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ABSTRACT

We present a novel approach, based on robust principal coemp® analysis (RPCA)
and maximal information coefficient (MIC), to study the rbifisdependence of halo bary-
onic properties. Our data are composed of a set of diffefeydipal quantities for primordial
minihaloes: dark-matter mass/{.,), gas massi/,.s), stellar mass/g..), molecular frac-
tion (xmo1), Metallicity (2), star formation rate (SFR) and temperature. We find #igt, and
M, are dominant factors for variance, particularly at highstefl. Nonetheless, with the
emergence of the first stars and subsequent feedback mewisani,,;, SFR andZ start to
have a more dominant role. Standard PCA gives three prihogmaponents (PCs) capable to
explain more than 97 per cent of the data variance at anyifeftsio PCs usually accounting
for no less than 92 per cent), whilst the first PC from the RP@&lysis explains no less than
84 per cent of the total variance in the entire redshift rgmgeh two PCs explaining, 95 per
cent anytime). Our analysis also suggests that all the gaggoperties have a stronger cor-
relation with M, than with Ma,,, while M,,, has a deeper correlation wikh,,1 than with
Z or SFR. This indicates the crucial role of gas molecular eonto initiate star formation
and consequent metal pollution from Population 11l and Rafpan 11/l regimes in primordial
galaxies. Finally, a comparison between MIC and Spearmaeletion coefficient shows that
the former is a more reliable indicator when halo propediesweakly correlated.

Key words: cosmology: large-scale structure of Universe, early Unisigemethods: statisti-
cal, N-body simulations
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1 INTRODUCTION @). Nevertheless, alternative approaches, based onipai

components analysis (PCA), found that concentration isya ke
The standard model of cosmology predicts a structure foomat parameter contrary to what expected befbre

scenario driven by cold dark matter (e.g -1@010) revhe 2011:[Skibba & Maccld 2011), and stressed the need forénrth

gal?tX'elf 1|‘orm gom moleé:ulatr gg.s C(th(])IIng W'ltht'.n g;m%? idar investigations. PCA belongs to a family of techniques ideax-
matter haloes. Hence, understancing the correfation er plore high-dimensional data. The method consists in ptioigthe

ent properties of the dark matter haloes is imperative ttallup a data into a low-dimensional form, retaining as much infatiora
comprehensive pigture of galaxy evolution. Many.authomerm(- as possible (e.gm@w). I:|ence, PCA emerges asta nat
plqred tZe (;lorrelatl;onhbt_atml/een dark-halo prolﬁes, Mﬁss, | ral technique to investigate correlation and temporal wiah of
&%&a& si?pf, l (;t:wlr?v\(l)v:/}- (e't"l‘zie—d tlttl);nd highTre:ehjg eta halo properties. Because of its versatility, PCA has begliegpto

. - &t 200 : 13a) revg.;’ime a broad range of astronomical studies, such as stellaxygatad
Jang-Condell & Herngui L de Souza etal. 20 quasar spectra (e.q., Chen ét al. 2009; McGurklet all 20a09xg

Estlmatlnlg t_helstre;gt;[hlof these (t:_orrelatl(;nls is C[:I'tlﬁad;mp?j?-: t properties[(C iHe 2006: Scarl >007), Hubblame-
semi-analytical and halo occupation models, which assiumae ter and cosmic star formation (SF) reconstruction (

mass as determinant factor of the halo properties m
- - 2011;|Ishida & de Sourza 20d11), and supernova (SN) photormetrl
996, Cooray & Sheth 200: Berlind e al. 2003; Somervillalb
1996; . heth 2 Berlin .2 mervillalet classification|(Ishida & de Sodza 2013).

