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Abstract

Purpose We conducted this project to develop a feasible method for mapping tropical peat lands of Bengkalis Island—as a test

site—in Indonesia.

Materials and methods The method based on limited availability of field measurements and a wide range of remotely sensed

spatial datasets like radar elevation product, MODIS, and Landsat imageries. We applied land use category based sampling to

extend existing field data of peat thickness. New peat thickness data was collected by boring and simultaneous electrical

resistivity tomography (ERT). Based on remotely sensed and field data sets, peat maps were compiled by simulated spatial

annealing. Peat map statistics were derived after 500 runs including mean, median, minimum, maximum, and percentile values.

Results and discussion The resulted maps represent the limiting values of expected peat thickness using 90% confidence level.

Results showed that ERT is suitable for determining peat layer thickness. Using independent samples, we found that peat

thickness predictions tend to overestimate peat thickness by ca. 2 m in general.

Conclusions According to predictions, the peat volume of Bengkalis Island is estimated to be in the range of 3.28–3.58 km3.

Keywords Data integration . Indonesia . Peat-mapping concept . Probabilistic approach . Sampling strategy

1 Introduction

Greenhouse gases (GHGs) are in the focus of current climate

change research. Because of the magnitude of CO2 emission

rates, carbon dioxide is considered to be the most important

component of GHG (Pachauri et al. 2015).

Plants build their body from atmospheric CO2 through

photosynthesis that largely controls the natural balance of

CO2 emission and uptake. Regarding trees, it is well

known that roughly half of the timber is composed of

carbon that comes from atmospheric CO2 (Körner 2003;

Martin and Thomas 2011; Thomas and Martin 2012). In

the case of the so-called zonal vegetation types that de-

velop under macro-climatic driving forces on average

sites—excluding extreme soil conditions—carbon is

stored for decades in living trees and shrubs (Dixon

et al. 1994; Lal 2005; Thurner et al. 2014). Later as dead

organic matter develops from living plants, the majority

of carbon is released back to the atmosphere while the

minority enriches the soil organic carbon pool (Baritz

et al. 2010; Somogyi et al. 2013; Lawson et al. 2015).
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This cycle of CO2 has two engines to run: photosynthesis

and mineralization.

Peatlands are important zones of carbon accumulation.

Peat development takes place under anaerobic, waterlogged

conditions (Gorham 1991; Franzén and Franzen 2006;

Tarnocai 2006). Constrained decomposition leads to the accu-

mulation of dead organic matter. While anaerobic conditions

dominate, peatlands function as carbon sinks by storing mag-

nitudes higher amount of carbon than mineral soils. Peatlands

of the permafrost region account for less than 20% of the

global soil coverage, but they contain approximately 50% of

below-ground carbon pools (Tamocai et al. 2009; Sjögersten

et al. 2014; Kurnianto et al. 2015).

Indonesia’s peatlands are found in the inter-tropical conver-

gence zone with a wet season (5–6 months) and a dry season

(4–5 months). Annual precipitation exceeds 3500 mm, aver-

age temperature in coastal regions is around 25 °C. Peatlands

developed in the last 5000 years (Supardi at al. 1993) after sea

level has gradually fallen to its current position (Page et al.

2006). Coastal lowland basins started to turn into freshwater

swamps as the precipitation washed out seawater reducing the

area of mangroves. On millennial time scale, significant peat

belt developed in the coastal region of Southeast Asian islands

in the shape of domes gridded by rivers and covered by

swamp forests. The total area of Southeast Asian peatlands

is assumed to cover ca. 250,000 km2 (Morley 1981; Morley

2002). The maximum thickness of the peat layer may reach

20 m (Jaenicke et al. 2008).

The water regime dependency and concentrated carbon

storage functionality raise peatlands into a very important po-

sition in the battle of mitigating CO2 emission rates.

Therefore, it is an evident interest to preserve peatlands and

their carbon content instead of releasing it back to the

atmosphere.

Preservation of tropical peatlands requires knowledge

about their vulnerability (Turetsky et al. 2015). The termina-

tion of waterlogged conditions by drainage exposes dead or-

ganic material to oxidative conditions and quick decomposi-

tion freeing up considerable amount of CO2 in a very short

time. In extreme cases, the CO2 release happens by peat fires

when tens of square kilometers of peatland areas burn down

(Kool et al. 2006; Putra et al. 2008). Quick decomposition

after artificial or natural draining of peatlands therefore de-

stroys peat carbon sinks speeding up climate change processes

(Gaveau et al. 2014).

