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The chaotic behaviour of the motion of the planets in our S8lgstem is well established. In this work to model a
hypothetical extrasolar planetary system our Solar Systasimodified in such a way that we replaced the Earth by a
more massive planet and let the other planets and all theabelhements unchanged. The major result of former nunerica
experiments with a modified Solar System was the appeardrecetmotic window akg € (4, 6), where the dynamical
state of the system was highly chaotic and even the body hittsinallest mass escaped in some cases. On the contrary
for very large values of the mass of the Earth, even greaderttinat of Jupiter regular dynamical behaviour was observed
In this paper the investigations are extended to the comflelar System and showed, that this chaotic window doés stil
exist. Tests in different 'Solar Systems’ clarified thatlirding only Jupiter and Saturn with their actual massesttege

with a more 'massive’ Earthl(< g < 6) perturbs the orbit of Mars so that it can even be ejected frensystem. Using

the results of the Laplace-Lagrange secular theory we feecdlar resonances acting between the motions of the nodes
of Mars, Jupiter and Saturn. These secular resonancesiggveorstrong chaos, which is the cause of the appearance of
the instability window.
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1 Introduction state with Mars suffering from large eccentricities andreve
from escapes. In continuation of this work the interesting
In a previous work we studied in detail how our planetgynamical behaviour is now studied in the complete Solar
would evolve when their masses would be different fI’OI’Bystem including also Mercury and also the outer two ice
those which they have nowadays. The primary goal wafants Uranus and Neptune.
there to study the stability of the systems with regard to
their masses without changing the actual distribution ef th
orbital elements of the planets. Such systems may servezas Methods of investigation
models for exoplanetary systems with a comparable distri-
bution of the semimajor axes, relatively small eccenigsit As has been shown in many different studies the use of
and two dominating masses like Jupiter and Saturn. Addeng term integration of the motions in the planetary sys-
tionally it can be shown with this kind of research how tertem gives reliable results up to at least several hundred mil
restrial like planets would dynamically evolve in such syslions of years for a qualitative study of the orbits (e.g. Ito
tems. In a first experiment (Dvorak & Suli 2002 = pape& Tanikawa 2002). This means that we have a good knowl-
I) the masses of the three terrestrial planets Venus, Eagtige of the semimajor axis, the eccentricities and the in-
and Mars were uniformly enlarged and took as a dynamicalinations of the orbits of the planets involved. On a long
model the truncated Solar System from the planets Ventesm scale the motions of the planets are chaotic which was
to Saturn (¥e2S3. It turned out that the system remainedgshown by different authors (e.g. Laskar 1988, Laskar 1996;
in a dynamically stable state for enlargement factors up tdurray & Holman 1999; Lecar et al. 2001). Additionally
more than 200. We then started to enlarge the masses of ithh@ work by Laskar (1994) he found that in a very far fu-
inner planets separately (Dvorak et al. 2005 = paper Il ardre (somel0° years) by several slight modifications of the
Sili et el. 2005 = paper 1) again in the modé2Saand initial conditions in the Solar System — where the semima-
found especially interesting results for the case when we gor axes were kept constant — Mercury could get eccentric-
larged the mass of the Earth by multiplying it with the masiies close to 1. Already in the abstract he claims that "The
factor k. It turned out that the new system under consiczhaotic diffusion of Mercury is so large that its eccentric-
eration is stable (with quasiperiodic motions of the plahetity can potentially reach values very close to 1, and ejectio
up to quite a large mass of the Earth. In the experiments tbéthis planet out of the Solar system resulting from close
systems were stable for 20 million years when the mass eficounter with Venus is possible in less than 3.5 Gyr.” Our
the Earth was up to about 1.6-fold mass of Jupiter. But waodification is somewhat more drasticall but it is not our
found a surprising exception: aroung = 5 in allourcom- purpose to simulate our Solar System as it is but to investi-
putations the modified Solar System is in a highly chaotigate it as a special model for extrasolar planetary systems.
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For our new investigation we used a program already s
used and tested in many other applications of orbit dynang .. [ ]
ics, namely the Lie-integration (e.g. Dvorak et al. 2003; As £ sz "
ghari et al. 2004). The method is based on the integration “.[ . . . . . . . . |
of differential equations with Lie-series and uses the prop 0 000 2000 3000 4000 5000 G000 7000 8000 8000 10000
erty of recurrence formulae for the Lie-terms. This method

>

has an automatic step size control which makes its resuls
reliable also for eccentric orbits, whilst no additionatco &
putations are necessary to accomplish (in contrary to sym-
plectic methods). The details of the method are described in
the appendix.

