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ABSTRACT

We present a novel approach, based on robust principal components analysis (RPCA)
and maximal information coefficient (MIC), to study the redshift dependence of halo bary-
onic properties. Our data are composed of a set of different physical quantities for primordial
minihaloes: dark-matter mass (Mdm), gas mass (Mgas), stellar mass (Mstar), molecular frac-
tion (xmol), metallicity (Z), star formation rate (SFR) and temperature. We find thatMdm and
Mgas are dominant factors for variance, particularly at high redshift. Nonetheless, with the
emergence of the first stars and subsequent feedback mechanisms,xmol, SFR andZ start to
have a more dominant role. Standard PCA gives three principal components (PCs) capable to
explain more than 97 per cent of the data variance at any redshift (two PCs usually accounting
for no less than 92 per cent), whilst the first PC from the RPCA analysis explains no less than
84 per cent of the total variance in the entire redshift range(with two PCs explaining& 95 per
cent anytime). Our analysis also suggests that all the gaseous properties have a stronger cor-
relation withMgas than withMdm, whileMgas has a deeper correlation withxmol than with
Z or SFR. This indicates the crucial role of gas molecular content to initiate star formation
and consequent metal pollution from Population III and Population II/I regimes in primordial
galaxies. Finally, a comparison between MIC and Spearman correlation coefficient shows that
the former is a more reliable indicator when halo propertiesare weakly correlated.

Key words: cosmology: large-scale structure of Universe, early Universe; methods: statisti-
cal, N-body simulations

1 INTRODUCTION

The standard model of cosmology predicts a structure formation
scenario driven by cold dark matter (e.g., Benson 2010), where
galaxies form from molecular gas cooling within growing dark
matter haloes. Hence, understanding the correlation between differ-
ent properties of the dark matter haloes is imperative to build up a
comprehensive picture of galaxy evolution. Many authors have ex-
plored the correlation between dark-halo properties, suchas mass,
spin and shape, both in low- (e.g., Bett et al. 2007; Hahn et al.
2007; Macciò et al. 2007; Wang et al. 2011) and high-redshift (e.g.,
Jang-Condell & Hernquist 2001; de Souza et al. 2013a) regimes.
Estimating the strength of these correlations is critical to support
semi-analytical and halo occupation models, which assume the
mass as determinant factor of the halo properties (e.g., Mo &White
1996; Cooray & Sheth 2002; Berlind et al. 2003; Somerville etal.

⋆ e-mail: rafael.2706@gmail.com

2008). Nevertheless, alternative approaches, based on principal
components analysis (PCA), found that concentration is a key
parameter, contrary to what expected before (Jeeson-Daniel et al.
2011; Skibba & Macciò 2011), and stressed the need for further
investigations. PCA belongs to a family of techniques idealto ex-
plore high-dimensional data. The method consists in projecting the
data into a low-dimensional form, retaining as much information
as possible (e.g., Jollife 2002). Hence, PCA emerges as a natu-
ral technique to investigate correlation and temporal evolution of
halo properties. Because of its versatility, PCA has been applied to
a broad range of astronomical studies, such as stellar, galaxy and
quasar spectra (e.g., Chen et al. 2009; McGurk et al. 2010), galaxy
properties (Conselice 2006; Scarlata et al. 2007), Hubble parame-
ter and cosmic star formation (SF) reconstruction (e.g., Ishida et al.
2011; Ishida & de Souza 2011), and supernova (SN) photometric
classification (Ishida & de Souza 2013).

Despite its generality, PCA is not the only way to han-
dle huge data sets, and the growth in complexity of scien-

c© 2013 RAS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ELTE Digital Institutional Repository (EDIT)

https://core.ac.uk/display/333613713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1308.6009v3


2 Gas properties in dark matter mini-haloes

tific experimental data makes the ability to extract newswor-
thy and meaningful information an endeavor per se. The yearn-
ing for novel methodologies of data-intensive science gaverise
to the so-called fourth research paradigm (e.g., Bell et al.2009).
Data mining methods have been used in many areas of knowl-
edge such as genetics (e.g., Venter et al. 2004) and financial
marketing decisions (e.g., Shaw et al. 2001), and their impor-
tance for astronomy has been recently highlighted as well (e.g.,
Ball & Brunner 2010; Graham et al. 2013; Krone-Martins et al.
2013; Martı́nez-Gómez et al. 2014). Likewise observations, cos-
mological simulations are continuously increasing in complexity,
lessening the distance between observed and synthetic data(e.g.,
Overzier et al. 2013; de Souza et al. 2013b, 2014). None the less,
the application of data-mining to cosmological simulations remains
a terra incognita.

