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Abstract

The paper describes a generalized iterative proportional fitting procedure which can be used
for maximum likelihood estimation in a special class of the general log-linear model. The
models in this class, called relational, apply to multivariate discrete sample spaces which do
not necessarily have a Cartesian product structure and may not contain an overall effect.
When applied to the cell probabilities, the models without the overall effect are curved
exponential families and the values of the sufficient statistics are reproduced by the MLE
only up to a constant of proportionality. The paper shows that Iterative Proportional Fitting,
Generalized Iterative Scaling and Improved Iterative Scaling, fail to work for such models.
The algorithm proposed here is based on iterated Bregman projections. As a by-product,
estimates of the multiplicative parameters are also obtained.
KEY WORDS: Bregman divergence, contingency tables, curved exponential family, gener-

alized odds ratio, iterative proportional fitting, maximum likelihood esti-
mate, overall effect, relational model



Introduction

This paper deals with variants of the general log-linear model

log δ = A′β, (1)

where δ denotes a vector of probabilities (appropriate in the case of multinomial sampling)
or a vector of intensities (appropriate in the case of Poisson sampling) and the model matrix
A has non-negative integer entries.

When the sample space is the Cartesian product of the ranges of categorical variables and
the rows of A are indicators of cylinder sets of the sample space, (1) specifies a conventional
log-linear model [cf. Bishop, Fienberg, and Holland, 1975]. When the sample space does not
have a Cartesian product structure and A is the indicator matrix of arbitrary subsets of the
cells in the sample space, (1) defines a relational model [Klimova, Rudas, and Dobra, 2012].

Models that associate parameters with subsets of cells appear, for instance, in areas of
machine learning which deal with feature selection. Features are characteristics of objects,
and a subset of cells comprises the objects that possess a particular feature. The goal
of the analysis is to choose features so that a Markov field based on them approximates
the observed distribution well, see, e.g., Lafferty, Della Pietra, and Della Pietra [1997],
Lafferty, McCallum, and Pereira [2001], Malouf [2002], Huang, Hsieh, Chang, and Lin [2010].
Maximum entropy models used in machine learning, see, e.g., Lafferty et al. [2001], are
special cases of relational models. Feature selection techniques are used, among others, in
text processing [cf. McCallum, Freitag, and Pereira, 2000], in computer tomography [cf.
O’Sullivan and Benac, 2007], and in the analysis of social mobility [cf. Klimova and Rudas,
2012].

Many problems in feature selection allow for the existence of unaffected cases, i.e., objects
who do not possess any of the characteristics of interest. However, in some contexts of feature
selection, such an assumption may not be feasible. For example, in market basket analysis
[cf. Brin, Motwani, and Silverstein, 1997, Wu, Barbara, and Ye, 2003], where records of
purchases are analyzed to reveal patterns of associations among the different goods bought,
each purchase consists of one item, at least. Similarly, a registry of congenital abnormalities
[cf. Källén et al., 1999, Boyd et al., 2011, Copeland and Kirby, 2007] lists only affected
newborns. While in the case of birth defects, unaffected newborns exist and their total
number may be known, in market basket analysis there is no purchase with nothing bought.
In such problems, testing hypotheses of association between features, e.g., independence,
cannot be performed using conventional log-linear models, but may be done within the
relational model framework [Klimova et al., 2012].
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In Section 1, the formal definition and the main properties of relational models are re-
viewed. The characteristics of model (1) are affected by the presence or absence of the vector
of 1’s, denoted in the sequel as 1, in the row space R(A) of the model matrix. If 1 ∈ R(A),
there exists a parameterization of the model in which one of the parameters appears in every
cell; such a model is said to have the overall effect. Relational models for probabilities with
the overall effect and relational models for intensities are regular exponential families, and
standard results about the MLE in such families apply. Relational models for probabilities
without the overall effect are curved exponential families, and some properties of the MLE
are fundamentally different.

In Section 2, three iterative scaling algorithms used for models of type (1) are reviewed
and their applicability for determining the MLE under relational models is investigated. The
iterative proportional fitting (IPF) procedure [Deming and Stephan, 1940] is employed for
conventional log-linear models [cf. Bishop et al., 1975] and can be easily modified to suit
relational models with the overall effect. Generalized Iterative Scaling (GIS), proposed by
Darroch and Ratcliff [1972], is used in feature selection and works under an assumption
which is sometimes called “a constant sum of features”. It is shown, that this assumption
is equivalent to the presence of the overall effect in the model, and thus GIS can only be
applied to relational models with the overall effect. Improved Iterative Scaling (IIS) was
proposed by Della Pietra, Della Pietra, and Lafferty [1997] as a generalization of GIS which
does not rely on the assumption of constant sum of features. One might expect that IIS
could be used for relational models without the overall effect, but it is shown that this is not
the case.