Due to their natural occurrence (water-rich, lowland

locations) peatlands were always threatened by human

landscape transformation mainly in order to gain more

agricultural land for food production or for other industri-

al or agricultural use. As a consequence, the area of

peatlands reduced drastically by the end of the twentieth

century and the remainder of these site fragments are now

under strict legal protection (Vasander et al. 2003).

For quite the same reasons (food production and industrial

plant cultivation), Indonesia’s peatlands were faced with the

same threat in the last few decades: hundreds of thousands of

hectares were turned into farmlands and plantations after

draining the lowland areas. In many cases, land use and water

regime changes ended in disastrous results: drained soil was

largely destroyed in extensive peat fires (Kool et al. 2006;

Gaveau et al. 2014; Hayasaka et al. 2014; Huijnen et al.

2016). Consequently, in case of peat fires, the land surface

subsides several meters that in coastal position open the way

in front of sea floods. Moreover, extended peat fires increase

CO2 emission of the region, and the smoke that covers the sky

and the cities causes respiratory illnesses (Putra et al. 2008).

In the last two decades, Indonesia lost 10–15% of its

peatland areas due to rapid decomposition and fires. Besides

this loss, it is estimated that the CO2 emission rate increased

by at least 50% during the same period (Hirano et al. 2014).

Currently, the weather modification technology has an impor-

tant role for mitigation strategy of the peat fires during dry

season Indonesia (Sandhyavitri et al. 2018).

Our main research objective was to find fast, cheap, and

efficient ways of mapping peatland areas to help Indonesian

authorities to decide on the appropriate measures for preserv-

ing peatlands. For this reason, we joined to the initiative,

which was announced during COP 21 Conference Paris

2015 when the Indonesian Peat Prize was launched (http, 1).

Within this framework, research groups made efforts to im-

prove peat land mapping techniques (Rudiyanto et al. 2016,

2018). Our research findings are presented in this paper.

2 Methodology and data

2.1 The study area

The methodology of Fig. 1 was tested on a test site in Riau

Province, Indonesia (Fig. 2). Bengkalis Island lying 10 km

off the coast of Sumatra, along the southwest side of the

Strait of Malacca, is characterized by many land use catego-

ries ranging from villages to closed forest stands. The

900 km2 large island has a very low relief; its highest point

is 13 m above sea level. According to Supardi at al. (1993),

665 km2 of the island is covered by peat more than 1 m

thick. The test site area is the eastern part of the island of

about 522 km2. Kembung River (flowing toward NE) and

Silan River (heading toward SW) split the peat-covered area

into distinct domains.

2.2 Geological and geomorphic setting of the study
area

Owing to the equatorial position of Indonesia, a great multi-

tude of geoscientific processes, influences, and factors play a
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role in shaping the landscape. These processes may ormay not

contribute to the development of peat resources, or, on the

contrary, may counteract of its preservation. In the widest

sense, the interplay of the geomorphic–geological setting

and the variation of the sea level have the general forcing

effect on the resulting spatial distribution. These factors pro-

vide the potential environment for the development, but also

may contribute to decay and complete disappearance of the

raw material.

The back-arc position (in terms of plate tectonics) creates a

wider belt of slow vertical crustal movements. It can manifest

mostly in subsidence, but also uplift or slow-rate tilting at

places, or even strike-slip faulting that also may have normal

components (Katili 1970). The Strait of Malacca is one of

these wider belts where the aforementioned differential uplift

(that also may include subsidence) takes place. It is yet not

very well known which of the two factors of the general sea-

level changes or the differential subsidence controls the local

(erosional) base level in this region. Volcanogenic influence

(building-up and destruction of volcanic edifices) may

contribute as flexural loading/unloading, potentially causing

vertical displacements affecting wide areas hundreds of kilo-

meters (see Cloetingh et al. 2007 for an extensive review).

Other factors may also play a minor role, like centennial

solar-terrestrial and tidal influence on sea level (see, e.g.,

Kázmér et al. 2008).