Despite its generality, PCA is not the only way to han-
* e-mail: rafael.2706@gmail.com dle huge data sets, and the growth in complexity of scien-
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2  Gas properties in dark matter mini-haloes

tific experimental data makes the ability to extract newswor
thy and meaningful information an endeavor per se. The yearn
ing for novel methodologies of data-intensive science gise
to the so-called fourth research paradigm (é.g.. Belllé&2a09).

species corresponding to particle masses of 422a6dM ht,
respectively. The identification of the simulated objestddne by
applying a friends-of-friends (FoF) technique with lingifength
equal to 20 per cent the mean interparticle separation abhd su

Data mining methods have been used in many areas of knowl- structures are identified by usingaBFIND algorithm I.
edge such as genetics (e.gl._Venter bt al. 12004) and financial2009), which discriminates among bound and non-boundgpesti

marketing decisions (e.g.@OOl), and their impo
tance for astronomy has been recently highlighted as wel,(e
BBall & Brunne' |2010;| Graham etlal. 2018: Krone-Martins et al.
[2013;| Martinez-Gomez etldl. 2014). Likewise observajoros-
mological simulations are continuously increasing in ctaxipy,
lessening the distance between observed and synthetidedgta
Overzier et all 2013; de Souza etlal, 2013b, 2014). None 8= le
the application of data-mining to cosmological simulaioemains
aterra incognita

In this work, we investigate the statistical properties of
baryons inside high-redshift haloes, including detailedrmistry,

The halo characteristics, such as position, velocity, daalter and
baryonic properties, are computed and stored at each fedshi

The simulation outcomes investigated here consist of seven
parameters: dark-matter masd/(,,), gas mass Nl,.s), Stellar
mass (/sar), Star formation rate (SFRY,, gas temperaturer{,
and gas molecular fractiofxmo1). We refer the reader to pre-
vious works, where more details and additional analysesitabo
halo spin and shape distribution (de Souza Et al. 2013ajbéei
mechanisms_(Maio et El. 20111; Petkova & Maio 2012; Maio bt al.
), primordial streaming motionm @011), fon
standard cosmologies (Maio el al. 2006; Maio & lanrluzzi 2011

gas physics and stellar feedback. We make use of Robust PCAMaid 2011;| de Souza etlal. 2013c), hightuminosity function

(RPCA) and maximal information coefficient (MIC) to studyet s
of various halo parameters. RPCA represents a generalizafi
the standard PCA, whose advantage is its resilience tceositind
skewed data, while MIC is expected to be the correlationyaisl
of the 21st centur@ll), in particular due to Miditgbi
in quantifying general associations between variablegrdfore,
this project represents the first application of MIG\ebody/hydro
simulations, and the first use of PCA to explore the low-mask e
of the halo mass function and the birth of the first galaxies.

The outline of this paper is as follows. In Sect[dn 2, we de-
scribe the cosmological simulations and their outcomeSeietion
[3, we describe the statistical methods. In Sedfion 4, weeptesir
analysis and main results. Finally, in Secfidn 5, we presenton-
clusions.

2 SIMULATIONS

We analyzed the results of a cosmologlmlbody, hydrodynam-
ical, chemistry simulation based on Biffi & Malo 2013 (seeoals
Maio et al. [2010] 2011), that was run by means of a modified
version of the smoothed-particle hydrodynamics ced®GET2
@5). The modifications include relevant cheniet-
work to self-consistently follow the evolution of @ H, HT, H™,
He, He", He't, Ho, HI, D, DT, HD, HeH" (e.g.] Yoshida et l.
[2003; Maio et dllﬂwuog) ultraviolet backgrotania-
tion, metal pollution according to proper stellar yieldse(tC, O,
Si, Fe, Mg, S, etc.), lifetimes and stellar population fopBation
Il (Pop 1) and Population 11/l (Pop 11/1) regimes @i et al.
@) radiative gas cooling from molecular, resonant and-fi
structure transitions (e. al. 2b07, and refergticerein)
and stellar feedback igpringgl & Herngliist 2003). The ftams
from the Pop Il to the Pop II/l regime is determined by theueal
of the gas metallicityZ) compared to the critical valug..,.;: (e.g.,
Omukai 2000; Bromm et &l 2001), assumed tdﬁé4ZOE

The cosmic field is sampled at redshift= 100, adopting
standard cosmological parametefs; = 0.7,Q,, = 0.3,Q, =
0.04, Ho 70 km/s/Mpc andos = 0.9. We considered snap-
shots in the rangé < z < 19, within a cubic volume of comov-
ing side 0.7 Mpc, an@ x 320° particles per gas and dark-matter

1 Although uncertain (Bromm & Loéb 2003; Schneider é ),

results are usually not very sensitive to the precise valdepted

(Maio et al[2010).

