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Clustering of Fermi particles with arbitrary spin
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A single l-shell model is investigated for a system of fermions of spin s and an attractive s-wave,
spin channel independent, interaction. The spectra and eigenvectors are determined exactly for
different l, s values and particle numbers N . As a generalization of Cooper pairing it is shown that
when N = µ(2s+ 1), µ = 1, 2, . . . , 2l + 1, the ground state consists of clusters of (2s+ 1) particles.
The relevance of the results for more general situations including the homogeneous system is briefly
discussed.

PACS numbers: 32.80.Pj,05.30.Fk,74.20.Fg

The experimental realizations of highly degenerate
atomic Fermi gases confined in traps [1, 2, 3, 4, 5, 6, 7]
have increased the activity in the theoretical investiga-
tion of such systems, which had already started earlier
in view of the hope of future experiments. In particular
many aspects of the possible transition to the superfluid
phase have been studied in the case of the attractive in-
teraction between the particles [8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. For
instance, the critical temperature for the Cooper pairing
of atoms with spin values higher than 1/2 has been inves-
tigated [12, 17] based on the Gorkov-Melik-Barkhudarov
approach to calculate corrections to the BCS theory due
to induced interaction [28]. The result is that the crit-
ical temperature of the BCS theory is multiplied by
(4e)ν/3−1, where ν denotes the number of fermion species
(ν = 2s+1) [17]. Accordingly, if s = 1/2 (the case treated
by Gorkov-Melik-Barkhudarov) the critical temperature
is decreasing, while it is increasing for s ≥ 3/2. In the
special case s = 1 no such correction exists [12].

The aim of the present paper is to propose and demon-
strate that the superfluid ground state can be different
from that given by the BCS pairing theory if the spin of
the atoms s > 1/2. Namely, we suggest that instead of
Cooper pairs the particles can create clusters of zero total
spin value containing 2s+ 1 particles. This can occur in
optical traps where the spins of the particles can freely ro-
tate (Alternatively, one can think about 2s+1 hyperfine
states. In the following we use always the terminology of
spin). We do not attempt to make any comparison with
experimental results in this paper and choose the pos-
sible simplest model to make the presentation free from
approximations. We hope that in future experiments the
clustering effect can be revealed. We treat the case when
the number of species (2s + 1) is even. It is straight-
forward to extend our considerations for odd number of
species. Note that in the spin-1 Fermi superfluid the pair

correlation has been investigated in detail by Modawi and
Leggett [12].
We assume that the trap potential is spherically sym-

metric. The investigation will be done at zero tem-
perature and is restricted to the subspace of a given
l-shell filled with particles of number N (0 < N <
(2l+1)(2s+1)). The interaction between the particles in
the open shell is described by a spin independent contact
potential representing s-wave scattering with a negative
scattering length:

Hint = −
λ

2

N
∑

i,j=1

i6=j

δ(ri − rj). (1)

The one particle normalized wave functions in the open
shell are given by

Ψn,l,ml,s,ms
(r, ϑ, ϕ, σ) = Rn,l(r)Y

l
ml

(ϑ, ϕ)χs
ms

(σ), (2)

Here σ is a discrete spin variable, which can take
(2s + 1) different values. Spin eigenfunctions are ortho-
normalized according to

∑

σ

χs
ms

(σ)χs′

m′
s
(σ) = δs,s′δms,m′

s
(3)

The functions (2) are eigenfunctions of the one-particle
Hamiltonian, which contains besides the trap potential
also the average field of the closed shells. The problem of
diagonalizing the operator (1) can be solved exactly on
the fixed basis (2).
Let us denote by aml,ms

the operator which annihi-
lates a particle with quantum numbers (n,l,ml,s,ms). In
second quantization (1) can be written as

Ĥint ≡ ĥE0/π = −
E0

2

∑

m1,m2,m3,m4

∑

ν1,ν2

fm1,m2,m3,m4

×a+m1,ν1a
+
m2,ν2am4,ν2am3,ν1 , (4)
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where E0 is the characteristic energy

