi|. Note that x is an even integer and there are 2
(

2n

2n−1−x/2

)

ways in which

we can color {1, . . . , 2n} to make the coloring balanced. It is easy to see that this number is
divisible by 4 except for the case x = 2n, when this number is exactly 2. This means that the
number of balanced colorings is 2 mod 4. Thus Proposition 2.1 (i) gives m(w) ≥ k−1, and since
m(w) ≤ k − 1 always holds, we have equality.

The proof of (ii) goes similarly. We are going to calculate µ(pk). We define B and R
in the same way. Without loss of generality we can assume that ball k is blue and let y =
∑

i∈B wi −
∑

i∈R wi. Then the number of colorings of the first 2n balls such that blue is the

majority color is
∑2n

i=2n−1−⌊y/2⌋
(

2n

i

)

. If y < 2n, each term here is divisible by 2, except the last

one, while if y > 2n, everything is divisible by 2. There are 2k−1−2n ways to color the balls from
{2n + 1, . . . , k − 1} out of which y > 2n only once. This means that the number of colorings (of
all the balls) where blue is the majority color is odd when ball k is blue, and of course the same
is true when ball k is red. Thus Proposition 2.1 (ii) gives m(w) ≥ k− 2, and since m(w) ≤ k− 2
holds whenever

∑k
i=1wi is odd, we have equality.

Corollary 2.3. (i) If w1 = · · · = w2n+2s = 1 and
∑k

i=1wi = 2n+1 + 2s, then m(w) ≥ k − 1− s.

(ii) If w1 = · · · = w2n+2s = 1,
∑k

i=1wi = 2n+1 +2s+1 and wk 6= 2n, then m(w) ≥ k− 2− s.

Proof. We only prove (i) - the proof of (ii) goes the same way. First, we prove the weaker
statement that m(w) ≥ k − 1 − 2s. We reveal of 2s balls of weight 1 that half of them are red
and half of them are blue, and then apply Lemma 2.2 for the remaining balls.

For the bound m(w) ≥ k − 1 − s we need one more trick. We run the adversarial algorithm
that gives the lower bound in Lemma 2.2, until the first ball of weight 1 is queried. When this
happens, then we reveal that it is red, and we reveal another ball of weight 1 that it is blue. We
do this s times, and after that proceed according to the adversarial algorithm.

Call a vector w = (w1, . . . , wk) hard if m(w) = k − 1 and
∑n

i=1wi is even, or
∑n

i=1wi is odd
and m(w) = k − 2. Thus Lemma 2.2 states that the vectors satisfying its conditions are hard.
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Observation 2.4. Let w = (w1, w2, . . . , wk) be a hard vector with w1 = w2 and let w′ =
(2w1, w3, w4, . . . , wk). Then w′ is also hard.

Proof. If k = 2, then w′ is hard by definition. Let us assume that k ≥ 3 and w′ is not hard. We
will show that w is not hard either. We ask w1 and w2 in the first query. If the answer is DIFF,
we can obviously finish with k − 3 further queries if

∑k
i=1wi is even and k − 4 further queries if

∑k
i=1wi is odd, thus w cannot be hard. If the answer is SAME, we apply our algorithm for w′

to reach the same conclusion using that w′ is not hard.

Question 2.5. Does the reverse direction also hold in the above observation?

Also, the respective statement might hold when m(w) is smaller, but we do not know of other,
generally applicable sufficient conditions.

Combining Observation 2.4 with Lemma 2.2, we obtain the following statement.

Lemma 2.6. If w1, . . . , wj are each powers of two and

(i)
∑j

i=1wi = 2n and
∑k

i=1wi = 2n+1, then w is hard, i.e., m(w) = k − 1.

(ii)
∑j

i=1wi = 2n,
∑k

i=1wi = 2n+1 + 1 and k > 2n + 1, then w is hard, i.e., m(w) = k − 2.

Note that (i) of Lemma 2.2 states that if the sum of the weights in w is a power of two, and
at least half of that weight is given by balls of weight 1, than w is hard. Lemma 2.6 shows that
weight 1 can be replaced by any weights that are powers of two, and (ii) of Lemma 2.2 can be
similarly improved. If Observation 2.4 held for non-hard vectors as well, then we could obtain a
similar improvement of Corollary 2.3 from Lemma 2.6. In general, one can ask the following.

Question 2.7. What is the complexity of computing m(w)?