(Salvaterra et al. 2013; Dayal etlal. 2013), early gamma uasts-
(Campisi et al. 2011; de Souza ellal. 2011a, 2012; Maio le0aR 2
Mesler et al| 2014) and SNe-host properti hid
[2010; | de Souza etlal. 2011b; Johnson bt al. 12013; Whaleh et al.
), Lyr emitters [(Jeeson-Daniel et al. 2012) and damped
Lya (DLA) system chemical contenﬂbli’u) are pre-

sented and discussed.

2.1 Dataset

The total dataset is composed by a few thousands haloesyat ver
high redshift,z ~ 19, and reaches about 25000 primordial ob-
jects atz ~ 9. In order to avoid numerical artifacts, created by a
poor number of gas particles (Bate & Burkert 1997), we setct
only those structures in which the gas content is resolved ati
least300 gas particles. This usually corresponds to selecting only
objects with a total number of particles of at leastl0. The re-
maining data are therefore composed-df680 haloes in the whole
redshift range, of whichz 200 are atz = 9. Fig.[d shows the prob-
ability distribution function (PDF) for the seven halo paeters:
Mam, Mgas, Mstar, SFR, T, xmo1 andZ at each redshift. They are
portrayed by a violin plot. Each violin centre representsrttedian

of the distribution, while the shape, its mirrored PDF. Augkin-
spection in Figlll indicates the first stages of significana&ivity
aroundz = 17, giving rise to a subsequent boost in metal enrich-
ment atz 2> 15, and a similar growth oM/, in the same redshift
range. Just after this episode, we can see the rapid sprehd in
Xmo1 Variance, peaking few orders of magnitude above average. Th
masses of the haloes range betweehV/ < Mam < 10°Mg
and10* Mg < Mgas S 107 M. Typical temperatures range from
500 to 10" K, where H; shapes the thermal conditions of early
objects. Hotter temperatures are due to the thermal efééciN
explosions that heat and enrich the gas in nearby smallee$al

3 STATISTICAL ANALYSIS
3.1 Robust Principal Components Analysis.

The ultimate goal of PCA is to reduce the dimensionality of a
multivariate dafd, while explaining the data variance with as few
principal components (PCs) as possible. PCA belongs toss cla

2 A set of measurements on each of two or more variables.
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Figure 1. Redshift evolution of halo properties. From top to bottdvh;,,,
(red),Mgas (blue),Mstar (green), SFR(magenta), T (orangex,o1 (Cyan)
and Z (khaki). They are portrayed by a violin plot. Each viatentre rep-
resents the median of the distribution, while the shapenitsored PDF.
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Redshift

of Projection-Pursuit (PP; e.g.. Croux ellal. 2007) method®se
aim is to detect structures in multidimensional data by quiing
them into a lower-dimensional subspace (LDS). The LDS is se-
lected by maximizing a projection index (Pl), where Pl rejergs
aninteresting featuren the data (trends, clusters, hyper-surfaces,
anomalies, etc.). The particular case where variaiség i taken
as a Pl leads to the classical version of BICA

Givenn measurements,, - - - , z,, all of them column vec-
tors of dimensior’, the first PC is obtained by finding a unit vector
a which maximizes the variance of the data projected on it:

@)

2, ¢ t
a; =argmax S”(a'z1, - ,a Tn),
[lal|=1

wheret is the transpose operation aagis the direction of the first

3 The PCs are computed by diagonalization of the data cowariaratrix

(£2), with the resulting eigenvectors corresponding to PCsla@desulting
eigenvalues to the varianexplainedby the PCs.

The eigenvector corresponding to the largest eigenvales ghe direction
of greatest variance (PC1), the second largest eigenvales the direction
of the next highest variance (PC2), and so on. Since cowaiamtrices
are symmetric positive semidefinite, the eigenbasis isadimal (spectral
theorem).