E0 = λ

∫ ∞

0

|Rn,l(r)|
4r2 dr, (5)

and the coefficient f is given in terms of the Wigner-3j
symbols.
The Hamiltonian (4) can be converted into

ĥ =
[l]

8
N̂ −

[l]2

8

2l
∑

L=0

L:even

(

l l L
0 0 0

)2

B̂2
L, (6)

where the abbreviation [a] ≡ (2a + 1) is used and the
scalar “square”

B̂2
L =

L
∑

M=−L

(−1)L−M B̂L,M B̂L,−M (7)

of the irreducible tensor operators

B̂L,M =

l
∑

m=−l

s
∑

ν=−s

(−1)l−m
√

[L]

(

l l L
m M −m −M

)

×a+m,νam−M,ν (8)

has been introduced. N̂ stands for the particle num-
ber operator. We note that in cases of l = 1 and
l = 2 the Hamiltonian can be expressed in terms
of the operators N̂ , C2(SU(3)), C2(SO(3)) and N̂ ,
C2(SU(5)), C2(SO(5)), respectively, where C2(G) de-
notes the quadratic Casimir operator of the group G [29].
We have calculated the full exact spectra and the eigen-

vectors of ĥ for s = 1/2, l = 1, 2, 3 and for s = 3/2,
l = 1, 2 using some Mathematica and Fortran pro-
grams. Unfortunatelly, the size of the Hilbert-space (in
the Lz = 0 Sz = 0 or Sz = 1/2 subspace too) grows
drastically. For higher s we also have performed calcu-
lations for l = 1, s = 5/2, 7/2 in the L = 0 subspace
for even N . The Young tableau technique has also been
used to analyse the model. The details will be published
elsewhere [29]. Results for the ground state energies up
to the half filled shell can be found in Tables I. and
II. Above the half filling energies and eigenvectors can
be obtained by particle↔hole transformation. If one ex-
act eigenstate has N particle in the l, s-shell with energy
E(N) then there is an other exact eigenstate for particle
number N ′ = Nt−N (Nt ≡ (2s+1)(2l+1)) with energy

E(Nt−N) = E(N)+(2l+1)s(Nt/4−N/2), N ≤ Nt/2

It is enlightening to discuss the structure of the ground
state for even number of particles in coordinate represen-
tation as well. Let us start with the two particle states.
The wave function is as follows:

ψ(1, 2) = ϕ(r1, r2)
2S+1χ(σ1, σ2) (9)

The function ϕ is symmetric and is the eigenfunction of
the angular momentum operator with L = 0, while the
spin functions are antisymmetric. The latter is ensured
if the total spin S takes the values S = 0, 2, . . . , 2s − 1,
which makes the ground state 2s times degenerate. The
degeneracy is lifted and a spin multiplet arises, if the
s-wave scattering lengths were different in different spin
channels. In case of s = 1/2 it is found that the exact
ground states are “pair states” for N = 2, 4, . . . , 2(2l+1),
i.e., their wave functions are the antisymmetrized prod-
ucts of singlet pair wave functions

Ψ(1, 2, . . . , N) = Â

N/2
∏

i=1

ψ(2i− 1, 2i). (10)

The operator Â stands for antisymmetrization. The sit-
uation is different when s > 1/2. Namely, instead of pair
states we find that 2s + 1 particle clusters are created
when N = µ(2s + 1), µ = 1, 2, . . . , 2l + 1. The wave
function reads as

Ψ(1, 2, . . . , N) = Â
∏

i

′

ϕ(ri, ri+1, . . . , ri+2s)

1χ(σi, σi+1, . . . , σi+2s) (11)

The prime on the product sign in Eq. (11) means that i
extends to the values as follows:

i = (2s+ 1)k + 1, k = 0, 1, . . . , µ− 1 (12)

1χ denotes the singlet spin function representing the
Slater determinant of the (2s+1) one particle spin fun-
tions χms

1χ(σ1, σ2, . . . , σ2s+1) =
1

√

(2s+ 1)!