The next subsection, contrary to its title, is not so relevant for our proof, but it helps to
understand better what happens before the algorithm ends.

2.1 Relevant balls

Given w = (w1, . . . , wk), we say that wi is relevant
3 if there is a coloring of the other balls such

that the color of wi changes what the majority color is, or whether a majority color exists. In
other words, there is a coloring of the other balls, such that either wi is red means red is majority
and wi is blue means blue is majority, or one color of wi means there is no majority, the other
color means there is majority. In this subsection we prove some simple facts about relevant balls.
We start with some simple observations.

3In [9] the property that every ball is relevant was called non-slavery.
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Proposition 2.8. (i) If m(w) = 0, then either there is no relevant ball and the answer is that
there is no majority, or there is one relevant ball and that is the majority ball.

(ii) If we obtain w′ from w by any answer to a query (a, b) such that b is non-relevant, then
m(w′) = m(w).

(iii) If we increase the weight of a relevant ball, it remains relevant. In other words, if we
obtain w′ from w by replacing one ball wi with w′

i such that w′
i > wi, and wi is relevant in w,

then w′
i is relevant in w′.

(iv) For any w there is a threshold t > 0 such that wi is relevant if and only if wi > t.
(v) If a ball x is relevant before a query Q not containing x, there is at least one answer to

Q such that x is still relevant afterwards. If a ball x is relevant before a query (x, y), then after
the answer SAME the resulting ball with weight x+ y is relevant.

(vi) For any query (a, b) there is an answer such that the number of relevant balls decreases
by at most two.

Proof. To prove (i), observe that if we color all the balls blue, there is a majority, unless all the
balls have zero weight, in which case there is no relevant ball. Thus if there is no majority in
any coloring of w, then there cannot be relevant balls. If there is a majority ball a, then it has
to be the only relevant ball. Indeed, if b is relevant, then changing the color of b must change
the answer, unless b was the answer.

To prove (ii), let c be the ball that the answer to the query (a, b) gives, thus it has weight
either a + b or a− b. Any algorithm that gives a solution for w gives a solution for w′ and vice
versa, where asking a ball that contains a is replaced by the query that contains c, and ignoring
queries that involve b. Therefore, m(w′) = m(w).

To prove (iii), assume for a contradiction that w′
i is not relevant and take a coloring of the

other balls that shows this. But then taking the same coloring for the other balls also shows that
wi is not relevant, a contradiction.

To prove (iv), observe first that it is equivalent to the statement that a non-relevant ball
cannot have larger or equal weight than a relevant ball. Indeed, this is obviously implied by (iv),
and if this holds, than t can be chosen as the largest weight of a non-relevant ball. Now assume
a is relevant and w(b) ≥ w(a). Then consider the coloring that shows a is relevant, and replace
b with a. This coloring clearly shows b must be also relevant.

To prove (v), assume x is not in the query and consider a coloring of the other balls such
that the color of x decides the majority. In that coloring the balls in the query have different or
same color; answer accordingly. Then the same coloring shows c is still relevant.

Assume now x is in the query (x, y) and the answer is SAME. Consider a coloring of the
other balls such that the color of x decides the majority. Taking the same coloring, the new ball
x+ y will decide majority.

To prove (vi), consider the relevant ball x not in the query with the smallest weight. By (v)
there is an answer such that x remains relevant. As other relevant balls have larger weight, they
also remain relevant, except for a and b (whose total weight can go below the weight of c).
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We remark that (v) of the above proposition gives a new proof of a proposition from [9],
which states that if all the n balls are relevant, we need at least ⌊n/2⌋ queries.

Proposition 2.9. Before the last query of an optimal algorithm, there are either two relevant
balls, they are of equal weight and there are no other balls with non-zero weight, or there are three
relevant balls, and any query that compares two of them to finishes the algorithm.

Proof. Proposition 2.8 implies that there are at most three relevant balls. Observe that if there
are two relevant balls a and b in w, they must have the same weight. Indeed, if w(a) > w(b) and
the total weight m of the other balls is smaller than w(a)−w(b), then a is the only relevant ball.
If m ≥ w(a)− w(b), then color b red, a blue and go through the other balls in increasing order
of their weight, without the last ball c. We give each of them the color which has the smaller
weight at that point. The first ball gets the color red, but as m ≥ w(a)−w(b), at one point the
total weight of red balls becomes at least the total weight of blue balls. From that point, the
difference between the classes is at most the weight of the current ball, which is at most w(c).
This coloring shows c is relevant.