In this work, we investigate the statistical properties of
baryons inside high-redshift haloes, including detailed chemistry,
gas physics and stellar feedback. We make use of Robust PCA
(RPCA) and maximal information coefficient (MIC) to study a set
of various halo parameters. RPCA represents a generalization of
the standard PCA, whose advantage is its resilience to outliers and
skewed data, while MIC is expected to be the correlation analysis
of the 21st century (Speed 2011), in particular due to MIC ability
in quantifying general associations between variables. Therefore,
this project represents the first application of MIC toN -body/hydro
simulations, and the first use of PCA to explore the low-mass end
of the halo mass function and the birth of the first galaxies.

The outline of this paper is as follows. In Section 2, we de-
scribe the cosmological simulations and their outcomes. InSection
3, we describe the statistical methods. In Section 4, we present our
analysis and main results. Finally, in Section 5, we presentour con-
clusions.

2 SIMULATIONS

We analyzed the results of a cosmologicalN -body, hydrodynam-
ical, chemistry simulation based on Biffi & Maio 2013 (see also
Maio et al. 2010, 2011), that was run by means of a modified
version of the smoothed-particle hydrodynamics codeGADGET2
(Springel 2005). The modifications include relevant chemical net-
work to self-consistently follow the evolution of e−, H, H+, H−,
He, He+, He++, H2, H+

2 , D, D+, HD, HeH+ (e.g., Yoshida et al.
2003; Maio et al. 2006, 2007, 2009), ultraviolet backgroundradia-
tion, metal pollution according to proper stellar yields (He, C, O,
Si, Fe, Mg, S, etc.), lifetimes and stellar population for Population
III (Pop III) and Population II/I (Pop II/I) regimes (Tornatore et al.
2007), radiative gas cooling from molecular, resonant and fine-
structure transitions (e.g. Maio et al. 2007, and references therein)
and stellar feedback (Springel & Hernquist 2003). The transition
from the Pop III to the Pop II/I regime is determined by the value
of the gas metallicity (Z) compared to the critical valueZcrit (e.g.,
Omukai 2000; Bromm et al. 2001), assumed to be10−4Z⊙1.

The cosmic field is sampled at redshiftz = 100, adopting
standard cosmological parameters:ΩΛ = 0.7,Ωm = 0.3,Ωb =
0.04, H0 = 70 km/s/Mpc andσ8 = 0.9. We considered snap-
shots in the range9 . z . 19, within a cubic volume of comov-
ing side 0.7 Mpc, and2 × 3203 particles per gas and dark-matter

1 Although uncertain (Bromm & Loeb 2003; Schneider et al. 2003, 2006),
results are usually not very sensitive to the precise value adopted
(Maio et al. 2010).

species corresponding to particle masses of 42 and275 M⊙h
−1 ,

respectively. The identification of the simulated objects is done by
applying a friends-of-friends (FoF) technique with linking length
equal to 20 per cent the mean interparticle separation and sub-
structures are identified by using aSUBFINDalgorithm (Dolag et al.
2009), which discriminates among bound and non-bound particles.
The halo characteristics, such as position, velocity, darkmatter and
baryonic properties, are computed and stored at each redshift.

The simulation outcomes investigated here consist of seven
parameters: dark-matter mass (Mdm), gas mass (Mgas), stellar
mass (Mstar), star formation rate (SFR),Z, gas temperature (T),
and gas molecular fraction(xmol). We refer the reader to pre-
vious works, where more details and additional analyses about
halo spin and shape distribution (de Souza et al. 2013a), feedback
mechanisms (Maio et al. 2011; Petkova & Maio 2012; Maio et al.
2013), primordial streaming motions (Maio et al. 2011), non-
standard cosmologies (Maio et al. 2006; Maio & Iannuzzi 2011;
Maio 2011; de Souza et al. 2013c), high-z luminosity function
(Salvaterra et al. 2013; Dayal et al. 2013), early gamma ray bursts-
(Campisi et al. 2011; de Souza et al. 2011a, 2012; Maio et al. 2012;
Mesler et al. 2014) and SNe-host properties (de Souza & Ishida
2010; de Souza et al. 2011b; Johnson et al. 2013; Whalen et al.
2013a,b), Lyα emitters (Jeeson-Daniel et al. 2012) and damped
Lyα (DLA) system chemical content (Maio et al. 2013) are pre-
sented and discussed.

