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Do supernovae favor tachyonic Big Brake instead de Sitter ?
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Abstract. We investigate whether a tachyonic scalar field, encompgdgith dark energy and dark matter-like features will
drive our universe towards a Big Brake singularity or a déeeBéxpansion. In doing this it is crucial to establish theapzeter
domain of the model, which is compatible with type la supeasodata. We find thedl. contours and evolve the tachyonic
sytem into the future. We conclude, that both future evohsiare allowed by observations, Big Brake becoming inangbs
likely with the increase of the positive model paramédter
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INTRODUCTION

With the discovery of cosmic acceleration [1] the quest fadeling dark energy [2] has started. Besides the most
simple cosmological constant, other models based on \apetfect fluids with negative pressure, like Chaplygin
gas [3], minimally and non-minimally coupled scalar fieldgldields having non-standard kinetic terrns|[4, 5] were
advanced. The latter ones include as a subclass the modeld ba different forms of the Born-Infeld-type action,
which is often associated with the tachyons arising in th#ex of string theory. [6]. Due to the non-linearity of the
dependence of the tachyon Lagrangians on the kinetic tertmeafachyon field, the dynamics of the corresponding
cosmological models appears to be very rich.

The tachyon model studied in paper [7] contains a 2-fluid@mnat scalar field', the dynamics of which is given
by a simple potential, depending on two parametdrandk. The model is homogeneous and isotropic. A phase
space diagram in the tachyonic field and its derivagizeT shows 5 type of distinct cosmological evolutions possibly
occurring for the model, some of them containing regimesrelés superluminal. All evolutions originate from one
of the Big Bangs of the model, but they either end in a de Sittfianite exponential expansion, as th€ DM model
does, or in a future singularity characterized by a reguiatesfactora, vanishing Hubble parametét and energy
densitye, but infinites and pressur@. Most notably, the second time derivative of the scale fagtes to—o, the
reason why we call this singularity a Big Brake.

A kinematical analysis [8] predicted the existence of suolgdarities, named sudden future singularities. From
a combined kinematical and observational reasoning akudglen future singularities could occur as early as in ten
million years [9], however no underlying dynamics is knowrstipport this.

Classically the Big Brake singularity is stable. This cansken by a series expansion of the scale factor in the
vicinity of the singularity and checking the stability cations advanced in Ref._[10]. Its quantum study indicated
singularity avoidance [11].

Recently [12] the compatibility of the model with type la smpovae observation has been investigated. After we
present some basic features of the model in Section 2, indBe®twe give more details on this compatibility check,
in terms of the original variables employed in Ref. [7]. TherSection 4 we stress the crucial difference between
negative and positive values of the model parametérhile for the former all evolutions end in the de Sitter attor,
for positivek the 1o contour compatible with type la supernovae contains battestwhich evolve into de Sitter or
into a Big Brake. In this dynamical model the Big Brake canusew earlier than 1years.
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The Big Brake singularity belongs to the class of soft cosmimial singularities, which also includes other rep-
resentants [13]. Other types of singularities arising i $tudy of various dark energy models include the Big Rip
singularity [14], present in some models with phantom darérgy [15]. The possibility of existence of a phase of
contraction of the universe, ending up in the standard Bigh€nh cosmological singularity was also considered [16].

Unit conventionthe Newtonian constant is normalized ag&&/3 = 1 and we take = 1.

THE TACHYONIC MODEL

We consider the flat Friedmann unived® = dt? — a?(t)d|?,whered| is the spatial distance aradthe scale factor,
containing a tachyon field@ evolving according to the Lagrangian

L=—-V(T)y/1-g"T,Ty. (1)

The energy density and pressure of the tachyon field for tleglfflann background are:

€= \/\% p=-V(T)V1-T2 2)

We shall consider the model with the tachyonic potential [7]

V(T) \/1—(1+k)co§ <;//\(1+k)T>, 3)

A
~ si? (3y/A@RT)

whereA\ is a positive constant andl < k < 1. The dynamics of the tachyonic field is encompassed in thiesy