Geomorphological setting (driven by the underlying geo-

logical processes) determines the evolution of the local relief;

both coastal floodplain scale and micro-geomorphological

scale features are acting in peat accumulation and preservation

or contributing to its decay. Low-relief islands are character-

ized by quite different sedimentological settings as larger is-

land forelands: the latter environment may receive terrigenous

material from upstream areas and may develop swampy con-

ditions where redox circumstances may allow larger accumu-

lation of organic material. On the other hand, the terrigenous

influence of small, low-relief islands is restricted to the depo-

sition of occasional wind-blown volcanic ash and the organic

material accumulation is limited by the local biomass produc-

tion. Furthermore, isolated smaller, low relief islands are more

Fig. 1 The mapping and model

development workflow
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influenced by the local and general sea-level oscillations. Due

to the sea-level rise, many such islands have been decoupled

from the general material transport conditions that determine

the general pattern, developing local balance of accumulation

of dead organic matter. It is also possible that this decoupling

is a relatively new development; if this is the case, the prove-

nance and age of the material should be studied in more detail.

2.3 Methodological approach and workflow

The approach presented here has an integrative character, as

well as it is based on an iterative concept. The workflow

follows these guidelines:

– Data sources are required that are generally available for

thousands of square kilometers even if they are worse in

quality than unique datasets available exclusively for

unique sites.

– Freely available data should be integrated in order to keep

the costs of mapping low, making the method economi-

cally applicable for other sites as well.

– The focus should be on reliable and widely accessible

surveying methods that do not require too many addition-

al investments and are available in general.

– We have to use non-destructive sampling methods for

environmental reasons.

The workflow is presented in a flowchart in Fig. 1. The

workflow consists of a package of initial data integration, and

a two-phased package of data analysis and evaluation. The

design and working out of the field measurements is based

on the initial data in order to extend the dataset and verify the

preliminary results. Field measurements are required partly for

the mapping of spatial distribution of peat resources, partly to

initialize the planning of peat sampling for those properties

that can be measured only by sampling. The methodology

works iteratively as every new piece of data initiates an eval-

uation of its contribution to error minimization and leads to

recalculation of the sampling plan. The output of the flow is a

series of maps of peat realizations, accuracy measures, and

blind spot identification.

2.4 Data integration and compilation of preliminary
maps

The organizers of the Indonesian Peat Prize defined a test area

on Bengkalis Island and provided us with the major part of the

initial dataset (http, 1). This spatial dataset contained several

required items from Fig. 1. Among others, this initial dataset

Fig. 2 The test site location on Bengkalis Island (Indonesian Peat Prize documentation, IPP 2016)
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contained a set of sampling points and peat map polygons that

held information on peat thickness based on legacy data and

on samples of 117 locations of the test site from earlier sur-

veys. This existing sampling network served as the basis for

the optimization of sampling design and spatial densification

according to the data processing phase (Fig. 1).

In general, a countrywide digital terrain model (DTM) in a

resolution and quality of the desired peat map series is needed;

otherwise, the options of digital mapping solutions will be

constrained. As the a priori dataset did not contain a satisfying

DTM, the dataset was extended with the high-resolution sur-

facemodel of TanDEM-X project that we successfully applied

for at the Deutsche Zentrum für Luft- und Raumfahrt (DLR).

TanDEM-X provides high-resolution (12 m) radar-based

land surface products that are available for the entire surface

of Earth.

Being a radar-based dataset, the TanDEM-X data also has a

DSM character, but this Bissue^ is compensated by the higher

spatial resolution. For basic digital elevation product, we used

the TanDEM-X elevation data with its error estimation.

The core of the used satellite database consisted of Landsat

(http, 2) and MODIS products (http, 3). Finer resolution and

long period of availability of Landsat images enabled us to

produce detailed evaluations, while MODIS data delivered us

standardized and well-developed earth data products. Using

these imagery products, a desktop and online GIS database

has been built (http, 4).

Concerning the high-resolution satellite imagery, 23 images

can be found for the study area in Landsat database ranging

between 1972 and 2015. Out of these 23, only 8 images have

cloudless conditions that are suitable for land use (change)

category assessment. The selected images are from the follow-

ing years: 1972, 1990, 1996, 1998, 2001, 2007, 2010, and

2015. Table 1 summarizes the properties of the selected images.

The selected band composites are suitable for distinguishing

between vegetation types or soil surfaces (http, 5).