© 2013 RAS, MNRASO00,[1H9
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Pd]. once we have computed tile— 1)th PC, the direction of the
kth component, foil < k& < T, is given by

ax = arg max S*(@‘wy, - ,a'w,), 2

[lal|=1,alay,---,alag 4
where the condition of each PC to be orthogonal to all previou
ones, ensures a new uncorrelated basis. In spite of theaetiat
properties, PCA has some critical drawbacks as the sdtsitiy
outliers (e.g. 05), and inability to deahwniss-
ing data (e.gO). In order to overcome thistknon,
several robust versions were created based on the PP peincip
stead of taking the variance as a Pl in equatidn (1), a ridbmet-
sure of variance is taken. Hereafter, we will refer the staddari-
ance asS2; and robust variance & ,,. TWo common measures
of robust varianc MOO) are the median absale-
viation (MAD; e.g.,5),

MAD(K1,- -, kn) = 1.48med|k; — medk;|, 3)
j i

and the first quartile of the pairwise differences betweémata

points Q; e.g./Rousseeuw & Crolix 1993),
Q(k1,--- 4)

where{x1,--- ,kn} iS a given univariate dataset and the square

of MAD or Q gives a robust varianfe Hereafter all calculations

of the PCs are performed using the grid search base algorithm
[2007) with MAD, but usin@® has no influence on

our results. Also note that before applying the PCA, we siahd

ize the halo properties by subtracting the mean and divibinthe

standard deviation. Therefore we are formally using thestation

matrix that can be seen as the covariance matrix of starmbardi

variables.

Jkn) =2.22{|k;i — K;[;1<i<j < n}(z)/47

3.2 Maximal information coefficient.

The maximal information-based non-parametric exploratio
(MINE) statistics represent a novel family of techniquegientify
and characterize general relationships in data
@). MINE introduce MIC as a new measure of dependence
between two variables, which possesses two desired piepéot
data exploration: (i) generality, the ability to captureradad range
of associations and functional relationsfipéi) equitability, the
ability to give similar scores to equally noisy relationshiof
different typeﬁ.

MIC measures the strength of general associations, based on

4 argmax f(x) is the set of values af for which the functionf(z)

xT
attains its largest value.
5 Robust statistics commonly use median and median absadutation,
instead of mean and standard deviation, in order to be aesiagainst out-
liers.
6 When the Pl is the standard variance, the first PC is the eigémvof
the data covariance matrix corresponding to the largesteajue. But this
does not hold for general choices of variance and approkienatgorithms
are necessary.
7 For comparison, Pearson coefficient measures the linealation be-
tween two variables, while Spearman coefficieRt Y measures the strength
of monotonicity between paired data.
8 In benchmark tests, MIC equitability behaves better thaeoinethods
such as e.g., mutual information estimation, distanceetation andR,. A
lack of equitability introduces a strong bias and entiresstes of relation-

ships may be missed (Reshef ef al. 2013).
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the mutual informati(ﬂ(MI) between two random variablelsand
p(a,b)

B:
(P(G)P(b)> ’

wherep(a) andp(b) are the marginal PDFs of and B, andp(a, b)
is the joint PDF.

Consider D a finite set of ordered paifga;,b:),i = 1,...,n},
partitioned into az-by-y grid of variable size(7, such that there
arez-bins spannin@g andy-bins covering, respectively.

The PDF of a particular grid cell is proportional to the numbg
data points inside that cell. We can define a characterisizixn
M (D) of a setD as

MI(A, B) =Y > pla,b)log

acAbeB

®)

max (MI)

P ogmintz, o7

(6)

representing the highest normalized mutual informatidn.oThe
MIC of a setD is then defined as
M(D),, },

MIC(D)
representing the maximum value &f subject ta) < zy < B(n),
where the functionB(n) 96 was empirically determined by

L2014,

max
0<zy<B(n)

@)

4 RESULTS

Hereafter we discuss the relations between halo propentigsheir
relative importance. Our matrix is composed by 1680 halegsn-
ning the redshift range < z < 19, with ~ 200 (30) haloes at=9
(19), each halo containing at least10® particles. Each row of the
matrix represents a halo and each column represents one e
properties. PCA probes the entire matrix at once. On the bidoed,
MIC is a pair-variable comparison, therefore requirligN —1) /2
operations, withV being the number of halo properties. It is worth
to highlight here that each approach has its own advantagedis:
advantages. PCA is suitable for high-dimensional datajvehyaair
comparison becomes unfeasible, however the method omnigheea
for linear relationships. MIC, instead, finds general aggmns in
data structures, but may be impractical to deal with a langeusnt
of parameters.