The main contribution of the paper, described in Section 3, is an iterative proportional
fitting procedure that generalizes the traditional IPF and can be used for all relational
models, with or without the overall effect. The algorithm constructs a sequence of projections
on convex sets, and, while for the traditional IPF procedure the projections minimize the
Kullback-Leibler distance, the projections for the new algorithm minimize the Bregman
distance [Bregman, 1967]. Iterative proportional fitting is typically used for estimating the
cell parameters and, to the best knowledge of the authors, it is not used to estimate the
model parameters. It is also shown here, that the estimates of the model parameters can be
found as a by-product of the IPF procedure. A numerical variant of the generalized IPF is
also described, and it is proven that its output approximates the true limit with any specified
precision.
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1 Preliminaries

Let Y1, . . . , YK be random variables taking values in finite sets Y1, . . . ,YK , respectively. A
combination of values (y1, y2, . . . , yK) ∈ Y1×· · ·×YK is called a cell, and a sequence I of cells
is a table. The population distribution is parameterized by δ = {δ(i), for i ∈ I}. Depending
on whether the population is characterized by probabilities or by intensities, δ(i) ≡ p(i) ∈
(0, 1), with

∑
i∈I p(i) = 1, or δ(i) ≡ λ(i) > 0, for all i ∈ I. The distinction between

data collected through multinomial or Poisson sampling procedures is necessary, because
maximum likelihood estimates under the two sampling schemes may have fundamentally
different properties under the models considered here.

Let P be the set of positive distributions, parameterized by δ, on I. A relational model
is generated by a class S = {S1, . . . , SJ} of non-empty subsets of the table I. A distribution
Pδ ∈ P is in the model if and only if

log δ = A′β, for some β ∈ RJ . (2)

Here, the components of β are the log-linear parameters of the model and the rows of the
model matrix A are indicators of the generating subsets.

A relational model is also an exponential (multiplicative) family

M(A) = {Pδ ∈ P : δ = θA
′
, for some θ ∈ RJ

>0}, (3)

where, for every i ∈ I, δ(i) =
∏J

j=1 θ
aji
j , and the components of θ are the multiplicative

parameters.
The overall effect, present in every cell, plays the role of the normalizing constant, say

β0, which is often included in exponential family models:

δ =
1

β0
exp {A′β}.

Such models can be re-written in the form (2) by adding a row of 1’s to A. Therefore,
relational models do not assume that there is no normalizing constant, they only allow for
this possibility.

A dual representation of a relational model is obtained using an integer kernel basis matrix
D [Klimova et al., 2012], whose rows are a basis of Ker(A). Thus, (3) can be re-written as

M(A) = {Pδ ∈ P : Dlog δ = 0}. (4)

The dual representation says that the generalized odds ratios,

ORd = δd
+

/δd
−
, (5)
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associated with the rows of D, are all equal to 1, where d+ and d− denote, respectively, the
positive and negative parts of row d. If the degrees of the numerator and of the denominator
in (5) are equal, the odds ratio ORd is called homogeneous and, otherwise it is called non-
homogeneous. For a relational model with the overall effect, all generalized odds ratios are
homogeneous, and it can be shown that any model without the overall effect has a dual
representation with exactly one non-homogeneous odds ratio.

Some of the properties of maximum likelihood estimates under relational models are also
affected by presence or absence of the overall effect. Let Y be a random variable that has a
distribution parameterized by δ and let y be a realization of Y. Assume that the MLE δ̂,
under the relational model generated by A, exists. The properties of the MLE inM(A) are
best described by using the linear family

Lδ(A, q, γ) = {Pδ ∈ P : Aδ = γAq},

where
q =

{
y, if δ ≡ λ,
y/(1y), if δ ≡ p. (6)

As was shown by Klimova et al. [2012], when the relational model is a regular exponential
family, the distribution parameterized by δ̂ is the unique point in

M(A) ∩ Lδ(A, q, 1), (7)

and, when the relational model is a curved exponential family, the distribution parameterized
by δ̂ is the unique common point in

M(A) ∩ Lδ(A, q, γ), (8)

for the unique γ > 0 for which 1δ̂ = 1. The components of Aδ are called the subset sums
of Pδ. The coefficient of proportionality γ is called the adjustment factor. The properties of
maximum likelihood estimates under relational models are summarized in Table 1.