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

χ−s(σ1) χ−s(σ2) . . . χ−s(σ2s+1)
χ−s+1(σ1) χ−s+1(σ2) . . . χ−s+1(σ2s+1)

...
...

. . .
...

χs(σ1) χs(σ2) . . . χs(σ2s+1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(13)

In Eq. (11) ϕ is a completely symmetric function for the
exchange of any pair of particles. Furthermore, it is an
eigenfunction of the orbital angular momentum operator
of the 2s+ 1 particles with eigenvalue zero.

Eq. (11) means that the states can be created by re-
peated application of a creation operator to the vacuum
(

Q̂
(l)
2s+1

)µ

|0〉. We have derived this operator, but we do

not present here in general form. For s = 1/2 the opera-

tor Q̂
(l)
2 is the pair creation operator

Q
(l)
2 =

1

2

l
∑

m=−l

1/2
∑

ν=−1/2

(−1)(l−m+1/2−ν)a+m,νa
+
−m,−ν (14)
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FIG. 1: The energy levels of the dimensionless Hamilton
operator ĥ in case of l = 2, s = 3/2. The dotted line (drawn
everywhere to lead the eye) at evenN gives the average energy
calculated using the pair wave function. The insertion shows
the binding energy per particle as a function of the number
of particles.

and for the ground state energy the simple relationship
is obtained for s = 1/2:

E0 =
2l+ 1

8π
N, N(even) ≤ 2(2l+ 1) (15)

Furthermore, for N = 2 Eq. (15) gives also the ground
state energy for any s values.
One can show that in the single l-shell model the clus-

ter wave function ϕ in Eq. (11) has the structure

ϕ(r1, . . . , r2s+1) = Ŝ

s+1/2
∏

j=1

ϕ(r2j−1, r2j), (16)

where Ŝ denotes the operator for symmetrization and
ϕ(r1, r2) is the function defined in Eq. (9). It can be
expressed in terms of the one particle wave functions:

ϕ(r1, r2) = Rn,1(r1)Rn,2(r2)

×

l
∑

m=−l

(−1)l−mY l
m(Ω1)Y

l
−m(Ω2). (17)

In Fig. 1 besides the exact levels for l = 2, s = 3/2

the expectation value of the Hamiltonian ĥ, Eq. (4),
with wave function (10) is also shown. As can be seen
it provides the exact ground state energy only for N =
2, (2s+1)(2l+1)−2, (2s+1)(2l+1). In the other cases the
energy obtained with the help of (10) lies considerably
higher than the ground state energy. This is especially
true when N = µ(2s + 1), and the wave function (11)
applies. The binding energy per particle has maximum
at these particle numbers.
For understanding the origin of the ground state wave

function (11) one has to realize that the relevant group

of the model is SU(2l+1)⊗SU(2s+1). With the usual
decomposition one gets states characterized by quan-
tum numbers specifying the irreducible representations
of SU(2l + 1) ⊃ SO(2l + 1) ⊃ SO(3) and similarly for
SU(2s + 1), where the relevant quantum number is the
total spin related to the irreducible representations of
SU(2) ⊂ SU(2s + 1). The seniority is associated with
SO(2l+ 1), while the orbital angular momentum L with
SO(3). The validity of the cluster wave function Ψ can
be best understood by studying first the structure of its
spin function. For µ = 1 the spin function is obviously
invariant under the group SU(2s + 1). It means that
the generators of SU(2s+1) commute with the operator

Q̂
(l)
2s+1 introduced in the text above (14). Since Ψ is ob-

tained by repeated application of Q̂
(l)
2s+1 it follows that Ψ

is also invariant under SU(2s+1) (consequently S = 0).
The corresponding Young tableau consists of µ columns
of length (2s + 1), which is known to specify a one di-
mensional irreducible representation of SU(2s + 1) (see
e.g. [30]). The Pauli principle to be fulfilled by Ψ requires
that the corresponding Young tableau of SU(2l+1) must
consist of µ rows, each of length (2s+1). It contains for
each µ a one dimensional representation of SO(2l + 1),
which leads to L = 0. The state is unambigously deter-
mined by choosing this representation of SO(2l+1). We
emphasize that the symmetry of Ψ is higher than just
the rotational invariance in the coordinate space and in
the spin space. As a matter of fact the symmetry is the
highest possible for particle numbers N = µ(2s+ 1).