PCA

In order to better understand the pros and cons of using RPCA,
we first start the analysis with the standard PCA. Eig. 2 shibws
contribution of the first three PCs %, as a function of redshift.
Three PCs account for more th@f per cent ofS?; at any redshift,
while two PCs explain more tha¥2 per cent except at ~ 14,
when the contribution drops &b per cent.

The sharp variation of the PCs around- 14 — 16 acts as a

9 Mutual information measures the general interdependeateeen two
variables, while the correlation function measures thedindependence
between them (e.d:|0).

10 MIC tends to 1 for all never-constant noiseless functiogdtionships

and to O for statistically independent variables.

11" The 0.6 exponent value represents a compromise since high values of
B(n) lead to non-zero scores even for random data, as each panitge
own cell, while low values only probe simple patterns.

smoking gun for a global cosmological event. Indeed, thésdsect
consequence of first SF episodes and the interplay betwesn-ch
ical and mechanical feedback from the first stars, that tplase
aroundz ~ 15 — 20 (e.g., Maio et al. 2010, 2011). As molecules
are produced over time, they lead to gas collapse, stellardiion
and metal pollution, with consequent back reaction on thee-th
mal behavior of the surrounding gas (see e201
). This redshift range represents an epocfaef
and turbulent growth of the metal filling factor, from 10~'® at
z~15to~ 10~ '2 atz ~ 14 (see Fig. 1 from Maio et al. 2011).
At the beginning, only the gas at high densities is affecterhbtal
enrichment, due to SF concentration in these regions. Asn8F a
metal spreading proceed, the surrounding lower densitir@mv
ments are affected as well. SNe heat high-density gas wétiin
forming sites and, consequently, hot low-density gas istegefrom
star-forming regions by SN winds.

The contribution of each PC dramatically changes if we use
RPCA instead. The clearest advantage is the amount of arian
explained by each component (Hereafter, when necessawpit a
ambiguity, the PCs from RPCA analysis will be referred as RBPC
RPC1 accounts for no less than 84 per cent of theSg 4 any-
time, whilst two RPCs account for more thaan 95 per cent.
Moreover, the RPC2 contribution mostly stands out betweden a
13 < z < 17 andz < 10. Albeit contributing differently to the
total variance, the general behavior of PC1 and PC2 is girdla
the RPC1 and RPC2, as well as the physical interpretatioh. Bu
RPCA assigns less weight to the baryonic properties, stigges
the halo mass as the most significant factor. This differexcers
because even a small fraction of large errors can causeaaybit
corruption in PCA's estimate. For instance, PCA is more isigas
to rapid variations of the halo chemical properties, hadrstieeper
reaction in their first PCs. Thus, as expected RPCA surpassiifC
their ultimate goal: reduce the system dimensionality.ayheless,
the greatest power to synthesize information carries thignagtion
that outliers are caused by corrupted data, which is notyeize
case. This potential drawback will be better understooditapat
the contribution of each variables to tketh PCs as discussed in
the following.

Fig.[d shows the relative contribution of each parametenéo t
first three PCs (RPCs) on the left (right) side. For the PCAecas
Man, and Mg, dominate PC1 at > 14 (no less thanv 62 per
cent), followed by a smaller contribution of SFR and,;. Never-
theless, as gas collapses into potential wells, the relatwtribu-
tion from M,.s increases, surpassingam atz ~ 15. The dom-
inant contribution ofZ andx,,,; to PC1 atz 14 indicates a
critical epoch for the cosmic chemical enrichment (see discus-
sion above), triggered by a rapid variationof,.;, followed by a
wide metal pollution at: ~ 13. After a decline in the chemical
enrichment rate, a second peakA4noccurs atz ~ 10. This self-
regulated, oscillatory behavior is caused by the simutiaaeoex-
istence of cold pristine-gas inflows and hot metal enrichgfiaws
that create hydro instabilities and turbulent patterné wieynolds
numbers~ 10% — 10'° (see e.g. Fig. 2 from Maio etlal. 2011). Fi-
nally atz = 9, Mam and M,.s have become almost subdominant,
since PC1 is mainly led b§" and Z, as a result of the ongoing
cosmic heating from SF and thermal feedback. The dominayce b
T to PC1 at this redshift occurs due to the presence of somé smal
(see Fig[l), high-temperature objects, whose propertesen-
taminated by hot enriched material&t> 10° K.