RGB composites, normalized difference vegetation index

(NDVI; (NIR −RED)/(NIR + RED)) and normalized differ-

ence infrared index (NDII; (NIR − SWIR)/(NIR + SWIR);

Hunt Jr and Rock 1989) have been calculated (Table 1).

NDII index is very useful in the evaluation of drought and soil

water deficit events (Sriwongsitanon et al. 2015).

The applied band combinations and calculated values are

suitable for the evaluation of actual vegetation, to distinguish

Table 1 Landsat images and

composites used in land use

change assessments

Acquisition date Spacecraft Generated RGB composites NDVI NDII

1972-10-05 Landsat 1 NIR, R, G Yes No

1990-08-22 Landsat 5 Bands 6-7-2; 7-4-1; 7-4-5 Yes Yes

1996-06-19 Landsat 5 Bands 6-7-2; 7-4-1; 7-4-5 Yes Yes

1998-07-27 Landsat 5 Bands 6-7-2; 7-4-1; 7-4-5 Yes Yes

2001-07-03 Landsat 5 Bands 6-7-2; 7-4-1; 7-4-5 Yes Yes

2007-02-10 Landsat 5 Bands 6-7-2; 7-4-1; 7-4-5 Yes Yes

2010-02-02 Landsat 5 Bands 6-7-2; 7-4-1; 7-4-5 Yes Yes

2015-07-10 Landsat 8 Bands 10-7-3; 7-5-1; 7-5-6 Yes Yes

Fig. 3 Workflow of map compilation via sequential stochastic simulation
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between surface types (e.g., bare land, water, built areas) and

to detect the temporal exchanges between land use categories

(Mas et al. 2004; Ingram et al. 2005; Hwang et al. 2011).

Regarding MODIS, images from the period of 2000–2016

were used, applying the following products:

– MODIS EVI and NDVI products

– MODIS MOD9A1 products

– MODIS Fire products

Altogether, 769 images have been downloaded from

NASA data server. The images were quality checked (includ-

ing cloud cover), and only reliable pixels were used. The

qualified image values were subject to standardization to

make them comparable between years.

In order to detect peat fires, all data files for the study

area having either the 8-day or 16-day returning period

have been evaluated. For MODIS fire products, we in-

volved only those pixels that were signed for high (9) or

nominal (8) confidence levels of fires. MODIS NDVI and

NDII index layers were also derived that were also sub-

jects for quality check in order to involve only high-

quality pixels.

2.4.1 Spatiotemporal land use change (LULUCF) analysis

Classified images were subjects of a spatiotemporal land use

change (LULUCF) analysis. From Landsat data, we derived

land cover maps over the period of 1972–2015. Land cover

maps were also assigned to the dataset. They represented the

land use changes and the conversion of forests into other land

use forms.

The most relevant land use categories for each repre-

sented year have been identified and extracted via super-

vised image classification. Training areas for classes were

selected manually in the way of visual image interpreta-

tion. For image segmentation and classification,

eCognition Developer was used on the basis of training

Fig. 4 Land use category changes on Bengkalis Island between 1972 and 2015 according to Random Forest classifier
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areas and subsequent image layer data. For classification,

the kNN and Random Forest classifiers were found to

provide the best results. Accuracies based on samples

were above 90%.

We combined the land cover layers into two single

layers—one for the kNN classifier and one for the

Random Forest classifier. The combined image was

reclassified according to the data that BFROM what TO

what^ the land cover changed between BDATES^ and

BHOW MANY TIMES.^ For example, in this way, clas-

ses have been created like BRemained forest all the time^

or BForest converted to bare land after 1990,^ etc.

As a result, it became feasible to conduct a study on the

land conversion process that took place in the island of

Bengkalis. Consequently, it was possible to identify the ap-

proximate years when forests were converted into croplands

or plantations.

These kinds of maps have a great importance in the

interpretation of current extent and thickness of peat

layers. The reason for this is nothing else than the differ-

ent patches represent the major land units that had similar

treatments in the past. Therefore, they are expected to be

less diverse than surrounding areas regarding the thick-

ness of peat or other properties.