*** Table 1 here. ***

In general, there are no closed form expressions for the MLE. Maximum likelihood es-
timates for the cell parameters can be computed using the Newton-Raphson algorithm or
algorithms for convex optimization [cf. Bertsekas, 1999, Aitchison and Silvey, 1960, Evans
and Forcina, 2013]. This paper focuses on the iterative scaling approach to computing the
MLE, as it is often used in feature selection procedures [cf. Huang et al., 2010].
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2 Why IPF, GIS, IIS cannot be used for relational mod-
els?

The traditional iterative proportional fitting (IPF) procedure is used for computing maxi-
mum likelihood estimates of the cell frequencies or probabilities under log-linear models [cf.
Bishop et al., 1975]. The IPF algorithm starts with a contingency table of the same structure
as the sample space, with all cell frequencies equal to one: δ(0) = 1. The cell frequencies
are then adjusted until the marginal sums Ajδ(d), where d+ 1 ≡ j mod J , become equal or
close enough to the observed values:

δ(d+1)(i) = δ(d)(i)

(
Ajq

Ajδ
(d)

)aji

, for all i ∈ I. (9)

The model structure, expressed in terms of the odds ratios, is preserved during iterations.
Given that the MLEs of the cell parameters exist, the sequence δ(d) converges, as d →
∞, to the maximum likelihood estimate δ̂. The proof of convergence of IPF relies on a
particular order of the subsets. In this order, the cylinder sets associated with the k-th
marginal are listed in one block indexed from j = [k]s to j = [k]e. Then the distribution
parameterized by δ(tJ+[k]e) is the I-projection of the distribution parameterized by δ(tJ+[k−1]e)

in ∩[k]ej=[k]s
Lδ(Aj, q, 1), for every non-negative integer t, see Csiszár [1975].

A straightforward modification of IPF, which updates, instead of marginal totals, the
subset sums, may be considered for computing the MLEs of the cell parameters under re-
lational models. This will work when the overall effect is present in the model, however,
the proof needs modification, because in the actual parameterization, there may be no sets
Sj that form a partitioning of the sample space, like S[k]s , . . . , S[k]e do, and, therefore, the
algorithm may not produce I-projections. When the overall effect is not present, (9) works
for intensities, but as the total is not reproduced by the MLE, a new proof is needed, see
Section 3.

The generalized iterative scaling (GIS) algorithm was proposed by Darroch and Ratcliff
[1972] for maximum likelihood estimation in discrete exponential families of the form log p =

A′β, where A is a non-negative real matrix whose rows add to the vector of 1’s:

A1 + · · ·+ AJ = (
J∑
j=1

aj1, . . . ,

J∑
j=1

aj|I|) = 1. (10)

The GIS procedure organizes updating cycles not according to subsets (or marginals), rather
according to cells. It performs all adjustments that apply to a cell in one step, and recal-
culates the multipliers to be used in the next cycle of adjustment only after all cells were
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updated:

p(n+1)(i) = p(n)(i)
J∏
j=1

(
Ajq

Ajp(n)

)aji
, for all i ∈ I. (11)

As n→∞, p(n) converges to the maximum likelihood estimate p̂, see Theorem 1 in Darroch
and Ratcliff [1972]. The condition (10) is used in the proof of convergence, but it can be
shown that GIS also applies to relational models with a model matrix whose rows sum to a
constant vector:

A1 + · · ·+ AJ = c1. (12)

In fact, (12) and the presence of the overall effect are equivalent:

Proposition 2.1. For a 0-1 matrix A, the following two conditions are equivalent:

(i) 1 ∈ R(A).

(ii) There exists a non-negative matrix Ã, with R(Ã) = R(A), whose rows add to a vector
c1, for some c ∈ Z+.

Proof. Suppose (i) holds. Without loss of generality, assume that A1 = 1. The matrix A∗

consisting of rows

A∗1 = A1 − A2, A∗2 = A2 − A3, . . . , A∗J−1 = AJ−1 − AJ , A∗J = AJ , (13)

has the same row space as A. The rows of A∗ sum to 1, but its entries may not be all
positive. Let a∗j = min

i∈I
(a∗ji), for j = 1, . . . , J .

The matrix Ã with rows Ãj = A∗j − a∗j1 is nonnegative, has the same row space as A,
and the rows of Ã sum to c1, where c = 1− a∗1 − a∗2 − . . .− a∗J ∈ Z+.

Suppose (ii) holds. Then 1 is a linear combination of some vectors in R(A) and thus
1 ∈ R(A). The proof is now complete.

In feature selection procedures, before GIS is applied, a model matrix with a non-constant
sum of rows is often converted to a matrix with a constant row sum by adding a "slack
feature", which balances other rows, to the model [cf. Lafferty et al., 2001, McCallum et al.,
2000]. By Proposition 2.1, a model with a slack feature always has the overall effect. Adding
a slack feature to a model without the overall effect changes the model.