It is left to show that if there are exactly three relevant balls, a, b and c, querying any two of
them (say a and b) finishes the algorithm. Let m be the sum of the weights of the other balls. If
m = 0, we are done unless both a+b and |a−b| are equal to c, which means b = 0, but a ball with
zero weight cannot be relevant. Thus we can assume m > 0. We have a ≤ b+ c+m, otherwise
we are done. But we also have a+m ≤ b+ c, because the other balls are not relevant. Moreover,
if a+m = b+ c, then again, the other balls would be relevant, thus we have a+m < b+ c. This
implies c ≥ a− b+m, thus we are done if the answer is DIFF, as c is a majority ball. We also
have a+ b+m ≥ c, otherwise we are done without the last query, and it implies a+ b ≥ c+m,
moreover a + b > c + m, otherwise the remaining balls are relevant. Thus we are done if the
answer is SAME.

3 Graphs

Let us start this section with describing in detail how the weighted majority problems are con-
nected to the majority problem on graphs. Consider an algorithm solving the majority problem
on a graph G. Let Gi be the subgraph of G formed by the first i queries. We call the vertex set
of a connected component of Gi a q-component. Observe that knowing the answer to the first i
queries, for every q-component U we know a partition of U into two monochromatic subset U1

and U2. Let the weight of U be wi(U) =
∣

∣|U1|−|U2|
∣

∣. If the i+1st query is (u, u′) with u ∈ U and
u′ ∈ U ′, where U and U ′ are q-components in Gi, then U and U ′ are merged into a q-component
with vertex set U ∪ U ′ in Gi+1. Moreover, its weight wi+1(U ∪ U ′) is either wi(U) + wi(U ′), or
|wi(U)−wi(U ′)|, depending on the answer to the i+1st query (u, u′). For other q-components U ′′

we have wi+1(U ′′) = wi(U ′′). Hence an algorithm that finishes solving the majority problem on
G after the kth query also solves the weighted majority problem for the vector having the weights
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of the q-components of Gk as coordinates. However, this does not work in the other direction,
as we do not have the restriction of the graph structure in the weighted problem. Thus we can
only prove upper bounds for m(G) this way.

We will omit i and simply talk about w(U) instead of wi(U) because i will be always clear
from the context. For a ball u ∈ U , let w(u) := w(U). If a q-component X has weight zero,
we say that X is balanced. Similarly to vectors, we say that a graph G on n vertices is hard if
m(G) = n− 1 for even n and m(G) = n− 2 for odd n.

Proposition 3.1. Every tree T on an even number n of vertices is hard, i.e., m(T ) = n− 1.

Proof. We show more: the adversary can pick in advance a coloring c of the vertices such that
no matter what edge is missing from the queries, we cannot find out if there is a majority or not.
All this coloring needs to satisfy is that we have n/2 blue balls, and if we remove any edge from
T , both the resulting subtrees are unbalanced, i.e., the number of blue and red balls is not the
same in them. Indeed, if a query is not asked from T , then the Adversary can either claim that
the real coloring of the vertices is c and thus no majority vertex exists, or the coloring coincides
with c on one component, but is exactly the flipped version of c on the other component and
thus there is majority.

Equivalently, we want to find a balanced 2-coloring such that each edge of T cuts it into two
non-balanced parts. We start with an arbitrary balanced coloring of T . If an edge connecting a
red ball u and a blue ball v cuts T into two balanced parts, we can simply change the color of u
to blue and the color of v to red. Observe that any other edge e cuts T into two parts such that
u and v belong to the same part, hence it does not change whether e cuts T into balanced parts.

Let us assume now that u and v are both red, and the edge uv cuts T into two balanced parts
A and A′. Then we change the color of every ball in A. We claim that for any edge e that cuts
T into parts B and B′, it does not change whether B and B′ are balanced. Indeed, either B is
completely inside A′, in which case no color inside B is changed, or B contains A, in which case
some colors have changed, but the number of blue balls turning red is the same as the number
of red balls turning blue, as A is balanced. As B′ is balanced if and only if B is balanced, B′ is
also unaffected. Now u and v has different colors, so we can again exchange their color.