During the long term integrations we checked the evoluz  §}
tion of the action like elements, which — in case of a chaotic ot 2 e atm o om0 oo o w00 o000
orbit — show quite irregular behaviour: small to moderate time in thousand years
jumps in the eccentricities and inclinations and also in thigig. 1 Orbital evolution of Mars in the dynamical model
semimajor axis can be found. Finally in many cases weée2Sawith kg = 4.7; the larger variations in the semimajor
found a 'quasiescapebf the planet with a small mass, i. axis (upper plot) coincides with larger eccentricitiesqdie
e. Mars. What we were interested in is to investigate motgraph) and relative small inclinations (lower graph).
in detail the dynamical behaviour of a 'Solar-like’ plarmgta
system (with all terrestrial planets and the ice giants)mwhe
we increase the mass of the Earth with a fagtgrbetween
4 and 6.
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3 The dynamical models

14 :
13+ i
First we have undertaken computations in different dynamg 12 WWWMWWWW%WWWMW 1

ical models inside this 'chaotic window’: in the truncated% L : ‘ : \ : ; : ‘ :

modelsve2Ju, Ve2Ma andEa2Ma the motion of Mars did o w0 a0 000 %0 o0 TO0 8OO 9000 10000

not show any signs of chaos when we enlarged the mass of en———

the Earth via<g. These carefull examinations showed that

the inclusion of Mercury did not significantly modified the

dynamical evolution of the inner planets, although it's mas

is still comparable to the those of the other three termdstri ) ) o )

planets. It therefore seems clear that the couple of Jupitéfd-2  The time evolution of the semimajor axes the peri-

Saturn in the modafe2Sais — together with a more massivel€lia @nd aphelia distances of Mars and Earth in the dynam-

Earth — responsible for the escapes of Mars. ical modelVe2Sawith kg = 4.7 for 10 million years.
The effect of Uranus and Neptune on the dynamics of

the planets and on the size and location of the chaotic Wi the eccentricity and the value itself is relatively small

dow (if it is still exist) is of high concern. In order to study ., .
: L This is a consequence of the fact that Delaunay element
the dynamics of these systems several numerical mteg@—_ a1 — %) cos i changes slowly with time. In Fig

tloqs were performed in the chaotic W.'T‘dOW' To present tlﬁthe semimajor axis, the perihelion and aphelion distances
main features of the results the specific valuegf= 4.7 f

. . of Mars together with the respective orbital elements of the
was selected (chosen just as one out of several others in this : .
) : . . Earth are plotted. As one can see the two orbits are still far
window). For this mass factor the evolution of the actio

like elements will be shown and discussed in details a éom intersection, nevertheless whenever Mars comes close
. . o N8 the Earth these kind of ‘punches’ act as larger perturba-
also a comparison with the former results is given.

tions on its semimajor axis (see upper panel of Hig. 1).

In Fig.[d we see the results of a continuation of the com-
3.1 The truncated’ planetary system Ve2Sa putations shown in Fi§l 2 up to the moment when the eccen-
tricities of the orbit of Mars reaches valueseD.8 after 54
L(Iyrs. From Fig[® an@l3 it is clear that the semimajor axis
of the Earth is constantly 1.0 AU and its aphelion distance
reaches periodically 1.05 AU, therefore when the eccentric
niéy of Mars is higher than 0.31 its orbit may cross that of the
arth. Throughout the integration this limit is approached
1 with orbital eccentricitiess > 0.91 for several short time interval. Although the distance be-