Another algorithm, Improved Iterative Scaling (IIS), proposed by Della Pietra et al.
[1997], claims that it “is an improvement of the Generalized Iterative Scaling algorithm of
Darroch and Ratcliff in that it does not require that the features sum to a constant”. The IIS
algorithm cyclically updates the cells of the table, and each iteration consists of two steps -
updating the multipliers and updating the cell probabilities:
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1. For each j = 1, . . . , J , solve∑
i∈I

ajip
(n)(i)(ζ

(n)
j )a(i) = Ajq, where a(i) =

J∑
j=1

aji, (14)

to compute ζ(n) = (ζ
(n)
1 , . . . , ζ

(n)
J )′.

2. Compute

p(n+1)(i) = p(n)(i)
J∏
j=1

(ζ
(n)
j )aji , (15)

and set n = n+ 1.

In the case when all of a(i) =
∑J

j=1 aji are equal to 1, (15) reduces to the updating step (11)
of the GIS procedure.

The literature on the IIS algorithm seems implicit about whether or not the model matrix
has a row of 1’s. For example, Della Pietra et al. [1997] and Bancarz and Osborne [2002]
mention that a normalizing constant is included in the model, however Lafferty et al. [1997]
do not explicitly say it, but prove that the sequence p(n) converges to the MLE. In fact, if
the model has the overall effect, it does not matter whether (10) or (12) holds in the actual
parameterization. But if the model does not contain the overall effect, IIS may converge to a
vector of probabilities that does not sum to 1 and thus can not be the MLE. Normalization
of the limit vector would not help: a relational model without the overall effect is not scale
invariant [Klimova et al., 2012], that is, a non-normalized vector of probabilities, that has the
multiplicative structure prescribed by the model, looses this structure after being normalized.
For example, the model of independence between three features A, B, or C is defined by
Aitchison and Silvey [1960] as

pAB
pApB

= 1,
pAC
pApC

= 1,
pBC
pBpC

= 1,
pABC
pApBpC

= 1. (16)

Here pA, pB, pC , pAB, pAC , pBC , pABC denote positive probabilities of having the corre-
sponding combination of features, and pA + pB + pC + pAB + pAC + pBC + pABC = 1.
Let p = (pA, pB, pC , pAB, pAC , pBC , pABC)

′. This is a relational model generated by the
subsets S1 (possessing the feature A), S2 (possessing the feature B), and S3 (possess-
ing the feature C) and is a variant of independence when no unaffected cases exist. It
is defined using non-homogeneous odds ratios in (16) and thus does not have the over-
all effect. Let q = (0.04, 0.04, 0.04, 0.04, 0.04, 0.24, 0.56)′ be the parameter of the observed
probability distribution. The vector sequence p(n), produced by IIS, converges to p∗ =

(0.3202, 0.4574, 0.4574, 0.1464, 0.1464, 0.2092, 0.0670)′, with the total 1p∗ = 1.804. The nor-
malized vector:

p∗1 = p
∗/(1p∗) = (0.1775, 0.2535, 0.2535, 0.0812, 0.0812, 0.1160, 0.0371)′

7



does not have the multiplicative structure implied by (16).
In order to illustrate that this problem is not isolated, rather quite common, the histogram

of sums of the limit vectors obtained for 13352 observed distributions q, generated with equal
spacing on the parameter space, is given in Figure 3.

*** Figure 1 here. ***

In summary, a relational model with the overall effect can be parameterized using a model
matrix whose rows do or do not sum to a constant vector. Depending on the parameteri-
zation, IPF, GIS or IIS can be used to compute the MLE under such a model. However, a
relational model without the overall effect, under any parameterization, will have a model
matrix whose rows do not sum to a constant vector, and, if the model is for probabilities,
IPF, GIS, IIS do not converge to the MLE.

The next section presents an iterative fitting procedure that converges to the MLE,
whether or not the overall effect is present in the relational model.

3 Iterative proportional fitting in relational models

Let Y be a random variable that has a Poisson distribution parameterized by δ ≡ λ or
a multinomial distribution parameterized by N and δ ≡ p. Consider the relational model
generated by a matrix A, and let D be a kernel basis matrix of it. Suppose y is a realization
of Y. Consider any γ > 0, such that Lδ(A, q, γ), with q given in (6), is not empty.

An iterative proportional fitting algorithm that computes the cell parameters, δ∗γ, and
the model parameters for the distribution that is the unique common point of the linear
family Lδ(A, q, γ) and the multiplicative familyM(A) is given next.