Hence we obtained that we can decrease the number of edges that cut T into balanced parts.
It is easy to see that the coloring remains balanced. After applying this operation finitely many
times we obtain the desired coloring, finishing the proof.

Surprisingly, it is much harder to give a lower bound for trees on an odd number of vertices.
For paths, for example, we have m(Pn) = n − b(n) for all odd n ≤ 13, while m(P15) = 12 =
n − b(n) + 1 = n − 3. (This we have verified with a computer program.) We conjecture that
n− 3 might be a lower bound for all trees, but we can only prove the weaker bound n− 65.

To prove the lower bound of n−65 for odd n, we start with a lemma that gives another proof
for Proposition 3.1. First, we introduce a notation. In a graph G, for a subset of its vertices
X ⊂ V we denote by δ(X) the parity of the number of edges between X and V \ X . If G is
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a tree and X is a connected subset of vertices, then δ(X) equals the parity of the number of
components of V \X .

Lemma 3.2. We can answer to queries in any graph G such that for the weight w(X) of any
q-component X ( V we have 0 ≤ w(X) ≤ 2, and
(i) if |X| is odd, w(X) = 1, and
(ii) if |X| is even, w(X) = 2δ(X).

Note that if T is a tree on an even number of vertices, then 0 ≤ w(X) ≤ 2 implies that
the game goes on until we have at most one non-balanced q-component. Assume at that point
there would also be some balanced q-components. Observe that there is a tree-structure on
the components of a tree. Then at least one of the balanced q-components would be a leaf-
component, but that contradicts condition (ii). Thus there can be only one component, which
implies Proposition 3.1.

For trees on an odd number of vertices, a similar argument cannot work, as for example in Pn,
it can happen that the first two vertices form a q-component of weight 2, followed by (n− 3)/2
pairs of vertices that each form a balanced q-component, and the last vertex is a q-component
of weight 1. In this case we have solved the majority problem with only (n − 1)/2 queries. In
fact, according to the conditions of Lemma 3.2, our algorithm would answer exactly so that it
would produce such weights for the q-components. For paths, there is no way to keep the weight
function bounded without allowing an arbitrarily number of adjacent balanced q-components;
but if this happened, then we could merge all the q-components to their left, and all the q-
components to their right, so that only two non-balanced q-components remain - after this we
are done if n is odd, saving an arbitrarily large number of queries. This is why the proof will be
more complicated for trees on an odd number of vertices; we will need to use our results about
weighted balls.

Proof of Lemma 3.2. Initially the conditions are satisfied. Suppose that the query is between
two q-components, X and Y .

If |X|+ |Y | is odd, then exactly one of w(X) and w(Y ) equals 1, while the other equals 0 or
2, so we can achieve w(X ∪ Y ) = 1 to satisfy condition (i).

If |X| and |Y | are both odd, then we can choose the weight of X ∪ Y to be 0 or 2; one of
those is equal to 2δ(X).

If |X| and |Y | are both even, then since δ(X ∪ Y ) = δ(X) + δ(Y ) − 2|E(X, Y )| = δ(X) +
δ(Y ) mod 2, we have w(X ∪ Y ) = w(X) + w(Y ) mod 4. Observe that w(X) + w(Y ) is 0, 2 or
4. Thus we can answer so that w(X ∪ Y ) becomes 0, 2 or 0, respectively, to satisfy condition
(ii).

For the lower bound of n − 65 for trees on an odd number of vertices, we need another
ingredient. Before that, we prove a simpler result that contains an important ingredient of the
proof, and is of independent interest.
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Theorem 3.3. Let n = 2k + l, where l < 2k. If G has a set U of vertices such that |U | ≤ 2k−2

and the components of G \ U are single vertices (i.e., every edge is incident to a vertex in U),
then G is hard, i.e., m(G) = n− 1 if n is even and m(G) = n− 2 if n is odd.

Proof. Denoting by w(X) the weight of a q-component X , we initially have
∑

X w(X) = n.
Adversary will maintain in the first part of the algorithm that w(X) 6= 0 for every q-component
X .