| Tisemimajor axis / aphel

In Fig.[ (upper panel) we can see a kind of irregular var
ations in the semimajor axis of Mars; they go together wit
large values of the eccentricities (middle panel). Durbrese
phases the inclination (lower panel) is always relativeiah.
On the contrary when the inclination is large the variatio
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Fig.3 Orbital Evolution of the semimajor axes for theFig.5 Orbital evolution of the semimajor axis and the per-
three terrestrial planets (upper lines) and the eccetytiodi  ihelia and aphelia distances for the Earth and Mars (upper
Mars for 60 million years in the mod&e2Sa(xr = 4.7).  panel) for 10 million years in the mod#e2Ne the same
elements are plotted for Mercury and Venus (lower panel)
158 —— ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ (kg =4.7).
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‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ | eccentricity. From the same moment on the inclination (bot-
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 tom graph) StayS In a mode Of Only Sma” Irregular ChangeS
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ot up to the end of integration of 10 million years. Large ir-
regular variations superimposed on a high mean value of
] e =~ (.26 after 7.8 million years lead to strong variations in
the semimajor axisl(51 < a < 1.57) of Mars as it can
16 be seen in Fidl4 (upper graph). In Hij. 5 (upper graph) this
i% ; dynamical behaviour is well explained when we see that the
0

eccentricity
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I aphelion distance of the Earth and the perihelion distafce o
\ \ \ \ : \ \ \ Mars almost equals after nine millions of years. This means

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 . .

fime in thousand years that Mars may enter into the Hill-sphere of the Earth. In

Fig.4 Evolution of the the action like variables of Marsthe same Fidl15 (lower graph) one can see that also Venus
for 10 million years in the modeéle2Ne semimajor axis IS suffering from an increase in the eccentricity. It is well

(upper graph), eccentricity (m|dd|e graph) and inc|inati0ViSib|e that Mercury does not play any important role in the
(lower graph) ¢z = 4.7). dynamical evolution during the first ten million years (lawe

graph in Fig[®b). In both models discussed the motion of the

outer planets did not show any visible different behaviour
tween the two orbits% 0.1 AU) during these periods are compared to the actual Solar System.

still an order of magnitude bigger than the Hill-sphere of
Earth & 0.01 AU) the Earth can strongly perturb the mo-
tion of Mars. L .

After 45 million years the eccentricity of Mars begins4 Determination of the secular frequencies
to grow secularly, reaches values bigger than 0.31. This is
followed by a cascade mechanism caused by the mutual 8or a possible explanation of the strong chaotic behavibur o
bital crossings: the eccentricity of Mars suffers from veryhe system for special values©f we have applied the first
big jumps with amplitude as high as 0.75: the orbit of Marerder secular theory of Laplace-Lagrange. It can be used
crosses the orbits of the Earth and Venus too and it is onlyen the eccentricities and inclinations can be regarded as
matter of time that the highly chaotic orbit leads to a subsemall quantities, the orbits are not crossing and no mean

guent escape of Mars. motion commensurabilities are present. It is also impartan
that the masses involved are small with respect to the pri-
3.2 The complete system Me2Ne mary body, which is for sure the case even with a 6-fold

masses in the case of the Earth (still much smaller than the
In Fig.M (top graph) one can observe a small increase (lumgas giants). With the orbital elements:
in the semimajor axis after almost 4 million years (because
of the difference in the-scale compared to Fiffl 1 it is not < h) sin @ (p) . sinQ )
_ —.

well visible but it is present) together with an increaséhiat \ & | ~ ¢ cosw’ q cos )
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the Laplace-Lagrange solution reads: o)

(Zi > > MY Sir; (gt + B, ()
j=1

CO
Ds i) Sin
(qs > = ;L?) cos St +5) ®3)
whereN is the number of bodies\ = 5 for Ve2Sa and g
N = 8§ for Me2Ne), M, L\ are the amplitudes,;, f; el - ~ - -
are the secular frequencies, and~; are the phases. Mass foctor [«

