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Á. Süli1 andR. Dvorak2
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The chaotic behaviour of the motion of the planets in our Solar System is well established. In this work to model a
hypothetical extrasolar planetary system our Solar Systemwas modified in such a way that we replaced the Earth by a
more massive planet and let the other planets and all the orbital elements unchanged. The major result of former numerical
experiments with a modified Solar System was the appearance of a chaotic window atκE ∈ (4, 6), where the dynamical
state of the system was highly chaotic and even the body with the smallest mass escaped in some cases. On the contrary
for very large values of the mass of the Earth, even greater than that of Jupiter regular dynamical behaviour was observed.
In this paper the investigations are extended to the complete Solar System and showed, that this chaotic window does still
exist. Tests in different ’Solar Systems’ clarified that including only Jupiter and Saturn with their actual masses together
with a more ’massive’ Earth (4 < κE < 6) perturbs the orbit of Mars so that it can even be ejected fromthe system. Using
the results of the Laplace-Lagrange secular theory we foundsecular resonances acting between the motions of the nodes
of Mars, Jupiter and Saturn. These secular resonances give rise to strong chaos, which is the cause of the appearance of
the instability window.

c© 0000 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

In a previous work we studied in detail how our planets
would evolve when their masses would be different from
those which they have nowadays. The primary goal was
there to study the stability of the systems with regard to
their masses without changing the actual distribution of the
orbital elements of the planets. Such systems may serve as
models for exoplanetary systems with a comparable distri-
bution of the semimajor axes, relatively small eccentricities
and two dominating masses like Jupiter and Saturn. Addi-
tionally it can be shown with this kind of research how ter-
restrial like planets would dynamically evolve in such sys-
tems. In a first experiment (Dvorak & Süli 2002 = paper
I) the masses of the three terrestrial planets Venus, Earth
and Mars were uniformly enlarged and took as a dynamical
model the truncated Solar System from the planets Venus
to Saturn (=Ve2Sa). It turned out that the system remained
in a dynamically stable state for enlargement factors up to
more than 200. We then started to enlarge the masses of the
inner planets separately (Dvorak et al. 2005 = paper II and
Süli et el. 2005 = paper III) again in the modelVe2Saand
found especially interesting results for the case when we en-
larged the mass of the Earth by multiplying it with the mass
factorκE . It turned out that the new system under consid-
eration is stable (with quasiperiodic motions of the planets)
up to quite a large mass of the Earth. In the experiments the
systems were stable for 20 million years when the mass of
the Earth was up to about 1.6-fold mass of Jupiter. But we
found a surprising exception: aroundκE = 5 in all our com-
putations the modified Solar System is in a highly chaotic

state with Mars suffering from large eccentricities and even
from escapes. In continuation of this work the interesting
dynamical behaviour is now studied in the complete Solar
System including also Mercury and also the outer two ice
giants Uranus and Neptune.

2 Methods of investigation

As has been shown in many different studies the use of
long term integration of the motions in the planetary sys-
tem gives reliable results up to at least several hundred mil-
lions of years for a qualitative study of the orbits (e.g. Ito
& Tanikawa 2002). This means that we have a good knowl-
edge of the semimajor axis, the eccentricities and the in-
clinations of the orbits of the planets involved. On a long
term scale the motions of the planets are chaotic which was
shown by different authors (e.g. Laskar 1988, Laskar 1996;
Murray & Holman 1999; Lecar et al. 2001). Additionally
in a work by Laskar (1994) he found that in a very far fu-
ture (some109 years) by several slight modifications of the
initial conditions in the Solar System – where the semima-
jor axes were kept constant – Mercury could get eccentric-
ities close to 1. Already in the abstract he claims that ”The
chaotic diffusion of Mercury is so large that its eccentric-
ity can potentially reach values very close to 1, and ejection
of this planet out of the Solar system resulting from close
encounter with Venus is possible in less than 3.5 Gyr.” Our
modification is somewhat more drasticall but it is not our
purpose to simulate our Solar System as it is but to investi-
gate it as a special model for extrasolar planetary systems.
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For our new investigation we used a program already
used and tested in many other applications of orbit dynam-
ics, namely the Lie-integration (e.g. Dvorak et al. 2003; As-
ghari et al. 2004). The method is based on the integration
of differential equations with Lie-series and uses the prop-
erty of recurrence formulae for the Lie-terms. This method
has an automatic step size control which makes its results
reliable also for eccentric orbits, whilst no additional com-
putations are necessary to accomplish (in contrary to sym-
plectic methods). The details of the method are described in
the appendix.