Let us now describe a strategy of the Adversary for the first part of the algorithm. Whenever
we compare some v ∈ G\U with a u ∈ U such that w(u) ≥ 2, the answer is such that the weight
of the new q-component is w({u, v}) = w(u)− 1, thus

∑

X w(X) decreases by 2. In every other
case the answer is such that the weights are added up, i.e.,

∑

X w(X) remains the same.
Introduce the potential function Ψ =

∑

X w(X) + |{X | X ∩ U 6= ∅, w(X) = 1}|. The
Adversary’s strategy is such that every time we compare some v ∈ G \ U with a u ∈ U , the
function Ψ decreases by at least 1. Since initially Ψ = n + |U |, after |U | + l queries involving
some vertex of V \ U , we would have 2k ≥ Ψ ≥ ∑

X w(X). But Adversary stops executing this
algorithm the moment we have

∑

X w(X) = 2k or
∑

X w(X) = 2k + 1; this surely happens, as
∑

X w(X) can only decrease by 2.
Let us consider the vertices from G \U that were merged into some q-components (i.e. those

that appeared in queries). Let x denote the number of those where the total weight did not
decrease when they first appeared in a query, and y denote the number of those where the total
weight did not decrease when they first appeared in a query. Then we have x ≤ y+ |U |. Indeed,
consider a q-component containing a vertex u ∈ U , and observe that whenever the weight of this
component increased by merging it with a vertex from G\U , the next time its weight decreased.

This implies that at the point where Adversary stops executing the algorithm, the number
of vertices in G \ U that have not appeared in any query is at least n − |U | − (|U | + l) ≥ 2k−1.
We are done by applying Lemma 2.2 to the current q-components as weighted balls. (So even if
we could compare any two vertices from now, we still could not solve the majority problem with
less queries.)

Now we present the result that we use for the lower bound. The proof of Theorem 3.4 is
based on a similar idea as that of Theorem 3.3, but is more involved.4

Theorem 3.4. Let n = 2k + l, where l < 2k and n is odd. If G has a set U of vertices such
that |U | ≤ 2k−3 − 1, each component T of G \ U is a tree that has only one vertex r(T ) that is
adjacent to some vertices from U , and every path from r(T ) to another vertex of T has at most
p vertices, then m(G) ≥ n− 1− 2p.

Proof. We start as in the proof of Theorem 3.3. We denote by w(X) the weight of a q-component
X , and for a vertex u of G, w(u) denotes the weight of the q-component containing u. We initially

4Instead of the potential function argument, the proof of Theorem 3.3 could also be finished in the same way
as the proof of Theorem 3.4.
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have
∑

X w(X) = n. The Adversary will maintain in the first part of the algorithm that w(X) 6= 0
for every q-component X that intersects U .

Whenever two elements inside some component T of G\U are queried, Adversary can answer
according to Lemma 3.2 (applied only to T ). This way the weight of any X ⊂ G \ U will be at
most 2. The crucial property is that the balanced q-components of T will always separate some
positive weight part of T from r(T ). This way they are “in the way” to compare these parts with
the rest of the graph, so they cannot be simply ignored. The strategy of the Adversary will be
to make sure that the game cannot end while there are many unbalanced q-components. After
there are only few unbalanced q-components the game might end, but in this case we will show
that the graph could be made into a single q-component by adding 2p further edges to it. This
shows that at most these many queries can be saved.

Also, in case we merge all of T into one q-component, Adversary would like to avoid w(T ) = 0.
This cannot happen if T has an odd number of vertices; if T has an even number of vertices,
Adversary adds an (imaginary) extra degree one vertex r′(T ) to T that is adjacent only to r(T ),
to obtain T ′, and apply Lemma 3.2 to T ′. Since r′(T ) is never compared with anything, merging
all of T into a q-component cannot give w(T ) = 0, because T ′ \ T has only one edge, {r′(T )}.
Therefore, in case the whole tree T is merged, we get w(T ) = 2.

Whenever we compare some v ∈ G \ U with a u ∈ U such that w(u) ≥ 3, Adversary
answers such that the weight of the new q-component is w(uv) = w(u)− w(v), thus

∑

X w(X)
decreases by 2w(v) ≤ 4. In every other case Adversary answers so that the weights are added
up, i.e.,

∑

X w(X) remains the same. This way the weight of a q-component can never exceed 4,
unless we merge two q-components that both intersect U . Because of this, we can conclude that
∑

X:X∩U 6=∅w(X) ≤ 4|U | ≤ 2k−1.