T=s, (4)

s:—3N(1—52)3/4s—(1—52)\§, (5)
while gravitational dynamics is given by the Friedmann eiqura
H? =g, (6)

where the Hubble variabld is defined a$l = a/a.
For a negative parameterthe evolution of the systel(4)}(5) is always charactertae—1 < s< 1. The evolutions
start from a Big Bang and the system has an attractive node at

T

o= 3 AR

which corresponds to a de Sitter expansion with Hubble patardy = /A. (For more details see Ref, [12].)
The case& > 0 is much more richer (see Fig. 1). The dynamical sysiém@#hds three fixed points: the nodé (7)
and the two saddle points with coordinates

S =0, (7)

2 1-k
T,=———arccog/ —, =0, 8
RN 11k )
and, respectively,
2 1-k
Th=———_ | m—arccog/— |, =0, 9
2 3\/(1+k)/\< 1+k> K ©)

which give rise to an unstable de Sitter regime with HubblapateH; = 1/ (1+ Kk)A/2vk > Ho.
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FIGURE 1. Phase portrait evolution fde> 0 (k = 0.44).

The most striking feature of the model under consideratiith k> 0 consists in the fact that now the cosmological
trajectories are not confined to the rectangle giver-tiy< s< 1 andTz < T < Ty, where

T3 = #arccosi (20)
T3 /LLRA VITK
Ta= 2 (n— arccosi) (12)
T3 /ATRA VItk
are the limits of the domain for which the potentMlis well-defined. Indeed, the curvature scalar
3V(T)(4-3%°
1-¢

indicates curvature singularitiesst +1 except wheW (T) = 0 at the same time. This happens at the pdin@ Q'
andP’, where as the analysis of [7] shows, there is no singularitythe trajectories can be continuated. In doing so,
the potential should be redefined by multiplying wittso that it becomes redly(T) = iV (T). Then in the energy
density and pressurgl — s will absorb thisi, so that in the superluminal regimes we have

£= W) p=W(T)Vs—1, (13)

both positive.

In what follows, we briefly display all possible classes o$immlogical evolutions existing in the tachyonic model
with k > 0. First of all, note that in the phase space the reflectiofis respect to the node poimt= Tp,s= 0 leave
the cosmological evolutions invariant. Thus, it makes sa@nsstudy only half of the possible initial conditions in the
rectangle. This rectangle in the phase sp@ce) should be complemented by four infinite stripes (see Fig:hg
left upper stripe (the right lower stripe) corresponds witfitial stages of the cosmological evolution, while thghti
upper stripe (and the left lower stripe) corresponds to thed Stages. There are five classes of qualitatively diferen
cosmological trajectories. In characterizing them, welstumsider only half of the possible initial conditions tag
into account the reflection symmetry mentioned above.

The trajectories of class IV begin in the left upper stripahia point with coordinate¥ = 0,s = ,/#, which

corresponds to the singularity of the standard Big Bang.tyjiese trajectories climb to some maximal value of
s, then turn down and cross the poRit entering the rectangle. Then they leave the rectangleigiirehe pointQ/
entering the left lower stripe. Here, after a finite periodiwfe the universe encounters a special type of cosmological
singularity, which we call Big Brake. At this singularityé tachyon field has some finite value, its velositgnds to

—oo, the cosmological radius has a finite value, its first timevddive is equal to zero, while its second time derivative
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FIGURE 2. Time evolution of the Hubble parametdrt).
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tends to—o. The trajectories of class | also begin in the point with cioatesT = 0,s = ,/#, however, after

entering the rectangle they end their evolution in the deeSitode. They are separated from the trajectories of class
IV by the separatrix, which inside the rectangle connects the cofrith the left saddle point. The trajectories of

class Il are separated from those of class | by the carwehich begins in the point with coordinatés=0,s= %‘
passes through the cornerand ends in the de Sitter node. These trajectories begir ainigularitys= 1, T = T,
where 0< Tin < Ty, T, > Tz and end in the de Sitter node. The separadriending in the right saddle, separates
the trajectories of class Il from those of class Ill. Thedatbeginning as =1 andT = Ti,, whereT, < Tin < Tg,
after crossing the corn€ encounter their Big Brake singularity in the upper rightnité stripe. These trajectories
are separated from those of class IV by the cyryevhich passes through the right saddle point and the c@pner
Finally, the trajectories of the last class V begirsat 1, T = T, > T4 and end in the Big Brake singularity. The time
dependence of the Hubble parameter for these five classgsresented in Fig. 2.