2.4.2 Creating the preliminary peat map and sampling design

On the basis of the above-described GIS database, we

were able to prepare preliminary peat maps and a starting

sampling design for the examination of extended data col-

lection, which could provide data for preparing second-

stage maps.

For sampling optimization, we used the spatial simu-

lated annealing (SSA) algorithm and the pre-survey

Table 2 The summary of the field survey results (coordinates are according to WGS 1984 UTM Zone 48N; WKID 32648)

Number Site Coordinate X Coordinate Y Elevation (m) Thickness (m)

(from boring)

GWL depth (m) Soil type Von Post range

1 IPP-02A 165,528.70 197,063.71 7.31 4.00 0.8 Fibric

Hemic

H2, H5

2 IPP-02 162,837.68 201,223.47 4.42 2.00 1.0 Fibric H2, H3

3 IPP-03 165,662.82 199,970.74 6.79 6.00 0.3 Fibric

Hemic

H2, H3, H4

4 IPP-04 160,548.49 206,181.43 4.32 2.50 0.4 Fibric H2, H3

5 IPP-04A 156,805.85 202,206.75 2.10 0.10 0.3 Loam clay –

6 IPP-06 164,948.85 206,044.79 9.15 2.50 0.4 Fibric H2, H3

7 IPP-07 166,836.27 206,076.90 10.04 5.00 0.4 Fibric H2, H3

8 IPP-09 164,148.83 209,973.19 4.67 4.40 0.3 Fibric

Hemic

H2, H3, H6

9 IPP-10 169,536.15 209,715.59 4.10 6.00 0.4 Fibric

Hemic

H1, H2, H3, H4, H5

10 IPP-10A 167,600.64 210,095.75 9.26 No information

11 IPP-11 166,335.55 213,465.71 5.23 4.20 0.3 Fibric H1, H2, H3

12 IPP-12 161,544.39 216,123.05 1.40 0.00 Tide Clay –

13 IPP-13 154,288.76 206,714.56 8.90 6.00 0.17 Fibric

Hemic

H3, H4, H5, H6

14 IPP-14 154,587.00 206,982.70 8.87 7.50 0.03 Fibric

Hemic

H3, H4, H5

15 IPP-21 155,879.70 215,046.53 8.11 7.00 0.5 Fibric

Hemic

H2, H3, H4

16 IPP-22 155,419.00 217,782.95 0.58 0.00 0.3 Clay –

17 IPP-23 156,383.37 217,817.99 0.52 0.00 0.1 Clay –

18 IPP-25 148,820.11 213,695.71 10.43 More than 7 m 0.4 Fibric

Hemic

H2, H3, H4

19 IPP-25A 147,314.18 213,133.87 9.24 6.20 0.3 Fibric

Hemic

H2, H3

20 IPP-27 149,332.11 218,481.37 8.45 9.50 0.3 Fibric H2, H3

21 IPP-29 148,284.02 218,946.65 9.25 9.00 0.17 Fibric H2

22 IPP-30 146,326.60 220,530.41 6.39 6.00 1.3 Fibric

Hemic

H2, H3, H4
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quality measure that is the prediction variance of regres-

sion kriging.

During the optimization, we took into account the follow-

ing covariates: fire occurrences, land use change maps, and

principal components of NDVI and NDII maps. Existing sam-

ple point locations were also considered. Preliminary peat

maps in the IPP Spatial Dataset were considered as weight

layers in positive way.

We removed areas from optimization that are covered by

artificial surfaces or water.

Changing the proposed sample size, we were able to make

a calibration curve that shows the impact of sample size on

pre-survey quality measure. This curve was used to define the

number of necessary additional sample points. Neighborhood

map shows the goodness of coverage and demonstrates spatial

representativeness indicating suboptimal regions.

2.5 Field measurements

Besides the available field data, we carried out a data

acquisition campaign in April 2017 assigned, at the loca-

tions determined by the optimized sampling design.

Electrical resistivity tomography (ERT) measurements

were combined with borehole sampling at designated

sampling locations.

Multi-electrode surveying or resistivity tomography

(ERT) is a direct current geophysical method based on

Ohm’s Law. A set of in-line ordered, equally spaced

Fig. 5 Peat-dome thickness and

elevation

Fig. 6 2D Inverse model of below ground resistivity at ERT measurement points IPP2A (top) and IPP03 (bottom), showing 2D thickness of peat layer

along the measurement transect (with is ca. 1.5× vertical exaggeration)
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electrodes are used to conduct current into the ground so

that two of the electrodes serve as current input electrodes

and the voltage is measured on other two electrodes.