An inspection of PC2 reveals thlsipporting roleduring the
galaxy formation process. The PC1 peakimt redshift 13 is pre-
ceded by a strong contribution &Rand halo masses to PC2,

~
~

(© 2013 RAS, MNRASO00,[1H9
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nitude, either by dissociating molecules, or by partiatth@&ncing
their formation by shocks and gas compression (
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Figure 2. Fraction of variance explained by the first three PCs as diimc
of redshift; PC1 (red circles), PC2 (blue triangles), PC2ég squares).
Symbols represent the actual estimate values for eachsstapghile the
curves represent a smooth fitting with 95 per cent confideaga limited
by the shadowed areas. The curves and confidence levelgiarated by a

local polynomial regression fitting (Cleveland el al. 199@)p panel: PCA;
bottom panel: RPCA.

~

while the second PC1 peak i, aroundz 10, is anticipated

by an increasing contribution to PC2 from the formed starsciv
later explode as SNe and start the metal enrichment of the Uni
verse. The first rise of PC2 at> 14, dominated by SFR, occurs
because the protogalaxies at this epoch are experienainfirsh
bursts of SF. Nevertheless, not all of them have necesgarityed
stars already. Whilst the second peak is composed of a mére ba
anced contribution from SFR ants:... The oscillatory behavior
might be caused by the competitive effects of different ee

2001; Whalen et al. 2008:

i 12).

Looking the RPCA, the RPC1 is dominated by halo masses
during all cosmic evolution (no less than 68 per cent), witeo
baryonic properties relegated to RPCs of higher orders.eSmau-
tion is needed to interpret these results. The higher leivebm-
pressibility presented by RPCA is a direct consequencetiiif at-
ing a smaller weight to rare events. Therefore, if one insetod
describe all haloes properties using the fewest paramatsssble,
RPCA appears to succeed, since it states that as a first aparox
tion, the total halo mass is the main factor to describe h#ioprop-
erties. The mass determines the potential well and conséygue
the ability of the halo to form stars, retain the metals, #iere-
fore roughly dictating the baryonic dynamics at a first si@ince
RPCA ascribes a lower weight to the tails of each parameser di
tribution, the physical interpretation may become lessl@nvi for
the highest RPCs. However, we can still see the importancg of
xmol @and SFR, with the difference that now they are considered
second order effects, hence starting to be dominant frorR B2
forward. To better understand these differences betwe@&@ARind
PCA we discuss the strength with which each variable isedltd
one another as follows.

MIC

Fig.[4 shows how the seven halo properties correlate to ethein. o
The main diagonal of Figl]4 shows the density distributioeadth
variable at different redshiftd (a zoomed version of half-violin
presented in Fid.]1). The majority of the parameters have la we
behaved distribution, with small variations in its shapeimy the
cosmic evolution, while quantities related to the stelleedback
(Mstar, SFR Z) have their distribution shaped during the transition
from a regime without SF activity at > 16 to the burst of SFR
aroundz < 15. The lower triangular part of the panel shows scatter
plots for each variable combination colored accordinglytheir
redshift.

Fig.[J shows MIC andz; for each combination of parameters
as a function of redshiffl. At high redshift, due to the poor statis-
tics (less than 30 haloes at= 19, with a considerably amount of
null parameters), most variables are uncorrelated, recpa low
score by bothR, and MIC. As expected//zas, Manm and T are
strongly correlated, receiving the highest values. Thissistent

mechanisms: the gas undergoing SF is heated by SN eprosiongNith the fact that PC1 dominatesat> 16 and is basically dictated

and it is inhibited to continuously form stars (mostly in diea
structures that suffer significantly gas evaporation pses); while
shock compressions and spreading of metals in the medium en-
hance gas cooling capabilities and consequently induce 186r
The former preferentially occurs in bigger objects that kaep
and re-process their metals because of the deeper potestial