During the long term integrations we checked the evolu-
tion of the action like elements, which – in case of a chaotic
orbit – show quite irregular behaviour: small to moderate
jumps in the eccentricities and inclinations and also in the
semimajor axis can be found. Finally in many cases we
found a ’quasiescape’1 of the planet with a small mass, i.
e. Mars. What we were interested in is to investigate more
in detail the dynamical behaviour of a ’Solar-like’ planetary
system (with all terrestrial planets and the ice giants) when
we increase the mass of the Earth with a factorκE between
4 and 6.

3 The dynamical models

First we have undertaken computations in different dynam-
ical models inside this ’chaotic window’: in the truncated
modelsVe2Ju, Ve2Ma andEa2Ma the motion of Mars did
not show any signs of chaos when we enlarged the mass of
the Earth viaκE . These carefull examinations showed that
the inclusion of Mercury did not significantly modified the
dynamical evolution of the inner planets, although it’s mass
is still comparable to the those of the other three terrestrial
planets. It therefore seems clear that the couple of Jupiter-
Saturn in the modelVe2Sais – together with a more massive
Earth – responsible for the escapes of Mars.

The effect of Uranus and Neptune on the dynamics of
the planets and on the size and location of the chaotic win-
dow (if it is still exist) is of high concern. In order to study
the dynamics of these systems several numerical integra-
tions were performed in the chaotic window. To present the
main features of the results the specific value ofκE = 4.7
was selected (chosen just as one out of several others in this
window). For this mass factor the evolution of the action
like elements will be shown and discussed in details and
also a comparison with the former results is given.

3.1 The ’truncated’ planetary system Ve2Sa

In Fig. 1 (upper panel) we can see a kind of irregular vari-
ations in the semimajor axis of Mars; they go together with
large values of the eccentricities (middle panel). During these
phases the inclination (lower panel) is always relatively small.
On the contrary when the inclination is large the variations

1 with orbital eccentricitiese > 0.91
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Fig. 1 Orbital evolution of Mars in the dynamical model
Ve2Sawith κE = 4.7; the larger variations in the semimajor
axis (upper plot) coincides with larger eccentricities (middle
graph) and relative small inclinations (lower graph).
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Fig. 2 The time evolution of the semimajor axes the peri-
helia and aphelia distances of Mars and Earth in the dynam-
ical modelVe2Sawith κE = 4.7 for 10 million years.

in the eccentricity and the value itself is relatively small.
This is a consequence of the fact that Delaunay element
H =

√

a(1− e2) cos i changes slowly with time. In Fig.
2 the semimajor axis, the perihelion and aphelion distances
of Mars together with the respective orbital elements of the
Earth are plotted. As one can see the two orbits are still far
from intersection, nevertheless whenever Mars comes close
to the Earth these kind of ’punches’ act as larger perturba-
tions on its semimajor axis (see upper panel of Fig. 1).

In Fig. 3 we see the results of a continuation of the com-
putations shown in Fig. 2 up to the moment when the eccen-
tricities of the orbit of Mars reaches values of≈ 0.8 after 54
Myrs. From Fig. 2 and 3 it is clear that the semimajor axis
of the Earth is constantly 1.0 AU and its aphelion distance
reaches periodically 1.05 AU, therefore when the eccentric-
ity of Mars is higher than 0.31 its orbit may cross that of the
Earth. Throughout the integration this limit is approached
for several short time interval. Although the distance be-
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Fig. 3 Orbital Evolution of the semimajor axes for the
three terrestrial planets (upper lines) and the eccentricity of
Mars for 60 million years in the modelVe2Sa(κE = 4.7).
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Fig. 4 Evolution of the the action like variables of Mars
for 10 million years in the modelMe2Ne; semimajor axis
(upper graph), eccentricity (middle graph) and inclination
(lower graph) (κE = 4.7).

tween the two orbits (≈ 0.1 AU) during these periods are
still an order of magnitude bigger than the Hill-sphere of
Earth (≈ 0.01 AU) the Earth can strongly perturb the mo-
tion of Mars.

After 45 million years the eccentricity of Mars begins
to grow secularly, reaches values bigger than 0.31. This is
followed by a cascade mechanism caused by the mutual or-
bital crossings: the eccentricity of Mars suffers from very
big jumps with amplitude as high as 0.75: the orbit of Mars
crosses the orbits of the Earth and Venus too and it is only a
matter of time that the highly chaotic orbit leads to a subse-
quent escape of Mars.