We conclude this section by giving some additional formwlharacterizing the different types of singularities
present in the cosmological model under considerationhénvicinity of the singularity which takes place at the
horizontal sides of the rectangle (saysat 1), we have the following dependence of the funcsam T [7]:

s=1—C(Tin)(T — Tin)*, (14)

where
2(1_ 3y/A1+K)Tin
g1/ (1 (1+k)cog == )

C(Tin) = %5 ‘ (15)
32 sif? 3 /\(]Z-Jrk)Tm
Hence the energy density is
V(Tin) 4
2C(Tin(T—Tin)2 AT —Tin)? 5
In the vicinity of the singularityl — T, =t and
4
while the Hubble variable is 5
H= < 18
= (18)
just like in the dust-filled universe born in the vicinity dfe Big Bang singularity.
For the universe born in the poist %‘,T = 0 the potentialVV behaves as
w(r) = 4V (19)

T 91+ KT’



whereT = %‘t. The energy density behaves as

4Kk?

f e .
while the Hubble variable is ”

Thus, one can note that the universe has at this point a Big Bagularity and behaves in such a way as if it were
filled with a perfect barotropic fluid with equation of sta@ametem = %

We can also describe the behavior of the universe in theityoirf the final Big Brake singularity following the
logic of paperl[[7]. Consider the universe which is approaghhe Big Brake in the lower left stripe at some value of

the tachyon fieldigg. Correspondingly, the variabfapproaches-«. Analyzing Eq.[(5) in this limit we have

4 1/3 2
sl = (W(TBB)) (tsg—t)“~, (22)
wheretgg means the moment of Big Brake. Now, using the formula (6) &edenergy density froni (13), one easily
finds
oW2(Tgg) \ V3
H= <7£ BB)) (tes—1)*/3. (23)

Thus, we see that whdn— tgg, the Hubble variablél vanishes while its time derivative diverges, tending-te. It
is important to emphasize that the vallig is rigorously positivelgg > O [7].

CONFRONTATION WITH TYPE |A SUPERNOVAE

Following Ref. [18], in Ref.[[12] we have presented in dekiilv to perform gx?-test for comparing the prediction of
the model with the available type la supernovae taken from[Re]. In order to do this, we introduce more suitable

dimensionless variables

. H .V A
H=— V=

—,Opn=—, T =HT 24
HO Hga A\ Hga ol, ( )

whereHy is the present value of the Hubble parameter. In generahrfprariablef (z) we will denote byfy = f(z=
0). As a follow-up, we also introduce a new tachyonic variable

y:cos(g\/QA(H k)f), (25)

and switch from the time derivative to the derivative witepect to the redshiftby

d

d
a:—H(1+z)—. (26)

dz

Then we rewrite the equatioris ()] (4)} (5) in terms of the maviablesH, s, y and perform the(2-test. For this we

employ
d/d | 1
d_z<1+z>_ﬁ’ @7)

wheredl = Hod_ anddy is the luminosity distance for a flat Friedmann universe:

d.(2)=(1+2) OZ% (28)

The results are represented on the figure ddnel 3



k=-0.4 k=0.4

400
375
350

>400
375

350

325 225
300 300
215 215
250
225

200

250
225
200

So So

Yo Yo

FIGURE 3. The fit of the luminosity distance vs. redshift foe= —0.4 (left) and 04 (right). The white areas represent forbidden
parameter regions where the tachyonic field would be supénkl today. The contours refer to the.8% (10) and 954% (20)
confidence levels. For increasing valuesldf< 1 the well-fitting regions are increasingly smaller|[12] €T¢olour code foy? is
indicated on the vertical stripes. The model is symmetridenrthe simultaneous change of siggs— —yp andsg — —$p, thus
there is a double coverage of the parameter space.