Adversary stops executing this algorithm the moment we have
∑

X w(X) = 2k + 1 or 2k + 3;
this surely happens, as

∑

X w(X) is odd and can decrease by at most 4. We would also like to
reduce the less pleasant case of

∑

X w(X) = 2k + 3 to the former one. If there is an X with
w(X) = 1, then Adversary can just reveal that this X differs from another to decrease

∑

X w(X)
by 2. But this might not be the case. Because of this, we slightly modify the strategy of the
Adversary described earlier as follows.

We keep track of the number of q-components that are disjoint from U , and whose weight is
exactly 1. Notice that this number cannot increase and can decrease by at most two with each
query. If this number ever reaches 1 or 2, then we look at

∑

X w(X) mod 4. If
∑

X w(X) ≡
3 mod 4, then Adversary reveals that one of the q-components disjoint from U whose weight is
exactly 1 is red and some other ball is blue to have

∑

X w(X) ≡ 1 mod 4. (We pick this other ball
from a q-components that has weight 2 (there are many such that among the ones disjoint from U)
to make sure we do not create additional balanced q-components.) Moreover, from now on when
we compare one of the q-components disjoint from U with weight 1 to some u ∈ U , Adversary
will answer that their color is the same to keep

∑

X w(X) mod 4 ≡ 1 (even if w(u) ≥ 3). As this
happens at most twice, we will have now the bound

∑

X:X∩U 6=∅w(X) ≤ 4|U |+2 ≤ 2k−1, and can
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run the algorithm until we get
∑

X w(X) = 2k + 1.
At this point, we can apply Lemma 2.6 to obtain that after we know a majority vertex, we

have at most two non-balanced q-components. Moreover, these two q-components need to cover
U , as the weights of sets intersecting U stays positive throughout the algorithm. We want to
argue that by now almost all the edges have been asked. It is enough to show that these two
remaining q-components can be connected by at most p edges.

The only difficulty is that (at most) one of these q-components might be a part of a tree
component of G \ U that is separated by balanced q-components from the other q-component
(that intersects U). But even this can be connected to U with at most p edges (connecting an
appropriate vertex of U through some r(T ) to another vertex of T ) because of the last condition
in Theorem 3.4. We also need to count p edges for the vertex that was (possibly) revealed during
the algorithm.

To summarize, instead of asking all n− 1 edges, we might save 2p, because at the end there
might be three q-components, one from U , one that we need not query at the end, and possibly
one that was revealed during the algorithm.

Remark. We could get a better constant by considering, as a parameter instead of p, the
maximum possible number of those edges from r(T ) to another vertex of T that are part of
a path going through only balanced q-components, but are not contained in the balanced q-
components. This would give something like n− p as a lower bound. One could probably even
obtain about n − p/2 as a lower bound if the case

∑

X w(X) ≡ 3 mod 4 is dealt with using a
better trick.

To finish the proof for trees on an odd number of vertices, we need the following folklore
generalization of the concept of centroid for trees, known as centroid decomposition.

Proposition 3.5. In every tree on n vertices there is a subset of at most 2n/p vertices U such
that every component of G \ U has at most p vertices.

By picking p = 32, we obtain a U satisfying the conditions of Theorem 3.4 with these
parameters. This finishes the proof of Theorem 1.1.

3.1 Non-deterministic complexity of odd trees

We have seen that it is much harder to prove the lower bound m(T ) ≥ n − 65 for trees of odd
order n than the lower bound m(T ) ≥ n − 1 for trees of even order n. Somewhat even more
surprisingly, there is a significant difference between the so-called non-deterministic complexities
of trees of even and odd order. The non-deterministic complexity mnd(G) of a graph G is defined
as the minimum number of queries needed to find a majority vertex in the worst case, provided
we know the color of each vertex beforehand from an unreliable source and we just have to verify
(some of) this information. Let us observe that in the proof of Proposition 3.1 we actually showed
mnd(T ) = n− 1 for any tree T of even order n.
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Proposition 3.6. Let P be a path of order n, such that n is odd. Then mnd(P ) = n−Θ(
√
n).