PC3 is nearly negligible in the whole redshift range aside
z = 14, wherex,, dominates the general behavior. This epoch
is preceded by a significant contribution frolfs., at z = 15.
A comparison with FigIlreveals that this behavior coincides with
a growth in thex,,o1 variance at the same redshift. This indicates
a transition in the regular trend of increasing.; with increasing
mass at ~ 15 — 16, when initial collapse phases boost.: up
to 10~3. This rapid growth ok, preferentially occurs in galax-
ies of ~ 10° — 106MO, that are forming their first stars and have
not been previously affected by feedback mechanisms. Atl5,
feedback effects from Pop Il forming galaxies become raspo
ble for increasing the variance a&f,.; by several orders of mag-

© 2013 RAS, MNRASO00,[1H9

by Man and Mg.s. The result suggests that at higher redshifts,
haloes are much simpler objects and their properties aiedigs
controlled by their masses. Comparing with Fig. 3, it seémasthe
correlation between halo mass aidhows a better agreement with
RPCA, which makes df" a factor almost as important a¢,.. and
Mg, in the determination of RPC1.

The molecular content, which is directly dependent on tbellgas
density andT, shows a correlation witly that increases at lower
redshifts untilz ~ 12. This trend is in agreement with the domi-
nance ofx,,o1 andZ on PC1 and RPC2 at ~ 13 — 14, caused
by the increase in the contribution of t8&&Rto PC2 and RPC2 at
earlier redshifts.

12 Highest redshifts are not shown, because the few numbetadhmake
the PDF estimate meaningless.

13 We do not present results fer > 17, because of the high number of
zeros in the matrix makes the correlation measurementdiatiee
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At z > 13 — 14, xmo1 keeps a regular trend of increasing with halo
mass. Nevertheless, tisd- activity atz < 13 leads to a dispersion
of xmo1 followed by a metal enrichment process, as discussed in
Sectior . AlsalM,,s shows a stronger correlation with,.; than
with other quantities like SFR and, which indicates the crucial
role of xm01 to initiate SF and consequent metal pollution from Pop
Il and Pop 1/l regimes in primordial galaxies. Comparingtiw
Fig.[d, we see that RPCA better apprehends this effect. At hig
redshift, with the exception of = 16, where the peak in RPC2 is
caused by the first stages of metal enrichment (Bigx,1); main-
tains a dominant contribution to RPC2, together with halesna
The correlation between SFR wift.s and Mam is roughly lin-
ear, increasing at later times. This may be explained by tderw
spread of SFR in low massive haloezat 14, which is caused by
gas evaporation processes due to SN explosions, in comtithst
later structures that have a more sustained SF activityeifbimth
PCA and RPCA are sensitive to this effect, RPCA ascribes adow
weight to the SFR than te,,.1, in accordance to the correlation
analysis.

A surprising disagreement between MIC afitl appears
when comparingZ, Mst.r and SFR.Rs suggests a nearly perfect
correlation betwee¥ and M, While MIC found no significant
association at the highest redshifts. This highlights tiristness
of MIC with skewed and sparse data. In this redshift range, 14,
there are very few haloes with non-ndlland M., values (FiglL).
Therefore, the higlR, score for these two quantities is misleading,

as confirmed by a visual inspection of their correspondistrithu-
tions (Figs[1 anfl4). The same argument holds for the cosgari
betweenZ-SFR, andV/s:..-SFR. During the course of cosmic evo-
lution though, the correlations between the propertiehehialoes
tighten and botR, and MIC converge for most of them at= 10
(with R slightly overestimating the strength of correlation com-
pared to MIC), as shown in Fig] 5.

5 CONCLUSIONS

We investigate the redshift evolution of the gas properiepri-
mordial galaxies using RPCA and MIC statistics making a com-
prehensive comparison with standard approaches.

This is the first attempt to probe the baryon properties dfear
mini-haloes and the effects of feedback processes by mdams o
highly solid statistical approach. We explore the corretabf dif-
ferent baryonic properties as expected from numencddody, hy-
drodynamical, chemistry simulations including gas molacand
atomic cooling, SF, stellar evolution, metal spreading feedlback
effects.