3.2 The complete system Me2Ne

In Fig. 4 (top graph) one can observe a small increase (jump)
in the semimajor axis after almost 4 million years (because
of the difference in they-scale compared to Fig. 1 it is not
well visible but it is present) together with an increase in the
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Fig. 5 Orbital evolution of the semimajor axis and the per-
ihelia and aphelia distances for the Earth and Mars (upper
panel) for 10 million years in the modelMe2Ne; the same
elements are plotted for Mercury and Venus (lower panel)
(κE = 4.7).

eccentricity. From the same moment on the inclination (bot-
tom graph) stays in a mode of only small irregular changes
up to the end of integration of 10 million years. Large ir-
regular variations superimposed on a high mean value of
e ≈ 0.26 after 7.8 million years lead to strong variations in
the semimajor axis (1.51 < a < 1.57) of Mars as it can
be seen in Fig. 4 (upper graph). In Fig. 5 (upper graph) this
dynamical behaviour is well explained when we see that the
aphelion distance of the Earth and the perihelion distance of
Mars almost equals after nine millions of years. This means
that Mars may enter into the Hill-sphere of the Earth. In
the same Fig. 5 (lower graph) one can see that also Venus
is suffering from an increase in the eccentricity. It is well
visible that Mercury does not play any important role in the
dynamical evolution during the first ten million years (lower
graph in Fig. 5). In both models discussed the motion of the
outer planets did not show any visible different behaviour
compared to the actual Solar System.

4 Determination of the secular frequencies

For a possible explanation of the strong chaotic behaviour of
the system for special values ofκE we have applied the first
order secular theory of Laplace-Lagrange. It can be used
when the eccentricities and inclinations can be regarded as
small quantities, the orbits are not crossing and no mean
motion commensurabilities are present. It is also important
that the masses involved are small with respect to the pri-
mary body, which is for sure the case even with a 6-fold
masses in the case of the Earth (still much smaller than the
gas giants). With the orbital elements:

(

h

k

)

= e ·
sin̟
cos̟

,

(

p

q

)

= i ·
sinΩ
cosΩ

(1)
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the Laplace-Lagrange solution reads:
(

hs

ks

)

=

n
∑

j=1

M (j)
s

sin
cos

(gjt+ βj) , (2)

(

ps
qs

)

=
n
∑

j=1

L(j)
s

sin
cos

(fjt+ γj) , (3)

whereN is the number of bodies (N = 5 for Ve2Sa and
N = 8 for Me2Ne), M (j)

s , L
(j)
s are the amplitudes,gj , fj

are the secular frequencies, andβj , γj are the phases.
To determine the first order solution of the dynamical

model as a function of the mass factorκE , we have com-
puted thegj(κE), fj(κE),M

(j)
s (κE),L

(j)
s (κE) andβj(κE),

γj(κE) functions forκE ∈ [4, 6]with the aid of the MAPLE
algebra manipulation package. The comparison of the re-
sults from our determination up to the first order with Bre-
tagnon 1974, 1982 and Kneževic 1986 showed satisfactory
agreement for the modelMe2Ne (with κE = 1).

The orbital elements of thesth planet are described by
Eq. (2) and Eq. (3), which are the sum of harmonic oscil-
lations. Using these formulae it can be calculated that the
planets’ eccentricities and inclinations are varying between
given limits with quasiperiodic oscillations. Due to the pos-
itive gj secular angular velocities the apsidal lines of the
planets are rotating in the same direction as the planets,
whereas the nodes accordingly to the negativefj secular
angular velocities (see the first line of Table 1) are are ro-
tating in the opposite direction. Upon these mean rotations
quasiperiodic variations are superimposed. Both the apsidal
and nodal motions can be approximated by average angular
velocities, which are to a first approximation equal with the
frequencies of those harmonious terms which are multiplied
by the largest amplitudes:

es ·
sin̟s

cos̟s
≈ M (J)

s

sin
cos

(gJ t+ βJ) , (4)

is ·
sinΩs

cosΩs
≈ L(K)

s

sin
cos

(fKt+ γK) , (5)

whereM (J)
s = maxj |M

(j)
s |, L

(K)
s = maxj |L

(j)
s | and the

average angular velocities of thesth planet are given bygJ
andfK . In this manner the secular frequencies can be asso-
ciated with each planet. We note that this assignment is not
unambiguous.