In summary, our results are in harmony with the ex-
pectation that the ground state of a system of Fermi
particles with attractive interaction is the possible most
symmetric one with respect to the exchange of the space
coordinates of the particles. This feature manifests itself
spectacularly, when the number of particles is the mul-
tiple of the number of species 2s + 1. Though in this
paper the single l-shell model has been treated one can
presume the validity of the conclusions more generally.

As a generalization one can take into account more
than one shell in constructing the cluster wave function
ϕ (configuration interaction). Note that the totally anti-
symmetric spin functions 1χ, Eq. (13), would not change.
Another strategy would be to treat first the homogeneous
system and apply a local density approximation for the
trapped gas. The problem of the ground state of the ho-
mogeneous system is, of course, interesting in itself. In
this case ϕ is translationally invariant. When s = 1/2
the wave function Ψ, Eq. (11), which coincides now with
Eq. (10) is the well known expression of the BCS ground
state projected onto the N particle state and written in
coordinate representation (see e.g. [31]). For the spin-1
Fermi gas, introduced by Modawi and Leggett [12], we
predict a ground state containing three particles, clusters
of zero spin and with a symmetric ϕ(r1, r2, r3) function
in the expression (11).
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N 2 4 6 8 10 12 14

s = 1/2 −3/4

s = 3/2 −3/4 −33/10 −93/20

s = 5/2 −3/4 −33/10 −153/20 −48/5

s = 7/2 −3/4 −33/10 −153/20 −69/5 −327/20 −207/10

s = 9/2 −3/4 −33/10 −153/20 −69/5 −87/4 −249/10 −597/20

TABLE I: Ground state energies of the dimensionless Hamil-
ton operator ĥ for l = 1 and for N = 0, 2, . . . , 3(2s + 1)/2.

N 2 4 6 8 10

s = 1/2 −5/4 −5/2

s = 3/2 −5/4 −65/14 −185/28 −75/7 −375/28

TABLE II: Ground state energies of the dimensionless Hamil-
ton operator ĥ for l = 2 and for N = 0, 2, . . . , 5(2s + 1)/2.

As an example let us assume that four particles with
spin 3/2 are put outside the Fermi sea of noninteracting
particles as a generalization of the original Cooper prob-
lem for two particles (see for its discussion [31]). One
has to emphasize that even that part of the wave func-
tion, which depends on the space coordinates does not
have the “pair structure” (16) in general, it is valid only
within the single l-shell model. One can use (16) as an
ansatz, however, in a homogeneous system and compare
it with (10) for the ground state. Now ϕ(r1, r2) is speci-
fied by the requirement that it should satisfy the equation
for a bound Cooper pair (because of the δ function na-
ture of the two particle interaction one needs the usual
regularization (see e.g. [11])). The result of a simple, but
somewhat lengthy calculation leads to:

Epairs−E4cluster =
5λ

V

[

1 +
ϕ(0)

∫

d3r ϕ(r)C(r)

C2(0)

]

+O(
1

V 2
)

(18)
where Epairs and E4cluster are the expectation values of
the Hamiltonian with the wave functions of form (10)
and (11,16) respectively, using the interaction (1). V
denotes the volume of the system. It has been used that
ϕ(r1, r2) = ϕ(|r1 − r2|) can be taken real. The function
C(r) is defined as C(r1−r2) =

∫

d3r3 ϕ(|r1−r3|)ϕ(|r3−
r2|). As expected the difference (18) is of O(1/V ). Since
ϕ and C are dominantly positive the result shows that
the wave function (11) is energetically favored due to the
fact that (11) is “more symmetric” in space coordinates
than (10). To get an energy gain of O(1) a more accurate
ground state wave function is needed, which can account
for a possible four particle bound state. To find it goes
beyond the scope of the present paper and is a part of
our planned investigations.
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