To determine the first order solution of the dynamical
model as a function of the mass factog, we have com- >) . : : : —
puted they; (xs), f; (k) MY (k5), L () ands; (k)
~v;(kg) functionsfork g € [4, 6] with the aid of the MAPLE : ]
algebra manipulation package. The comparison of the re-
sults from our determination up to the first order with Bre-
tagnon 1974, 1982 and KneZevic 1986 showed satisfactory E ]
agreement for the moddlfle2Ne (with kg = 1). -27F E

The orbital elements of theth planet are described by I ‘ ‘ ‘ f
Eq. @) and Eq.[3), which are the sum of harmonic oscil- 40 45 50 55 6.0
lations. Using these formulae it can be calculated that the Vioss focter [
planets’ eccentricities and inclinations are varying esw o
given limits with quasiperiodic oscillations. Due to thespo F19:6 ~ Secular frequencief; in the modeNMe2Sa(a) and
itive g; secular angular velocities the apsidal lines of th1€2Ne(b) with respect to the mass facter

planets are rotating in the same direction as the planets,

whereas the nodes accordingly to the negafivesecular rates is referred to in Solar System as a secular resonance.
angular velocities (see the first line of Table 1) are are rgn this case we have three secular resonariegs:~ ,
tating in the opposite direction. Upon these mean rotatiokis,, ~ (4 and(2; ~ (5. We suspect that these secular

quasiperiodic variations are superimposed. Both the apsigesonances are the main source of the observed chaos, and
and nodal motions can be approximated by average angyabduce the chaotic window.

velocities, which are to a first approximation equal with the
frequencies of those harmonious terms which are multiplied

242 E

Frequency ["/yr]

-25¢ .

Frequency ["/yr]

by the largest amplitudes: 5 Discussion
s sin w, ~ M§J> sin (gt + B1), (4) Inmodelling extrasplar plgnetary systems we took our So-
COs s cos lar System as starting point for several models, where we
i sinQ)y 1) sin (Fict + i) (5) increased the masses of the planets involved until to the
ST cosQy % cos VK KD moment of instability. In former papers it turned out that

only a significantly larger mass of the Earth (the other plan-

ets’ masses were left unchanged) could lead to a decay of

these modified systems. In the article we focus on a sur-
ising “chaotic window” in the dynamical evolution of our
Emetary system when we increase the mass of the Earth

whereM{”) = maxj|M5(j)|, L) = maxj|L§j)| and the
average angular velocities of thth planet are given by
and fx . In this manner the secular frequencies can be as
ciated with each planet. We note that this assignment is

unambiguous.
; . , by the massfactot < kg < 6. Former results of paper
In Fig.[d we compare the frequencigsand; assigned Il have unveiled this interesting dynamical behaviourdor

to the planets Earth :_:md Mars, respectively, _in the mOdetl‘?mcated Solar system mod&l'é2Sa). We used a heuris-
Ve2SaandMe2Ne which show only a small shift along thetic way to find out the reason for this unexpected strong

rp axis: the rﬁinimu?'\(jistancedis 0.1567 arcse/c/yeafr f@haotic behaviour: we numerically integrated different dy
rp ~ 5.00 in the modeMe2Saand 0.1538 arcsec/year for,; mical models. It turned out that only the couple Jupiter-

rp ~ 5.20in the modeMe2Ne ) Saturn together with the Earth (with a larger mass) is the

A study of Tabl€l shows that the largest amplitude argg,se for the subsequent escape of Mars. In the compar-
in the solution for Mars{” and L"), for JupiterL{” and ison of the two model&/e2Sawith Me2Ne we see that
ng) and for SaturnLéz), Lég). Accordingly thef, and f3 there is in principle no difference for the state of chaotic-
frequencies, can be associated with Mars, Jupiter and Siyf- of the orbits: in both models Mars suffers sooner or
urn. The orbital plane of Mars therefore on the average rtater from close approaches with the Earth because of the
tates together with those of Jupiter and Saturn, giving riderge values of the eccentricity (Figl 7). This is true for
to chaotic behaviour. The equality of two apsidal or nodahe whole intervak < kg < 6 which we tested with a