2.1 Data set

The total dataset is composed by a few thousands haloes at very
high redshift,z ≈ 19, and reaches about 25000 primordial ob-
jects atz ≈ 9. In order to avoid numerical artifacts, created by a
poor number of gas particles (Bate & Burkert 1997), we selected
only those structures in which the gas content is resolved with at
least300 gas particles. This usually corresponds to selecting only
objects with a total number of particles of at least∼ 103. The re-
maining data are therefore composed of≈1680 haloes in the whole
redshift range, of which≈ 200 are atz = 9. Fig. 1 shows the prob-
ability distribution function (PDF) for the seven halo parameters:
Mdm,Mgas,Mstar, SFR,T , xmol andZ at each redshift. They are
portrayed by a violin plot. Each violin centre represents the median
of the distribution, while the shape, its mirrored PDF. A visual in-
spection in Fig. 1 indicates the first stages of significant SFactivity
aroundz = 17, giving rise to a subsequent boost in metal enrich-
ment atz & 15, and a similar growth ofMstar in the same redshift
range. Just after this episode, we can see the rapid spread inthe
xmol variance, peaking few orders of magnitude above average. The
masses of the haloes range between105M⊙ . Mdm . 108M⊙

and104M⊙ . Mgas . 107M⊙. Typical temperatures range from
500 to104 K, whereH2 shapes the thermal conditions of early
objects. Hotter temperatures are due to the thermal effectsof SN
explosions that heat and enrich the gas in nearby smaller haloes.

3 STATISTICAL ANALYSIS

3.1 Robust Principal Components Analysis.

The ultimate goal of PCA is to reduce the dimensionality of a
multivariate data2, while explaining the data variance with as few
principal components (PCs) as possible. PCA belongs to a class

2 A set of measurements on each of two or more variables.
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Figure 1. Redshift evolution of halo properties. From top to bottom:Mdm

(red),Mgas (blue),Mstar (green),SFR(magenta), T (orange),xmol (cyan)
and Z (khaki). They are portrayed by a violin plot. Each violin centre rep-
resents the median of the distribution, while the shape, itsmirrored PDF.

of Projection-Pursuit (PP; e.g., Croux et al. 2007) methods, whose
aim is to detect structures in multidimensional data by projecting
them into a lower-dimensional subspace (LDS). The LDS is se-
lected by maximizing a projection index (PI), where PI represents
an interesting featurein the data (trends, clusters, hyper-surfaces,
anomalies, etc.). The particular case where variance (S2) is taken
as a PI leads to the classical version of PCA3.

Givenn measurementsx1, · · · , xn, all of them column vec-
tors of dimensionΓ, the first PC is obtained by finding a unit vector
a which maximizes the variance of the data projected on it:

a1 = argmax
||a||=1

S2(atx1, · · · ,a
txn), (1)

wheret is the transpose operation anda1 is the direction of the first

3 The PCs are computed by diagonalization of the data covariance matrix
(Σ2), with the resulting eigenvectors corresponding to PCs andthe resulting
eigenvalues to the varianceexplainedby the PCs.
The eigenvector corresponding to the largest eigenvalue gives the direction
of greatest variance (PC1), the second largest eigenvalue gives the direction
of the next highest variance (PC2), and so on. Since covariance matrices
are symmetric positive semidefinite, the eigenbasis is orthonormal (spectral
theorem).