Considering the geometry (order of electrodes—which

one is applied as a current, which one is a measuring

electrode, and the distance between the electrodes), the

apparent resistivity of the current-carrying ground is cal-

culated. The four-electrode array moves through step-by-

step all the electrodes providing many geometric config-

urations and resulting in many apparent resistivity of the

respective ground below these electrodes. This set of ap-

parent resistivity is then evaluated by geophysical inver-

sion to get a 2D geometric distribution of the specific

resistivity of the topsoil (Loke and Barker 1996).

The ERT measurements were carried out using ARES ad-

vance multi-channel automatic resistivity, manufactured by

GF instrument. It mainly consists of transmitter and receiver.

The transmitter has power up to 850 W, current up to 5 A (24-

bit resolution), and voltage up to 2000 V, while the receiver

has 10 channels, input voltage ± 20 V, and input impedance of

20 MW. The electrode spacing was 1.5 m with 48 electrodes.

Borehole sampling aimed the compilation of stratigraphic

description for each point location of the additionally sur-

veyed sites. These locations were used for accuracy assess-

ment. Based on the degree of decomposition, every sample

was classified according to the detailed classification of Von

Post (1924), e.g., fibric (weakly decomposed), where the rem-

nants of the decomposing wood/trunk is still identifiable along

the very slightly decomposed wood/log/trunks. For shallow

borehole sampling, a Jowsey improved peat sampler instru-

ment was used (Jowsey 1966). Pictures were taken of every

50-cm sample section.

Fig. 7 Mangroves extracted from

land use maps
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2.6 Methods of peat map compilation

2.6.1 Geostatistics

We applied a sequential Gaussian simulation algorithm

(Goovaerts 1997) in which the mean and variance of the

distribution function at each location were modeled by

using regression kriging (Szatmári and Pásztor 2019). It

can be used to generate alternative and equally probable

realizations (so-called stochastic images) in order to mod-

el the spatial variability and uncertainty of peat thickness

at IPP test site. The generated realizations reproduce the

model statistics (e.g., sample histogram and variogram)

and honor the input data (Szatmári et al. 2015). For this

process, only the initial samples (i.e., 117 observations)

were applied.

Figure 3 presents a flowchart on geostatistical tech-

niques applied in this study. First of all, we applied a

polygonal declustering technique because the peat thick-

ness observations showed a clustered (or preferential)

sampling scheme. Therefore, different weights were

assigned to the data points based on their Voronoi’s area

proportion. These weights were used to compute the

declustered sample histogram. In the next step, we applied

normal score transform on the declustered histogram be-

cause sequential Gaussian simulation requires a multivar-

iate normal space (Goovaerts 1997). We generated 500

alternative and equally probable stochastic images using

the aforementioned simulation algorithm. The 500 reali-

zations provide 500 simulated values for each pixel,

which number is appropriate to compute the conditional

cumulative distribution of peat thickness for each pixel.

Using these cumulative distributions, the E-type estima-

tion and the corresponding upper and lower bound of the

90% confidence interval were calculated for each pixel.

Moreover, the 90% confidence interval’s width was

Fig. 8 The resulted map of

sequential stochastic simulation

with enclosed E-type

simulation—average peat

thickness
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computed also, which provides a measure of the uncer-

tainty, i.e., the wider the interval, the more uncertain the

peat thickness estimation. The resulting maps were eval-

uated and compared to develop spatial variation and un-

certainty measures by using the additionally collected

samples during field works.

2.6.2 Excluding non-peat areas

The known mangrove areas had to be masked out as non-

peat covered areas. From Landsat images using RED,

NIR, and SWIR 1 bands, mangroves can be extracted

before image processing takes place. The quotients of

RED/SWIR 1 and SWIR 1/NIR distinguish between man-

groves and other vegetation types (Long and Giri 2011;

Noviar 2014). In fact, land use maps derived from

Landsat data also offer a possible solution: areas classified

as BFloodplain forever^ in our land use categories practi-

cally cover all areas of mangrove vegetation.