IPF(γ) Algorithm:

Set d = 0; δ
(0)
γ (i) = 1 for all i ∈ I; θ

(0)
γ (j) = 1 for all j = 1, . . . , J , and proceed as follows.

Step 1: Find j ∈ {1, 2, . . . , J}, such that d+ 1 ≡ j mod J ;

Step 2: Compute

δ(d+1)
γ (i) = δ(d)γ (i)

(
γ
Ajq

Ajδ
(d)
γ

)aji

for all i ∈ I; (17)

θ(d+1)
γ (j) = θ(d)γ (j)

δ
(d+1)
γ (i∗)

δ
(d)
γ (i∗)

, where i∗ ∈ I : aji∗ > 0. (18)
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Step 3: While γAjq 6= Ajδ
(d+1)
γ for at least one j, set d = d+ 1, go to Step 1.

Step 4: Set δ∗γ = δ
(d)
γ , and finish.

The proof of convergence of IPF(γ) is based on showing that IPF(γ) is an instantiation
of the algorithm proposed by Bregman [1967] to find a common point of convex sets.

Let t,u ∈ R|I|>0 and let D(t||u) denote the Bregman divergence associated with the
function F (x) =

∑
i∈I x(i)log x(i):

D(t||u) =
∑
i∈I

t(i)log (t(i)/u(i)) + (
∑
i∈I

u(i)−
∑
i∈I

t(i)). (19)

If P andQ are probability distributions parameterized by p and q respectively, thenD(p||q) =
I(P ||Q) is the Kullback-Leibler divergence between P and Q.

Lemma 3.1. For the sequence {δ(d)γ } of vectors obtained with IPF(γ),

D(δ(d+1)||δ(d)) = min
ζ:Pζ∈Lδ(Aj ,q,γ)

D(ζ||δ(d)). (20)

Proof. The function D(ζ||δ(d)γ ) is convex with respect to ζ and, therefore, its minimum, say
ζ∗, on the set {ζ : Pζ ∈ Lδ(Aj, q, γ)} exists and is unique.

Setting the derivatives of the Lagrangian

L = D(ζ||δ(d)γ )− α(Ajζ − γAjq)

=
∑
i∈I

ζ(i)log (ζ(i)/δ(d)γ (i)) + (
∑
i∈I

δ(d)γ (i)−
∑
i∈I

ζ(i))− α(Ajζ − γAjq)

equal to zero, one obtains that ζ∗ is the unique solution to the equations

log (ζ∗(i)/δ(d)γ (i)) = αaji, i ∈ I, (21)

Ajζ
∗ = γAjq.

Since δ(d+1)
γ , given in (17), satisfies (21) with α = log γ Ajq

Ajδ
(d)
γ

, it is equal to ζ∗.

Lemma 3.1 implies that, for each d ≥ 0, the distribution parameterized by δ(d+1)
γ is

the D-projection of the distribution parameterized by δ(d)γ on the set Lδ(Aj, q, γ), that is,
{δ(d)γ } is a relaxation sequence with respect to Bregman divergence. Note that the distri-
bution parameterized by δ(d+1)

γ does not necessarily have the same total as the distribution
parameterized by δ(d)γ did and, even if δ ≡ p, is not necessarily a probability distribution.

It is proved in the following theorem that IPF(γ) converges to the parameter δ∗γ of the
unique common point of the linear family Lδ(A, q, γ) and the multiplicative familyM(A).
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Theorem 3.2. The sequence δ(d)γ , obtained from IPF(γ), converges, as d → ∞, and the
limit δ∗γ satisfies

(i) Aδ∗γ = γAq,
(ii) Dlog δ∗γ = 0.

Proof. (i) Since {δ(d)γ } is a relaxation sequence with respect to the function D(t||u), it
converges to a δ∗γ [Bregman, 1967, Theorem 1] which belongs to the set

∩Jj=1{δγ : Ajδγ = γAjq},

and thus
Aδ∗γ = γAq.

(ii) IPF(γ) multiplies the current value in each cell that belongs to a subset Sj by the
ratio of the desired subset sum to the actual one. This transformation leaves the values of
the generalized odds ratios unchanged. The formal argument proceeds by induction. Since
δ
(0)
γ (i) = 1, for all i ∈ I, Dlog δ(0)γ = 0, and the statement holds for d = 0. Assume that
Dlog δ(d)γ = 0 for a positive integer d. Set Cj =

γAjδ

Ajδ
(d)
γ

. Then,

Dlog δ(d+1)
γ = Dlog


δ
(d)
γ (1) · Caj1

j

δ
(d)
γ (2) · Caj2

j
...