PC4. Once we have computed the(k−1)th PC, the direction of the
kth component, for1 < k 6 Γ, is given by

ak = argmax
||a||=1,a⊥a1,··· ,a⊥ak−1

S2(atx1, · · · ,a
txn), (2)

where the condition of each PC to be orthogonal to all previous
ones, ensures a new uncorrelated basis. In spite of these attractive
properties, PCA has some critical drawbacks as the sensitivity to
outliers (e.g., Hampel et al. 2005), and inability to deal with miss-
ing data (e.g., Xu et al. 2010). In order to overcome this limitation,
several robust versions were created based on the PP principle. In-
stead of taking the variance as a PI in equation (1), a robust5 mea-
sure of variance is taken. Hereafter, we will refer the standard vari-
ance asS2

sd and robust variance asS2
MAD. Two common measures

of robust variance (Hoaglin et al. 2000) are the median absolute de-
viation (MAD; e.g., Howell 2005),

MAD(κ1, · · · , κn) = 1.48med
j

|κj −med
i

κi|, (3)

and the first quartile of the pairwise differences between all data
points (Q; e.g., Rousseeuw & Croux 1993),

Q(κ1, · · · , κn) = 2.22 {|κi − κj |; 1 6 i < j 6 n}(2
n
)/4 , (4)

where{κ1, · · · , κn} is a given univariate dataset and the square
of MAD or Q gives a robust variance6. Hereafter all calculations
of the PCs are performed using the grid search base algorithm
(Croux et al. 2007) with MAD, but usingQ has no influence on
our results. Also note that before applying the PCA, we standard-
ize the halo properties by subtracting the mean and dividingby the
standard deviation. Therefore we are formally using the correlation
matrix that can be seen as the covariance matrix of standardized
variables.

3.2 Maximal information coefficient.

The maximal information-based non-parametric exploration
(MINE) statistics represent a novel family of techniques toidentify
and characterize general relationships in data sets (Reshef et al.
2011). MINE introduce MIC as a new measure of dependence
between two variables, which possesses two desired properties for
data exploration: (i) generality, the ability to capture a broad range
of associations and functional relationships7; (ii) equitability, the
ability to give similar scores to equally noisy relationships of
different types8.

MIC measures the strength of general associations, based on

4 argmax
x

f(x) is the set of values ofx for which the functionf(x)

attains its largest value.
5 Robust statistics commonly use median and median absolute deviation,
instead of mean and standard deviation, in order to be resistant against out-
liers.
6 When the PI is the standard variance, the first PC is the eigenvector of
the data covariance matrix corresponding to the largest eigenvalue. But this
does not hold for general choices of variance and approximative algorithms
are necessary.
7 For comparison, Pearson coefficient measures the linear correlation be-
tween two variables, while Spearman coefficient (Rs) measures the strength
of monotonicity between paired data.
8 In benchmark tests, MIC equitability behaves better than other methods
such as e.g., mutual information estimation, distance correlation andRs. A
lack of equitability introduces a strong bias and entire classes of relation-
ships may be missed (Reshef et al. 2013).

c© 2013 RAS, MNRAS000, 1–9



4 Gas properties in dark matter mini-haloes

the mutual information9 (MI) between two random variablesA and
B: 10

MI(A,B) =
∑

a∈A

∑

b∈B

p(a, b) log

(

p(a, b)

p(a)p(b)

)

, (5)

wherep(a) andp(b) are the marginal PDFs ofA andB, andp(a, b)
is the joint PDF.
Consider D a finite set of ordered pairs,{(ai, bi), i = 1, . . . , n},
partitioned into ax-by-y grid of variable size,G, such that there
arex-bins spanninga andy-bins coveringb, respectively.
The PDF of a particular grid cell is proportional to the number of
data points inside that cell. We can define a characteristic matrix
M(D) of a setD as

M(D)x,y =
max(MI)

logmin{x, y}
, (6)

representing the highest normalized mutual informations of D. The
MIC of a setD is then defined as

MIC(D) = max
0<xy<B(n)

{

M(D)x,y

}

, (7)

representing the maximum value ofM subject to0 < xy < B(n),
where the functionB(n) ≡ n0.6 was empirically determined by
Reshef et al. 201111.