The wide range of redshifts analyzed he9e<{ = < 19) al-
lowed us to perform an unprecedented study of the tempoaal ev
lution of the PC contribution to the total variance of thechptop-
erties. The standard PCA needs two PCs to explain more than 92
per cent of the data variance (in the greater part of redssiifidied

(© 2013 RAS, MNRASO00,[1H9
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Figure 4. Correlations between different halo properties at retishif 9 (blue solid lines and squareg); 11 (green dashed lines and triangles)13 (orange
dotted lines and asteriskg)= 15 (khaki dot-dashed lines and stars). The panels on tigemnii& show the density distributions of the seven paramEber bot-
tom half matrix shows a scatter plot for each pair-varialdaination and the top half matrix shows the MIC and Speananak coefficients for each redshift.
To guide the eyes, the values are colored by redshift andbititesize is proportional to the strength of the correlatihile the coefficients were estimated
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log (T'/K), log (xmo1) @ndlog (Z/Z ), for better visualization.

here) with PC1 dropping below 50 per cent at lower redshifie Since RPCA ranks the contribution of variables to the RPQ&tn

first RPC from RPCA analysis explains no less than 84 per dent o ter agreement with their levels of correlation. It seemstibetter

all data variance anytime, with two first RPCs explaining etthian agreement with our independent MIC aRd correlation analysis.

95 per cent of the total robust variance. An inspection in the first and second PCs reveals some inter-
First SF episodes and feedback mechanisms cause a drop ofsting facts. The PC1 peak it at redshift 13 is preceded by a

PC1 atz ~ 14, when a sharp variation in the PCs behavior marks strong contribution of SFR and halo masses to PC2. Whiledgbe s

the onset of cosmic metal enrichment. At> 14 the halo proper- ond PC1 peak it¥, aroundz ~ 10, is anticipated by an increasing
ties are basically dictated by the halo mass. Among the aagas contribution to PC2 by the formed stars, which later explade
in using RPCA is the possibility to increase the capabildyre- SNe and enrich the Universe. This indicates the importahsteb
duce the dimensionality of the original dataset, althoughecost lar evolution in shaping baryon properties in primordialdes. A
to be less sensitive to rare events that may be physicakyast. similar trend holds for RPCA although attenuated by the gtmoo

(© 2013 RAS, MNRASO00,[1H9
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Figure 5. Each panel shows MIC and Spearman correlations between dif-
ferent halo propertied? correlation is shown on the left scale with orange
bars, while the MIC is represented by green bars on the right.

ing effect created by the use of robust statistics. It is irtgd to
note, however, that the relatively small number of haloeslistl
here might lessen the robustness of our results at very leidh r
shifts. Therefore, future investigations of similar teicjugs into
larger simulations boxes is highly recommended.

Overall R agrees reasonably with MIC, but MIC seems to
be more robust to study highly sparse data regimes (likerét ea
epochs). All gas properties, asidé,.s, Mam andT’, are weakly
correlated at high redshift. Nevertheless, due to the pragrbe-
tween chemical and mechanical feedback from the ongoitigiste
formation and the consequent back reaction on the thernhaivbe
ior of the surrounding medium, baryonic quantities stagiresent
a moderate to high level of correlation as redshift decredagar-
ticular, xmo1 Shows the highest level of correlation willfy.s, fol-
lowed by T, SFR,Ms:ar @and Z respectively. In general, structure
formation processes depend not only on the dark matter mafm p
erties, but also on the local thermodynamical state of tkewghich
is, in turn, affected by coolingsF and feedback. Our analysis sug-
gests that all the gaseous properties have a strongerattrelvith
M,as than with May,, while Mg.s has a deeper correlation with
Xmol than withZ or SFR. The relevance of the molecular content
for the baryon properties represents the physical origigesfcol-
lapse and concentration, crucial to initiate SF and coresetquetal
pollution from Pop Il and Pop II/l regimes in primordial gaies.
This work represents a leap forward in the statistical aislyf V-
body/hydro simulations, performed by means of RPCA and MIC
into a cosmological context. We therefore stress that tkeofisli-

mensionality reduction algorithms and mutual informatiased
techniques in numerical simulations might be a precioustingent
for future investigations, thanks to their potential to eihwnon-
trivial relationships, which may go undetected by standasth-
ods.
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