δ
(d)
γ (|I|) · Caj|I|

j

 = D


log δ(d)γ (1) + aj1log Cj
log δ(d)γ (2) + aj2log Cj

...
log δ(d)γ (|I|) + aj|I|log Cj


= Dlog δ(d)γ + log CjDA′j = 0,

as D is a kernel basis matrix and thus DA′j = 0. Therefore, Dlog δ(d)γ = 0 for all d =

0, 1, 2 . . . . Finally, by continuity of matrix multiplication and logarithm, Dlog δ∗γ = 0.

The next statement specifies when IPF(γ) converges to the maximum likelihood estimates
under a relational model.

Corollary 3.3. The following statements hold:

1. Let Y be a random variable that has a multinomial distribution with parameters N and
p. If the overall effect is present, then the sequence obtained from IPF(1) converges to
the maximum likelihood estimate p̂ of p under the model. If the overall effect is not
present, then, if the adjustment factor γ∗ is known, the sequence obtained from IPF(γ∗)
converges to the maximum likelihood estimate p̂ of p under the model.
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2. Let Y be a random variable that has a Poisson distribution with parameter λ. Then,
whether or not the overall effect is present, the sequence obtained from IPF(1) converges
to the maximum likelihood estimate λ̂ of λ under the model.

The conventional IPF procedure computes maximum likelihood estimates for the cell
parameters, and it is often pointed out that this algorithm is not suitable for estimating the
model parameters [cf. Fienberg and Rinaldo, 2012, p.14]. In fact, this is not the case, and it
will be proven next that the sequence θ(d)γ , obtained from IPF(γ), converges to estimates of
the model parameters.

Theorem 3.4. For all j = 1, . . . , J , the sequence θ(d)γ (j), obtained in (18), converges, as
d→∞, to a θ∗γ(j) and

δ∗γ(i) =
J∏
j=1

(θ∗γ(j))
aji , for all i ∈ I.

Proof. By the choice of the initial values, δ(0)γ (i) =
∏J

j=1(θ
(0)
γ (j))aji , for all i ∈ I. The further

argument is by induction.
Let d ≥ 0 and d+ 1 ≡ j mod J . By the induction hypothesis,

δ(d)γ (i) =
J∏
j=1

(θ(d)γ (j))aji , for all i ∈ I.

During the (d+1)-st iteration, only the parameters of the cells that belong to the subset
Sj, and the model parameter corresponding to Sj are updated; δ(d+1)

γ (i) = δ
(d)
γ (i) for i /∈ Sj,

and θ(d+1)
γ (l) = θ

(d)
γ (l) for l 6= j. Therefore, for i /∈ Sj

δ(d+1)
γ (i) =

J∏
l=1

(θ(d+1)
γ (l))ali ,

because for those parameters that changed during the last step of iteration, the exponent ali
is zero. Further, for i ∈ Sj

δ(d+1)(i) = δ(d)γ (i)
θ
(d+1)
γ (j)

θ
(d)
γ (j)

=
J∏
l=1

(θ(d)γ (l))ali
θ
(d+1)
γ (j)

θ
(d)
γ (j)

=
J∏
l=1

(θ(d+1)
γ (l))ali .

By the principle of induction, for all d ≥ 0,

δ(d+1)
γ (i) =

J∏
j=1

(θ(d+1)
γ (j))aji , for all i ∈ I. (22)
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During the iterations, the value of the parameter associated with the subset Sj is updated
at a step j+kJ , for some non-negative integer k, and then remains constant till it is updated
again in the step j + (k + 1)J . The ratio of two subsequent values of this parameter equals

θ
(j+(k+1)J)
γ (j)

θ
(j+kJ)
γ (j)

=
θ
(j+(k+1)J)
γ (j)

θ
(j−1+(k+1)J)
γ (j)

· θ
(j−1+(k+1)J)
γ (j)

θ
(j−2+(k+1)J)
γ (j)

· · · θ
(j−(J−1)+(k+1)J)
γ (j)

θ
(j+kJ)
γ (j)

,

which, by repeated application of (18), may be written as

δ
(j+(k+1)J)
γ (i∗)

δ
(j+kJ)
γ (i∗)

=
δ
(j+(k+1)J)
γ (i∗)

δ
(j−1+(k+1)J)
γ (i∗)

· δ
(j−1+(k+1)J)
γ (i∗)

δ
(j−2+(k+1)J)
γ (i∗)

· · · δ
(j−(J−1)+(k+1)J)
γ (i∗)

δ
(j+kJ)
γ (i∗)

, (23)

where i∗ is specified prior to (18).
By Theorem 3.2, as d → ∞, δ(d)γ (i) converges to a δ∗γ(i) for every i ∈ I. Therefore, the

right hand side of (23) converges to 1 and thus

θ
(j+(k+1)J)
γ (j)

θ
(j+kJ)
γ (j)

→ 1,

when d→∞, i.e., for every fixed j, when k →∞.
This, by applying an elementary calculus argument, implies that for every j = 1, . . . , J ,

θ
(d)
γ (j), obtained in (18), converges to a θ∗γ(j). From (22), by continuity,

δ∗γ(i) =
J∏
j=1

(θ∗γ(j))
aji , for all i ∈ I.