FUTURE EVOLUTION

In order to avoid the double coverage of the parameter spismeto bring the Big Brake @t— £ to finite parameter

distance, we introduce the new variable L

W

We do this by numerical integration of equations of motiamniiz= 0 towards negative values afWe represent the
future evolution fork = 0.4 on Fig[4. The evolution curves start from the allowed redim yo) in the planez = 0.
The final de Sitter state is characterized by the paigt& 1,y4s = 0,Z3s= —1), the Big Brake final state by points
(Weg=0,-1<yge < 0,—1< zgg < 0).

Whereas all trajectories with= —0.4 end up eventually into the de Sitter state, those Wwith0.4 can either evolve
into the de Sitter state or into the Big Brake state, dependimthe particular initial conditiormf, yo). These are
generic features holding for negative and positive valliés @spectively. In Refl [12] we have also found, that future
evolutions towards the Big Brake singularity of the uniesrselected by the comparison with supernovae data become
more frequent with increasing (positivie)

(29)

k=-0.4 k=0.4

FIGURE 4. The future evolution of those universes, which are in 888confidence level fit with the supernova data. The 1
contours (black lines in the= 0 plane) are from Fifl3 (the parameter pldyg wp) is thez = 0 plane here). The figures are for
k = —0.4 (left) andk = 0.4 (right). The coordinatev is related to the tachyonic speedvas- 1/ (1+ sz)). In thek = 0.4 case from
the 1o parameter range the universe evolves either into a de 8tjene or towards the Big Brake singularity.



TABLE 1. Properties of the tachyonic universes with= 0.4 which

(a) are within Ir confidence level fit with the type la supernova data and
(b) evolve into a Big Brake singularity. Columns (1) and (@present

a grid of values of the allowed model parameters. Columnar(d)(4):

the redshiftz, and timet, at the future tachyonic crossing (wheg- 1

and the pressure becomes positive). Columns (5) and (6)yetishift

zgp and timetgg necessary to reach the Big Brake. The former indicates
the relative size of the universe when it encounters the Bak& (The
values oft, andtgg were computed with the Hubble parametir= 73

km/s/Mpc.)

Yo | wo | z |t.(10rs) | zss | tes(10%rs)
—-0.80 | 0.710 | —0.059 0.8 —0.106 1.6
-0.80 | 0.725 | —0.059 0.8 —0.105 1.6
—0.80 | 0.740 | —0.060 0.8 —0.105 1.6
—-0.75 | 0.815 | —-0.144 2.1 —-0.184 2.9
—-0.75 | 0.830 | —0.147 2.2 -0.187 3.0
—0.75 | 0.845 | —0.150 2.2 —-0.189 3.0
—0.70 | 0.845 | —-0.241 3.8 —-0.276 4.6
—0.70 | 0.860 | —0.248 4.0 —0.282 4.7
—-0.70 | 0.875 | —0.256 4.1 —0.290 4.9
—0.70 | 0.890 | —0.264 4.2 —0.298 5.0
—0.65 | 0.860 | —0.358 6.2 —0.387 7.0
—-0.65 | 0.875 | —-0.372 6.5 —0.400 7.2
—0.65 | 0.890 | —0.388 6.8 —-0.415 7.6
—0.65 | 0.905 | —0.406 7.2 —0.432 8.0
—-0.60 | 0.875 | —0.521 10 —0.542 11
—0.60 | 0.890 | —0.551 11 —-0.571 12
—0.60 | 0.905 | —0.587 12 —0.605 13
—0.55 | 0.875 | —0.756 19 —0.766 20
—055 | 0.890 | —0.837 25 —0.845 26

For all future evolutions encountering a Big Brake singityawe have computed the actual timgs it will take
to reach the singularity, measured from the present momen®, using the equatiofHgt) = —H*1(1+ z)’l).
The results are shown in Talile 1. The parameter values atwihécpressure turns from negative to positive (at the
superluminal crossing) are also displayed.

In Ref. [12] we have also shown that the Big Brake final fateoees increasingly likely with the increase of the
positive model parametér
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