(© 0000 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Www.an-journal.org
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Table 1 The f; secular frequencies, and tihe’ amplitudes of the model foty = 5.2 determined by the Laplace-Lagrange theory.
f; inarcseclyr.

f; | -48.769679  -26.194843  -26.041015 -9.7343131 -7.078408®.8810179 -0.67270058 op

LY j=1 j=2 i=3 j=4 ji=5 =6 j=7 i=8
Mercury | 2.8791073  1.9931072  2.44410~% 1.61610"! 6.5451072 1.64010°%  1.60010~* 2.79610 2
Venus | -5.2411072 -7.1261072 -9.53510% -2.74710~% 2.1901072 1.25910~°® 1.52010~* 2.7961072
Earth | 7.42710% -3.86210~°® -5.50310~% -2.97510~% 2.0261072 1.22510~% 1.51010~*% 2.796102
Mars | -2.27710~%  3.86710"' 3.72310~! -1.876107% 1.1411072 1.05:10~% 1.46510~* 2.79610?
Jupiter | -4.370107% -1.87510®  4.059107°  9.975107° -1.132107* 7.46910~*  1.376107* 2.7961072
Saturn| 2.056107° 4.58910~% -1.01710"2 1.82310~° -1.65210~* 6.113107* 1.327107* 2.7961072
Uranus| -6.524107° -1.94610~% 4.37410™* -4.65710°% 7.325107° -1.3901072 -1.31510~* 2.79610°2
Neptune| 7.922107'° -2.17010~° 4.88910~° -4.275107 4.827107° 1.64210~% -1.388107% 2.7961072

inclination
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Fig.7 Comparison of the maximum value of the eccen-

tricity of Mars in the model&e2Sa(x) andMe2Ne (+) for
10 million years with respect to the mass faotgr.

inclination
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step of Akg = 0.1 for both models. On the contrary, with ; p 1200 2000

larger values okp < 540 = 1.8M jypiter @ VEry regu- . . Lo
g " Jupit y reg @9.8 Comparison of the inclinations of the planets Venus

nd Mars in the model¥e2Sa(upper graph) antle2Ne

regular dynamical evolution can be seen in the quasipe . :
odic behaviour of the inclinations of the planets (Fij. 8)(. ower graph) for the Earth with a mass of Saturn for 2 mil-

In the upper panel one can see the inclinations of Venl|gn years.

(max()=6.°5) and Mars (max{)= 5°) for the modeMe2Sa

|n_the Ic_>wer panel the same quantities in the mMe?Ne merical integrations were accomplished on the NIIDP (Natio
It is evident that qualitatively both plots agree quite Wellj,ormation Infrastructure Development Program) supemoter

The first quantitative differences appear after 1 millioarge jn Hungary. This study was supported by the Internationaicsp
in the inclination of Venus. The same overall behaviour cagcience Institute (ISSI) and benefit from the ISSI team ’Etioh

be observed for the eccentricities (not shown). All these osf Habitable Planets’.

bits are stable. But why do we have strong chaos in this

window of x which does not appear for larger values up to

a mass factor which correspond to an Earth comparable'%?fen:mceS

Jupiter? Using the results of the Laplac_e-Lagrange secu!@srghari N. et al.: 2004, A&A, 426, 353

theory we found secular resonances acting between the MBPatagnon, P.: 1974, AGA, 30, 341

tions of the nodes of Mars, Jupiter and Saturn. These secUiétagnon, P.: 1982, A&A, 114, 278

resonances give rise to strong chaos, which is the primabgiva, M.: 1984, Celestial Mechanics 34, 145

cause of the appearance of the chaotic window, and evé¥siva, M.: 1985, A&A Supp. 60, 277

tually the escape of Mars. The properties of the dynami&¥yorak, R., Muller, P, Kallrath, J.: 1993, A&A, 274, 627