3 Results

3.1 Results of LULUCF analysis

Due to the fact that the results of kNN and random forest

classifiers were almost the same, we provide here only the

random forest representation of land use changes over the

studied periods. The summary map of land use category

changes according to Random Forest classifier between

1972 and 2015 can be seen in Fig. 4. This map provides

information on the rate of land use change processes in

the last 43 years. The two main forest patches are obvi-

ously recognizable such as mangroves and other lands

(shrubs). Differently colored patches within the borders

Fig. 9 The lower limit of 90%

confidence interval for peat

thickness according to sequential

stochastic simulation
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of bluish forest areas represent the temporal and spatial

progress of land conversions from forests to other land

types. Towards the inner part of historical woodlands,

the size of the patches increases indicating the increasing

spread of cultivation. Data shows that large areas were

converted from forests into other categories between

2001 and 2010.

3.2 Results of additional sampling and ERT

Table 2 shows the summary of the field survey results of

point locations. The data shows strong correlation be-

tween peat thickness and ground surface elevation as the

peat forms low-relief peat domes. Figure 5 shows a linear

fit between peat thickness and ground surface elevation.

According to Fig. 5, elevation corresponds very well on

peat thickness (domes).

Profiles of ERT measurements show parallel layered

peat structures following soil surface. We found ERT suit-

able for mapping subsurface peat horizon. In the case of

peat, the organic-rich (and also water-saturated) peat has

significantly different resistivity value than that of the

typical underlying bedrocks (clay respectively).

Applying this method, the high resistivity contrast

appearing on the inverted resistivity profile marks the

bed of the peat (Fig. 6).

3.3 Exclusion of non-peat areas

As a further pre-processing step, areas can be defined

(mangrove, tidal areas) using the RED, NIR, and SWIR

1 band calculations and land cover assessment that can be

excluded from peat coverage maps. The resulted spatial

exclusion map is shown in Fig. 7.

Fig. 10 The upper limit of 90%

confidence interval for peat

thickness according to sequential

stochastic simulation
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3.4 Resulted peat maps

As the results, we present here a series of maps that were

obtained using the above-described method of peat map

compilation in a 30-m resolution (Figs. 8–10). Figure 8

with sequential stochastic simulation results shows de-

tailed peat map. The map represents the average values

for every pixel calculated from the 500 simulations of

peat surfaces.

Figure 9 represents the lower boundary of peat thick-

ness using 90% confidence level. Blue areas indicate soils

that must have significant peat deposits. Figure 10 repre-

sents the upper boundary of peat thickness using 90%

confidence level. Red areas indicate soils that are not ex-

pected at all to have any peat deposits.

3.5 Estimation of peat volume

Our probabilistic approach allows a robust estimation of

the peat volume. Of the 500 aforementioned stochastic

images, a curve can be plotted: each simulation gives a

peat volume; Fig. 11 is the cumulative distribution of the

500 actual volume values. Using Fig. 11, we are able to

answer to an assessment question like this: How likely is

it that the total volume of peat layer on Bengkalis Island

is lower than 3.2 km3? Although the predictions on peat

thickness cover a relatively large range and have a great

spatial variability on the edges of peat domes, because of

the much less volume of peat in the shallower edges than

in the inner part of peat domes, the overall peat volume

estimation is much more robust. Both the mean and the

median of the distribution is around 3.43 km3 with an

interquartile range of 0.31 km3. In other words, the peat

volume should be in the range of 3.28–3.58 km3 with ca.

95% probability.

4 Discussion

Our results show that the a priori and a posteriori infor-

mation integrated to a robust data model exhibit large

spatial variations especially within the bracketing minima

and maxima. These latter two properties (representing the

extracted information content of the whole dataset) have

relatively low undulations. This means that we could cre-

ate a robust estimate for the upper and lower bracketing

values. In terms of creating large-scale maps, this is one

of the most important results. Concerning the peat thick-

ness, the spatial undulations are relatively large as rela-

tively high scatter occurs in the models. From the point of

view of peat accumulation, but also (probably mostly)

because of possible localized peat decay, there are almost

no constraints for the lateral variation in the thickness:

due to the interplay of deposition and decay from place

to place, sharp changes are also possible in the real thick-

ness values. In other words, the horizontal persistence of

the peat thickness is relatively low.