4 RESULTS

Hereafter we discuss the relations between halo propertiesand their
relative importance. Our matrix is composed by 1680 haloes,span-
ning the redshift range9 . z . 19, with≈ 200 (30) haloes atz = 9
(19), each halo containing at least∼ 103 particles. Each row of the
matrix represents a halo and each column represents one of the halo
properties. PCA probes the entire matrix at once. On the other hand,
MIC is a pair-variable comparison, therefore requiringN(N−1)/2
operations, withN being the number of halo properties. It is worth
to highlight here that each approach has its own advantages and dis-
advantages. PCA is suitable for high-dimensional data, when a pair
comparison becomes unfeasible, however the method only searches
for linear relationships. MIC, instead, finds general associations in
data structures, but may be impractical to deal with a large amount
of parameters.

PCA

In order to better understand the pros and cons of using RPCA,
we first start the analysis with the standard PCA. Fig. 2 showsthe
contribution of the first three PCs toS2

sd, as a function of redshift.
Three PCs account for more than97 per cent ofS2

sd at any redshift,
while two PCs explain more than92 per cent except atz ≃ 14,
when the contribution drops to85 per cent.

The sharp variation of the PCs aroundz ≃ 14 − 16 acts as a

9 Mutual information measures the general interdependence between two
variables, while the correlation function measures the linear dependence
between them (e.g., Li 1990).
10 MIC tends to 1 for all never-constant noiseless functional relationships
and to 0 for statistically independent variables.
11 The0.6 exponent value represents a compromise since high values of
B(n) lead to non-zero scores even for random data, as each point gets its
own cell, while low values only probe simple patterns.

smoking gun for a global cosmological event. Indeed, this isa direct
consequence of first SF episodes and the interplay between chem-
ical and mechanical feedback from the first stars, that takesplace
aroundz ≃ 15 − 20 (e.g., Maio et al. 2010, 2011). As molecules
are produced over time, they lead to gas collapse, stellar formation
and metal pollution, with consequent back reaction on the ther-
mal behavior of the surrounding gas (see e.g., Maio et al. 2011;
Biffi & Maio 2013). This redshift range represents an epoch offast
and turbulent growth of the metal filling factor, from∼ 10−18 at
z ≃ 15 to ≈ 10−12 at z ≃ 14 (see Fig. 1 from Maio et al. 2011).
At the beginning, only the gas at high densities is affected by metal
enrichment, due to SF concentration in these regions. As SF and
metal spreading proceed, the surrounding lower density environ-
ments are affected as well. SNe heat high-density gas withinstar-
forming sites and, consequently, hot low-density gas is ejected from
star-forming regions by SN winds.

The contribution of each PC dramatically changes if we use
RPCA instead. The clearest advantage is the amount of variance
explained by each component (Hereafter, when necessary to avoid
ambiguity, the PCs from RPCA analysis will be referred as RPCs).
RPC1 accounts for no less than≈ 84 per cent of theS2

MAD any-
time, whilst two RPCs account for more than≈ 95 per cent.
Moreover, the RPC2 contribution mostly stands out between at
13 < z < 17 andz . 10. Albeit contributing differently to the
total variance, the general behavior of PC1 and PC2 is similar to
the RPC1 and RPC2, as well as the physical interpretation. But
RPCA assigns less weight to the baryonic properties, suggesting
the halo mass as the most significant factor. This differenceoccurs
because even a small fraction of large errors can cause arbitrary
corruption in PCA’s estimate. For instance, PCA is more sensitive
to rapid variations of the halo chemical properties, havinga steeper
reaction in their first PCs. Thus, as expected RPCA surpass PCA in
their ultimate goal: reduce the system dimensionality. Nevertheless,
the greatest power to synthesize information carries the assumption
that outliers are caused by corrupted data, which is not always the
case. This potential drawback will be better understood looking at
the contribution of each variables to thek-th PCs as discussed in
the following.