The G-IPF algorithm described next can be used for computing the maximum likelihood
estimates under relational models both for probabilities and for intensities, with or without
the overall effect. In the case when the model is for probabilities and does not include the
overall effect, G-IPF complements IPF(γ) with a step that computes the adjustment factor.

G-IPF Algorithm:

If δ ≡ λ, compute λ̂ using IPF(1), and finish.

If δ ≡ p, compute p∗ using IPF(1).
If 1p∗ = 1, set p̂ = p∗, and finish. Otherwise,
compute γL = (1Aq)−1, γR = min {1/A1q, . . . , 1/AJq}, and proceed as follows:

Step 1: Find δ∗(γL+γR)/2 using IPF(γ).

12



Step 2: While 1δ∗(γL+γR)/2 6= 1,

if 1δ∗(γL+γR)/2 < 1, set γL = γL+γR
2

,

else set γR = γL+γR
2

;

go to Step 1.

Step 3: Set p̂ = δ∗(γL+γR)/2, and finish.

The next lemma justifies the initial choice of γL and γR.

Lemma 3.5. Let γ > 0 and let δγ be a solution to the system of equations

Aδ = γAq, Dlog δ = 0. (24)

Then, for γL = (1Aq)−1 and γR = min {1/A1q, . . . , 1/AJq}, 1δγL ≤ 1 and 1δγR ≥ 1.

Proof. Each column of A contains at least one 1, and thus

1δγ ≤ 1Aδγ = γ1Aq,

which implies the first inequality. Since A is a 0-1 matrix,

γmax {A1q, . . . , AJq} = max {A1δγ, . . . , AJδγ} ≤ 1δγ.

Using that
(max {A1q, . . . , AJq})−1 = min {1/A1q, . . . , 1/AJq},

implies the second inequality.

The next lemma is needed for the proof of convergence of G-IPF.

Lemma 3.6. The solution, δγ, to the system of equations (24) and thus its total, 1δγ, are
continuous functions of γ.

Proof. Fix an arbitrary γ0 > 0. It will be shown that for a sequence {γn} > 0, which
converges to γ0, as n→∞, δγn → δγ0 .

Since γn converges, there exists a finite cover of {γn} and so does a finite cover of the
sequence of segments {[0, γn]}. Since 1q = 1, δγn ≤ γn, for every n ≥ 1. Hence, there exists
a finite cover of the sequence {δγn}, implying that the set {δγn} is compact, and, therefore,
there exists a subsequence {δγnk} that converges to a δ∗. By continuity of the logarithm and
matrix multiplication,

Aδ∗ = γ0Aq, Dlog δ∗ = 0.

Since the solution of this system is unique, δ∗ = δγ0 , and thus δγnk → δγ0 .

13



The next theorem states that G-IPF produces maximum likelihood estimates of the cell
parameters under a relational model, whether or not the overall effect is present.

Theorem 3.7. Assume that the maximum likelihood estimate of δ under the relational model
generated by A exists and is unique. Then δ̂, obtained from G-IPF, is the maximum likelihood
estimate of δ.

Proof. In the case when δ ≡ λ, G-IPF computes λ̂ and θ̂ using IPF(1). By Corollary 3.3,
λ̂ is the MLE of the cell intensities.

In the case when δ ≡ p, G-IPF first calls IPF(1) and computes a vector of probabilities
p∗.

If 1p∗ = 1, which happens if and only if 1 ∈ R(A), then, by Corollary 3.3, p̂ = p∗ is the
MLE of the cell probabilities.

Suppose 1p∗ 6= 1. By Lemma 3.5, the function 1pγ−1 has opposite signs at the endpoints
of the segment [(1Aq)−1, min {1/A1q, . . . , 1/AJq}]. Since 1pγ − 1 is a continuous function
of γ, the segment contains a value

γ∗, such that 1pγ∗ = 1. (25)

In order to find γ∗ the algorithm uses the bisection method [cf. Boyd and Vandenberghe,
2004]. By the uniqueness of the MLE, p̂ = pγ∗ .