The vegetation in the test area shows very strong an-

thropogenic effects (and so the original ecological pattern

has been destroyed). This way, the remotely sensed data

have been used in an environmental historical context (see

above). It is a question to be studied whether this can be a

widely applicable model or it has a local validity. This

question arises from the fact that the cloudless images in

Fig. 11 Peat layer volume

estimation curve according to

SSA model
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this area are very rare, and this way it is sometimes a

question of luck which years can be covered by satellite

imagery that can be integrated in the processing scheme.

Peat thickness maps of Fig. 8 and Fig. 11 correspond

very well to the land use change maps that underline the

importance of appropriate soil protection and the key role

of human activity in peat thickness changes in the test

area. Therefore, it is advisable to prepare land use catego-

ry maps from retrospective data sets before mapping op-

erations are taking place. This kind of even simplified

LULUCF analysis is very useful for designing sampling

schemes because areas in the same LULUCF categories

are very likely to show similar impacts on their peat layer

as a consequence of the similarity of human impacts. This

does not mean of course the same or similar peat thick-

ness by definition as it is influenced by more factors than

human activity alone.

Regarding the results of other research groups working

in Bengkalis with the same purpose (Rudiyanto et al.

2018), it can be stated that we came to slightly different

results. Rudiyanto’s team found that the total peat volume

of Bengkalis is about 2.955 km3. They characterized their

estimation with a very narrow standard error (±

0.00062 km3). Our results indicated that the mean value

of total peat volume is about 3.432 km3 while the mean

standard error is 0.0101 km3. This is a 16 times wider

error range than what Rudiyanto’s team has found.

Concerning accuracy assessment, we can imply on the

basis of 22 independent samples that in the case of sto-

chastic simulation-based model, the mean error of predic-

tions was 2.1 m with standard deviation value of 3 m.

Stochastic simulation slightly overestimated peat thick-

ness of test site. In general, this method followed well

the spatial pattern of peat thickness and peat dome occur-

rences. This error rate corresponds well to Rudiyanto’s

results reporting an RMSE between 1.8 and 2.8 m.

A major research question is that how far the lessons

learned in this case history can be generalized for vast

areas. Our assumption is (and actually our model works

so) that the data density shows strong lateral changes.

This is partly due to the nature of the phenomenon; partly

it is caused by the inaccessibility or difficult to impossible

measurement conditions. This can be expected for the

whole area to be mapped.

We also expect that the input data will be clustered

similarly as it is the case in the test site, so polygonal

declustering has to be applied for other areas as well.

Of course, this reduces the accuracy of quick-look

thickness values, but increases considerably the validity

of bracketing probability value. This way, we can maxi-

mize the local probabilities of robust estimation. It is

important to note that the regions characterized by differ-

ent input data density are not to be compared with each

other; only areas with similar observational spatial pattern

should be compared.

It is also important to consider the economic aspects of

the mapping and model development. The entire

workflow can operate iteratively until the required result

obtained or the allocated resources restrict the operation.

Either way, this methodology helps to achieve the best

results at any given financial level. Ultimately, in the case

of using exclusively freely available datasets, this

workflow generates only costs for data processing hours

of experts. Additional expenses are generated only by

field measurements (if there is no a priori information

available for validation). From existing and newly mea-

sured samples, we were able to calculate the level of un-

certainty at any given data density. Furthermore, the

whole process is to be planned by balancing between cost

and uncertainty measures.

5 Conclusions

Based on our studies using the Bengkalis data and the results

of the field measurements and sampling, we can draw the

following conclusions:

1. Although the vegetation analysis usually helps in detect-

ing peat occurrences, in Indonesia this method can be

used in areas that avoided considerable human impact

(e.g., extensive plantation). In these cases, a retrospective,

historical approach and detailed change analysis can re-

place the vegetation analysis.

2. As certain accumulation scenarios result in topographic

undulations, it is crucial to have a relatively high-resolu-

tion, high-accuracy DTM that should be included in the

modeling.

3. The volumetric estimates of peat layers can be robust,

even if the peat layer thickness shows local undulations.

4. Differing hydrological, geomorphological, and geological

conditions may require a revised model calculation in-

cluding further geomorphometric inputs as well.

5. The economic feasibility of such surveys depends on the

scalability of model using free of charge input data

components.
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