Fig. 3 shows the relative contribution of each parameter to the
first three PCs (RPCs) on the left (right) side. For the PCA case,
Mdm andMgas dominate PC1 atz > 14 (no less than∼ 62 per
cent), followed by a smaller contribution of SFR andxmol. Never-
theless, as gas collapses into potential wells, the relative contribu-
tion from Mgas increases, surpassingMdm at z ≈ 15. The dom-
inant contribution ofZ andxmol to PC1 atz ≈ 14 indicates a
critical epoch for the cosmic chemical enrichment (see alsodiscus-
sion above), triggered by a rapid variation ofxmol, followed by a
wide metal pollution atz ≈ 13. After a decline in the chemical
enrichment rate, a second peak inZ occurs atz ≈ 10. This self-
regulated, oscillatory behavior is caused by the simultaneous coex-
istence of cold pristine-gas inflows and hot metal enriched outflows
that create hydro instabilities and turbulent patterns with Reynolds
numbers∼ 108 − 1010 (see e.g. Fig. 2 from Maio et al. 2011). Fi-
nally atz = 9, Mdm andMgas have become almost subdominant,
since PC1 is mainly led byT andZ, as a result of the ongoing
cosmic heating from SF and thermal feedback. The dominance by
T to PC1 at this redshift occurs due to the presence of some small
(see Fig. 1), high-temperature objects, whose properties are con-
taminated by hot enriched material atT & 105 K.

An inspection of PC2 reveals thesupporting rolesduring the
galaxy formation process. The PC1 peak inZ at redshift 13 is pre-
ceded by a strong contribution ofSFRand halo masses to PC2,

c© 2013 RAS, MNRAS000, 1–9
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Figure 2. Fraction of variance explained by the first three PCs as a function
of redshift; PC1 (red circles), PC2 (blue triangles), PC3 (green squares).
Symbols represent the actual estimate values for each snapshot, while the
curves represent a smooth fitting with 95 per cent confidence level limited
by the shadowed areas. The curves and confidence levels are estimated by a
local polynomial regression fitting (Cleveland et al. 1992). Top panel: PCA;
bottom panel: RPCA.

while the second PC1 peak inZ, aroundz ≃ 10, is anticipated
by an increasing contribution to PC2 from the formed stars, which
later explode as SNe and start the metal enrichment of the Uni-
verse. The first rise of PC2 atz & 14, dominated by SFR, occurs
because the protogalaxies at this epoch are experiencing the first
bursts of SF. Nevertheless, not all of them have necessarilyformed
stars already. Whilst the second peak is composed of a more bal-
anced contribution from SFR andMstar. The oscillatory behavior
might be caused by the competitive effects of different feedback
mechanisms: the gas undergoing SF is heated by SN explosions
and it is inhibited to continuously form stars (mostly in smaller
structures that suffer significantly gas evaporation processes); while
shock compressions and spreading of metals in the medium en-
hance gas cooling capabilities and consequently induce more SF.
The former preferentially occurs in bigger objects that cankeep
and re-process their metals because of the deeper potentialwells.

PC3 is nearly negligible in the whole redshift range aside
z = 14, wherexmol dominates the general behavior. This epoch
is preceded by a significant contribution fromMstar at z = 15.
A comparison with Fig.1 reveals that this behavior coincides with
a growth in thexmol variance at the same redshift. This indicates
a transition in the regular trend of increasingxmol with increasing
mass atz ∼ 15 − 16, when initial collapse phases boostxmol up
to 10−3. This rapid growth ofxmol preferentially occurs in galax-
ies of∼ 105 − 106M⊙, that are forming their first stars and have
not been previously affected by feedback mechanisms. Atz . 15,
feedback effects from Pop III forming galaxies become responsi-
ble for increasing the variance ofxmol by several orders of mag-

nitude, either by dissociating molecules, or by partially enhancing
their formation by shocks and gas compression (e.g., Ricotti et al.
2001; Whalen et al. 2008; Petkova & Maio 2012).

Looking the RPCA, the RPC1 is dominated by halo masses
during all cosmic evolution (no less than 68 per cent), with other
baryonic properties relegated to RPCs of higher orders. Some cau-
tion is needed to interpret these results. The higher level of com-
pressibility presented by RPCA is a direct consequence of attribut-
ing a smaller weight to rare events. Therefore, if one intends to
describe all haloes properties using the fewest parameterspossible,
RPCA appears to succeed, since it states that as a first approxima-
tion, the total halo mass is the main factor to describe all other prop-
erties. The mass determines the potential well and consequently
the ability of the halo to form stars, retain the metals, etc,there-
fore roughly dictating the baryonic dynamics at a first sight. Since
RPCA ascribes a lower weight to the tails of each parameter dis-
tribution, the physical interpretation may become less evident for
the highest RPCs. However, we can still see the importance ofZ,
xmol and SFR, with the difference that now they are considered
second order effects, hence starting to be dominant from theRPC2
forward. To better understand these differences between RPCA and
PCA we discuss the strength with which each variable is related to
one another as follows.