In Fig. 6 we compare the frequenciesf2 andf3 assigned
to the planets Earth and Mars, respectively, in the models
Ve2SaandMe2Ne, which show only a small shift along the
κE axis: the minimum distance is 0.1567 arcsec/year for
κE ≈ 5.00 in the modelVe2Saand 0.1538 arcsec/year for
κE ≈ 5.20 in the modelMe2Ne

A study of Table 1 shows that the largest amplitude are,
in the solution for Mars,L(2)

4 andL(3)
4 , for JupiterL(2)

5 and

L
(3)
5 and for SaturnL(2)

6 , L
(3)
6 . Accordingly thef2 andf3

frequencies, can be associated with Mars, Jupiter and Sat-
urn. The orbital plane of Mars therefore on the average ro-
tates together with those of Jupiter and Saturn, giving rise
to chaotic behaviour. The equality of two apsidal or nodal

Fig. 6 Secular frequenciesfj in the modelVe2Sa(a) and
Me2Ne(b) with respect to the mass factorκ.

rates is referred to in Solar System as a secular resonance.
In this case we have three secular resonances:Ω̇M ≈ Ω̇J ,
Ω̇M ≈ Ω̇S and Ω̇J ≈ Ω̇S . We suspect that these secular
resonances are the main source of the observed chaos, and
produce the chaotic window.

5 Discussion

In modelling extrasolar planetary systems we took our So-
lar System as starting point for several models, where we
increased the masses of the planets involved until to the
moment of instability. In former papers it turned out that
only a significantly larger mass of the Earth (the other plan-
ets’ masses were left unchanged) could lead to a decay of
these modified systems. In the article we focus on a sur-
prising “chaotic window” in the dynamical evolution of our
planetary system when we increase the mass of the Earth
by the massfactor4 < κE < 6. Former results of paper
III have unveiled this interesting dynamical behaviour fora
truncated Solar system model (Ve2Sa). We used a heuris-
tic way to find out the reason for this unexpected strong
chaotic behaviour: we numerically integrated different dy-
namical models. It turned out that only the couple Jupiter-
Saturn together with the Earth (with a larger mass) is the
cause for the subsequent escape of Mars. In the compar-
ison of the two modelsVe2Sawith Me2Ne we see that
there is in principle no difference for the state of chaotic-
ity of the orbits: in both models Mars suffers sooner or
later from close approaches with the Earth because of the
large values of the eccentricity (Fig. 7). This is true for
the whole interval4 ≤ κE ≤ 6 which we tested with a

c© 0000 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org
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Table 1 Thefj secular frequencies, and theL(j)
s amplitudes of the model forκE = 5.2 determined by the Laplace-Lagrange theory.

fj in arcsec/yr.

fj -48.769679 -26.194843 -26.041015 -9.7343131 -7.0784088 -2.8810179 -0.67270058 0.0

L
(j)
s j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

Mercury 2.879·10−3 1.993·10−3 2.444·10−3 1.616·10−1 6.545·10−2 1.640·10−3 1.600·10−4 2.796·10−2

Venus -5.241·10−2 -7.126·10−3 -9.535·10−3 -2.747·10−3 2.190·10−2 1.259·10−3 1.520·10−4 2.796·10−2

Earth 7.427·10−3 -3.862·10−3 -5.503·10−3 -2.975·10−3 2.026·10−2 1.225·10−3 1.510·10−4 2.796·10−2

Mars -2.277·10−3 3.867·10−1 3.723·10−1 -1.876·10−3 1.141·10−2 1.051·10−3 1.465·10−4 2.796·10−2

Jupiter -4.370·10−6 -1.875·10−3 4.059·10−3 9.975·10−6 -1.132·10−4 7.469·10−4 1.376·10−4 2.796·10−2

Saturn 2.056·10−6 4.589·10−3 -1.017·10−2 1.823·10−5 -1.652·10−4 6.113·10−4 1.327·10−4 2.796·10−2

Uranus -6.524·10−9 -1.946·10−4 4.374·10−4 -4.657·10−6 7.325·10−5 -1.390·10−2 -1.315·10−4 2.796·10−2

Neptune 7.922·10−10 -2.170·10−5 4.889·10−5 -4.275·10−7 4.827·10−6 1.642·10−3 -1.388·10−3 2.796·10−2
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Fig. 7 Comparison of the maximum value of the eccen-
tricity of Mars in the modelsVe2Sa(×) andMe2Ne(+) for
10 million years with respect to the mass factorκE .