Proof. Let us denote the ith vertex of P by xi for i = 1, 2, . . . , n. For the lower bound let us
suppose that n = k2 + 1 for some even k (this is possible, since we are only interested in the
order of magnitude of n−mnd(P )) and let us call the batch of vertices x(i−1)k+1, x(i−1)k+2, . . . , xik

Batch i for i = 1, 2, . . . , k. Now let us color the vertices of Batch i red if and only if i is odd and
let xk2+1 be blue (just like the vertices of Batch k, since k is even). We claim that in order to
find a majority vertex, one needs at least n− 2k − 1 comparisons (that is, one has to verify the
result of this many comparisons). Assume to the contrary that fewer comparisons suffice. Then
the number of edges not asked as queries is p ≥ 2k, hence the number of q-components after
the last query is p + 1 ≥ 2k + 1. It is easy to see that the number of balanced q-components is
at most k − 1, since a balanced q-component must contain both xik and xik+1 for some i < k.
Thus at least k + 2 of the q-components are unbalanced. It is also easy to see that the weight
of any q-component is at most k + 1 (since k vertices of the same color are always followed and
preceded by k vertices of the opposite color, except for the first k and last k + 1 vertices). Now
if one could show a majority vertex, the weight of its q-component should be more than the sum
of the weights of the other q-components, which is impossible, since the latter sum is at least
k + 1. This finishes the proof of the lower bound.

Next we prove the upper bound. Consider any coloring of the vertices of P and let us denote
the number of red (resp. blue) vertices among {x1, x2, . . . , xi} by R(i) (resp. B(i)) and let us
suppose without loss of generality that d := R(n) − B(n) > 0 (notice that n is odd). Observe
that if d ≥ √

n, then by asking the first n− ⌈d
2
⌉ edges (or any consecutive n− ⌈d

2
⌉ edges) of P ,

we obtain a q-component of weight at least ⌈d
2
⌉ + 1 and ⌈d

2
⌉ − 1 q-components of weight (and

also cardinality) 1. Thus any majority vertex of the large q-component is also a majority vertex
of the whole graph, and we are done. Therefore, we might assume that d <

√
n.

Let D(i) := R(i)−B(i) (so d = D(n)), ∆ := maxni=1 |D(i)|, and let j be the smallest number,
such that |D(j)| = ∆. Since d > 0, we may suppose that D(j) = ∆, otherwise we can reverse the
order of the vertices and obtain a situation, where the similarly obtained D(j′) is positive (the
value ∆ would be different then, but d remains the same). Now we consider two cases, based on
the value of ∆.

Case 1. ∆ < 2
√
n. Since all values D(i) are in the interval [−∆,∆], by the pigeonhole

principle there must be a value v, for which |{i : D(i) = v}| ≥ n
4
√
n+1

>
√
n
5
. It is obvious that

if D(a) = D(b), then the number of red and blue vertices are the same in the subpath between
the vertices xa+1 and xb. Let the elements of {i : D(i) = v} be i1, i2, . . . , ir and let us query
all edges of P , except the edges (xi1 , xi1+1), (xi2 , xi2+1), . . . , (xir , xir+1). In this way we obtain r
or r + 1 q-components, of which r − 1 are balanced, therefore any majority vertex of the larger
non-balanced q-component (which exists, since n is odd) is a majority vertex of the whole graph

as well. Since r >
√
n
5
, we are done with this case.

Case 2. ∆ ≥ 2
√
n. Recall that j is the smallest number, such that D(j) = ∆ and d <

√
n,

i.e., the number of red vertices is ∆ more than the number of blue vertices by xj , but then the
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difference drops to d by the end of P . Thus there must exist a smallest number k, such that
k > j and D(k) <

√
n. Then the subpath P ′ between the vertices xj+1 and xk contains at least

∆ − √
n ≥ √

n more blue vertices, than red vertices. Let now j1 be the smallest index, such
that the subpath of P ′ between xj+1 and xj1 contains exactly one more of the blue vertices than
the red vertices. Similarly, let j2 be the smallest index, such that the subpath of P ′ between
xj1+1 and xj2 contains one more of blue vertices than red vertices, and so on. It is clear that
the indices j1, j2, . . . , j⌊√n⌋ are well-defined. Now let us query all edges of P , except the edges
(xj , xj+1), (xj1, xj1+1), . . . , (xj⌊√n⌋ , xj⌊√n⌋+1

). In this way we obtain ⌊√n⌋ + 2 q-components, such

that one of them has weight ∆, ⌊√n⌋ of them has weight 1, and one of them has weight smaller
than ⌊√n⌋, thus any majority vertex of the q-component of weight ∆ is also a majority vertex
of the whole graph, finishing the proof of Proposition 3.6.

3.2 Optimal graph with few edges

In this subsection we prove Theorem 1.2 which states that for every n there is a graph G with n
vertices and O(nb(n)) edges such that m(G) = n− b(n).