MIC

Fig. 4 shows how the seven halo properties correlate to each other.
The main diagonal of Fig. 4 shows the density distribution ofeach
variable at different redshifts12 (a zoomed version of half-violin
presented in Fig. 1). The majority of the parameters have a well
behaved distribution, with small variations in its shape during the
cosmic evolution, while quantities related to the stellar feedback
(Mstar,SFR, Z) have their distribution shaped during the transition
from a regime without SF activity atz & 16 to the burst of SFR
aroundz . 15. The lower triangular part of the panel shows scatter
plots for each variable combination colored accordingly totheir
redshift.

Fig. 5 shows MIC andRs for each combination of parameters
as a function of redshift13. At high redshift, due to the poor statis-
tics (less than 30 haloes atz = 19, with a considerably amount of
null parameters), most variables are uncorrelated, receiving a low
score by bothRs and MIC. As expectedMgas, Mdm andT are
strongly correlated, receiving the highest values. This isconsistent
with the fact that PC1 dominates atz > 16 and is basically dictated
by Mdm andMgas. The result suggests that at higher redshifts,
haloes are much simpler objects and their properties are basically
controlled by their masses. Comparing with Fig. 3, it seems that the
correlation between halo mass andT shows a better agreement with
RPCA, which makes ofT a factor almost as important asMgas and
Mdm in the determination of RPC1.
The molecular content, which is directly dependent on the local gas
density andT, shows a correlation withZ that increases at lower
redshifts untilz ≈ 12. This trend is in agreement with the domi-
nance ofxmol andZ on PC1 and RPC2 atz ≈ 13 − 14, caused
by the increase in the contribution of theSFRto PC2 and RPC2 at
earlier redshifts.

12 Highest redshifts are not shown, because the few number of haloes make
the PDF estimate meaningless.
13 We do not present results forz > 17, because of the high number of
zeros in the matrix makes the correlation measurements unreliable.
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Figure 3. Variable contribution to the first three components as a function of redshift. From top to bottom:Mdm (red),Mgas (blue),Mstar (green),SFR
(purple),T (orange),xmol (cyan),Z (khaki). Left panel, PCA; right panel, RPCA

At z & 13− 14, xmol keeps a regular trend of increasing with halo
mass. Nevertheless, theSFactivity atz . 13 leads to a dispersion
of xmol followed by a metal enrichment process, as discussed in
Section 4. AlsoMgas shows a stronger correlation withxmol than
with other quantities like SFR andZ, which indicates the crucial
role ofxmol to initiate SF and consequent metal pollution from Pop
III and Pop II/I regimes in primordial galaxies. Comparing with
Fig. 3, we see that RPCA better apprehends this effect. At high
redshift, with the exception ofz = 16, where the peak in RPC2 is
caused by the first stages of metal enrichment (Fig. 1),xmol main-
tains a dominant contribution to RPC2, together with halo mass.
The correlation between SFR withMgas andMdm is roughly lin-
ear, increasing at later times. This may be explained by the wider
spread of SFR in low massive haloes atz & 14, which is caused by
gas evaporation processes due to SN explosions, in contrastwith
later structures that have a more sustained SF activity. Albeit both
PCA and RPCA are sensitive to this effect, RPCA ascribes a lower
weight to the SFR than toxmol, in accordance to the correlation
analysis.

A surprising disagreement between MIC andRs appears
when comparingZ, Mstar and SFR.Rs suggests a nearly perfect
correlation betweenZ andMstar, while MIC found no significant
association at the highest redshifts. This highlights the robustness
of MIC with skewed and sparse data. In this redshift range,z & 14,
there are very few haloes with non-nullZ andMstar values (Fig. 1).
Therefore, the highRs score for these two quantities is misleading,

as confirmed by a visual inspection of their corresponding distribu-
tions (Figs. 1 and 4). The same argument holds for the comparison
betweenZ-SFR, andMstar-SFR. During the course of cosmic evo-
lution though, the correlations between the properties of the haloes
tighten and bothRs and MIC converge for most of them atz = 10
(with Rs slightly overestimating the strength of correlation com-
pared to MIC), as shown in Fig. 5.