A reviewer to an earlier version of the paper pointed out that the above algorithm cannot
be programmed because any implementation of IPF(γ) will return the value of δ∗γ with some
error. A programmable variant of the algorithm is obtained by choosing a desired precision
ε > 0. Define IPF(γ, ε) by replacing Steps 3 and 4 of IPF(γ) by the following steps:

Step 3: While |γAjq − Ajδ(d+1)
γ | > ε for at least one j, set d = d+ 1, go to Step 1.

Step 4: Set δ∗γ,ε = δ
(d)
γ , and finish.

The sequence of vectors δ∗γ,ε, obtained using IPF(γ, ε), converges pointwise, as ε→ 0, to δ∗γ,
the result of IPF(γ).

The G-IPF(ε) algorithm described next computes the maximum likelihood estimates of
cell parameters under a relational model with a given precision.

G-IPF(ε) Algorithm:

If δ ≡ λ, compute λ̂ε using IPF(1, ε), and finish.

14



If δ ≡ p, compute p∗ε using IPF(1, ε).
If |1p∗ε − 1| < ε, set p̂ε = p∗ε , and finish. Otherwise, set T = 1,
compute γL = (1Aq)−1, γR = min {1/A1q, . . . , 1/AJq}, and proceed as follows:

Step 1: for t = 0, . . . , T , let γt = γL + t
T
(γR − γL), and compute p∗γt,ε using IPF(γt,

ε/T ). Whenever |1p∗γt,ε − 1| < ε, go to Step 3.

Step 2: Set T = T + 1, go to Step 1.

Step 3: Set p̂ε = p∗γt,ε, γ̂ε = γt, and finish.

The next theorem states that G-IPF(ε) produces maximum likelihood estimates of the
cell parameters under a relational model with precision ε.

Theorem 3.8. Assume that the maximum likelihood estimate of δ under the relational model
generated by A exists and is unique. For every ε > 0, G-IPF(ε) terminates and returns δ̂ε
and γ̂ε, which satisfy:

|Aδ̂ε − γ̂εAq| < ε; (26)

Dlog δ̂ε = 0; (27)

|1δ̂ε − 1| < ε (for δ ≡ p). (28)

Proof. Fix an ε > 0. When δ ≡ λ, G-IPF(ε) computes λ̂ε using IPF(1, ε). Since IPF(1,
ε) terminates, so does G-IPF(ε). The termination condition of IPF(1, ε) implies (26), with
γ̂ε = 1.

In the case when δ ≡ p, G-IPF(ε) first calls IPF(1, ε), which terminates and results in
p∗ε , for which (26) holds with γ̂ε = 1. If (28) also holds, G-IPF(ε) is terminated after the
first iteration with p̂ε = p∗ε .

Suppose |1p∗ε − 1| > ε, and thus G-IPF(ε) does not stop after the first iteration. By
Lemma 3.5, the (unknown) adjustment factor corresponding to the MLE, say γ̂, belongs
to the segment [γL, γR]. By Lemma 3.6, 1pγ − 1 is a continuous function of γ, and, since
1pγ̂ = 1, for every T0 ∈ Z>0, there exists a t0 ∈ {0, . . . , T0}, such that γ̂ ∈ [γt0 , γt0+1], where
γt0 = γL + t0

T0
(γR − γL). As T0 → ∞, the length of the interval [γt0 , γt0+1] approaches 0,

and thus, for a large enough T0, both, p∗t0,ε and p
∗
t0+1,ε, obtained from IPF(γt0 , ε/T0) and

IPF(γt0+1, ε/T0), respectively, satisfy (28). Thus, G-IPF(ε) will terminate at the (T0 + 1)-st
iteration with p̂ε that fulfills (26), with some γ̂ε, and (28).

Since the multiplicative structure of the distributions does not change during the itera-
tions, (27) holds.
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The theorem implies that the sequence of vectors δ̂ε, obtained using G-IPF(ε), converges
pointwise, as ε→ 0, to the maximum likelihood estimate of δ.

The G-IPF(ε) algorithm is implemented in the R-package gIPFrm [Klimova and Rudas,
2014]. In this implementation, there is also an option to update the adjustment factor
using the bisection method. Alternatively, any numerical technique available for monotone
functions [cf. Boyd and Vandenberghe, 2004] may be used.
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Table 1: Relational models and properties of the MLE [Klimova et al., 2012].

Models with the
overall effect Models without the overall effect

Probabilities & Intensities Probabilities Intensities

Exponential family Regular Curved Regular

Subset sums of the
MLE vs observed
subset sums

Equal Proportional Equal

Adjustment for to-
tal

1 1 Depends on the
data

Adjustment for sub-
set sums

1 Depends on the
data

1
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