Proof of Theorem 1.2. Let Fk be the graph obtained from a path v1v2 . . . vk by adding k degree
1 vertices, u1, u2, . . . , uk, to it such that ui is connected to vi for each 1 ≤ i ≤ k. Let k = ⌊n/2⌋
and G be the graph we obtain if we connect vk−b(n)+1, . . . , vk to every other vi.

5

First we define an algorithm Al for l = 2i. It uses the edges of Fl and either gets back a
DIFF answer at some point for an edge that connects two monochromatic components of the
same size, or shows that Fl is monochromatic. Moreover, at any point it uses only the first j
vertices of the path v1 . . . vj and the leaves u1, . . . , uj connected to them, for some j.

We define algorithm Al recursively. Assume we have defined Algorithm Al and we are given
F2l. The graph F2l consists of two copies of Fl and an additional edge, where the first copy has
vertices v1, . . . , vl, u1, . . . , ul, the second copy has the remaining vertices, and the additional edge
is vlvl+1. Algorithm Al+1 runs algorithm Al separately for the first, and then for the second copy
of Fl, and finally asks (vl, vl+1). If for either copy of Fl we get back a DIFF answer at some
point for an edge that connects two monochromatic components of the same size, we are done.
Otherwise, both copies of Fl are monochromatic. In this case a DIFF answer to the last query
connects two monochromatic components of the same size, while a SAME answer shows F2l is
monochromatic.

The algorithm showing m(G) = n − b(n) for even n is as follows. It goes similarly to the
algorithm showing m(Kn) = n − b(n): we ask queries such that if the answer is DIFF, we
obtain a balanced component (that we can discard), and otherwise we build larger and larger
monochromatic components where the number of vertices is a power of 2. In the following
algorithm, whenever the answer is DIFF, we stop.

5The similar construction would also work if we took the union of a path on n vertices with the biclique
Kn−b(n),b(n) but we have found our proof to be easier to present for the above graph G.
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We start Step 1 with the query (vk, uk). Observe that these two vertices can be considered
as the first vertices of a copy of F2i having the vertices v1, . . . , v2i−1−1, u1, . . . , u2i−1−1, for every
i ≤ l = ⌊logn⌋. Thus we run algorithm Al. If we obtain a monochromatic component of size 2l,
that is a majority component, and we are done. If we obtain a DIFF answer, we continue with
Step 2, which starts with asking vk−1uk−1. Observe that for any j, any consecutive part of Fk

together with uk and vk forms a copy of Fl for some l. More precisely, there is a copy of Fl on
the vertices vj, . . . , vj+l−2, uj, . . . , uj+l−2, vk−1, uk−1, provided j+ l−2 < k−1. We continue with
the vertex vj if vj−1 has the largest index among those used in Step 1. Similarly to Step 1, we
run algorithm Al for the largest l possible, i.e., the largest l that is a power of 2 and is smaller
than k − j + 1.

In general, for step i we take vk−i+1, the first vertex vj not used in Step i − 1, and 2r − 2
consecutive vertices next to it for the largest r possible without arriving back to vk−i+1. Further-
more, we take um for every vm we took. More precisely, we take vj, . . . , vj+2r−2, uj, . . . , uj+2r−2,
vk−i+1 and uk−i+1. This is a copy of F2r , thus we can run Algorithm A2r on it. If we obtain a
monochromatic component, that is of the majority color, and we are done. Indeed, we took the
largest r possible, thus more than half of the remaining vertices, and the components obtained
in earlier steps are balanced.

Observe that if all the steps end with DIFF answers, we had at least b(n) steps before using
up all the vertices. Indeed, all the components have order that is a power of 2, and n cannot
be written as the sum of less than b(n) powers of 2. After Step b(n), the remaining vertices (if
there are any) form a connected graph, thus we can ask a spanning tree of that graph to find
a majority vertex there. Altogether we have a forest of at least b(n) components, thus asked at
most n− b(n) queries.

4 Questions

We collect below the most important questions that remain open.

• What is the complexity of computing m(w) and m(G)?

• For which w′ = (2w1, w3, w4, . . . , wk) does m(w′) = m(w)− 1 hold?

• Does m(T ) ≥ n− 3 hold for every tree or path on n vertices?

• What is the least number of edges a graph on n vertices can have if m(G) = n− b(n)?
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