of the model in the chaotic window must be further anaPvorak R., Suli, A., Freistetter F.: 2005, in eds. Z. KnazdAU
ysed by higher order secular theory. The final answer to this C°!10d- 197, Dynamics of populations of planetary systems,

problem is highly interesting for future research on the dxf)vorak R., Pilat-Lohinger E., Funk B., Freistetter F.: 2083A,

namics of extrasolar planetary systems especially when we 395 | 1

will have evidence via observations — primarely from spaggvorak R., Siili, A.: 2002, Celest. Mech. & Dyn. Astron., &3,

missions like KEPLER, DARWIN and TPF- that some ofGrobner, W., 1967, Die Lie-Reihen und ihre Anwendungen

them are also hosting terrestrial planets. (Berlin, VEB, Deutscher Verlag der Wissenschaften)
Hanslmeier A., Dvorak R.: 1984, A&A, 132, 203
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Laskar J.: 1988, A&A, 198, 341 Making use of it we can demonstrate how Lie-series solvediff

Laskar J.: 1994, A&A, 287, L9 ential equations. Let us give the system of differentialagiquns:

Laskar J.: 1996, Celest. Mech. & Dyn. Astron, 64, 115 Az

Lecar M., Franklin F.A., Holman M.J., Murray N.W.: 2001, Amn dtl =0i(2) (A6)
Rev. A & A, 39, 581 ) .

Lichtenegger H., 1984, Celest. Mech., 34, 357 with (_z17 22,...,2n). We postulate that the solution ¢f{]A6) can

Murray N., Holman M.: 1999, Sci. 283, 1877 be written as

SuliA., Dvorak, R. & Freistetter F.: 2005, MNRAS 363, 1,241 . _ D¢, (A7)

where¢; are the initial conditions;(¢ = 0) and D is the Lie-
A The Lie-integration operator as defined iffA1). In order to proE1A7) we diffeizte
it with respect to time¢ and make use of théertauschungssatz:
Because our integration method is not one which is used by mag,, D D
colleagues we shortly explain how the LIE-integration veorkhis 7 — De "¢ = e D&
method, based on an idea by Grobner 1967, has been used by@é"&ause of
group since 1984 (e.g. Hanslmeier & Dvorak 1984; Lichtereegg
1984; Delva 1984,1985; Dvorak et al. 1993). It turned outeéamb D& = 0:(&:) (A9)
precise and fast tool, which can be also used when the ofoits 0e gptain — again by using theertauschungssatz — the fol-
system suffer from close encounters. This is done by com@uti|oing result which turns out to be the original differehéaua-
for every step the optimal step size for the desired pretisfdhe i @0):
integration. dos
Let D denote a linear differential operator; the point= &
(#1, 22,...,2n) lies in the n-dimensional z-space; the functions
0;(z) are holomorphic within a certain domad, e.g. they can
be expanded in converging power series. Let the funcfiar) be
holomorphic in the same region 85 z). ThenD can be applied

(A8)

=eP0i(&) = 0i(e"P&) = 0:(=1) (A10)

to f(z):

Df:gl(z)aa_,i+92(Z)88_i+’”+9"(z)88_i (AL)
If we proceed applyind to f we get

D*f = D(Df)

D"f = D(D""'f)

TheLie-serieswill be defined in the following way;

o)

L(z,t) = Z gD”f(z) = f(2) +tDf(2) + %D2f(z) ...

v=0

Because we can write the Taylor-expansion of the exporiéatie-
tion

2 3
eth:1+tD1+t2—'D2+g—'D3+... (A2)
L(z, t) can be written in the symbolic form
L(z,t) = P f(z) (A3)

The convergence proof af(z,t) is given in detail in Grobner
1967. The most useful property of Lie-series isWegtauschungssatz:

Theorem 1. Let F'(z) be a holomorphic function in the neigh-

bourhood of (z1, 22, .. ., 2») Where the corresponding power se-
ries expansion converges at the point (21, Z2, ..., Zy,); then we
have:
[e’e} tV 5
F(z)=Y_ D F(2) (A%)
v=0
or
F(e'P)z =P F(z2) (A5)
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