step of∆κE = 0.1 for both models. On the contrary, with
larger values ofκE < 540 ≈ 1.8MJupiter a very regu-
lar dynamical behaviour was observed for all planets. This
regular dynamical evolution can be seen in the quasiperi-
odic behaviour of the inclinations of the planets (Fig. 8).
In the upper panel one can see the inclinations of Venus
(max(i)=6.◦5) and Mars (max(i)= 5◦) for the modelVe2Sa,
in the lower panel the same quantities in the modelMe2Ne.
It is evident that qualitatively both plots agree quite well.
The first quantitative differences appear after 1 million years
in the inclination of Venus. The same overall behaviour can
be observed for the eccentricities (not shown). All these or-
bits are stable. But why do we have strong chaos in this
window ofκ which does not appear for larger values up to
a mass factor which correspond to an Earth comparable to
Jupiter? Using the results of the Laplace-Lagrange secular
theory we found secular resonances acting between the mo-
tions of the nodes of Mars, Jupiter and Saturn. These secular
resonances give rise to strong chaos, which is the primary
cause of the appearance of the chaotic window, and even-
tually the escape of Mars. The properties of the dynamics
of the model in the chaotic window must be further anal-
ysed by higher order secular theory. The final answer to this
problem is highly interesting for future research on the dy-
namics of extrasolar planetary systems especially when we
will have evidence via observations – primarely from space
missions like KEPLER, DARWIN and TPF– that some of
them are also hosting terrestrial planets.
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A The Lie-integration

Because our integration method is not one which is used by many
colleagues we shortly explain how the LIE-integration works. This
method, based on an idea by Gröbner 1967, has been used by our
group since 1984 (e.g. Hanslmeier & Dvorak 1984; Lichtenegger
1984; Delva 1984,1985; Dvorak et al. 1993). It turned out to be a
precise and fast tool, which can be also used when the orbits of a
system suffer from close encounters. This is done by computing
for every step the optimal step size for the desired precision of the
integration.

Let D denote a linear differential operator; the pointz =
(z1, z2, . . . , zn) lies in the n-dimensional z-space; the functions
θi(z) are holomorphic within a certain domainG, e.g. they can
be expanded in converging power series. Let the functionf(z) be
holomorphic in the same region asθi(z). ThenD can be applied
to f(z):

Df = θ1(z)
∂f

∂z1
+ θ2(z)

∂f

∂z2
+ . . .+ θn(z)

∂f

∂zn
(A1)

If we proceed applyingD to f we get

D
2
f = D(Df)

...

D
n
f = D(Dn−1

f)

TheLie-serieswill be defined in the following way;

L(z, t) =

∞
∑

ν=0

tν

ν!
D

ν
f(z) = f(z) + tDf(z) +

t2

2!
D

2
f(z) + . . .

Because we can write the Taylor-expansion of the exponential func-
tion

e
tD

f = 1 + tD
1 +

t2

2!
D

2 +
t3

3!
D

3 + . . . (A2)

L(z, t) can be written in the symbolic form

L(z, t) = e
tD

f(z) (A3)

The convergence proof ofL(z, t) is given in detail in Gröbner
1967. The most useful property of Lie-series is theVertauschungssatz:

Theorem 1. Let F (z) be a holomorphic function in the neigh-
bourhood of (z1, z2, . . . , zn) where the corresponding power se-
ries expansion converges at the point (Z1, Z2, . . . , Zn); then we
have:

F (Z) =

∞
∑

ν=0

tν

ν!
D

ν
F (Z) (A4)

or

F (etD)z = e
tD

F (z) (A5)

Making use of it we can demonstrate how Lie-series solve differ-
ential equations. Let us give the system of differential equations:

dzi

dt
= θi(z) (A6)

with (z1, z2, . . . , zn). We postulate that the solution of (A6) can
be written as

zi = e
tD

ξi (A7)

whereξi are the initial conditionszi(t = 0) and D is the Lie-
operator as defined in (A1). In order to prove (A7) we differentiate
it with respect to timet and make use of theVertauschungssatz:

dzi

dt
= De

tD
ξi = e

tD
Dξi. (A8)

Because of

Dξi = θi(ξi) (A9)

we obtain – again by using theVertauschungssatz – the fol-
lowing result which turns out to be the original differential equa-
tion (A6):

dzi

dt
= e

tD
θi(ξi) = θi(e

tD
ξi) = θi(zi) (A10)
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