5 CONCLUSIONS

We investigate the redshift evolution of the gas propertiesof pri-
mordial galaxies using RPCA and MIC statistics making a com-
prehensive comparison with standard approaches.

This is the first attempt to probe the baryon properties of early
mini-haloes and the effects of feedback processes by means of a
highly solid statistical approach. We explore the correlation of dif-
ferent baryonic properties as expected from numericalN -body, hy-
drodynamical, chemistry simulations including gas molecular and
atomic cooling, SF, stellar evolution, metal spreading andfeedback
effects.

The wide range of redshifts analyzed here (9 . z . 19) al-
lowed us to perform an unprecedented study of the temporal evo-
lution of the PC contribution to the total variance of the halo prop-
erties. The standard PCA needs two PCs to explain more than 92
per cent of the data variance (in the greater part of redshifts studied

c© 2013 RAS, MNRAS000, 1–9
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here) with PC1 dropping below 50 per cent at lower redshifts.The
first RPC from RPCA analysis explains no less than 84 per cent of
all data variance anytime, with two first RPCs explaining more than
95 per cent of the total robust variance.

First SF episodes and feedback mechanisms cause a drop of
PC1 atz ∼ 14, when a sharp variation in the PCs behavior marks
the onset of cosmic metal enrichment. Atz > 14 the halo proper-
ties are basically dictated by the halo mass. Among the advantages
in using RPCA is the possibility to increase the capability to re-
duce the dimensionality of the original dataset, although at the cost
to be less sensitive to rare events that may be physically relevant.

Since RPCA ranks the contribution of variables to the RPCs inbet-
ter agreement with their levels of correlation. It seems to be in better
agreement with our independent MIC andRs correlation analysis.

An inspection in the first and second PCs reveals some inter-
esting facts. The PC1 peak inZ at redshift 13 is preceded by a
strong contribution of SFR and halo masses to PC2. While the sec-
ond PC1 peak inZ, aroundz ≃ 10, is anticipated by an increasing
contribution to PC2 by the formed stars, which later explodeas
SNe and enrich the Universe. This indicates the importance of stel-
lar evolution in shaping baryon properties in primordial haloes. A
similar trend holds for RPCA although attenuated by the smooth-

c© 2013 RAS, MNRAS000, 1–9
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ferent halo properties.Rs correlation is shown on the left scale with orange
bars, while the MIC is represented by green bars on the right.

ing effect created by the use of robust statistics. It is important to
note, however, that the relatively small number of haloes studied
here might lessen the robustness of our results at very high red-
shifts. Therefore, future investigations of similar techniques into
larger simulations boxes is highly recommended.

Overall Rs agrees reasonably with MIC, but MIC seems to
be more robust to study highly sparse data regimes (like at early
epochs). All gas properties, asideMgas, Mdm andT , are weakly
correlated at high redshift. Nevertheless, due to the interplay be-
tween chemical and mechanical feedback from the ongoing stellar
formation and the consequent back reaction on the thermal behav-
ior of the surrounding medium, baryonic quantities start topresent
a moderate to high level of correlation as redshift decreases. In par-
ticular,xmol shows the highest level of correlation withMgas, fol-
lowed byT , SFR,Mstar andZ respectively. In general, structure
formation processes depend not only on the dark matter halo prop-
erties, but also on the local thermodynamical state of the gas, which
is, in turn, affected by cooling,SFand feedback. Our analysis sug-
gests that all the gaseous properties have a stronger correlation with
Mgas than withMdm, while Mgas has a deeper correlation with
xmol than withZ or SFR. The relevance of the molecular content
for the baryon properties represents the physical origin ofgas col-
lapse and concentration, crucial to initiate SF and consequent metal
pollution from Pop III and Pop II/I regimes in primordial galaxies.
This work represents a leap forward in the statistical analysis ofN -
body/hydro simulations, performed by means of RPCA and MIC
into a cosmological context. We therefore stress that the use of di-

mensionality reduction algorithms and mutual informationbased
techniques in numerical simulations might be a precious instrument
for future investigations, thanks to their potential to unveil non-
trivial relationships, which may go undetected by standardmeth-
ods.
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